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ABSTRACT The large expansion in network services and applications seen in the last few years requires new
network architectures to satisfy an increasing number of users and enhance content delivery. Named Data
Networking (NDN) has recently appeared as a new paradigm to solve many shortcomings in the current
TCP/IP architecture. Its main characteristics like stateful forwarding and in-network caching made NDN
networks an efficient environment for data delivery where the data is retrieved based on content names
rather than IP addresses. The NDN, by its nature, defends against the well-known Distributed Denial of
Service (DDoS) attacks that take place in the traditional TCP/IP architecture. However, a special kind of
DDoS attack called Collusive Interest Flooding Attack (CIFA) has appeared to overwhelm the resources of
NDN routers by filling their Pending Interest Tables (PIT) with long-lasting malicious entries. The network
throughput and consumer satisfaction rate are highly affected by CIFA. A lightweight yet efficient stateless
CIFA detection algorithm is proposed in this research utilizing the non-parametric CUSUM algorithm; a
change point detection approach that detects the point in time when a transition occurs in the network.
The proposed algorithm is characterized by its low computational overhead, highly accurate detection, and
quick response. To detect the malicious name prefixes and eliminate the CIFA effect, a mitigation algorithm
that uses the average response time vales of all name prefixes is proposed in this research. Experimental
results show that this approach detects CIFA after 199.5 ms from when an attack is launched in the large-
scale topology. In addition, the mitigation approach effectively reduces the PIT utilization and increases the
average consumer satisfaction rate.

INDEX TERMS Collusive interest flooding attack (CIFA), denial of service, detection and mitigation
scheme, named data networking (NDN), non-parametric cumulative sum (CUSUM).

I. INTRODUCTION
The Internet has expanded enormously in recent years due
to the emergence of new services, applications, and infras-
tructure [1]. This includes the proliferation of social media
applications, streaming video services, cloud computing, fog
computing, and the Internet of Things (IoT) [2]. The nature
of these services and applications imposes new requirements
on the current Internet architecture to satisfy the increased
demand of users. Clearly, the traditional TCP/IP architecture
has some limitations in dealing with the large amounts of
information generated on the Internet. It essentially con-
centrates on reliability with little focus on Quality of Ser-
vice (QoS) that is considered the main requirement for video
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streaming applications [3]. From a security perspective, the
TCP/IP architecture tends to secure the channels between
network devices using TLS/SSL protocols. However, the data
could be modified before or after entering the communication
channel; hence, losing the protection at other stages [4].

Named Data Networking (NDN) is one of popular archi-
tectures which has recently been proposed to address the
limitations of the conventional TCP/IP architecture [5].
Unlike host-centric IP networking that retrieves data based
on destination addresses, NDN is Content-Centric Network-
ing (CNN), in which data are retrieved from the network
regardless of the destination IP addresses. There are many
characteristics for considering NDN as the future Internet
architecture in terms of scalability, security, and flexibil-
ity. First, the in-network caching property included within
its architecture reduces the response time of requests and
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eliminates congestion; something that readily enhances the
network performance. Second, the use of stateful multipath
forwarding strategy enables NDN routers tomaintain the state
of packets and helps forward them intelligently. Third, NDN
has its own authentication properties within the packet for-
mat; hence, the authentication is done on the contents instead
of the communication channels. Therefore, its built-in fea-
tures addresses many security problems and defend against
the well-knownDistributed Denial of Service (DDoS) attacks
to which traditional TCP/IP architectures are prone [6].

Meanwhile, a special kind of DoS called Interest Flooding
Attack (IFA) affects the throughput and satisfaction rate for
NDN architectures [7]. In this type of attack, some malicious
consumers try to fill the Pending Interest Table (PIT) space
by frequently requesting existent or nonexistent contents until
legitimate interests are discarded from the network [8]. Many
researchers have tried to detect and mitigate the effect of
IFAs using different detection parameters, including time-
out statistics and utilization rate calculations of PIT entries
[9], [10]. Others have developed PIT management strategies
to defend against the attack [11], [12]. Recently, a new variant
of interest flooding attacks referred to as ‘‘Collusive Interest
Flooding Attack’’ has surfaced in a pretty deceitful way;
something that has made it more difficult for researchers to
detect and mitigate the attack [13]. In this type, not only
malicious consumers contribute to flooding the network, but
also the malicious producers who collude with them to fill
the PIT table with invalid name prefixes. Often, the CIFA is
launched within a short period of time when all consumers
send many interest packets simultaneously. These interests
stay in the PIT table for a duration very close to the expiration
time of the PIT entries, themselves, which causes a flood in
the PIT space. Once NDN routers respond to all interests, the
PIT returns to its normal state.

In this research, we propose a lightweight and highly
accurate CIFA detection mechanism that is based on online
sequential analysis. The proposed mechanism employs
Cumulative Sum (CUSUM) algorithm for attack detection.
The CUSUM was first proposed to monitor the change point
detection in a sequence of observations, determining the point
when a transition occurs. Here, a normally operating process,
requires the presence of a benchmark that reflects a stan-
dard network operation. Any deviation from this benchmark
would indicate an abnormal ongoing process in the system.
In certain situations, this deviation is continuous and small
in magnitude, which makes it hard to detect. Therefore, the
CUSUM algorithm accumulates these deviations, so they
become detectable and readily identifiable by the system.
Since CIFA is launched in a relatively short period using mul-
tiple interest packets, a large difference between the number
of interest and data packets is noticed simultaneously. There-
fore, accumulating this difference leveraging the CUSUM
algorithm at every sampling period and recognizing the large
difference in value can accurately detect CIFA. The proposed
detection approach is characterized by low computational
overheads, highly accurate detection, and a quick response.

Since we use an online sequential approach, the detection
time is relatively low.

A. RESEARCH MOTIVATION
The motivation of this work is inherit in the need to prevent
new security attacks from affecting the operation of future
ICN architectures. Hence, in this study we focus on detecting
and mitigating DDoS attacks in NDN; specifically collusive
interest flooding attacks. We believe that new network archi-
tectures need to be investigated for any security issues to
prevent cyber-attacks from occurring or mitigate their effects
in the future. Our interest in this research stems from a need
for NDNs to be deployed on large scale while warranting that
no security issues are encountered. This allows end-users to
send and receive their information securely with the lowest
possible risk. We examine the effect of CIFA and study its
impact on network throughput and satisfaction rate of legiti-
mate consumers through extensive simulations over a realistic
network topology.

A few researchers have studied in-depth the effect of
CIFA and proposed countermeasures to prevent this type of
attack [13], [14]. In this study, we focus on detecting and
mitigating CIFA by implementing a change point detection
algorithm, which makes a real-time statistical analysis on the
traffic involved to identify abnormal activities throughout an
NDN. We then compare our detection algorithm with other
research efforts to show the effectiveness of the proposed
system and report its points of strength. Our main goal in
this study is to achieve the lowest detection times in detecting
CIFA with low computation overhead to prevent a potential
attack during early stages.

B. RESEARCH CONTRIBUTION
Most of the detection mechanisms that were designed to
detect non-collusive IFAs were found non-effective against
CIFAs; thus, propositions for new detection methodologies
are in order. An efficient and lightweight scheme for detecting
and mitigating CIFA is proposed in this research. Here, the
proposed scheme uses a sequential analysis algorithm called
CUSUM to monitor and detect changes in NDN traffic in
real-time. The benefits of using online statistical analysis
algorithms in detecting flooding attacks are the lower compu-
tational overheads and the early-stage detection of an attack.
The main contribution of this research is summarized as
follows:

1) Simulate CIFA and analyze its effects on NDN net-
works in terms of network throughput, PIT utilization,
input interest rate, and satisfaction rate. ndnSIM is used
to simulate CIFA based on a fairly realistic topology,
leveraging the large-scale rocketfuel AT&T topology.

2) Present an online statistical analysis scheme to make
an early-stage detection of CIFA based on the CUSUM
algorithm; an online and non-parametric change point
detection algorithm used to detect malicious abnormal-
ities in behavior.
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3) Develop a mitigation technique that detects malicious
name-prefixes and discards attacking interest packets
to enhance the throughput and satisfaction rate of legit-
imate consumers.

The remainder of this paper is organized as follows: A brief
introduction of NDN structure and operation is presented
in II. An overview of collusive and non-collusive interest
flooding attacks is described in III. We provide a literature
review about detecting andmitigating CIFA in IV. Thereafter,
we present the proposed detection and mitigation schemes
in V and VI, respectively. In VII. we analyze and study the
effectiveness of the proposed defense scheme in detecting and
mitigating CIFA. Finally, we conclude this paper in VIII.

II. OVERVIEW OF NAMED DATA NETWORKING (NDN)
Named Data Networking (NDN) is one of the well-known
Information-Centric Networking (ICN) architectures that
uses application-defined content names. In this, the contents
are named by the applications and used directly in packet
forwarding [15]. There are some unique characteristics that
distinguish NDN from other ICN architectures. First, NDN
is a consumer-driven architecture, where the communication
is initiated from the consumer side, and the data are requested
by their names as drawn by the active consumer applications.
Second, each data packet sent across the network is crypto-
graphically signed by the content producer, so consumers can
verify and trust the sender [16]. The consumers wishing to
preserve the privacy of their data have the choice to encrypt
the packet’s payload [17]. Third, a core component that is
part of an NDN router architecture, called Pending Interest
Table (PIT), has a stateful forwarding property, where the
state of each sent packet is maintained employing intelligent
forwarding strategies.

The promise of NDN is to provide a content-based commu-
nication architecture allowing the users to request their con-
tents regardless of their physical locations across a network;
hence, providing a quick response. Rather than fetching data
from a specific naming host, the data is fetched by its content
name, where it could be retrieved from multiple physical
locations. This principle comes from the fact that most inter-
net traffic is based on a data dissemination approach, where
most users use the internet primarily to request or publish the
content in question. Over time, NDNs have changed the nam-
ing system from named hosts to named contents, where the
contents could be any data object, including movies, songs,
commands, etc. Unlike the end-to-end TCP/IP paradigm,
an NDN offer a hop-to-hop architecture as the packet is
forwarded from one NDN router to another commensurate
with the available forwarding interfaces where the data could
be found [18]. The inherited in-network caching properties,
intelligent forwarding strategies, and security features have
all improved data delivery speeds, reduced network conges-
tion and harnessed data-level security.

The heart of the internet hourglass architecture concen-
trates on a universal network layer, which is the IP layer
that implements and ensures the global inter-connectivity

between end-hosts. The thin waist of this architecture led to
a large expansion in the internet by separating the upper and
lower layer protocols; hence, allowing them to develop sep-
arately without constrains. Initially, the internet was created
primarily as a communication network, where the end-hosts
are the named entities in the communication packets. After
the emergence of e-commerce applications and social media
networks, the Internet has become a distribution network.
NDN maintains the same hourglass of the ordinary Internet
architecture, but changes the thin waist to allow the construc-
tion of distribution-based networks, as described in Figure 1.
By removing the constraints on the packet naming system,
NDN can name hosts, songs, movies, or any data chunks in
the network.

FIGURE 1. The hourglass of IP and NDN architectures.

A. THE NDN STRUCTURE
In NDN networks, clients who request data are called con-
sumers, and servers that render the content are called pro-
ducers. NDN routers forward consumer requests and store
data packets in their cache. There are two types of pack-
ets transferred across the network: interest packets sent by
consumers, which hold information about the requested data,
and the data packets sent by producers or cache routers
that hold the requested data. Generally, interest packets hold
information about the content name that is used primarily
by NDN routers to forward interests, including order pref-
erences, interest scope, and packet lifetime. Data packets
include information about the content name, requested data,
and content signature. Figure 2 describe the format of interest
and data packets in NDN. Interest packets are forwarded
by the core NDN routers based on intelligent forwarding
strategies. There are several pre-implemented forwarding
strategies defined by an NDN forwarding Deamon (NFD);
a core component of an NDN platform; including best route,
NCC, and the multicast strategies involved [19]. Here, each
strategy has its own merits in terms of the advantages and
disadvantages in forwarding the underlying interest packets.

Before getting into the details of the NDN forwarding
operation, a clear description of the core components of
NDN routers is in order. Three entities are maintained inside
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FIGURE 2. Format of interest and data packets.

each forwarding router, which include the Pending Interest
Table (PIT), Content Store (CS), and Forwarding Information
Base (FIB). The PIT stores state information of interests
that were requested but not fulfilled yet. This information
includes the incoming interfaces that requested the contents,
along with the requested prefix name. The CS is implemented
primarily to enhance the performance of an NDN by storing
the more frequently requested data in the router’s cache to
reduce the response time. Thus, a consumer who requests
a previously handled interest will receive a copy of cached
data from the NDN routers instead of getting the data from
its original sources. The NFD defines a number of cache
replacement policies to replace the data cache, and this could
vary from one router to another [20]. Finally, the FIB contains
a list of known name prefixes along with the interfaces where
these prefixes could be located. Specific routing protocols are
used to populate the FIB tables.

The naming system of contents in an NDN is fairly flexi-
ble, in which the names are chosen based on the consumer
application and its requirements. It adopts a hierarchical
architecture, where the content name is composed of multi-
ple components separated by a slash character (e.g,, /docu-
ments/films/movie.mp4). This naming hierarchy allows users
to relate or aggregate the name components with each other.
Naming contents in NDNs is one of the essential aspects of
application development. End-users have the choice to build
their own namespaces for their applications, which enables
application developers to make different abstractingmethods.
Although the management of namespaces is not included
in the designed architecture of NDNs, different researchers
have implemented various management schemes [21], [22]
and proposed secure mapping solutions [23] for namespaces
in NDNs.

B. NDN OPERATION
The operation of an NDN is based on a publish/subscribe
model, where the data is published by producers and
requested by subscribed consumers. Initially, the consumer
requests the contents by sending an interest packet that car-
ries the requested content name. When an interest packet is
received, an NDN router searches for the requested contents

in its Content Store (CS). When a data is found, it will be
forwarded to the same interface where the interest packet
was received. Otherwise, the router will search its PIT if an
entry is found for the asked name prefix. If so, the incoming
interface of the interest packet is added to the entry in the
PIT. When no existing entry is found, the router will create
a new PIT entry for this new interest and forward it again
to another NDN router through a strategy determined com-
mensurate with the information stored in the FIB. When the
data is found, in some cache routers or data sources, it will
be forwarded in a reverse path until it reaches the requesting
consumer. If no data is found for an interest packet, the NDN
router will simply remove the PIT entry for such contents
after an expiration time has been reached. No error messages
are transferred in an NDN; thus, the consumer has the choice
to re-transmit another interest packet using a specific timeout
mechanism.

When a data packet is received, an NDN router searches
for a matching entry in its PIT and forwards the packet to the
interfaces that requested the contents. Then, the PIT entry will
be removed from the PIT after forwarding the data packets
involved. To improve content delivery, the data is cached
in the CS for future requests. The rule of forwarding data
packets is to take the reverse path of interest packets. Here,
all the PIT entries related to the requested interest packet will
be removed from all routers along the route. The operation
of an NDN is described clearly in Figure 3. From the NDN
forwarding process, we can see that interest and data packets
do not carry any information about end-hosts. They only hold
information about the content’s names, where forwarding is
done based on content information as opposed to destination
IP addresses [24].

FIGURE 3. Forwarding scheme of NDN.

III. DENIAL OF SERVICE ATTACKS IN NDN
A Denial of Service (DoS) attack is a well-known type of
cyber-attack that aims to consume system resources and over-
whelm networks. Over the last few years, more attention
was drawn to mitigate different types of DoS attacks due
to the financial losses sustained and the reputation damage
they incur to the businesses involved. Commonly, an attacker
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uses multiple compromised machines to launch a Distributed
DoS (DDoS) attack, severely blocking legitimate users ser-
vice and adversely impact the business/es involved. In the cur-
rent TCP/IP architecture, an attacker can easily compromise
machines and control them remotely due to the addressable
nature of end-hosts [6]. In NDNs, things are totally different
since the packets are sent based on content names, not desti-
nation IP addresses; hence, launching DDoS attacks could be
more difficult in NDN than in ordinary TCP/IP architectures.
Nonetheless, there is no guarantee that attackers will not find
a way to compromise consumer machines and build their own
botnets over an NDN. Hence, we assume that attackers have
multiple malicious systems distributed around the network
over which they can launch DDoS attacks.

There are two familiar types of DoS attacks commonly
identified in NDNs; the Cache Poisoning (CP) and Interest
Flooding Attacks (IFA). Cache poisoning attacks aim to for-
ward and distribute fake contents throughout the network by
means of compromised routers or end-hosts [25]. Since NDN
routers have a special forwarding property, manifested in their
ability to serve user requests in case of having copies of the
requested content, any compromised router can forward fake
contents to consumers. On the other hand, interest flooding
attacks target the pending interest tables of NDN routers,
where malicious consumers send many interest packets to
overwhelm a router’s PIT with existing or non-existent con-
tent [26]. This type of a flooding attack bears another name,
known as non-collusive IFA. Another attack type, dubbed
Collusive Interest Flooding Attack (CIFA), is launched with
the help of a collusive producer that provides content to
malicious consumers. Although collusive and non-collusive
IFAs have almost the same impact on NDNs, detecting CIFA
is a more difficult process since the malicious interests are
satisfied, which makes it more difficult for the defender to
distinguish legitimate interests from malicious ones.

A. INTEREST FLOODING ATTACK (IFA)
The aim of IFAs is to overload NDN routers by requesting
a large number of unsatisfied contents, exploiting the state-
ful forwarding feature of an NDN. As the routers maintain
a state on every sending interest, an attacker can exhaust
system resources and prevent them from handling the valid
requests sent by legitimate consumers. There are three com-
mon types of IFAs, which are classified depending on the
type of contents requested by malicious consumers. The
first type requests existing contents, in which an attacker
uses a large number of compromised machines to request
valid contents; thus, overloading producer resources. The
effect in this type is slightly little compared with other
IFA types due to the inherent in-network caching property.
Every time an attacker requests an existing content from the
network, the caching routers will respond from their cache
stores, which reduces IFA effects. The second type requests
dynamic contents, where dynamic interests are generated
to request valid contents from the producer side. This type
of attack highly consumes the router’s PIT and producer’s

computational resources since the router will create a PIT
entry for every single interest, and the producer will be forced
to sign every data packet generated in the network. The
last type requests non-existent contents, where unsatisfiable
interests are generated by attackers to consume the memory
resources of a router’s PIT. These interests will stay in the PIT
until their expiration time is passed, which causes a large drop
in legitimate interests when the PIT is filled with unsatisfied
malicious entries.

B. COLLUSIVE INTEREST FLOODING ATTACK (CIFA)
As opposed to IFAs, CIFA attacks aim to fill up the PIT of
intermediate NDN routers with valid contents provided by
a malicious producer. Here, all interest packets are satisfied,
which makes it more difficult for the detector to distinguish
malicious interests from legitimate ones. This type of flood-
ing attack is more deceptive than the IFA since the nature of
malicious traffic is very close to legitimate traffic. An attacker
in CIFA colludes with a malicious server to provide valid
and unpopular content to malicious consumers. Every mali-
cious consumer sends a small number of interest packets,
requesting different contents from the colluding server. This
will force NDN routers to create a new entry in the PIT
for every interest packet, causing the PIT to be overloaded
and the network throughput to drop. The main idea behind
CIFA is to keep the malicious entries in the PIT for as long
as possible, so that NDN routers will not be able to serve
the legitimate consumers during this period. To achieve this
goal, the colluding server will be programmed in a way
such that all data packets are sent after a certain time lapse
close to the interest lifetime period. Here, the time duration
should be long enough to keep the interest packet in the PIT
as much as possible. If the malicious producer responds to
interest packets in a short period, the attack efficiency will
decrease, and the opportunity of accepting new legitimate
packets will increase.Therefore, the entries will, as a result,
stay in the PIT for a long time, forcing NDN routers to drop
all incoming traffic until these entries are satisfied. As such,
a CIFA attack prevents legitimate consumers from sending
their interest packets and receiving their corresponding data
packets. The NDN routers will be overwhelmed by malicious
traffic causing the PIT table to be filled with long-duration
entries; thus, the legitimate interests will be dropped by
the NDN routers till the colluding producer responds to all
malicious interests. Apart from consuming PIT resources and
decreasing the satisfaction rate of legitimate consumers, the
attack also consumes the bandwidth and results in a sudden
decrease in network throughput [27].

Usually, the CIFA is launched as periodic pulses with inter-
mittent attacking periods represented by three parameters,
include the attack duration T , interest sending interval t , and
attack intensity R. Figure 4 describes the attack model for a
CIFA attack. First, all the attackers send R interest packets
within an interval t and wait for a response from the colluding
server. Following this period, the malicious entries will stay
in the PIT till colluding servers send their corresponding data
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packets. At this stage, the malicious consumers will stop
sending interest packets and the NDN routers will wait for
a response to all interest packets stored in the PIT. When the
attacking entries are about to expire in the PIT, the collusive
server responds with the corresponding data packets at the
end of time T . At this stage, the next attack phase will
commence. The periodic nature of a CIFA results in severe
degradation in throughput due to the altered traffic status
during the attack.

FIGURE 4. CIFA attack model [28].

By launching CIFA attacks, the attacker can achieve better
effectiveness than IFA attacks (Type 1 and 2) with the help
of the colluding server since the request of interest packets
is done on non-legitimate contents that are satisfied within
a long period of time. Also, Unlike IFA attacks (Type 3),
the attack here is more hidden since all malicious interests
are satisfied by the colluding server; therefore, the attack
behavior is very similar to the normal legitimate behavior.

To clearly illustrate the idea of a CIFA attack, Figure 5
describes an attack scenario with three malicious consumers
and one collusive producer. The malicious consumers MC1,
MC2, andMC3 send interest packets to the collusive producer
MP. The PIT of bottleneck routers will be filled with these
interest packets for a long time, causing legitimate interests
to be dropped in the network. In this topology, malicious
interest packets result in PIT overload in routers R6 and R8,
which would lead to discarding the interest packets sent by
the legitimate consumer LC2. As described in the PIT table
of router R6, the last three entries are reserved for malicious
consumers. Since the colluding server usually responds after
some time lapse, all legitimate interests received during this
time will be discarded. Here, the main property that differen-
tiates the collusive version of flooding attacks from others
relates to the satisfied requests of interests, such that the
underlying traffic pattern looks pretty much the same as the
legitimate one.

IV. LITERATURE REVIEW
The security of an NDN has received increased attention in
the literature, especially that of securing the network from
DDoS attacks. In this section, we will present the detection
and mitigation architectures proposed over the last few years
to defend against IFA and CIFA attacks.

A. REVIEW OF IFA DEFENCE MECHANISMS
Zhi et al. [11] used the Gini Impurity concept to calculate the
impurity level of different interest names. In each period, the
impurity value of interest names received in the current time
interval are calculated and compared with the value in the
preceding time interval. When a large difference is detected
from the normal level of the Gini impurity range, an IFA is
detected. To mitigate the attack effect, the authors started
out by applying a recognition method to identify malicious
interest packets by calculating the Gini impurity variation
for each name prefix. Launching IFA decreases the impurity
value of a name prefix, which is then deemed as a malicious
name prefix. The mitigation is done by limiting the input
interest rate of recognized malicious prefixes. The router then
notifies the downstream NDN routers about these malicious
prefixes by sending a notification packet like the data packet
format, listing the prefix name in the content field.

An early detection and mitigation scheme was first pre-
sented by [12]. Here, the proposed scheme is designed to
reduce the PIT occupancy rate by enforcing an effective PIT
management in the NDN routers. The defense scheme is
applied to edge routers; routers that are directly connected
to the consumers to defend against IFA and reduce its impact
at an early stage. A stateless defense mechanism is proposed
leveraging the AQM algorithm so as to effect an active queue
management scheme that is able to remove malicious PIT
entries and rejects incoming malicious interests received by
NDN routers.

A Theil-based Countermeasure (TC) approach was pro-
posed by [29] to detect IFAs. The interest packets are first
divided into multiple groups based on the calculated Theil
entropy value. The degree of unevenness of interest name dis-
tribution is calculated to determine the proportional value to
both interest packets within a specific group, and all interest
packets of all classified groups.When the Theil entropy value
of the incoming interest names starts to gradually decreases,
an abnormal activity is detected in the network, denoting the
existence of an IFA. Here, a localization approach is used to
determine an attacker’s location by tracing back malicious
interests.

In [30] authors propose a technique, which sets it apart
from all others, in applying the IFA detection on the server
side rather than applying it on the NDN router. Every content
server maintains two main components: a detection compo-
nent for detecting malicious name prefixes and an HSL gen-
eration component to generate a hash value for each content
name. The content server periodically monitors the content
name’s requesting statistics to detect any anomalous requests
sent by consumers. Once the content server detects a mali-
cious name prefix, an alarm will be sent to the downstream
NDN routers, instructing them to enable HSL validation for
incoming interest packets possessing a negative name prefix.
The NDN routers then specify whether the subsequent inter-
est packets are fake or real depending on the HSL validation
results.
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FIGURE 5. CIFA attack scenario.

Authors in [31] propose the use of signed control packets to
transfer control commands between NDN routers and content
producers to organize the network and detect any suspicious
or malicious behaviors.Authors in [Benmoussa et al., 2020]
propose the use of signed control packets to transfer control
commands between NDN routers and content producers to
organize the network and detect any suspicious or malicious
behaviors. Producer-based control packets are sent by pro-
ducers to up-stream routers the minute they are overloaded
by consumer requests. Router-based control packets are sent
by NDN routers to coordinate with other neighboring routers
to regulate the traffic. The mitigation is done on edge NDN
routers by specifying legitimate, suspicious, and malicious
end-hosts based on their behaviors. A consumer behavior is
considered suspicious when the satisfaction rate is low and
the number of timed-out interests is high, or when the router
receives a producer-based control packet. In this case, a rate
limiting approach will be applied in the network. A consumer
behavior is classified as malicious when both conditions are
met. In this case, those consumers will be blocked by the
NDN router. Any transferred packets are cryptographically
signed by senders and verified by receivers. Although the
proposed approach effectively mitigates IFA and increases
consumer satisfaction rate, the communication and compu-
tation overheads are rather large as every control packet gets
to be signed and transferred between NDN routers.

The work presented by Cheng et al. [32] aims at detecting
and mitigating a more sophisticated interest flooding attack
scenario. Here, an attacker first launches a low-rate IFA,
then increases the rate gradually with the primary goal of
overwhelming the NDN routers. A central controller which
maintains a global overview of the network is used to collect
state information from edge NDN routers and detect any

anomalous events by injected by consumers. Each edge NDN
router is supposed to monitor the state of each interface;
so, when a suspicious behavior is detected, a notification
is sent to the controller informing it about incidences of
suspicious activities. However, abnormal behaviors reported
by just one NDN router cannot quite ensure the existence of
an IFA attack; hence, the reason why a controller is needed to
collect reported behaviors from all routers and analyze them
to determine whether an attack is detected in the network,
or not, with some certainty. Once an attack is confirmed,
the controller will further analyze reports to locate malicious
consumers and report them back to the NDN routers.

Pu et al. [33] proposed a countermeasure approach
called Self-Adjusting Share-Based Countermeasure (SSC),
whereby the interest rate is used as a parameter to prevent the
IFA attack. A tracing table is maintained in each NDN router
to record traffic statistics, including the number of incoming
interest and data packets, received negative acknowledgment
packets, and expired interest packets. At the end of every
observation period, the router collects these statistics and
calculates the Interest Unsatisfaction Ratio (IUR) for all
interfaces. When the IUR for a specific interface becomes
larger than the average IUR, the forwarded interest share
value of that interface is reduced with an amount equal to
the difference between the two unsatisfaction rate values.
Hence, the number of interest packets forwarded by each
interface is adjusted dynamically based on the unsatisfaction
interest rate. The proposed scheme was able to enhance the
PIT utilization rate while mitigating an IFA attack effectively
across an NDN.

Researchers in [34] used the features of self-similarity and
content name entropy to detect IFA attacks. First, the traf-
fic statistics are collected periodically, including requested
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contents name, number of times these contents are requested,
together with the interest arrival time. This information is
divided into multiple data blocks to ease the data processing
involved. The Hurst index and content entropy calculation are
then calculated for each data series. Here, the Hurst index is
used tomeasure the self-similarity of NDN trafficwhereas the
information entropy is used to measure the random variation
of a data series. As such, a large entropy value with a low
Hurst index are leveraged to mark the existence of an IFA
attack. Moreover, a non-parametric statistical analysis algo-
rithm commonly referred to as CUSUM is used to detect any
abnormal changes across the network by accumulating the
small shifts in the Hurst and entropy values.

Authors of [35] proposed an iForest to isolate and detect
the abnormal prefixes in NDN. The abnormality score of each
prefix was calculated to identify the abnormal prefixes, and
all prefixes that maintain an occupancy rate higher than a
predetermined threshold are considered malicious prefixes.
A rate limitation approach was proposed to mitigate the IFA
by sending a notification packet to all downstream routers,
preventing them from forwarding the malicious interests.

Researchers in [36] proposed a mitigation algorithm called
CHOose to Kill Interest Flooding Attacks (ChoKIFA), where
malicious PIT entries and interest packets are detected and
discarded by the NDN router. When the PIT size exceeds a
predefined minimum threshold value, and the current state
of an incoming interest (i.e., prefix name and incoming
interface) is similar to a randomly selected interest from
the PIT table, the input satisfaction rate will be calculated.
If it exceeds some threshold, the incoming interest packet is
discarded, and the malicious entry is deleted from the PIT.
Otherwise, the incoming interest packet will be dropped with
a specific probability, calculated based on the average PIT
size.

Authors of [37] proposed a collaborative approach between
NDN routers with the help of a centralized controller to
detect and mitigate DDoS attacks in NDN. An NDN router
connected directly to the content provider is implemented
and placed in the network to filter the incoming packets
and detect distributed denial of service attacks. Fake interest
packets that maintain a legitimate prefix name are detected
bymapping all prefixes in the content provider’s database into
the Quotient-based Cuckoo Filter (QCF). A warning message
is sent to the NDN controller reporting the name of mali-
cious interest names. To detect andmitigate IFA, intermediate
routers periodically monitor PIT expiration and occupancy
rates for each interface. When they both exceed threshold
values, all fake entries are deleted from the PIT table, and
a warning message is distributed to delete the entries from all
downstream routers.

B. REVIEW OF CIFA DEFENCE MECHANISMS
Salah and Strufe [38]were amongst the pioneers who pro-
posed a novel framework for detecting the collusive version
of interest flooding attacks. Here, a coordinated monitoring
framework called CoMon was introduced to mitigate the

effect of CIFA attacks in NDN, as an enhancement lever-
aging the previously proposed framework [39]. In that ear-
lier version the focus primarily dealt with mitigating the
non-collusive interest flooding attacks. Certain NDN routers
were chosen based on a location-based greedy algorithm to
serve as Monitoring Routers (MRs) to observe the utilization
rate of PIT entries and report any malicious name prefixes
locally.

Local observations of the PIT utilization rates can only
detect high-rate flooding attacks since the monitoring router
possesses only local knowledge about the network. How-
ever, a Domain Controller (DC), which maintains a global
overview of the network topology, was also located to detect
low-rate attacks by collecting the PIT utilization information
form the MRs and extracting malicious name-prefixes across
the NDN network. The mitigation process is performed by
discarding the packets coming from the name-prefixes that
were marked during the monitoring process.

Xin et al. [40] analyzed the spectrum of the traffic and
extracted the main properties that distinguish a CIFA traffic
from a normal one. Leveraging wavelet transform theory, the
authors noticed that the Power Spectral Density (PSD) of
the malicious traffic is concentrated mainly around the low
frequencies. Based on these findings, the authors suggested
a decomposition of the traffic signal using wavelet trans-
form algorithms and a reconstruction of the low-frequency
sub-band from the high-scaled wavelet coefficients. The
re-construction of the low-frequency band, where the mali-
cious traffic is usually concentrated, makes it easy to detect
any sudden signal changes; thus, it easily identifies CIFA
attacks in the network. The modulus of the re-constructed
sub-band was compared with a specific threshold value to
finally decide whether, or not, a CIFA attack is certainly
detected across the network.

Liu et al. [41] used the prediction error based on particle
filtering to detect CIFA by calculating the difference between
the predicted and estimated traffic signals; thus, detecting
CIFA attacks when the error value exceeds a predefined
threshold. It was noticed, in a stark observation, that the
fundamental changes in the traffic pattern appeared at the start
and end points of a CIFA attack, when the traffic started to
become anomalous as it returned to its normal state at the
end of an attack. These sudden changes in a signal make it
possible to detect an attack easily in an NDN. Initially, a set
of particles is defined and calculated using particle filtering
algorithms from an observed NDN traffic, representing a
one-step prediction process. After that, the estimated traffic
value is calculated based on the newly measured weight, and
the error value is consequently computed to decide whether
the network is actually under a CIFA attack.

Shigeyasu et al. [42] applied a distributed approach using
the cache reference indicator for detecting and preventing
CIFA attacks through the relay Cache Routers (CRs) dis-
tributed across NDN networks. As most of the CIFA attacks
use different name-prefixes for each interest packet, where
legitimate users would not usually request these names, the

VOLUME 10, 2022 66003



R. A. Al-Share et al.: Detecting and Mitigating Collusive Interest Flooding Attacks in Named Data Networking

reference number to these entries in the cache must be very
close to zero. As a first step, the PIT state is monitored by
relay CRs to detect any abnormal change in the table size.
When the PIT is overflowed, and the interest packets start to
be discarded from the table, the incoming interest packet rate
is calculated for each prefix name. When the incoming rate
for a specific prefix exceeds the pre-set threshold, its cache
reference number is determined for further detection. Finally,
the router will classify the prefixes with small reference
values as malicious name-prefixes. It will, also, discard the
packets holding such a prefix in their contents.

Nasserala et al. [43] focused on enhancing the cache to
mitigate an attack as opposed to monitoring the PIT and
measuring its utilization rate. In their work, the authors
divide the Cache-Store (CS) into multiple sub-caches based
on the number of interfaces of the NDN router. The size
of each sub-cache is determined based on the transmission
rate in each interface, such that the interface with the highest
transmission rate maintains the larger sub-cache size. Here,
each sub-cache is made responsible for saving the infor-
mation of the users directly connected to its interface. This
separation in the cache could mitigate the effect of CIFA
since the sub-cache with the malicious interface that manages
the attacking packets will be the only sub-cache affected.
Here, all other clean sub-caches will continue to provide
other users with their legitimate information, as requested.
However, particular consideration in this research is given
to the assumption that a router could maintain at most one
malicious interface, in an effort to prevent the performance
of the proposed solution from any degradation. Further, when
legitimate users request contents from an attacking interface,
such contents are not found in the other sub-caches. This will
inherently lead to requests not being satisfied; a scenario that
is found in most cases.

Wu et al. [28] adopted the confidence interval and
scrolling time window to detect and mitigate CIFA attacks.
The authors use two primary features to specify the upper
and lower bounds of the confidence interval, the existence
times of PIT entries, and the throughput. Since the existence
time for interest packets for a CIFA attack is high compared
with the normal network operation, it could be a harnessed
as a good indicator to detect anomalous entries as opposed
to normal ones. Initially, the upper and lower bounds for
the confidence interval are determined, which represents
the maximum existence time and minimum throughput,
respectively. Now, for as long as interest packets continue to
be received, the scrolling window continues to move on, and
the confidence interval is updated when the current traffic
is considered normal (i.e., does not violate the upper and
lower bound limits). Otherwise, if the traffic is deemed as
anomalous (i.e., some packets violate the upper and lower
bound limits), the PIT utilization is measured, recorded, and
compared against some threshold value. As a last step, once
the utilization rate exceeds the selected threshold, the packets
which hold the highest existence time valueswill be discarded
from the PIT.

Existing solutions to detect and mitigate CIFA attacks
exhibit limitations and other considerations that could affect
detection accuracy. In [38], the placement of monitoring
routers statically based on the locations of data sources may
not yield a practical solution since the nature of an NDN
network is dynamic. Moreover, implementing the CoMon
architecture requires a change in interest packet format and
communication structure, which is not recommended over
NDN networks. On the other hand, in the solution proposed
in [40], the false alarm rate is relatively high due to the inter-
mittent nature of CIFA attacks. Further, the method proposed
in [41] suffers a high computational overhead, especially
when too many particles are selected for particle filtering.
Researchers in [43] consider that NDN routers maintain at
most one malicious interface; hence, the performance of this
approach decreases when the router maintains more than one
malicious interface. 1 describes the pros and cons, detection
parameters, and the overhead for each proposed approach.

V. CIFA DETECTION MECHANISM
In this research, we propose a lightweight and highly accurate
CIFA detection mechanism that is based on online sequential
analysis. The proposed mechanism employs the Cumulative
Sum (CUSUM) algorithm for attack detection. The CUSUM
was first proposed by Page [44] to monitor the change point
detection in a sequence of observations, which determines the
point in time when a transition occurs. During any normal
process, there should be a benchmark that represents standard
network operation. The deviation from this benchmark pro-
vides an indication of an anomalous process taking place in
the system. In certain situations, this deviation is continuous
and small in scale; something that is hard to detect. Conse-
quently, the CUSUM algorithm accumulates such deviations,
making them more identifiable and detectable by the system.
Since CIFA is launched over a small period using multiple
interest packets, a large difference between the number of
interest and data packets is readily observable. Therefore,
accumulating this difference using the CUSUM algorithm at
every sampling period and recognizing the high difference
in value can more accurately detect the occurrence of an
attack. The proposed detection approach is characterized by
its low computational overhead, high detection accuracy, and
favorably quick response. Here, as we leverage an online
sequential approach, the detection time is expected to be
relatively low.

One of the main events that indicate the existence of a
CIFA attack is the delayed responses to interest packets.
Under normal conditions, the time duration between send-
ing interest packets and receiving their corresponding data
packets is much less than the lifetime of interests. In contrast,
under a CIFA attack, malicious producers tend to send the
corresponding data packets after a long duration of time close
to the interest lifetime value. This behavior indicates that
the difference between the number of interest packets and
data packets at the initial stages of a CIFA attack will be
large compared with normal network conditions. Therefore,
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our proposed detection algorithm uses the large frequent
differences between interest and data packets as an indicator
to identify an attack. The proposed solution could be seen
as a Change Point Detection process, where the times of
changes in time series data are detected and identified [45].
Specifically, the change point detection could be used as an
anomaly detection system, where the anomalous behaviors
are noticed significantly in the network. As with any anomaly
detection system, the observed behavior of traffic is com-
pared with the normal profile, which represents legitimate
consumer requests in our case, and any variation from the
normal baseline will be identified as an attack.

A change detection could be done offline or online,
depending on the application that is under investigation. For
an offline change detection, the analysis is done on a complete
sequence of data where the goal is to provide an accurate
estimation of the detected changes in a predefined dataset.
However, the offline analysis cannot be applied to real-time
data; hence, we cannot take any action when a change is
detected. On the other hand, an online change detection can
be used with real-time streams; hence, an action could be
taken immediately when a change is detected. Further, online
change detection savesmemory and computational overheads
by applying the analysis sequentially when new data streams
are observed. In our work, we use a sequential analysis
approach using the CUSUM algorithm, where the change
point detection is applied online, and the attack is detected
in the early stages [44].

A. CUSUM ALGORITHM
In practice, representing user requests in an NDN network
by a simple parametric model that could be valid always
is rather difficult. Therefore, we tend to use non-parametric
methodologies like CUSUM for our change point detection
problem. Initially, we will describe the main idea behind the
CUSUM algorithm and how it can detect abnormal behaviors
in time-series data. Then, we describe our detection system
that will be used to detect CIFA attacks.

Let {Xi, i = 1, 2, . . .} be a sequence of observations in
a random process. The process mean for Xi is E(Xi) = µi,
which is the parameter that we aim to monitor during a
process initiation. If we set the upper bound of µi to µ0, the
normal operating mean should not exceed this value under
normal network conditions. The following formula represents
the CUSUM control scheme proposed by Page to monitor the
process of {Xi}:

Si =

{
0, i = 0
(Si−1 + (Xi − µ0))+, i = 1, 2, . . .

(1)

where x+ = max(0, x), and µ0 is the upper bound of a
normal processmean.When Si exceeds the predefined thresh-
old Sth, a signal is generated from the system indicating a
violation in the observed CUSUM value. The main purpose
of defining µ0 in the formula is to offset the mean of the
process in order to prevent the system from deviating toward

the abnormal signal level Sth. Assuming that the mean of
the observations collected from the process is very close
to zero such that µi � 1, the mean of Xi – µ0 will be
negative under normal network conditions. Under abnormal
conditions, this value will exceed the upper bound µ0 and
suddenly reach a large positive value. The large increase in
the mean of the value Xi – µ0 is lower bounded by µ1. This
means that µ1 represents the lower bound of the increase in
the mean, which indicates the existence of a change in the
time-series data.

B. ATTACK DETECTION PROCEDURE
Let Ni and Nd be the observed number of sent interests
and received data packets, respectively, within a sampling
period ts. Define 1n = |Ni − Nd |, which represents the
difference between the number of interest and data packets
collected within the sampling period ts. As we noticed in
the attacking behavior of CIFA, this difference will gradually
increase when the malicious consumers start to launch an
attack at the beginning of each attacking period. Using the
CUSUM algorithm, this increase could be detected when we
observe changes during normal network operation. One thing
that we will do before using the calculated difference directly
in the CUSUM algorithm is to normalize it by the average
number of data packets. Let D(n) be the average number of
data packets, which is calculated and updated periodically as
follows:

D(n) = αD(n− 1)+ (1− α)D(n) (2)

where α is a constant lying between [0, 1], n is the discrete
time value, and D(n) is the count of data packets that have
been observed recently. The aim of the normalization process
is to make the mean value of 1 very close to zero, making it
independent on the amount of traffic or the time of the day.
Define Xn = 1n / D(n), which represents the normalized
difference between the number of interest and data packets
collected within a sampling period ts. Now, the value of
Xn will be used in Equation 1 to calculate the CUSUM of
process every time a difference is observed at the end of
every sampling period. The following function represents the
decision that will be taken while monitoring the value Si:

d(Si) =

{
1, Si > Sth
0, Si ≤ Sth

(3)

As we can see from the decision function that 1 represents
the presence of the attack, which is happened when the value
of Si exceeds the predefined threshold Sth, while 0 represents
the normal operation where no attack or abnormal behavior
is detected.

C. PARAMETER SELECTION
To apply the proposed detection algorithm, suitable sampling
periods and threshold values are chosen for the CUSUM
algorithm. Selecting appropriate sampling periods for
tracing the cumulative sum value is a rather important step
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to ensure that the detection algorithm achieves detection at
low sum values. Meanwhile, choosing high flooding thresh-
old values increases the attack detection time, while selecting
low thresholds results in more false alarms when detecting
CIFA attacks.

The sampling period ts is used to collect the number of
interest packets forwarded by NDN routers. To map the
interest packets to their corresponding data packets, another
sampling period td is used to collect the number of data
packets after the interests are collected during the period ts.
If interest packets have a lifetime value L, where the PIT
entry is assumed to expire at the end of this period, then the
sampling period of the data packet should be less than L.
Further, in order to accurately detect the attack behavior, data
packets are expected to be sampled before the end of the
attack period T . To detect an attack earlier, thereby increasing
the detection accuracy, the sampling period td should bemuch
less than T − t , where t is the interest sending period as
described in Figure 4. Here, sampling periods ts and td with
values 125ms and 62.5ms,respectively, were chosen to detect
a staged CIFA attack, in a manner that ensures the detecting
router achieves low detection times.

The proposed detection algorithm, as such, could be
applied on both gateway and backbone routers. For back-
bone routers, high flooding rate is noticed since the traffic
is aggregated from different locations, whereas in the case
of gateway routers only a small part of the flooding is seen
by the detecting router. Hence, it is commonly preferable to
use lower threshold values for backbone routers due to their
high attack sensitivity and large observed difference values.
In order to calculate the threshold value Sth, we leveraged
the formulas introduced in [46]. The time t0 was chosen as
the designed detection time for backbone routers, whereas
2t0 was chosen for gateway routers.

VI. CIFA MITIGATION MECHANISM
In this thesis, we mitigate a CIFA attack by firstly identi-
fying the malicious name prefixes and secondly discarding
all incoming interest packets that hold malicious prefixes
in their names. After analyzing the CIFA attack behavior,
we have noticed that the response time of a malicious request
was more than that for a legitimate one. Therefore, we use
the Average Response Time (ART) of consumer requests to
identify themalicious name prefixes. Such anART represents
the time from when the interests are sent until a response
is received by NDN routers. Calculating the ART of each
name prefix sent by an NDN router can accurately detect the
malicious name prefixes.

Upon receiving each interest packet, the NDN router calcu-
lates the response time for each sending request by recording
the forwarding time of an interest packet and the receiving
time of its corresponding data packet. Then, the prefix name
of the requested content will be extracted and the ART for
this prefix will be calculated according to Equation 4, where
T pavg(t − 1) is the previous average response time of prefix p,
T pcur is the recently measured response time, and T pavg(t) is the

new average response time value.

T pavg(t) = (1− α) T pavg(t − 1)+ α T pcur (4)

When the ART of a prefix name exceeds the threshold
value Tth, it will be marked as a malicious prefix. A list of
malicious prefixes will be constructed by the NDN router,
which will be used then to discard the subsequent malicious
interests when the CUSUM detection algorithm detects a
CIFA attack. A pseudocode for detecting the malicious name
prefixes is described in Algorithm 1.

Algorithm 1 Detecting Malicious Name Prefixes
1: Input: Threshold value Tth
2: Output: A set of malicious name prefixes Pm
3: Initialize Pm← φ

4: for each interest packet I received by router R do
5: Forward interest I
6: Record the forwarding time tf
7: end for
8: for each data packet D received by router R do
9: Record the receiving time tr
10: Calculate the response time T pcur
11: Extract the prefix name P
12: Calculate T pavg(t) of prefix P according to 4
13: if T pavg(t) ≤ Tth then
14: Pm← Pm ∪ {P}
15: end if
16: end for

When anNDN router detects the existence of a CIFA attack
in the network, it will drop all incoming interest packets
that belong to any malicious name prefix, as described in
Algorithm 2. Discarding malicious interests before creating
PIT entries in the PIT storage will highly enhance the PIT
utilization rate. Also, the throughput of the network is sup-
posed to be enhanced since NDN routers will not forward
these interests anymore.

Since we take the average value of the response time for
different consumer requests, this will eliminate the prob-
lem of delayed packets. The delay resulting from a specific
number of packets due to congestion may slightly increase
the average response time. However, it will not result in a
misjudgment when the threshold value is chosen carefully.
However, we set the threshold value in our simulation to 1.5 s,
which is almost 37% of the interest lifetime.

A. ALGORITHMS TIME COMPLEXITY
Algorithm 1 has a latency of 2∗P∗ t in the worst case. Where
P denotes the number of packets received, and t represents the
average response time value, which is constant. As a result,
This algorithm has linear time complexity of O(P). On the
other hand, Algorithm 2 has an O(n*m) time complexity in
the worst case, where N denotes the size of the Pm set, and M
represents the number of packages in interest. Hence, Algo-
rithm 2 has approximately O(n2), quadratic time complexity.
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Algorithm 2Mitigating CIFA Attacks
1: Input: A set of malicious name prefixes Pm
2: while receiving interest packets do
3: for each interest packet I do
4: Extract the prefix name P
5: if P ∈ Pm then
6: reject interest I
7: else
8: forward interest I
9: end if

10: end for
11: end while

VII. PERFORMANCE EVALUATION
As described earlier, CIFAs are launched by multiple mali-
cious consumers along with a collusive producer that together
consume the PIT resources of intermediate NDN routers,
which primarily affect the forwarding of legitimate interest
packets. Extensive simulations were done to first describe
the effect of CIFA on throughput, PIT utilization rate, and
satisfaction rate of NDN networks, and second to evaluate
the performance of the proposed algorithms in detecting and
mitigating CIFA.

A. SIMULATION ENVIRONMENT
Before getting into the details of CIFA effect and perfor-
mance evaluation results, this section presents the simulation
environment that was used to launch CIFA and implement
detection and mitigation systems. The ndnSIM, release 2.8,
was used to conduct CIFA to evaluate the performance of
the proposed CUSUM algorithm in detecting and mitigating
the attack. ndnSIM is an open-source platform used to sim-
ulate the large-scale NDN-related experiments; an extension
from the Network Simulator 3 (NS3) [47]. One of the main
characteristics of ndnSIM is the realistic integration with
NDN prototypes and the NDN Forwarding Daemon (NFD),
which ensures that simulations are reliable and applicable
to work in real environments without any problems.Teble 2
mentions the list of modules used to implement the detection
and mitigation mechanisms:

TABLE 2. Module names used to implement the detection and mitigation
mechanisms using NDNSim.

Two simulation topologies with different number of nodes
were used to conduct the attack, the small-scale binary tree

topology and a modified version of the large-scale rocket-
fuel AT&T topology. The rocketfuel topology represents a
real network architecture, which provides accurate results in
simulating CIFAs. As described in Figure 6, the binary tree
consists of 16 user nodes, 8 gateway nodes, and 11 backbone
nodes. Figure 7 describes the rocketfuel topology, which
consists of 130 user nodes, 33 gateways, and 13 backbones.
In the conducted topology, 25% of user nodes were selected
randomly as malicious consumers to ensure the even distri-
bution of attackers across the network. Two backbone nodes
were selected randomly as legitimate and colluding servers.

FIGURE 6. Binary tree topology.

To differentiate the interests coming from malicious or
legitimate consumers, malicious interests start with the prefix
/malicious/node_name, while the legitimate ones have the
prefix /legitimate/node_name. For legitimate users, interests
are sent at a constant rate, and the content distribution follows
the Zipf-Mandelbort distribution. Usually, the sending rate of
malicious users is very close to the rate for legitimate users,
in which the effect of CIFAs becomes hidden by the attackers.
In our simulation, we used the attacking parameters [4, 1,
50] and [4, 1, 10] in the binary and rocketfuel topologies,
respectively. For the legitimate interest rate, we used a rate
of 50 interests/s for a binary topology and 15 interests/s
for the rocketfuel. A detailed description of the simulation
parameters is summarized in Table 3.

B. CIFA IMPACT
As an initial step before detecting CIFA, we analyzed the
traffic behavior of CIFA to understand the attacking nature
and identify anomalous traffic patterns. In this section,
an evaluation of the effect of CIFA is described in terms
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FIGURE 7. Rocketfuel AT&T topology.

TABLE 3. Simulation parameters description.

of Throughput, PIT Utilization Rate (PUR), Input Interest
Rate (IIR), and Satisfaction Rate (SR). The simulation envi-
ronment described in Section VII-A was implemented on
ndnSIM to launch the attack. Following subsections describe
in details the effect of CIFA on NDN.

Due to the large number of interest packets sent by
malicious consumers at specific period, the PIT space of
intermediate routers could be fully utilized, especially when
the number of received interest packets exceeds themaximum
number of entries in the PIT table. Figures 8a and 8b illustrate
the PIT utilization rate for three backbone and one gateway
routers in the binary and rocketcfuel topologies, respectively.
As seen in the figures, the PIT utilization at normal operating
conditions for the network did not exceed 12% for the two
topologies. At second 41, the utilization started to increase
severely in the network and reached 100% for some backbone
routers due to the large sent interests during this period.

At second 44, when the collusive producer started to send data
packets, the utilization returned to its normal state for one to
two seconds and then, started to increase once more. It is evi-
dent from the figures that the backbone routers reached higher
utilization rates compared with gateway routers. Hence, it is
readily surmised that backbone routers are more prone to
CIFAs than other NDN routers.

The second metric that clearly describes the effect of CIFA
is the network throughput. Figures 8c and 8d describe the
throughput for three backbone and one gateway routers in
the binary and rocketcfuel topologies, respectively. In all
cases, we can see that the throughput was changing frequently
across different attack periods. First, when the PIT was
fully utilized at the beginning of each period, the throughput
was largely reduced. When the collusive producer responded
to the requests at the end of the period, the throughput
returned to its normal state. One can immediately notice
that the effect was quit dramatic on the bottleneck routers
since all network traffic was passing through it. As seen
in Figure 8c, the node bb-2 in the binary topology was
severely affected by the attack since its throughput decreased
from 4500 to 2000 Kbps. For the other nodes like bb-5 and
gw-3, the effect was dismal.

The input interest rate gives us an indication of received
interest packets per second on NDN routers. As seen in
Figures 8e and 8f, the IIR was changing frequently from
second 40 to 80. In bb-2 of the binary topology, a normal
rate would be around 530 packets/s under stable operating
conditions. Meanwhile, during an attack it is shown to fluctu-
ate periodically between 400 and 700 packets/s. Furthermore,
it is evident that gw-3 has a stable IIR over the entire simu-
lation period, which is attributed to the fact that the gateways
do not hold the traffic of the entire network.

Another parameter that describes a CIFA impact is the
satisfaction rate of the interest packets. Figures 8g and 8h
describe the SR of legitimate consumers in the binary and
rocketcfuel topologies, respectively. As seen from the figures,
the satisfaction rate was between 80% and 100% at the
beginning of the simulation. At second 41, it started to
decrease gradually until reaching nearly 10% in the rocket-
fuel topology and 25% in the binary topology at the end of
the attack period. This severe reduction results from a drop
of legitimate interest packets sent by legitimate consumers.
When the router reaches its full utilization rate, it starts to
drop the received interest packets from all legitimate con-
sumers, which largely reduces the SR. At the end of the
attack period, the satisfaction rate starts to increase since
the PIT entries of malicious consumers already start to be
satisfied.

C. ASSESSMENT OF DETECTION SCHEME
For all the sequential change point detection algorithms,
there are two main performance metrics that should be
considered:
• Detection Time (DT): The delay from when the attack
starts until it is detected by the detecting router.
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FIGURE 8. Evaluating the effect of CIFA on PIT utilization rate, network throughput, input interest rate, and consumer
satisfaction rate of both binary and AT&T rocketfuel topologies.
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FIGURE 8. (Continued.) Evaluating the effect of CIFA on PIT utilization rate, network throughput, input interest rate, and consumer
satisfaction rate of both binary and AT&T rocketfuel topologies.

• False Alarm Time (FAT): The measured delay without
false alarms under normal conditions when there is no
CIFA attack.

We always tend to keep the first metric as short as
possible while keeping the second metric as long as pos-
sible when detecting CIFA attack. The optimal detection
algorithm maintains the lowest detection time among all
other detection algorithms subject to some false alarm
time.

In this section, we present the detection results and analysis
for the CUSUM algorithm. We choose the routers gw-8 and
bb-4 from the binary topology, and gw-423 and bb-627 from
the rocketfuel topology as detecting routers. Figures 9 and 10
describe the cumulative sum value Si for backbone and
gateway routers, respectively. The red line represents the
threshold value that should not be exceeded during normal
network operation, which is 0.2 for gateways and 0.1 for
backbones. As we explained earlier, see Section V-A, under
normal conditions the mean values should not exceed the
upper mean bound, which must always be around the zero
value. In contrast, under abnormal conditions, the value Si
will still increase until exceeding the upper mean bound
reaching a large positive value. From Figure 9, we see that
all Si values are zeros for gw-423, whereas there are three
values in gw-8 exceed the threshold value.

In Figure 10, all the values are below the threshold value,
except for one point which exceeds the threshold in the sec-
ond 32.3 in bb-4. Since in gateway routers the flooding rate
is very small, the difference between the number of data and
interest packets is also small. Therefore, false alarms could
be raised faster in gateways than in backbone routers.

To study the effect of increasing or decreasing the
upper mean bound at the detection time and false alarm
time, we simulated the network under different µ0 values.

Tables 4 and 5 presents the results of the DT and FAT for
different µ0 values in the binary and rocketfuel topologies,
respectively. In most cases, when we increase the value ofµ0,
the attack detection times increase since more time will be
spent to reach the upper bound of the mean. As seen in the
table, the DT increases from 199.8 ms to 520.3 ms at gw-423
when we change µ0 from 0.05 to 0.2, as the DT increases
from 87 ms to 499.5 ms for bb-627.

TABLE 4. Results of DT after applying the CUSUM on binary topology for
different µ0 values.

TABLE 5. Results of DT after applying the CUSUM on AT&T topology for
different µ0 values.

Figure 11 describes the effect of increasing µ0 values on
attack detection times for the rocketfuel topology. To clearly
illustrate this relation, we plotted the values of Si for dif-
ferent µ0 values at gw-423, as described in Figure 12.
For µ0 = 0.05, the algorithm took two sampling periods to
detect the attack, as opposed to four sampling periods which
had to pass before alerting against an attack for µ0 = 0.2.
Increasing µ0 value means that the upper bound for the nor-
mal mean increases, which requires more sampling periods to
reach this upper bound. The accumulative sum will increase
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FIGURE 9. The Cumulative sum values at gateway routers.

FIGURE 10. The Cumulative sum values at backbone routers.

gradually after the attack is launched to reach a value more
than the threshold value that we set.

FIGURE 11. Detection time values for different µ0 values in the
rocketfuel topology.

Table 6 describes the false alarm time values for all detect-
ing routers after applying the CUSUM algorithm on both
topologies. Whenever we increase the µ0 value, the FAT also
increases. This is because increasing the upper mean bound
of the CUSUM reduces the chance of wrongly considering
a CIFA attack when there is no attack; hence increasing the
FAT. We can see that when the µ0 value is 0.1 in the binary

TABLE 6. Results of FAT after applying the CUSUM on AT&T and binary
topologies for different µ0 values.

topology, the largest time without false alarms is 15.3687 s
at gw-8 and 25.604 s at bb-4. Whereas when the µ0 value is
0.05 in the rocketfuel topology, the largest time without false
alarms is 1.7122 s at bb-627. This means that the number
of false alarms becomes very high when we set the upper
mean bound to very small value. For µ0 = 0.4 and µ0 = 0.2,
there are no false alarms since the value of the upper mean
bound is very high. In our work, the least DT with the largest
FAT is achieved when µ0 = 0.2 in the binary topology
and µ0 = 0.1 in the rocketfuel topology.

We study the performance of the proposed CUSUM algo-
rithm in terms of Detection Time (DT), CPU Utilization
(CPU-U). Since the CUSUM is an online sequential anal-
ysis approach where the traffic is monitored in real-time,
any abnormal activities in the network would be detected
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FIGURE 12. The Cumulative sum values at gw-423 for different µ0 values.

quickly by the NDN router. Therefore, the time for detection
is expected to be relatively low. In addition, as the CUSUM
algorithm analyzes the traffic by accumulating the differences
between interest and data packets, one of its characteristics is
the associated low-computational overhead; hence, the reason
for the low CPU utilization as compared with other detection
algorithms.

To show the effectiveness of the CUSUM detection algo-
rithm, the results were compared with the algorithm proposed
in [28], which uses the rolling time window algorithm along
with confidence intervals for detecting CIFA. Therein, the
authors used two primary parameters to detect the CIFA
attack, including the waiting time for PIT entries and network
throughput. For each period, an NDN router will update the
threshold values based on the confidence interval, which are
calculated at the end of each window. The mean and variance
of the two selected parameters will be used during each win-
dow to forecast the confidence interval for the next window.
When the waiting time and throughput exceed the threshold
values determined in the previous sliding window, the NDN
router will output an alarm signaling the existence of a CIFA
attack. The following subsections present the results for the
two algorithms under consideration in terms of detection time
and CPU utilization.

1) DETECTION TIME
One of the most important metrics in detecting any type of
attack is the detection time, which, in our case, is the elapsed
time between the start of a CIFA attack and its detection by
the NDN router. The sooner we detect an attack, the sooner
can respond to it an instate the necessary steps for mitigation.
In this, we always attempt to achieve the lowest detection
times as per our detection approach to speed the underlying
response and mitigate the consequential effect across the
network.

Table 7presents the detection time values in backbone
routers for different detection algorithms. We can see from
the table that CUSUM algorithm achieved the lowest detec-
tion time of 199.5 ms. Since the CUSUM algorithm can
track small shifts in time-series data, the underlying attack is

detected early on during the detection phase. In contrast, the
rolling time window algorithm detects an attack based on two
detection parameters: the throughput and PIT entries waiting
time. Hence, the more significant detection times than those
for the CUSUM algorithm.

TABLE 7. Detection time values of different detection detection schemes.

2) CPU UTILIZATION
As stated previously, one of the notable CUSUM characteris-
tics is the low computational overhead compared with other
statistical analysis algorithms. Therefore, the CPU utilization
of the system was measured under both the CUSUM and
rolling time window algorithms. Figure 13 illustrates the
CPU utilization for both algorithms during 30 seconds of
simulation time for the rocketfuel topology. As seen in the
figure, the average CPU utilization for the CUSUMalgorithm
is around 45.5% as it is around 46% for the rolling time win-
dow algorithm. This is because the analysis in the CUSUM
detection algorithm is done periodically on the traffic without
tracking every sending interest in the network. In contrast, the
rolling time window algorithm keeps a state for every PIT
entry and calculates the PIT entries waiting times along with
the network throughput upon receiving the interest packets to
calculate the confidence interval levels.

D. ASSESSMENT OF MITIGATION SCHEME
Few research papers have adequately contributed to the mit-
igation of CIFA attacks. The coordinated monitoring archi-
tecture proposed by [38] used PIT utilization as an indicator
to identify malicious name prefixes in the network. The miti-
gation was accomplished by discarding the interest packets
that belong to the names marked by the monitoring NDN
routers. [42] used cache reference value to identify malicious
name prefixes since attackers usually request unpopular con-
tents that are not requested by legitimate consumers. When
the incoming rate of a name prefix exceeds the selected
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FIGURE 13. CPU utilization for the CUSUM and rolling time window algorithms on rocketfuel topology.

threshold value, its cache reference will be calculated for
further analysis. Then, the NDN routers will discard the pack-
ets that belong to malicious name prefixes, which represent
the names that maintain small reference values. However,
an attacker may increase the requests on malicious content
names to increase the cache reference value and, hence,
bypass the detection algorithm.

Authors of [28] used the PIT occupancy rate along with
the waiting time value of PIT entries to mitigate an attack.
The NDN router periodically calculates the PIT usage when
a CIFA attack is detected in the network. The PIT usage is
calculated by subtracting the number of received data packets
from the number of incoming interest packets for all inter-
faces and dividing the results by the PIT size. When the PIT
occupancy rate exceeds a predefined threshold, N entries will
be deleted from the PIT storage, where N is the number of
PIT entries that maintain the most waiting time values. Here,
the NDN router tries to reduce the PIT occupancy rate to a
specific level, depending on a threshold value. Although the
large waiting time values indicate the presence of a CIFA
attack, deleting a specific number of malicious PIT entries
may not significantly enhance the satisfaction rate and PIT
utilization in the network. However, an attacker is still able
to maintain the malicious entries in the PIT space. Our miti-
gation algorithm uses the average response time of consumer
requests as an indicator to detect the malicious name prefixes
and discard all incoming malicious interests in the network,
as described in Section VI.

To evaluate the performance of our proposed mitigation
algorithm, we compared our work with the one proposed
by [28]. The performance of the proposed mitigation algo-
rithm ismeasured in terms of Satisfaction Rate (SR), Network
throughput, and PIT Utilization Rate (PUR). The following
subsections provide a detailed description for these metrics
along with the simulation results.

1) CPU UTILIZATION
As stated previously, one of the notable CUSUM characteris-
tics is the low computational overhead compared with other

statistical analysis algorithms. Therefore, the CPU utilization
of the system was measured under both the CUSUM and
rolling time window algorithms. Figure 13 illustrates the
CPU utilization for both algorithms during 30 seconds of
simulation time for the rocketfuel topology. As seen in the
figure, the average CPU utilization for the CUSUMalgorithm
is around 45.5% as it is around 46% for the rolling time win-
dow algorithm. This is because the analysis in the CUSUM
detection algorithm is done periodically on the traffic without
tracking every sending interest in the network. In contrast, the
rolling time window algorithm keeps a state for every PIT
entry and calculates the PIT entries waiting times along with
the network throughput upon receiving the interest packets to
calculate the confidence interval levels.

2) SATISFACTION RATE
Studying the satisfaction rate of user requests before and
after taking the mitigation measures can accurately evalu-
ate the effectiveness of the proposed mitigation algorithm.
As described in Figure 8, the satisfaction rate of consumers
under normal conditions was very close to 100%, while it
reached 10% under a CIFA attack. The degradation in con-
sumer satisfaction is the result of dropping legitimate interest
packets when the PIT storage of NDN routers is fully utilized
with malicious long-life entries. We use the following for-
mula to calculate the average satisfaction rate in NDN, which
will be used to evaluate our proposed algorithm in mitigating
CIFA attacks:

Si =

∑s
t=0 I

s
InputInterests∑s

t=0 IInputInterests
(5)

where Si is the Satisfaction rate of user i, I sInputInterests is the
number of input satisfied interests, and IInputInterests is the
number of input interests within s seconds period.When there
is no attack, most of the interest packets will be satisfied in
the network since the PIT utilization will be in its normal state
of all NDN routers. In the best case, the number of satis-
fied interests will be equal to the number of input interests
and the satisfaction rate will be 1. When a CIFA attack is
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FIGURE 14. Performance evaluation of the proposed mitigation algorithm
based on the Average Response Time (ART) in binary topology.

launched, the number of satisfied interests will decrease and
the satisfaction rate will degrade gradually to reach a very
low value. The average satisfaction rate in the NDN network
could be calculated as follows, where n is the total number of
legitimate consumers in the network:

Savg =

∑n
i=0 Si
n

(6)

After executing the mitigation measures to reduce the
effect of CIFA attacks, the satisfaction rate is supposed to
increase reaching a value very close to 1. It is always better
to maintain high satisfaction rates for legitimate consumers,
so they can send and receive their data effectively in the net-
work. Figures 14a and 15a describe the average satisfaction
rate for all legitimate consumers for both our proposed mit-
igation algorithm and rolling time window algorithm in the

FIGURE 15. Performance evaluation of the proposed mitigation algorithm
based on the Average Response Time (ART) in AT&T topology.

binary and AT&T topology, respectively. After mitigating the
CIFA attack, the average satisfaction rate increased to 87.7%
for our proposed algorithm and to 77.2% for the rolling time
window algorithm in the binary topology. In the rocketfuel
AT&T topology, the average SR increased to 89.4% for our
algorithm and to 88.4% for the rolling time window algo-
rithm. Once all the malicious interest packets are eliminated
from the network after an attack detection, the NDN router is
able to handle the legitimate interests properly in the network.
In the rolling time window algorithm, only a specific number
of PIT entries are deleted when the PIT usage exceeds a
threshold value. Hence, the NDN router will still create new
PIT entries even for a short time, which will not make a large
increase in the satisfaction rate. In contrast, our proposed
mitigation algorithm detects the malicious name prefixes and
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discards all incoming malicious interests, which inherently
prevents the NDN router from making new PIT entries for
those malicious interests.

3) THROUGHPUT
As described in Section VII-B, the throughput was not stable
during the CIFA attacking period. As seen in Figures 14b
and 15b, after applying our mitigation algorithm the through-
put of the network returned to its normal state after almost
three seconds from when the attack was launched. The NDN
router was able to identify the malicious name prefixes and
started rejecting all subsequent malicious interests coming
from the attacking side in 3 seconds. Since the NDN router
discarded all the malicious interests, no PIT entries were cre-
ated, something that would allow the legitimate interests to be
forwarded normally in the network. The average throughput
was 1970.4 Kbps after applying our mitigation measures,
as it was 1828.6 Kbps after applying the rolling time window
algorithm.

4) PIT UTILIZATION RATE
The PIT space should not be fully utilized under normal
network conditions. For example, the normal utilization rate
in the experiment that was done in Section VII-B was less
than 15%. Under a CIFA attack, however, the utilization rate
reached 100% for some backbone nodes. After taking the
mitigation measures, the PIT utilization rate is supposed to
decrease reaching a value very close to the normal utilization
rate in the network. The following formula represents the PIT
utilization rate for an NDN router, where Pentries(t) is the
number of PIT entries at time t , and Psize is the PIT size:

PUR(t) =
Pentries(t)
Psize

(7)

As seen in Figures 14c and 15c, the PIT utilization rate
returned to its normal state when we applied our mitigation
measures. The average utilization rates for our proposed
mitigation algorithm were 10.04% and 11.15% in the binary
and rocketfuel AT&T topology, respectively. Meanwhile, the
average utilization rates for the rolling time window algo-
rithm were 36.87% and 33.89%. Since our proposed algo-
rithm identifies the malicious name prefixes and discards the
interest packets before creating new PIT entries, the PIT uti-
lization rate is highly reduced to reach the normal utilization
rate value.

As a result, our proposed detection scheme is able to detect
CIFA attacks within 199.5 ms in the large-scale topology
based on the non-parametric CUSUM algorithm. The net-
work throughput, average satisfaction rate, and PIT utiliza-
tion rate returned to their normal state after applying our
mitigation measures based on the average response time of
consumer requests. The NDN router was able to identify the
malicious name-prefixes and discard all malicious interest
packets coming from different attacking sources. Finally,
Our proposed defense scheme was implemented based on a
statistical analysis process, which uses lightweight detection

and mitigation algorithms and consumes fewer resources as
compared with the works of other researchers.

VIII. CONCLUSION
This article proposed a resilient scheme based on the
non-parametric CUSUM algorithm to detect and mitigate
CIFA attacks. After studying the behavior of CIFA and ana-
lyzing the sequence of user requests, we found that the differ-
ence between sent interest packets and received data packets
is large within a short period of time. This abnormal traffic
pattern enabled us to use the statistical analysis algorithms
to detect the point in time where an attack was launched.
The CUSUM is a change point detection algorithm, where
the abnormal changes in the time-series data is detected. Our
proposed solution uses the frequent large differences between
interest and data packets as an indicator to identify CIfA
attacks. In addition, we used the average response time of
interest packets as a parameter to identify malicious name
prefixes to mitigate the effects of an attack. Our proposed
detection schemewas able to detect an attack within 199.5 ms
ms in the large-scale topology. After mitigating a CIFA
attack, the average satisfaction rate, throughput, and PIT
utilization rates returned to the normal network baseline.

IX. FUTURE WORK
As future work, we are going to implement a defense scheme
against the Improved Collusive Interest Flooding Attack
(I-CIFA), proposed by [13], which has a much higher impact
than normal IFA attack and higher concealment than CIFA
attack. In this type, the PIT capacity of NDN routing nodes
is probed before starting the attack. Every attacking node
has a different request mode, which makes the I-CIFA attack
detection more difficult for detecting engines than the CIFA
attack. Further, this new type reduces the attack cost of the
attacker and causes more damage in NDN networks.
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