
Received May 18, 2022, accepted June 5, 2022, date of publication June 17, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3183131

Orthogonal Design-Based Control Vector
Parameterization Combined With Improved
Seagull Optimization Algorithm for Dynamic
Optimization Problems
HAIDONG GUO 1, YUANBIN MO 1,2, AND YUEDONG ZHANG3
1School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
2Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Nanning 530006, China
3College of Electronic Information, Guangxi Minzu University, Nanning 530006, China

Corresponding author: Yuanbin Mo (moyuanbin2020@gxmzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 21466008, in part by the Guangxi
Natural Science Foundation under Grant 2019GXNSFAA185017, and in part by the School Level Scientific Research Project under
Grant 2021MDKJ004.

ABSTRACT This paper proposes an orthogonal design-based control vector parameterization (OCVP, for
short) and a Gaussian distribution-based seagull optimization algorithm (GSOA) for dynamic optimization
problems (DOPs). OCVP uses orthogonal experimental design to analyze the dynamic model to capture
the fluctuation characteristics of the optimal control trajectory. Then using the ranges obtained in the
orthogonal experiment to guide the construction of the time grid. Based on the seagull optimization algorithm
(SOA), GSOA introduces the initialization idea based on Gaussian distribution and the dimension-order
mutation operator based on Gaussian distribution. The initialization idea cleverly uses Gaussian distribution
to generate the initial population that conforms to the chemical process. The mutation operator uses the
dimension-order mutation method to improve the optimization performance of SOA. OCVP and GSOA
are combined to form a new optimization method, named OCVP-GSOA. In the application of four typical
chemical DOPs, the simulation results show that OCVP-GSOA can achieve similar or even higher solution
accuracy. Furthermore, OCVP and control vector parameterization are compared, and GSOA and other meta-
heuristic algorithms are compared. The results show that OCVP can achieve higher solution accuracy in most
cases, and GSOA can achieve better performance.

INDEX TERMS Dynamic optimization, Gaussian distribution, nonuniform control vector parameterization,
orthogonal design, seagull optimization algorithm.

I. INTRODUCTION
With the development of society, the energy demand is
increasing. Seeking an excellent optimization method of
the chemical control process has become a hot spot of
social concern. The optimization of the chemical control
process is usually expressed as a dynamic optimization
problem [1], which improves the performance index of the
chemical process by optimizing the control scheme. There-
fore, dynamic optimization plays an increasingly important
role in the chemical industry [2]. At present, the solution
methods of dynamic optimization problems (DOPs) include
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solution method based on Pontryagin Principle, iterative
dynamic programming (IDP) [3], control vector parameter-
ization (CVP) [4], nonuniform control vector parameteriza-
tion, and intelligent optimization algorithm.

The solution method based on Pontryagin Principle is an
early solution method for DOPs. This method transforms
DOP into the corresponding two-point boundary value prob-
lem with the help of the Hamilton system and the first-order
necessary optimality condition. Istratie [5] used this method
to study skip reentry trajectory optimization. This method
has the advantage of high accuracy, but it is difficult to
solve the complex high-dimensional DOP. IDP is a solution
method with global convergence. It needs to discretize the
time horizon and the control domain at the same time and uses
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the iterative idea to gradually approach the optimal control
strategy. As one of the methods that can effectively solve
DOPs, IDP has been applied in many practical problems.
Luus [3] combined IDP with the penalty function to deter-
mine the optimal control strategy of the fed-batch fermentor
and achieved good results. Woinaroschy et al. [6] used IDP
to optimize the fedbatch bioreactor, and further discussed the
influence of IDP parameters on the optimal control strategy.
Sundaralingam [7] used IDP to optimize DOP with state
inequality constraints and introduced a two-step method to
obtain the final solution. Numerical experiments show that
this method can obtain a better performance index and reduce
time cost. IDP has certain advantages in terms of computa-
tional cost and solution accuracy, but it also has limitations.
IDP will become complicated with the increase of control
variables and state variables [8].

With the development of computer technology, CVP has
gradually become the mainstream method for solving DOPs.
In CVP, the state variables maintain original continuity, while
the control variables are discretized into finite control param-
eters over the time horizon. This can transform DOP into
a nonlinear programming problem of control parameters.
In recent years, CVP was used by many scholars to solve
chemical DOPs. Zhou et al. [9] proposed an iteratively adap-
tive particle swarm optimization approach. The proposed
approach combined with CVP achieved higher accuracy in
solving several classical chemical DOPs. Zhang et al. [10]
proposed a hybrid algorithm HAPSODSA-CVP based on
adaptive particle swarm optimization (APSO) and differ-
ential search algorithm (DSA) and verified the effective-
ness of the proposed algorithm on three nonlinear chemical
DOPs. Tian et al. [11] combined the invasive weed optimiza-
tion (IWO) algorithm with CVP to propose a new optimal
approach IWO-CVP for chemical DOPs, and further pro-
posed an optimal approach based on adaptive dispersion
IWO, named ADIWO-CVP. Among them, the ADIWO-CVP
approach showed better solution performance. As an effective
method for solving DOPs, CVP also has certain limitations.
CVP usually uses the uniform discrete strategy to divide the
time horizon to create a uniform time grid. However, the
uniform time grid lacks adaptability, which oftenmakes it dif-
ficult for CVP to approximate the optimal control trajectory
well. Therefore, many scholars have proposed nonuniform
control vector parameterization method. Teo et al. [12] pro-
posed a classic Time-Scaling method. This method regards
the width of each grid and the control parameters as the
object to be optimized to obtain a set of control param-
eters closer to the theoretical solution and a better time
grid. Binder et al. [13] combined signal processing technol-
ogy with CVP and proposed a CVP based on wavelet anal-
ysis. This method uses wavelets to evaluate potential mesh
points to optimize the time grid obtained in the previous
step. Li et al. [14] proposed a CVP with variable time nodes.
In solving the optimal multivariable control problem, differ-
ent control variables are parameterized using different time
grids. This method showed better flexibility and universality.

Xu et al. [15] proposed an adaptive CVP based on pseudo
Wigner-Ville. With the help of pseudoWigner-Ville and vari-
able time node CVP method, this method can find the best
time grid and achieve the purpose of reducing the calculation
cost and improving the accuracy of the solution. Compared
with CVP, nonuniform control vector parameterization can
obtain higher solution accuracy, and its discrete strategy is
also more flexible.

In recent years, intelligent optimization algorithms have
been widely used to solve various optimization problems.
It has the advantages of strong robustness and easy program-
ming. CVP can transform DOPs into nonlinear programming
problems, so intelligent optimization algorithms are also
widely used to solve DOPs. Aiming at the multidimensional
and nonlinear characteristics of DOPs, Sun et al. [16] pro-
posed a hybrid improved genetic algorithm (HIGA), which
improved the convergence speed and solution accuracy of
the algorithm by introducing the simplex method, protecting
the best individual and other operations. Chen et al. [17]
combined the respective advantages of particle swarm opti-
mization (PSO) and gradient-based algorithm (GBA) to pro-
pose a hybrid gradient particle swarm optimization (HGPSO)
algorithm. In the solution of chemical DOPs, the HGPSO
algorithm showed better solution accuracy and optimiza-
tion performance. To develop the potential of artificial
raindrop algorithm (ARA) to solve multi-objective optimiza-
tion problems, Jiang et al. [18] proposed a multi-objective
artificial raindrop algorithm (MOARA) and applied it to
chemical DOPs. Tabassum et al. [19] proposed a differen-
tial gradient evolution plus (DGE+) algorithm. The algo-
rithm combined differential evolution, gradient evolution,
and jumping technique. It has strong global exploration per-
formance and has achieved good results in the optimization
of several bio-chemical reactors. In addition to the methods
mentioned above, other excellent methods, such as envi-
ronment sensitivity-based cooperative co-evolutionary algo-
rithms [20] and adaptive fuzzy control [21], [22], can also
provide references for proposing a new optimization method
for DOPs. According to the research status of DOPs, nonuni-
form control vector parameterization and intelligent opti-
mization algorithms are more competitive solution methods.

In this research, we propose a novel nonuniform con-
trol vector parameterization and an improved seagull opti-
mization algorithm. The novel nonuniform control vector
parameterization is named the orthogonal design-based con-
trol vector parameterization (OCVP). Based on CVP, OCVP
introduces orthogonal experimental design to analyze the
dynamic model and uses the range of each factor obtained
in the orthogonal experiment to guide the construction of the
time grid to obtain a better time grid. The improved seagull
optimization algorithm is named the Gaussian distribution-
based seagull optimization algorithm (GSOA). Aiming at
the characteristics of chemical DOPs, this paper proposes
an initialization idea based on Gaussian distribution and
a dimension-order mutation operator based on Gaussian
distribution to improve the seagull optimization algorithm
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(SOA) [23]. Finally, OCVP and GSOA are combined to form
a new optimizationmethod, namedOCVP-GSOA. In the sim-
ulation experiments of four typical chemical DOPs, OCVP-
GSOA can construct a better time grid and achieve higher
solution accuracy in most cases. Moreover, OCVP is com-
pared with CVP, and GSOA is compared with other meta-
heuristic algorithms to show their superiority.

The main contributions of this research are as follows:
(1) A novel nonuniform control vector parameteriza-
tion (OCVP) is proposed, which provides a better con-
trol vector parameterization strategy for solving DOPs.
(2) For chemical DOPs, an initialization idea based on Gaus-
sian distribution is proposed. The initial population gener-
ated under the guidance of this idea will be more in line
with the continuity of the chemical control process. (3) A
dimension-order mutation operator based on Gaussian distri-
bution is proposed. (4) A Gaussian distribution-based seagull
optimization algorithm (GSOA) is proposed, which effec-
tively improves the ability of SOA to solve chemical DOPs.
(5) Combining OCVP and GSOA to form OCVP-GSOA,
which provides a better solution method for researchers in
this field.

The rest of this paper is organized as below. Section II
depicts the dynamic optimization problem and the con-
trol vector parameterization method. Section III presents
the orthogonal design-based control vector parameterization
method. Section IV presents the Gaussian distribution-based
seagull optimization algorithm. Section V verifies the perfor-
mance of OCVP-GSOA on four typical chemical DOPs. The
conclusion is summarized in the end.

II. PROBLEM DESCRIPTION AND CONTROL VECTOR
PARAMETERIZATION
A. PROBLEM DESCRIPTION
The mathematical model of DOP can be stated as follows:

max J = 8[x(tf ), tf ]+
∫ tf

t0
9[x(t),u(t), t]dt,

s.t.



ẋ(t) = f [x(t),u(t), t]
x(t0) = x0
gi[x(t),u(t), t] = 0, i = 1, 2, . . . , υ
hj[x(t),u(t), t] ≤ 0, j = 1, 2, . . . , ω
umin ≤ u(t) ≤ umax

t0 ≤ t ≤ tf ,

(1)

where [t0, tf ] and [umin,umax] denote the time horizon and
the control domain of the dynamic system, respectively;gi
and hj denote equality constraints and inequality constraints,
respectively; x(t) ∈ Rm is the state vector, and x0 is its
initial state; u(t) ∈ Rn denotes the control vector and is also
the object to be optimized; f [x(t),u(t), t] is the differential
equation describing the dynamic system; J is the performance
index for the dynamic process.8[x(tf ), tf ] denotes the termi-
nal value term at the terminal time tf .

∫ tf
t0
9[x(t),u(t), t]dt

denotes the integral term over the time horizon [t0, tf ].

B. CONTROL VECTOR PARAMETERIZATION
CVP can convert an infinite dimension DOP into a finite
dimension nonlinear programming problem, which approx-
imates the optimal control trajectory with basis functions
containing finite parameters. The detailed steps of CVP are
as follows:

CVP usually uses the uniform discrete strategy to divide
the time horizon [t0, tf ] into N equal-length time subintervals
[ti−1, ti](i = 1, 2, . . . ,N ), as shown in Equation (2):

t0 ≤ t1 ≤ . . . ≤ tN−1 ≤ tN = tf . (2)

These time nodes t0, t1, . . . , tN , which divide the time hori-
zon, are fixed throughout the solution cycle. For the control
vector u(t) ∈ Rn, the paper records its j-th control component
as uj(t) (j = 1, 2, . . . , n). CVP uses Equation (3) to take a
simple polynomial over each time subinterval to denote uj(t).

uj(t) =
∑

N
i=1u

i
j(t)χi(t), (3)

χi(t) =

{
1, t ∈ [ti−1, ti)
0, t /∈ [ti−1, ti),

(4)

where χi(t) denotes an indicator function, and Equation (4)
gives its mathematical expression; uij(t) denotes the cor-
responding component of uj(t) over the time subinterval
[ti−1, ti]. In Equation (5), uij(t) is approximated by a linear
combination of a collection of basis functions.

uij(t) ≈
∑ Qij+1

k=1 σijkφ
Qij
ijk (t),

i = 1, 2, . . . ,N ,

j = 1, 2, . . . , n, (5)

where σijk denotes the coefficient of the linear combination,
which is also considered as the control parameter; φ

Qij
ijk (t)

denotes the Qij-order basis function. Equation (5) usually
consists of some simple polynomials, such as the constant, the
linear function, the quadratic polynomial, etc. Among them,
the constant is the most common, that is, the piecewise con-
stant parameterization (Qij = 0) is the most commonly used
approximation strategy. The piecewise constant parameteri-
zation takes a control parameter σij1 (i = 1, 2, . . . ,N ) over
each time subinterval to approximate the control trajectory of
uj(t). Figure 1 shows the schematic diagram of the piecewise
constant parameterization (taking N = 10 as an example).

III. ORTHOGONAL DESIGN-BASED CONTROL VECTOR
PARAMETERIZATION
CVP provides an effective solution method for solving DOPs,
but it still has room for improvement. CVP usually uses the
uniform discrete strategy to evenly divide the entire time
horizon, which makes it difficult for CVP to approximate the
optimal control trajectory well. In most cases, the optimal
control trajectory has different fluctuation amplitudes over
different time subintervals. Therefore, dividing the entire time
horizon evenly lacks adaptability. For the time subinterval
with large fluctuation amplitude, it should be finely divided
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FIGURE 1. Schematic diagram of the piecewise constant
parameterization.

to obtain higher approximation accuracy. For the time subin-
terval with small fluctuation amplitude, it should be roughly
divided to reduce the number of control parameters, thereby
reducing the computational cost. However, for DOP to be
solved, how to know the fluctuation characteristics of the
optimal control trajectory is a difficult problem. To solve this
problem, inspired by the piecewise constant parameteriza-
tion and orthogonal experimental design, this paper proposes
an orthogonal design-based control vector parameterization
(OCVP).

OCVP consists of three steps:
(1) Converting DOP to an 8-factor 7-level multi-factor

experiment.
(2) Using orthogonal experimental design and selecting

orthogonal table L49(78) to analyze this multi-factor exper-
iment (MFE) to obtain the range of each factor.

(3) Using the ranges obtained in the orthogonal experiment
to guide the construction of the time grid.

OCVP will be introduced in detail below.

A. CONVERTING DOP TO MFE
1) ORTHOGONAL DESIGN
Orthogonal design (also known as orthogonal experimen-
tal design) is a method for optimizing MFE. In orthogonal
design, the orthogonal table can give an efficient experimen-
tal scheme, which uses some representative test points to
replace the comprehensive test. Each row in the table is a
level combination, representing a test point, and each column
in the table is an experimental factor. The test points in the
table are all strongly representative and evenly distributed
among the comprehensive test. Orthogonal design combined
with an orthogonal table can efficiently find the best level
combination.

2) CONVERSION STEP
DOP and MFE are two different categories of problems,
so the orthogonal experimental design cannot directly analyze
the dynamic model. In this paper, OCVP selects the orthogo-
nal table L49(78) to analyze the dynamic model. Therefore,

the first step of OCVP is to convert DOP into an 8-factor
7-level multi-factor experiment.

The schematic diagram of converting DOP to MFE is
shown in Figure 2. The solution space of DOP can be under-
stood as a two-dimensional continuous search space com-
posed of a time dimension and a control dimension, in which
the time dimension has only one forward positive direc-
tion. The solving process of DOP can be understood as seek-
ing the optimal control trajectory that changes continuously
with time in the solution space. OCVP uses Equation (6) to
evenly divide the entire time horizon [t0, tf ] into 8 equal-
length time subintervals [ti−1, ti](i = 1, 2, . . . , 8).

t0 < t1 < . . . < t7 < t8 = tf , (6)

where the time subinterval [ti−1, ti] corresponds to the
factor i in the orthogonal table L49(78). For the control
domain [ui,min, ui,max] over the time subinterval [ti−1, ti],
it is evenly divided into 7 equal-length control subinter-
vals [ui,j−1, ui,j](i = 1, 2, . . . , 8; j = 1, 2, . . . , 7) using
Equation (7).

ui,min = ui,0 < ui,1 < . . . < ui,6 < ui,7 = ui,max. (7)

FIGURE 2. Schematic diagram of converting DOP to MFE.

Finally, the median value of the control subinterval
[ui,j−1, ui,j] is taken as the value vi,j of level j of factor i using
Equation (8).

vi,j = (ui,j−1 + ui,j)/2. (8)

B. ORTHOGONAL EXPERIMENT AND RANGE ANALYSIS
1) ORTHOGONAL EXPERIMENT
In this subsection, we will introduce the steps of the orthog-
onal experiment in detail.

First, each level in the orthogonal table L49(78) is converted
into the value of the level of the corresponding factor to obtain
the orthogonal experiment scheme in Table 1. This orthogonal
experiment scheme has a total of 49 test points. In OCVP,
a test point corresponds to a set of control parameters. Taking
the first test point as an example, OCVP takes the values of
8 levels in the first test point as a set of control parameters σ1
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TABLE 1. The scheme of the orthogonal experiment.
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and uses Equation (9) to express the control trajectory u1(t).

u1(t) =
∑

8
i=1σ1(i)χi(t),

σ1 = [v1,2, v2,6, v3,3, v4,6, v5,7, v6,5, v7,1, v8,6],

χi(t) =

{
1, t ∈ [ti−1, ti)
0, t /∈ [ti−1, ti).

(9)

Second, the control trajectory u1(t) is brought into the
mathematical model of DOP, as shown in Equation (10),
and the test result Result 1 is calculated by the Runge-Kutta
method.

Result 1 = 8[x(tf ), tf ]+
∫ tf

t0
9[x(t),

∑
8
i=1σ1(i)χi(t), t]dt,

s.t.



ẋ(t) = f [x(t),
∑8

i=1 σ1(i)χi(t), t]

x(t0) = x0

gi[x(t),
∑8

i=1 σ1(i)χi(t), t] = 0, i = 1, 2, . . . , υ

hj[x(t),
∑8

i=1 σ1(i)χi(t), t] ≤ 0, j = 1, 2, . . . , ω

umin ≤
∑8

i=1 σ1(i)χi(t) ≤ umax

t0 ≤ t ≤ tf .

(10)

OCVP uses the same steps to complete all the test points
in this orthogonal experiment scheme and calculate all test
results Result k (k = 1, 2, . . . , 49). Finally, the ranges of all
factors are calculated based on all test results. The formula
for calculating range Range i of factor i is as follows:

Range i = Max(Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,Ki,7)

−Min(Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,Ki,7),

(11)

whereKi,j (i = 1, 2, . . . , 8; j = 1, 2, . . . , 7) takes the average
value of test results of all test points, containing level j of
factor i, in this orthogonal experiment scheme. Taking K1,1
as an example, the detailed calculation process is as follows:

K1,1 = (Result 7+ Result 17+ Result 22+ Result 23

+Result 28+ Result 43+ Result 49)/7. (12)

2) RANGE ANALYSIS
In OCVP, the range Range i is large, which indicates that the
optimal control trajectory has a small fluctuation amplitude
over the time subinterval [ti−1, ti]. On the contrary, the range
Range i is small, which indicates that the optimal control
trajectory has a large fluctuation amplitude over the time
subinterval [ti−1, ti]. This conclusion is explained in detail
below.
Orthogonal experimental design has symmetrical compa-

rability. When analyzing the range Range i of factor i, it can
be considered that the effects of the other factors r(r 6= i) on
Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6, and Ki,7 are roughly the same.

The differences between Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6, and
Ki,7 are mainly caused by the fact that factor i takes different
values of level.
As shown in Figure 2, factor i corresponds to the time

subinterval [ti−1, ti], and each factor has the same levels.
A value of level corresponds to a horizontal control trajectory
in the solution space of DOP. If the fluctuation amplitude
of the optimal control trajectory over the time subinterval
[ti−1, ti] is small, then the contour of the optimal control
trajectory is similar to that of the horizontal control trajectory.
Among the 7 horizontal control trajectories corresponding
to vi,1, vi,2, vi,3, vi,4, vi,5, vi,6, and vi,7, the horizontal control
trajectory, which is closer to the optimal control trajectory or
has more parts that overlap with the optimal control trajec-
tory, will obtain a better K value. Conversely, the horizontal
control trajectory, which is farther from the optimal con-
trol trajectory or has fewer parts that overlap with the opti-
mal control trajectory, will obtain a worse K value. There
will be an excellent K value and a very poor K value
in Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6, and Ki,7, which makes the
range Range i large. On the contrary, if the fluctuation ampli-
tude of the optimal control trajectory over the time subinterval
[ti−1, ti] is large, then the contour of the optimal control
trajectory is very different from that of the horizontal con-
trol trajectory, which leads to Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,
and Ki,7 are all poor. There is no excellent K value in
Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6, and Ki,7, and the gap between
Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6, and Ki,7 won’t be huge. This
makes the range Range i small.

3) SELECTION OF ORTHOGONAL TABLE
For the orthogonal table selected by OCVP, the number of
factors and levels should not be too large or too small. If the
number of factors is too large, the length of each time subin-
terval will be too small. The fluctuation amplitude that can
be captured over each time subinterval will be very weak,
which makes it difficult for OCVP to effectively obtain the
fluctuation characteristics of the optimal control trajectory.
If the number of factors is too small, the length of each time
subinterval will be too large. In a single time subinterval,
the optimal control trajectory may have the characteristics of
large fluctuation amplitude and small fluctuation amplitude
at the same time, which makes OCVP cannot accurately
distinguish the part with large fluctuation amplitude and the
part with small fluctuation amplitude on the optimal control
trajectory. If the number of levels is too large, the number of
test points in the orthogonal experiment scheme will increase
dramatically. If the number of levels is too small, it will
reduce the accuracy of OCVP to capture the fluctuation char-
acteristics of the optimal control trajectory. Therefore, this
paper uses the orthogonal table L49(78), which has an appro-
priate number of factors and levels, to design the orthogonal
experiment scheme. We use SPSS software to generate the
orthogonal table L49(78). The orthogonal table L49(78) has a
variety of experiment schemes, and the time grids constructed
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by different schemes may vary. In this paper, the experiment
scheme with the best effect is selected in Table 1.

C. CONSTRUCTION OF TIME GRID
OCVP uses ranges Range 1,Range 2,. . . ,Range 8 obtained in
the orthogonal experiment to guide the construction of the
time grid. The detailed steps are as follows:

Step 1: Set the number of time subintervalsN over the time
horizon [t0, tf ]; initialize the amplifier y = (ek )x , set k = 1;
and get ranges Range 1,Range 2,. . . ,Range 8.

Step 2: Use Equation (13) to normalize the eight
ranges Range i(i= 1, 2, . . . , 8) to obtain Rangenor i; Record
the largest of Rangenor 1,Rangenor 2,. . . ,Rangenor 8 as
Maxvalue; Then, use Equation (14) to calculate Rangepos 1,
Rangepos 2, . . . ,Rangepos 8.

Rangenor i =
Range i

(Range 1+ Range 2+. . .+Range 8)
, (13)

Rangepos i = Maxvalue − Rangenor i+ 1. (14)

Step 3: Use Equation (15) to normalize the eight Rangepos i
to obtain the weight coefficient of each time subinterval
Weight i; Then, use the amplifier y = (ek )x to amplify
Weight i to obtain the new weight coefficient Weightamp i,
as shown in Equation (16); Next, use Equation (17) to nor-
malize the eight Weightamp i to obtain Weightamp_nor i.

Weight i =
Rangepos i

(Rangepos 1+Rangepos 2+. . .+Rangepos 8)
,

(15)

Weightamp i = (ek )Weight i, (16)

Weightamp_nor i

=
Weightamp i

(Weightamp 1+Weightamp 2+. . .+Weightamp 8)
. (17)

Step 4: Subtract 8 quotas from N to get N ∗, that is,N ∗ =
N − 8. The purpose is to reserve 1 quota in advance for
each time subinterval to ensure that each time subinterval has
at least 1 quota; Then, multiply Weightamp_nor i correspond-
ing to each time subinterval by N ∗ and round up to obtain
the quota of each time subinterval Quota∗ i, as shown in
Equation (18).

Quota∗ i =
⌊
(Weightamp_nor i · N

∗)+
1
2

⌋
. (18)

Step 5: Calculate the total number of quotas Quota∗sum, that
is, Quota∗sum = Quota∗ 1 + Quota∗ 2 + · · · + Quota∗ 8; If
Quota∗sum > N ∗, subtract 1 quota from the time subinterval
with the most quota, subtract 1 quota from the time subinter-
val with the second most quota, and so on, until Quota∗sum =
N ∗. If Quota∗sum < N ∗, add 1 quota to the time subinterval
with the most quota, add 1 quota to the time subinterval with
the second most quota, and so on, until Quota∗sum = N ∗.
Step 6: Allocate 1 quota reserved for each time subinterval

to each time subinterval, that is, Quota i = Quota∗ i + 1.
At this point, the allocation of quotas for each time subinter-
val is completed.

Step 7: Record the largest of Quota 1,Quota 2,. . . ,Quota 8
as QuotaMax, and the smallest as QuotaMin; If (QuotaMax −

QuotaMin) > 0.1N , set k = k − 1 and go to Step 8.
If (QuotaMax − QuotaMin) ≤ 0.1N , set k = k + 1 and go
to Step 3.

Step 8: At this point, a suitable amplifier has been found.
Execute Step 3, Step 4, Step 5, and Step 6, which uses the
found amplifier to complete the allocation of quotas for each
time subinterval.

Step 9: Construct a time grid over the time horizon [t0, tf ].
Divide the time subinterval [ti−1, ti] (i = 1, 2, . . . , 8) into
Quota i equal parts. Finally, output the time grid.
The algorithm flow chart of OCVP is shown in Figure 3.

FIGURE 3. The algorithm flow chart of OCVP.
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IV. GAUSSIAN DISTRIBUTION-BASED SEAGULL
OPTIMIZATION ALGORITHM
A. SEAGULL OPTIMIZATION ALGORITHM
In recent years, SOA has been studied by many schol-
ars [24]–[26]. In the search space, a search agent repre-
sents a seagull. Each search agent gradually approaches the
global optimal solution by simulating migration behavior and
attacking behavior.

Migration behavior:migration behavior helps SOA com-
prehensively explore the entire search space. In this phase,
a search agent should satisfy the following three conditions:

• Avoiding the collisions: The equations for avoiding the
collisions are shown in Equation (19) and Equation (20),
which can increase the distance between adjacent search
agents to avoid collisions.

C l = AP iter
l , (19)

A = fc − (iter(fc/Maxiteration)), (20)

where l = 1, 2, . . . , pop, pop denotes the population size;
iter indicates the current iteration; P iter

l represents the current
position of search agent; C l represents the position of search
agent after avoiding the collision; Maxiteration denotes the
maximum number of iterations; fc denotes a constant parame-
ter; A denotes the movement behavior of search agent. During
the iteration process, A linearly decreases from fc to 0.

• The direction of the best search agent: After avoiding
the collision, the search agents move in the direction
of the best search agent, as given by Equation (21) and
Equation (22).

M l = B(P iter
best − P

iter
l ), (21)

B = 2A2rd, (22)

where P iter
best represents the best search agent in the population;

M l represents the direction of the best search agent;B is
responsible for balancing exploration and exploitation; rd is
a random number in [0, 1].

• Approaching the best search agent: The search agent
updates its position according to the best search agent.

Dl = |C l +M l |, (23)

where Dl denotes the distance between the search agent and
the best search agent.

Attacking behavior: when seagulls attack their prey, the
flight trajectory of seagulls approximates a spiral curve. In x,
y, and z planes, the attacking behavior can be described as
follows:

x ′ = rcos(k), (24)

y′ = rsin(k), (25)

z′ = kr, (26)

r = uekv, (27)

P iter
l = Dlx ′y′z′ + P iter

best, (28)

where k is a random number in [0, 2π ], representing the angle
of attack; r is the radius of the spiral flight trajectory; u and v
are constants to define the shape of the spiral flight trajectory;
P iter
l saves the best solution and updates the position of other

search agents.

B. GAUSSIAN DISTRIBUTION-BASED SEAGULL
OPTIMIZATION ALGORITHM
SOA is an effective optimizer for solving challenging large-
scale constrained problems. But in the solution of chemical
DOPs, SOA is often difficult to approximate the optimal con-
trol trajectory. The No Free Lunch (NFL) theorem [27] tells
us that no one optimization algorithm can achieve excellent
results on all optimization problems. For chemical DOPs, this
paper proposes a Gaussian distribution-based seagull opti-
mization algorithm (GSOA). Based on SOA, GSOA intro-
duces the initialization idea based on Gaussian distribution
and the dimension-order mutation operator based on Gaus-
sian distribution, which effectively improves the ability of
SOA to solve chemical DOPs.

1) INITIALIZATION IDEA BASED ON
GAUSSIAN DISTRIBUTION
In practical production, the control scheme should have conti-
nuity, and the control schemewith small fluctuation ismore in
line with the characteristics of the chemical dynamic process
[28], [29]. SOA adopts the traditional random initialization
idea to generate the initial population, which makes each
region in the search space has a certain probability to gener-
ate the initial individual. However, the random initialization
idea is not suitable for solving chemical DOPs. The random
initialization idea has certain blindness and uncertainty. The
individuals generated by this idea are usually chaotic, and
the difference between adjacent dimensions in the individual
is often large. Such individuals are not usually in line with
the continuity of the chemical dynamic process. To improve
the quality of the initial population, this paper proposes an
initialization idea based on Gaussian distribution. The initial-
ization idea cleverly uses the characteristic of Gaussian dis-
tribution to generate the initial population, which can greatly
improve the quality of the initial population. Figure 4 shows
the schematic diagram of the initialization idea based on
Gaussian distribution (taking N = 3 as an example). The
detailed steps are as follows:

Initialization of search agent P l = (pl,1, pl,2, . . . , pl,N ):
First,pl,1 is randomly generated in the control domain
[umin, umax] using Equation (29). Next, pl,2 is generated using
Equation (30). ςl,2 is a random number generated from a
Gaussian distribution with mean µ = pl,1 and standard
deviation σ = (umax − umin)/10. If ςl,2 /∈ [umin, umax],
Equation (30) is used again to generate pl,2. ςl,2 is still a
random number generated from a Gaussian distribution with
mean µ = pl,1 and standard deviation σ = (umax−umin)/10.
Until ςl,2 ∈ [umin, umax]. Similarly, pl,3, pl,4, . . . , pl,N are
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FIGURE 4. Schematic diagram of the initialization idea based on Gaussian distribution.

generated in sequence.

pl,1 = (umax − umin)rd+ umin, (29){
pl,I = ςl,I ,
ςl,I ∼ N (pl,I−1, ((umax − umin)/10)2),

(30)

where l = 1, 2, . . . , pop, pop denotes the population size;
I = 2, 3, . . . ,N , N is the dimension of search space; pl,1
is the value of the 1-th dimension of search agent P l =
(pl,1, pl,2, . . . , pl,N ); pl,I is the value of the I -th dimension of
search agent P l = (pl,1, pl,2, . . . , pl,N ); umax and umin are the
upper and lower bounds of the control domain, respectively;
rd is a random number in [0, 1]; ςl,I is a random number
generated from a Gaussian distribution with meanµ = pl,I−1
and standard deviation σ = (umax − umin)/10. A random
number generated from a Gaussian distribution N (µ, σ 2) has
about 99.7% probability to lie in the range of [µ−3σ,µ+3σ ].
Setting σ = (umax−umin)/10, the initialization idea based on
Gaussian distribution can not only avoid generating a large
number of chaotic initial individuals but also has a small prob-
ability to generate individuals with large fluctuation to avoid
missing the potential best individual with large fluctuation.

2) DIMENSION-ORDER MUTATION OPERATOR BASED ON
GAUSSIAN DISTRIBUTION
In the solution of chemical DOPs, SOA is easy to fall into
local optimum. Because in SOA, the evolution of the pop-
ulation is guided by the best search agent. In the high-
dimensional and complex search space, the best search agent
is easy to fall into local optimum, which leads to poor
quality of the population. To improve the ability of SOA
to solve chemical DOPs, this paper proposes a dimension-
order mutation operator based on Gaussian distribution. The
mutation strategy is a common improvement strategy in
intelligent optimization algorithms, which can effectively
improve the ability of algorithms to jump out of the local opti-
mum and solution accuracy [30]–[32]. Aiming at the char-
acteristics of chemical DOPs, the dimension-order mutation
operator based on Gaussian distribution performs Gaussian
mutation on the best search agent dimension by dimension,
according to the order of dimensions, to improve the global
search performance of SOA. Taking dynamic optimization

problem max J as an example, the steps of the dimension-
order mutation operator based on Gaussian distribution are as
follows:

(1) P iter
best = (piterbest,1, p

iter
best,2, . . . , p

iter
best,N ) represents the best

search agent at the iter-th iteration, and its performance index
is denoted as J iterbest. P

iter
nb = (piternb,1, p

iter
nb,2, . . . , p

iter
nb,N ) represents

the new best search agent.
(2) For P iter

best, its 1-th dimension mutates to generate the
mutated search agent P iter,1

mutant= (p
iter
mutant,1, p

iter
best,2, . . . , p

iter
best,N).

The value pitermutant,1 of the I = 1-th dimension ofP iter,1
mutant is cal-

culated using Equation (31). If pitermutant,1 > umax(pitermutant,1 <

umin), set pitermutant,1 = umax(pitermutant,1 = umin). The values of
the remaining dimensions ofP iter,1

mutant are all equal to the values
of the corresponding dimensions of P iter

best.
(3) Calculate the performance indexJ iter,1mutantof P iter,1

mutant.
If J iter,1mutant > J iterbest, set p

iter
nb,1 = pitermutant,1. If J

iter,1
mutant ≤ J iterbest,

set piternb,1 = piterbest,1.
(4) For P iter

best, its 2-th dimension mutates to generate the
mutated search agentP iter,2

mutant= (p
iter
best,1, p

iter
mutant,2, . . . , p

iter
best,N ).

The value pitermutant,2 of the I = 2-th dimension ofP iter,2
mutant is cal-

culated using Equation (31). If pitermutant,2 > umax(pitermutant,2 <

umin), set pitermutant,2 = umax(pitermutant,2 = umin). The values of
the remaining dimensions ofP iter,2

mutant are all equal to the values
of the corresponding dimensions of P iter

best.
(5) Calculate the performance index J iter,2mutant of P iter,2

mutant.
If J iter,2mutant > J iterbest, set p

iter
nb,2 = pitermutant,2. If J

iter,2
mutant ≤ J iterbest,

set piternb,2 = piterbest,2.
(6) Similarly, according to the order of dimensions, com-

plete the mutation operations of the remaining dimen-
sions of P iter

best. Finally, the new best search agent P iter
nb =

(piternb,1, p
iter
nb,2, . . . , p

iter
nb,N ) can be obtained.

pitermutant,I = ξ
iter
I ,

ξ iterI ∼ N (piterbest,I , ((umax − umin)/G)2),
G = 500− (490− (iter(490/Maxiteration))),

(31)

where I = 1, 2, . . . ,N ,N is the dimension of search space;
umax and umin are the upper and lower bounds of the control
domain, respectively; pitermutant,I is the value of the I -th dimen-
sion of the mutated search agent P iter,I

mutant; p
iter
best,I is the value
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FIGURE 5. Schematic diagram of the dimension-order mutation operator based on Gaussian distribution. The blue trajectory
represents the theoretically optimal trajectory, the yellow trajectory represents the best search agent, the red trajectory represents
the mutated value, and the green trajectory represents the new best search agent. (a), (b), (c) show the mutation process of the
best search agent. (d), (e), (f) show the generation process of the new best search agent.

of the I -th dimension of the best search agent P iter
best; iter indi-

cates the current iteration; Maxiterationdenotes the maximum
number of iterations; ξ iterI is a random number generated from
a Gaussian distribution with mean µ = piterbest,I and standard
deviation σ = (umax−umin)/G. Figure 5 shows the schematic
diagram of the dimension-order mutation operator based on
Gaussian distribution (taking N = 3 as an example).

V. OPTIMIZATION PROBLEMS AND
SIMULATION EXPERIMENTS
In this section, OCVP and GSOA are combined to form a
new optimization method for DOPs, named OCVP-GSOA.
Simulation experiments are carried out to test the feasibility
and effectiveness of OCVP-GSOA. First, we state the execu-
tion procedures of OCVP-GSOA. Second, four classic DOPs
are described. These DOPs are widely used as benchmark
problems, and their control trajectories have different shapes.
Finally, OCVP-GSOA is applied to these DOPs, and the sim-
ulation results are compared with optimizationmethods in the
related literature. Moreover, OCVP is compared with CVP,
and GSOA is compared with other meta-heuristic algorithms.

All simulation experiments are carried out on a desk-
top computer with Intel (R) Core (TM) i7-10700/2.90GHz,
16.0GB memory. The experimental software is MATLAB
R2020a, and the operating system is Windows 10 Education
64-bit.

A. EXECUTION PROCEDURE OF OCVP-GSOA
The execution procedures of solving DOPs using the pro-
posed OCVP-GSOA is as follows:

Step 1: Determine the necessary computational parameters,
including the number of time subintervals N , the population
size pop, the mutation times Mutationtimes, and the maximum

number of iterations Maxiteration. Initialize the basic parame-
ters of SOA, including fc, u, and v. Input the orthogonal table
L49(78).

Step 2: Use OCVP in Section III to construct the time grid.
Step 3: Use the initialization idea based on Gaussian dis-

tribution in Section IV.B.1 to generate the initial population.
The control trajectory is approximated using the piecewise
constant parameterization. A search agent represents a con-
trol trajectory.

Step 4: Use the SOA algorithm in Equations (19)-(28) to
update the positions of all search agents.

Step 5: Calculate the performance indexes of all search
agents using the Runge-Kutta method. Update the position
of the best search agent.

Step 6: The best search agent ismutatedMutationtimestimes
using the dimension-order mutation operator based on Gaus-
sian distribution.

Step 7: If the maximum number of iterations is reached,
output the best search agent; otherwise, turn to Step 4.

The pseudocode of OCVP-GSOA is given in Table 2.

B. TEST PROBLEMS
1) PROBLEM 1: BATCH REACTOR CONSECUTIVE REACTION
The reaction process in a batch reactor is A→ B→ C. The
mathematical model of this problem is as follows [11], [28],
[33]–[36]:

max J (tf ) = CB(tf ),

s.t.


dCA
dt = −k1C

2
A

dCB
dt = k1C2

A − k2CB

298 ≤ T ≤ 398,CA(0) = 1,CB(0) = 0, tf = 1
k1 = 4× 103e−2500/T , k2 = 6.2× 105e−5000/T ,

(32)
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TABLE 2. Pseudocode of OCVP-GSOA.
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TABLE 2. (Continued.) Pseudocode of OCVP-GSOA.

where T denotes the temperature (i.e., control variable); CA
and CB denote the concentrations of A and B, respectively;
CA(0) and CB(0) denote the initial concentrations of A and
B, respectively; k1 and k2 are model parameters; tf denotes
the final time; J is the performance index.

2) PROBLEM 2: PLUG FLOW REACTOR
CATALYST BLEND PROBLEM
In the reactor, the reaction process is A ↔ B → C.
The mathematical model of problem 2 is as follows
[34], [36]–[39]:

max J (zf ) = 1− xA(zf )− xB(zf ),

s.t.


dxA
dz = u(z)[10xB(z)− xA(z)]
dxB
dz = −u(z)[10xB(z)− xA(z)]− [1− u(z)]xB(z)
0 ≤ u(z) ≤ 1
xA(0) = 1, xB(0) = 0, zf = 12,

(33)

where u(z) denotes the fraction of the type 1 catalyst at posi-
tion z in the reactor (i.e., control variable); xA and xB denote
the mole fractions of A and B, respectively; xA(0) and xB(0)
denote the initial mole fractions of A and B, respectively; zf
is the length of the reactor; J is the performance index.

3) PROBLEM 3: TUBULAR REACTOR PARALLEL
REACTION PROBLEM
In the tubular reactor, the parallel reaction: A → B, A →
C takes place. The mathematical model of problem 3 is as
follows [34]–[36], [40], [41]:

max J (tf ) = x2(tf ),

TABLE 3. Parameters of OCVP-GSOA for Problem 1.

s.t.


dx1
dt = −[u(t)+ 0.5u2(t)]x1(t)
dx2
dt = u(t)x1(t)
x1(0) = 1, x2(0) = 0
0 ≤ u(t) ≤ 5, tf = 1,

(34)

where u(t) denotes the control variable;x1 and x2denote the
dimensionless concentration of A and B, respectively; x1(0)
and x2(0) denote the initial dimensionless concentrations of
A and B, respectively; tf denotes the final time; J is the
performance index.

4) PROBLEM 4: PLUG-FLOW TUBULAR REACTOR
The mathematical model of this problem is as follows [15],
[42]–[44]:

max J = x1(tf ),

s.t.



dx1
dt = (1− x1)k1 − x1k2
dx2
dt = 300[(1− x1)k1 − x1k2]− u(x2 − 290)

k1 = 1.7536× 105e(−1.1374×10
4/1.9872x2)

k2 = 2.4885× 1010e(−2.2748×10
4/1.9872x2)

x1(0) = 0, x2(0) = 410
0 ≤ u ≤ 0.5, tf = 5,

(35)
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TABLE 4. Simulation results for Problem 1.

where u denotes the control variable; k1 and k2 are rate
constants; x1 and x2denote the normalized concentration of
the desired product and the temperature, respectively; x1(0)
and x2(0) denote the initial normalized concentration of the
desired product and the initial temperature, respectively; tf
denotes the final time; J is the performance index.

C. RESULTS AND DISCUSSIONS
1) ANALYSIS OF THE SIMULATION RESULTS OF PROBLEM 1
For problem 1, the time horizon [0, 1] is divided into N =
50, 150, 350 time subintervals; and OCVP-GSOA is run
50 times independently. Table 3 presents the parameters of
OCVP-GSOA for problem 1. Table 4 shows results obtained
by OCVP-GSOA and other methods. Shi et al. used a hybrid
strategy combined with particle swarm optimization and con-
trol vector parameterization method (PSO-CVP) to obtain
a value of 0.6105359 (N = 25) [33]. Liu et al. used
improved knowledge-based cultural algorithm (IKBCA) to
obtain values of 0.610454 (N = 20) and 0.610787 (N =
100) [28]. Tian et al. reached a value of 0.61079218 (N =
80) using control vector parameterization based adaptive
dispersion invasive weed optimization (ADIWO-CVP) [11].
Xu et al. achieved a value of 0.610794203 (N = 30) with
improved seagull optimization algorithm (ISOA) [34]. Zhou
and Liu obtained a value of 0.6107850 through a control
parameterization-based adaptive particle swarm optimization
(CP-APSO) approach [35]. Dadebo and McAuley applied
IDP to obtain values of 0.610070 (N = 10) and 0.610775
(N = 80) [36].
Our OCVP-GSOA divides the time horizon into different

numbers of time subintervals: 50, 150, and 350, respectively.
WhenN is 350, the best result of OCVP-GSOA 0.61080242 is
better than all results in the literature. When N is 150, the
best result of OCVP-GSOA 0.61080037 is also better than
all results in the literature, and the mean result of OCVP-
GSOA 0.61078903 is close to the result 0.61079218 in [11].
Figure 6(c) shows the box plot of OCVP-GSOA of the dif-
ferent numbers of time subintervals (Problem 1). The results
show that when N is 150, OCVP-GSOA is stable and can

TABLE 5. Parameters of OCVP-GSOA for Problem 2.

obtain a good result. In Table 4, time/s, which denotes the run-
ning time, reflects the optimization efficiency of optimization
methods.

Figure 6(a) shows the optimal control trajectory and time
grid obtained by OCVP-GSOA when N = 50. As can
be seen, the fluctuation amplitude of the optimal control
trajectory gradually decreases as time goes on. The time
grid constructed by OCVP gradually changes from fine to
coarse as time goes on. This is because OCVP can accurately
capture the fluctuation characteristics of the optimal control
trajectory of this problem,which enables OCVP to construct a
more reasonable time grid. The state variables of this problem
are plotted in Figure 6(b).

2) ANALYSIS OF THE SIMULATION RESULTS OF PROBLEM 2
For problem 2, the control variable is discretized into N =
50, 100, 120 control parameters; and OCVP-GSOA is run
50 times independently. The parameters of OCVP-GSOA for
this problem are shown in Table 5. Table 6 presents results
of OCVP-GSOA and other methods. Pham et al. obtained
a value of 0.477444 (N = 20) with the Bees Algorithm
(BA) [37]. Xu et al. used an improved seagull optimization
algorithm (ISOA) and an unequal division method to obtain
a value of 0.47770 (N = 40) [34]. On this problem, Dadebo
and McAuley used IDP to obtain values of 0.475272 (N =
20) and 0.476946 (N = 40) [36]. Huang et al. obtained
values of 0.473630 (N = 10) and 0.474531 (N = 15) using
an improved state transition algorithm (STA) [38]. Chen et al.
integrated nonuniform discretization-based CVP into hybrid
gradient PSO to obtain a value of 0.47771 (N = 15) [39].
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FIGURE 6. Results obtained by OCVP-GSOA. (Problem 1.)

TABLE 6. Simulation results for Problem 2.

From Table 6, when the number of control parameters N
is 100, the best result of OCVP-GSOA 0.47768634 is better
than the best results reported in [37], [36], and [38]. When N
is 120, the best result of OCVP-GSOA is 0.47769527, very
close to the best result of ISOA 0.47770 and the best result of
ndCVP-HGPSO 0.47771, where ISOA and ndCVP-HGPSO
also use nonuniform CVP to approximate the optimal control
trajectory. Figure 7(c) shows the box plot of OCVP-GSOA
of the different numbers of control parameters (Problem 2).
The results show that OCVP-GSOA has excellent stability in
solving problem 2.

The optimal control trajectory and time grid of problem 2
for N = 100 are plotted in Figure 7(a). The optimal control
trajectory of this problem has two switch points. OCVP can
accurately capture the first switch point and construct a finer
time grid near the first switch point, which can better approxi-
mate the optimal control trajectory. The state variables of this
problem are plotted in Figure 7(b).

3) ANALYSIS OF THE SIMULATION RESULTS OF PROBLEM 3
For problem 3, the time horizon [0, 1] is divided into
N = 50, 70, 150 time subintervals; and OCVP-GSOA is
run 50 times independently. Table 7 presents the parameters

TABLE 7. Parameters of OCVP-GSOA for Problem 3.

of OCVP-GSOA for problem 3. Table 8 lists a comparison
of results obtained by OCVP-GSOA and other methods.
Dadebo and McAuley obtained values of 0.57348 (N =
40) and 0.57353 (N = 80) using IDP [36]. Xu et al.
solved problem 3 using an improved seagull optimiza-
tion algorithm (ISOA) and obtained a value of 0.573535
(N = 40) [34]. Zhou and Liu got a value of 0.573544 using
a control parameterization-based adaptive particle swarm
optimization (CP-APSO) approach [35]. Biegler obtained
values of 0.57349 and 0.56910 using control vector iteration
(CVI) and control vector parameterization (CVP) respec-
tively [40]. In the framework of ant colony optimization
(ACO), Rajesh et al. obtained a value of 0.57284 [41].
Our OCVP-GSOA can obtain a value of 0.57354134 (N =

150), better than the best results reported in [34], [36], [40],
and [41]. And the best result obtained by OCVP-GSOA
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FIGURE 7. Results obtained by OCVP-GSOA. (Problem 2.)

TABLE 8. Simulation results for Problem 3.

0.57354134 is very close to the best result of CP-APSO
0.573544. Figure 8(c) shows the box plot of OCVP-GSOA of
the different numbers of time subintervals (Problem 3). From
the box plot and the standard deviation results of Table 8,
when N is 70, OCVP-GSOA is stable and can obtain a good
result.

Figure 8(a) shows the optimal control trajectory and time
grid obtained by OCVP-GSOA when N = 70. The fluc-
tuation amplitude of the optimal control trajectory of prob-
lem 3 gradually increases as time goes on. The time grid
constructed by OCVP gradually changes from coarse to fine
as time goes on, which indicates OCVP can also accurately
capture the fluctuation characteristics of the optimal control
trajectory of this problem. Figure 8(b) shows the state vari-
ables of problem 3.

4) ANALYSIS OF THE SIMULATION RESULTS OF PROBLEM 4
For problem 4, the time horizon [0, 5] is divided into
N = 25, 45 time subintervals; and OCVP-GSOA is run
50 times independently. Table 9 lists the parameters of
OCVP-GSOA for problem 4. Table 10 presents results
obtained by OCVP-GSOA and other methods. Reddy and

TABLE 9. Parameters of OCVP-GSOA for Problem 4.

Husain used the conjugate gradient method (CGM) to obtain
a value of 0.7227 [42]. Ko and Stevens got a value of
0.7226 using the combined modes method (CMM) [43].
Zhang and Mo reached values of 0.7226987 (N = 10)
and 0.7234724 (N = 20) using a modified sailfish opti-
mizer (MSFO) and an equal division method [44]. Xu et al.
obtained values of 0.7238900 (N = 150) and 0.7238990
(N = 32) using a uniform discretization CVP (UD-CVP)
method and a CVP method based on pseudo Wigner-Ville
(PWV-CVP) respectively [15].

From Table 10, when the number of time subintervals N
is 25, OCVP-GSOA can obtain a value of 0.72361395, better
than the best results reported in [42], [43], and [44]. When
N is 45, the best result of OCVP-GSOA is 0.72374838, very
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FIGURE 8. Results obtained by OCVP-GSOA. (Problem 3.)

TABLE 10. Simulation results for Problem 4.

close to the best result 0.7238990 reported in [15]. Figure 9(c)
shows the box plot of OCVP-GSOA of the different numbers
of time subintervals (Problem 4). As can be seen, OCVP-
GSOA also has excellent stability in solving problem 4.
Figure 9(a) shows the optimal control trajectory and time
grid obtained by OCVP-GSOA when N = 45. The optimal
control trajectory of this problem has two switch points.
OCVP constructs a relatively fine time grid near these two
switch points. The state variables of this problem are plotted
in Figure 9(b).

From the above analyses for four problems, it can be
concluded that OCVP has adaptability and can construct
a reasonable time grid. OCVP-GSOA can achieve similar
or higher solution accuracy compared with other methods.
The control trajectory obtained by OCVP-GSOA has a good
continuous smooth shape, which is more in line with the
characteristics of the chemical dynamic process. On balance,
OCVP-GSOA is an excellent optimization method of chemi-
cal DOP.

5) FURTHER DISCUSSIONS
In this subsection, simulation experiments are carried out
to compare OCVP and CVP, compare GSOA and SOA,
and compare GSOA and other meta-heuristic algorithms.
Three well-known meta-heuristic algorithms are chosen for

comparison. These are Arithmetic Optimization Algorithm
(AOA) [45], Whale Optimization Algorithm (WOA) [46],
and Particle Swarm Optimization (PSO) [47].

For problem 1, problem 2, problem 3, and problem 4, the
number of time subintervals N is set as 50, 50, 50, and 45,
respectively. CVP and GSOA are combined to form CVP-
GSOA. For each problem, the parameters of CVP-GSOA
are the same as those of OCVP-GSOA; CVP-GSOA and
OCVP-GSOA are run 50 times independently. The simu-
lation results obtained by OCVP-GSOA and CVP-GSOA
are presented in Table 11. In problem 1, when N is 50,
the best (0.61076309) and mean (0.61075373) results of
OCVP-GSOA are better than the best (0.61070776) and
mean (0.61070755) results of CVP-GSOA, respectively.
In problem 2, the worst result (0.47714685) of OCVP-GSOA
when N is 50 is better than the best result (0.47631338)
of CVP-GSOA when N is 50. In problem 3, when N is
50, the best (0.57351086), mean (0.57349120), and worst
(0.57304872) results of OCVP-GSOA are better than the best
(0.57349880), mean (0.57346547), and worst (0.57253734)
results of CVP-GSOA, respectively. In problem 4, when
N is 45, the best (0.72374838), mean (0.72374781), and
worst (0.72374575) results of OCVP-GSOA are very close
to the best (0.72383440), mean (0.72383400), and worst
(0.72383292) results of CVP-GSOA, respectively. From
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FIGURE 9. Results obtained by OCVP-GSOA. (Problem 4.)

TABLE 11. Comparison of OCVP-GSOA, CVP-GSOA, OCVP-SOA, OCVP-AOA, OCVP-WOA, and OCVP-PSO.

these comparisons, it can be concluded that OCVP has certain
advantages compared to CVP. In problem 1, problem 2, and
problem 3, OCVP can obtain better results than CVP with
the same number of time subintervals. In problem 4, OCVP
is slightly worse than CVP, but the results obtained by OCVP
are also competitive.

SOA, AOA, WOA, and PSO combine with OCVP to form
OCVP-SOA, OCVP-AOA, OCVP-WOA, and OCVP-PSO,

respectively. Table 12 lists the parameter values for
AOA, WOA, and PSO. For each problem, OCVP-SOA,
OCVP-AOA, OCVP-WOA, and OCVP-PSO have the same
population size and maximum number of iterations as
OCVP-GSOA;OCVP-SOA,OCVP-AOA,OCVP-WOA, and
OCVP-PSO are run 50 times independently. The simula-
tion results obtained by these methods are presented in
Table 11. In problem 1, when N is 50, the worst result
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TABLE 12. Parameter values for AOA, WOA, and PSO.

(0.61060504) of OCVP-GSOA is better than the best results
(0.58635172, 0.58016791, 0.60481029, and 0.60680189) of
OCVP-SOA, OCVP-AOA, OCVP-WOA, and OCVP-PSO.
In problem 2, when N is 50, the worst result (0.47714685)
of OCVP-GSOA is better than the best results (0.46930932,
0.46281730, 0.46799052, and 0.45026957) of OCVP-SOA,
OCVP-AOA, OCVP-WOA, and OCVP-PSO. In problem 3,
the worst result (0.57304872) of OCVP-GSOA when N is
50 is better than the best results (0.52506021, 0.49725411,
0.53674606, and 0.49390280) of OCVP-SOA, OCVP-AOA,
OCVP-WOA, and OCVP-PSO whenN is 50. In problem 4,
whenN is 45, the worst result (0.72374575) of OCVP-GSOA
is better than the best results (0.70853981, 0.72348740,
0.71943620, and 0.72291988) of OCVP-SOA, OCVP-AOA,
OCVP-WOA, and OCVP-PSO. From these comparisons, it is
clear that GSOA can consistently obtain better results than
SOA, AOA, WOA, and PSO. Compared with SOA, AOA,
WOA, and PSO, GSOA has obvious advantages in solving
chemical DOP.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel nonuniform con-
trol vector parameterization method OCVP and an improved
seagull optimization algorithm GSOA. By integrating OCVP
into GSOA, a new optimization method, named OCVP-
GSOA, can be formed. OCVP uses orthogonal experimental
design to analyze the dynamic model to obtain the range
of each factor. The range of each factor can measure the
fluctuation amplitude of the optimal control trajectory. Then,
under the guidance of the ranges, a reasonable time grid can
be constructed. GSOA cleverly uses Gaussian distribution to
generate the initial population that conforms to the chemical
process and performs Gaussian mutation on the best search
agent dimension by dimension to improve its ability to solve
chemical DOPs. By application in four classic DOPs, the
simulation results show that OCVP has adaptability and can
construct a reasonable time grid. OCVP-GSOA can achieve
similar or higher solution accuracy compared with other
methods. Further comparison results showOCVP can achieve
higher solution accuracy compared with CVP in most cases.
GSOA has obvious advantages in solving chemical DOP

compared with other meta-heuristic algorithms. On balance,
OCVP-GSOA is an excellent optimization method.

For future works, OCVP that can handle dynamic opti-
mization problem with multiple control variables can be
developed. For more complex dynamic optimization prob-
lems, this can provide a better optimization method. And
it would be also interesting to integrate OCVP into other
intelligent optimization algorithm.
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