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ABSTRACT We proposed a neural network (NN) approach that uses two multi-layer perceptron (MLP)
NNs an encoder and a decoder to estimate the structural parameter (Spara) of a 14-nm node fully depleted
silicon on insulator (FDSOI) field-effect transistor (FET). When outputs defined by the same input exist, the
proposed NN algorithm achieves loss function convergence during NN training. The decoder takes inputs
of on/off current ratio, delay, and power to represent DC/AC performance for high performance (HP), low
operating power (LOP), and low standby power (LSTP) applications. With the pre-trained encoder learned
with R coefficients of the regression plot over 0.99 and an average percent error of approximately 1%, the
decoder was modeled to estimate the Spara. Our decoder successfully estimated all Spara within the range that
satisfies the technology node. The tendency of Spara satisfying the desired figure-of-merits (FOMs) in device
design can be confirmed by comparing the estimated Spara of the upper 5 % and 10 % cases. Furthermore,
it can provide device design guidance from various perspectives by presenting numerous alternatives of
distinct Spara sets, even when the FOM value is the same (duplicate input values). If undesirable FOMs are
extracted, it is possible to determine the causal Spara and provide immediate process feedback on the related
unit process using the Spara estimated from the lower 5 % of FOMs. We performed a detailed physical
analysis as an example of a delay in LOP application. NN estimation results were analyzed using gate length
(Lg), SOI thickness (Tsoi), and drain-side spacer length (Lspd ), which mainly affect gate capacitance (Cg) and
effective current (Ieff ). In addition, source-side spacer length (Lsps) and source/drain junction gradient (Lsdj)
showed behaviors different from those generally selected by human experts and cases where maximal values
were not estimated within the set range. The estimation of Spara using the NN was effective and powerful,
reducing process cost and feedback time.

INDEX TERMS Device design, device structural parameters, FDSOI FET, figure-of-merits, machine
learning, manufacturing process, MLP, 14-nm node.

I. INTRODUCTION
Numerous design and production processes are required to
manufacture semiconductor chips suited for various appli-
cations; these processes are large-scale, expensive, and time
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consuming more than a month. Various test inspections are
carried out throughout the process to improve product qual-
ity. Before packing, a wafer test is typically performed, fol-
lowed by a chip test. Electrical die sorting (EDS) is a test
performed on wafers before packaging. It detects whether
each die meets the necessary quality level by measuring the
electrical parameters and determining whether the device
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operates appropriately. In other words, by selecting the defec-
tive die, the rate of defect that arises during the early stages
of the product can be effectively limited. Thus, the product
will not pass packaging unless it meets the performance
requirements of the target application. In addition, identifying
and resolving defects through various test inspections try to
increase yield, reduce costs, and manufacture high-quality
semiconductors. Despite numerous test methods, issues to
be resolved to improve yield always exist. First, when the
EDS test is executed for a manufactured wafer, it is impos-
sible to run a full test on all transistors due to time, space,
and cost constraints; thus, only some transistors for the test
pattern are determined. Second, while numerous figure-of-
merits (FOMs) can be used to evaluate device performance,
it primarily measures and assesses FOMs that can be used to
reflect the qualities of an application that are appropriate for
a certain purpose. Third, it is not easy to extract the structural
parameter (Spara) of the fabricated device from the electrical
characteristics in terms of the device, which is the lowest level
in semiconductors. Spara can be investigated by a transmission
electron microscope (TEM) or a scanning electron micro-
scope (SEM). However, it is expensive and has the draw-
back of destructive testing, which necessitates wafer cutting.
In addition, the existing method is difficult to apply to a large
number of wafers or chips due to time and cost limitations.
Spara is primarily concernedwith the design and affects device
performance. It is also directly involved in the Spara-related
unit process. Thus, it is difficult to rapidly determine which
Spara is problematic and which unit process is related to it
when an incorrect measurement result is obtained. Because
different components in various production processes operate
together due to the sequential process, understanding Spara
in the semiconductor manufacturing process is critical for
determining the origin of the defect and resolving the issue
on the device side.

Owing to the development of higher computing capacity,
such as GPU parallel computing and the creation of dis-
tributed processing environments, machine learning (ML)
technology [1] has recently been employed as a novel
approach in different domains. ML can predict future occur-
rences by learning complicated correlations between inputs
and outputs. It has the advantage of making accurate predic-
tions in a short time. In the field of semiconductor devices, for
example, the correlation between Spara and electrical proper-
ties can be forward-estimated and backward-optimized using
ML approaches and quickly and reliably applied to design
and analysis. Furthermore, ML can be applied to various new
devices, such as vertical nanowire FETs, to aid electrical
characterization and provide insights regarding device and
process design [2]–[4]. This study intends to provide insights
for problem solving at the device level for incorrect results
throughout the semiconductor test process by estimating Spara
using the ML technique. In addition, a guideline for device
design that can satisfy the FOM of the desired application
is offered through the estimated Spara. We used a 14-nm
node fully depleted silicon on insulator (FDSOI) field-effect

transistor (FET) to achieve these goals. Its excellent per-
formance and ultra-low leakage qualities make it popular
in the network, consumer devices, a microcontroller unit
(MCU), and internet of things (IoT) goods. Particularly, the
introduction of buried oxide (box) facilitates body bias con-
trol, enabling wider threshold voltage modulation and lower
static power consumption, which can be applied to various
applications [5]–[8]. We are interested in using semicon-
ductor devices that are classified as high performance (HP),
low operating power (LOP), and low standby power (LSTP)
applications. Therefore, the on/off current ratio, delay, and
power indicating DC/AC performance for each application
are used as input. Then, we propose a neural network (NN)
algorithm to quickly find the Spara corresponding to the
application.

II. RELATED WORK
For a 32-nm node high-k metal gate transistor, Choi et al. [2]
established a new framework for semiconductor device
design and analysis using the ML approach. They used NN to
achieve precise electrical modeling between Spara and FOMs.
Using the gradient descent (GD) method and modeled NN,
device optimization was performed to automatically find the
optimal Spara set that satisfies the specified FOM. The results
of NN optimization were similar to those obtained by human
experts. However, it has been demonstrated that a significant
amount of time is saved. They can also analyze the tendency
of changes in Spara without performing numerous simulations
by the sensitivity of each Spara on the FOM with the mod-
eled NN.

Yun et al. [3] used NN to estimate the relationship between
the Spara of 14-nm node FDSOI FETs and the on/off current
ratio for three semiconductor applications. The FOMs were
then improved through device optimization, which deter-
mined the best device structure for each of the three appli-
cations. Furthermore, the analysis of sensitivity of FOM to
significant Spara performed with NN was shown to be quite
comparable to that performed using actual device physics.
Choi et al. [2] assumed Spara was a completely independent
input feature within a specified range at the time. In contrast,
Yun et al. [3] considered a design guideline that demands
a fixed range or correlation of some Sparas from a given
technology node in actual device design. Thus, Spara partially
depends on existing input features. By altering the range
of these Spara in real-time throughout the optimization, they
could find the best option for the technology node. Choi et al.
and Yun et al. performed device design, optimization, and
analysis for semiconductor devices using multi-layer per-
ceptron (MLP) NN [9], [10]. Furthermore, NNs comprise
architectures in which the input dimensions are larger than
the output dimensions, and the input features have a nearly or
completely independent relationship.

We use the ML technique for failure analysis in the semi-
conductor process, not for semiconductor device optimiza-
tion and analysis. The proposed technique can be directly
used in the semiconductor test process by considering the
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FIGURE 1. Correlation matrix computed using Pearson coefficient. (a) Figure-of-merits (FOM), as input, with positive or negative correlations to each
other. (b) Structural parameters, as output, are almost independent of each other.

FOMs retrieved in the actual wafer test process as input and
calculating the output Spara. The input dimensions of our
NN are smaller than the output dimensions, and there is a
positive or negative correlation between input features. That
is because only the applied voltage varies depending on the
application, and each FOMuses the same formula to calculate
it. Furthermore, the pair of input and output data does not
have a one-to-one correlation because data have the same
FOM value even when the Spara sets are different. This is
because structures of different devices have the same FOM
value. Thus, the present MLP NN fails to learn as the training
loss does not converge. These challenges are solved using two
MLP NNs. Finally, instead of device development and opti-
mization, our goal is to provide a mechanism to immediately
identify device-side concerns during the fabrication.

III. DATA CONFIGURATION AND NEURAL NETWORK
METHODOLOGY
A. DATA CONFIGURATION OF THE FDSOI FET DEVICE
We used the Sentaurus TCAD simulator [11], a semicon-
ductor device simulation tool, to simulate 40,000 massive
data for NN training. Using 17 parameters related to geom-
etry and doping in the device design and manufacturing
process, we collected data through random variation. The
minimum and maximum ranges were assigned to each Spara
during parameter randomization, reflecting the technology
node of the device. We set the range based on the design
rule of the node because we used a 14-nm device [6], [7].
First, we obtained the current–voltage (I–V) and capacitance–
voltage (C–V) curves from a TCAD simulation, tested at
various gate voltages,Vg, depending on the application. Then,
for three applications–HP, LOP, and LSTP–FOMs of on/off

TABLE 1. The definition of structural parameters with the minimum and
maximum values used for data generation.

current ratio (Iratio), delay, and power were calculated using
the current, voltage, and capacitance (Eq. 1-3). Typically,
while designing a good-performance semiconductor device,
an operation point (Q-point), which is a target for the opti-
mum DC performance, is initially established. Subsequently,
the small-signal (AC) characteristic is optimized. Although
this technique is sequential, we estimate Spara using the NN
to assess both performances simultaneously.

Iratio = ION /IOFF (1)

Delay = Vdd
Cg

2(IH − IL)
ln(IH − IL) (2)
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FIGURE 2. (a) A conceptual diagram of the decoder designed to estimate Spara with a pre-trained encoder and limiter. Schematic diagram of (b) encoder
and (c) decoder MLP NNs.

Power = Vdd
IH − IL

ln(IH − IL)
+ Vdd IOFF (3)

The currents, ION and IOFF , flow when the transistor is
turned on and off, respectively. The operating voltage is Vdd ,
and the gate capacitance is Cg. When Vg and Vd are Vdd and
0.5Vdd , respectively, IH is the extracted current. When Vg
and Vd are 0.5Vdd and Vdd , respectively, IL is the extracted
current. We used the density-gradient model and the mobility
model describing doping-dependent and high-field satura-
tion as the device physics model in TCAD simulation. Fur-
thermore, the doping-dependent Shockley-Read-Hall model
and Auger generation-recombination model were combined
with band-to-band tunneling of the Hurkx model for the
recombination model. In addition, the implant technique
used a gaussian-function doping profile, and the gate-
electrode/dielectric interface material was HfO2/SiO2, which
has a fixed charge concentration of 1012 cm−3.
We adopted the Spara that can estimate the actual length at

the corresponding technology node and can be manipulated
in TCAD simulation. Thus, we adopted Spara estimated from
TEM image of 14-nm node FDSOI FET hardware [5]. The
definition of Spara and the range of Spara values for data
creation are shown in Table 1. The Spara range was set in
consideration of the design rule within the range that does
not deviate from the technology node. In Fig. 1, a correlation
matrix depicts the Pearson correlation coefficient-calculated
correlation for each input feature and output. There are posi-
tive or negative correlations between input features (Fig. 1a).
First, there is a positive correlation in different applications of
the same FOM (solid box). Because each FOM is calculated

using the same formula, and only the applied voltage varies
depending on the application. Second, there is a negative
correlation between Iratio and power (dashed box). The orig-
inal correlation between two FOMs is positively correlated
because they depend on the Ion. However, we take the recip-
rocal of Iratio so that it has a small value to facilitate NN
training. Therefore, it appears that Iratio and power have a neg-
ative correlation. The output, in contrast, exhibits essentially
no correlation (Fig. 1b). However, we can confirm a weak
negative correlation for some Sparas because the epitaxial
length (Ls/d ) of each area determines the maximum source-
and drain-side bottom contact (Lconb(s/d)). The overall gate
pitch Ltot is set to 70 nm, and Ls/d is the same as that in
Eq. 4. In other words, Lconb(s/d) is somewhat dependent on
Lg, Rsd , and Lsp(s/d). In addition, the maximum of Lconb(s/d) is
(Ls/d -Rsd ) (Eq. 5). Thus, a weak negative correlation
emerges, which is unavoidable due to the 14-nm node design
rule of the device.

Ls/d = 0.5(L tot − Lg)− Rsd − Lsp(s/d) (4)

Max(Lconb(s/d)) = Ls/d − Rsd (5)

NN, particularly MLP NN, learns the relationship between
input and output from the given data by treating the input as
an independent variable and output as a dependent variable.
However, we make up inputs as the correlated dependent
variables and the outputs as the independent ones. Because
the FOMsmeasured in the semiconductor test process depend
on Spara, we use them as inputs. Furthermore, the input and
output data pairs have data pairs with identical input values,
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FIGURE 3. ML algorithm training procedure for successful NN modeling
including data acquirement and pre-processing.

implying that the data to be trained as a one-to-many relation-
ship can produce multiple solutions for a single input. There-
fore, we enable NN training using the proposed NN algorithm
and correctly estimate Spara for these circumstances, as illus-
trated in the next section.

B. DECODER NEURAL NETWORK DESCRIPTION WITH
PRE-TRAINED ENCODER NEURAL NETWORK
We propose an approach that allows NN training when inputs
and outputs are in one-to-many correspondence using the
MLP (Fig. 2a). Vanilla MLP can successfully handle the
problem of non-linear relationships by adding a hidden layer
with weight and bias terms between the input and output
layers. It learns the correlation between input and output,
assuming an independent relationship between input features
and a unique solution of output to input. Thus, it can over-
come one of the major weaknesses of single-layer perceptron
(SLP) [12], which only works with linear relationships. Fur-
thermore, by altering the number of perceptrons for appropri-
ate input and output, vanilla MLP can quickly solve various
issues and be flexibly applied to new fields [13]–[15]. How-
ever, our proposed NN algorithm deals with the case where
correlations exist between input features, and the solution of
the input to the output is not the only solution. At this time,
if we train like vanilla MLP, it fails to train due to the char-
acteristics of our data. Therefore, we propose an algorithm
consisting of two vanilla MLPs, a pre-trained encoder with a
larger input dimension (Fig. 2b) and a decoder with a larger
output dimension (Fig. 2c). The pre-trained encoder supports
a train for the decoder, and the decoder is a core NN that
estimates Spara by receiving FOMs from each application.
In general, during NN training, the NN calculates the loss
value through the set loss function, and the NN is updated in
the direction tominimize this value. Also, in supervised learn-
ing, where the output ground truth (gt) exists, themain factors

of the loss function are the output value extracted by the NN
and the gt of the output. Therefore, the loss is calculated
according to the definition of the loss function set through
these two factors. However, the loss function of our decoder
is newly defined through the pre-trained encoder. In other
words, the pre-trained encoder is an MLP that has learned
the correlation between Spara (input) and FOMs (output) in
advance, and it contributes to updating the loss function
of decoder (Input-FOMs, output-Spara). Therefore, the loss
function process of the decoder is done in the following order
(Eq.6): 1) The output (Spara’) estimated by receiving the FOM
from the decoder is input to the pre-trained encoder. 2) The
pre-trained encoder that receives Spara’ estimates the FOM
(FOMencoded ). 3) The loss function of the decoder is calcu-
lated using the FOM estimated from the pre-trained encoder
(FOMencoded ) and the FOM of the gt (FOMgt ) as the input
of the decoder, then the NN is updated. Thus, the proposed
NN algorithm can find solutions even for duplicate solutions
and it can be applied to modeling any arbitrary nonlinear
function. In addition, when the decoder estimates Spara, it uses
a limiter, g, which ensures that each Spara does not deviate
from a pre-determined range. The limiter maps the existing
range of each Spara between −1 and 1 and corresponds to the
hyperbolic tangent (tanh) transfer function of the output layer.
The g−1 function, which performs inverse operation of the
limiter, is used to restore the original range of each Spara.

LD =
1
N

N∑
i=1

∥∥FOMgt − FOM encoded
∥∥2 (6)

A flow chart for training the decoder including the pre-trained
encoder is shown in Fig. 3. We found the optimal dataset size
needed for training empirically, which is obtained by acquir-
ing additional data if the encoder is not properly trained.
Then, re-training is performed by tuning the network hyper-
parameters of both the decoder and the pre-trained encoder if
training fails during the modeling phase. Finally, the modeled
NN is evaluated through the R coefficient of the regression
plot and the percent error calculated from the estimated value.
We used the following network hyper-parameters. First, com-
mon to both the decoder and the pre-trained encoder, the
dataset is partitioned into training, validation, and test sets
at ratios of 0.80, 0.10, and 0.10, respectively. The transfer
function of the hidden layer is implemented using the tanh
function. The mean squared error (MSE) between the output
and target values is used as a function to reduce the training
loss. In addition, the log-scale was applied to Spara related
to doping and FOMs to prevent NN training failure due
to large-scale differences between input and output values.
Second, the pre-trained encoder comprises 9-MLP NNs for
each FOM, and the identical network hyper-parameters are
applied across them. For training, we adopted the Levenberg-
Marquardt (LM) optimizer [16]–[18] to solve the non-linear
least-squares problem. There were fifty hidden layers, and
the transfer function of the output layer was linear. Third,

64412 VOLUME 10, 2022



H. Jang et al.: Extraction of Device Structural Parameters Through DC/AC Performance Using an MLP NN Algorithm

TABLE 2. R coefficients for training, validation, and test datasets and
MSE training loss for each FOM through the pre-trained encoder.

TABLE 3. Average, maximum, and minimum values of the percent error
of each FOM estimated through the pre-trained encoder for the training
and test datasets.

the decoder used a resilient back-propagation (Rprop) train
optimizer [19], one of the fastest weight update mechanisms
available. In most cases, the hidden layer uses a sigmoid or
tanh transfer function, whose slope approaches zero when
the input value becomes very large or small. While utilizing
the steepest descent method to train a multi-layer NN, the
magnitude of the gradient may be quite small when updating
the gradient. Thus, the change amount is minimal when the
weight and bias are far from optimal. Thus, during network
training, the problem of updating the gradient in an undesir-
able direction may arise. The Rprop optimizer eliminates the
magnitude of the negative influence of the partial derivative.
Therefore, the magnitude of the derivative does not affect the
process of updating the weight. The direction of updating the
weight to minimize the loss function is determined solely
by the derivative sign. Thus, the weight change is halved
when the sign changes and the gradient progresses from
one iteration to the next. When the sign does not change,
however, it increases by 1.2 times. If the slope is zero, the
same updated value is maintained. Furthermore, the weight
change diminishes with each vibration of the weight. Weight
changes increase as the weight shifts in the same direction for
multiple iterations. The decoder has 100 hidden layers, and
the transfer function of the output layer, unlike the pre-trained
encoder, uses the tanh function to reflect the result of the lim-
iter. We also set the minimum performance gradient to 10−5

to avoid over-fitting in training. The number of validation
checks which were repeated continuously with degradation,

FIGURE 4. (a) Loss reduction with increasing epochs on training,
validation, and test datasets. (b) Reduction of network performance
gradient and (c) the number of validation checks, which are conditions
for early stopping in the training process.

was set to five. Thus, during training, we specified these
two stop conditions to pursue network generalization. In the
next section, we show the training results of the pre-trained
encoder and the decoder, as well as the Spara found using the
modeled decoder.

IV. RESULTS AND DISCUSSION
A. NEURAL NETWORK MODEL PERFORMANCE
EVALUATION
When the decoder is trained, the pre-trained encoder is
modeled to update the network performance by mini-
mizing the loss function. Because the performance of
the pre-trained encoder influences the performance of the
decoder, it must guarantee network performance and reliabil-
ity of the pre-trained encoder for successful decoder model-
ing. The training results of the pre-trained encoder are shown
in Tables 2 and 3. Table 2 shows the regression coefficient, R,
of the regression plot for the training, validation, and test
datasets and the MSE training loss modeled using MLP NN
for all FOMs to Spara as input. R represents the relationship
between the output and target values. When R is 1, the
output and target values are the same, in an ideal scenario.
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For all FOMs, the R we derived is approximately close to 1.
Furthermore, the final MSE shows a sufficiently small value
within an acceptable range after completing the training. For
the training and test datasets, Table 3 shows the average
and minimum percent error values obtained from the value
of the FOM estimated by the pre-trained encoder. In both
datasets, the average error is typically minimal, i.e., less
than 1 %. Thus, the pre-trained encoder has been confirmed
to have been reliably trained via the two tables. The larger
the on/off current ratio shown in the text, the better the
performance. However, for ease during training, we used
the off/on current ratio by taking the reciprocal of Iratio.
Thus, the current ratio refers to the off/on current ratio.
Following this, the network performance of the decoder is
demonstrated using the procedure and training results using
the pre-trained encoder (Fig. 4). The observed loss reduction
during training is shown in Fig. 4(a). According to the training
optimizer, the training (blue line) and validation (green line)
gradually reduced until training was stopped. As the epoch
approached 3000, the loss began to converge. The loss on the
test dataset (red line) was similar to that on the training and
validation datasets. Thus, no over- or under-fitting occurred
because the loss for validation does not increase or decrease
in comparison to training. In addition, as the epoch rises, the
network performance gradient declines progressively, and the
gradient becomes saturated when the loss reaches saturation
in Fig. 4(b). The best validation performance at this time
was at the 3904th epoch. The validation checks surpassed the
training stop condition. Hence the final epoch was halted at
the 3909th epoch (Fig. 4c).

B. ANALYSIS OF STRUCTURAL PARAMETERS ESTIMATED
THROUGH THE DECODER NEURAL NETWORK
Table. 4 compares the minimum and maximum of the NN
estimation result with the ground truth. We can validate that
all Spara values are within the range of the minimum and
maximum values of the ground truth. Even though our goal
is not device optimization, it is distinct from the related
Spara estimation study. The Spara was calculated within the
range of the real dataset by the limiter, unlike the study of
Choi et al. [2], in which the best solution was found along
the full hypersurface of the trained NN without the constraint
of the range of permitted solutions. We do not intend to find
a case outside the technology node of the target device. Thus,
within a given technology node, we can successfully estimate
Spara that satisfies the FOMs of the required application.
Fig. 5 shows the percent error of FOMs extracted using the
estimated Spara to ensure that the decoder results are reliable.
In all FOMs, the average error is 0.1 %, and the highest error
is not more than 1 %.

The trained NN deals with 17 Sparas for each of the
9 cases (3 FOMs for each of the 3 applications). Therefore,
it is not easy to show Spara’s analysis for all cases due to
space issues, so we selected a specific FOM, delay, for a
specific application, the LOP application as an example.
The selected Sparas are parameters that directly affect the

TABLE 4. Structural parameters estimated through the modeled decoder.
The estimated result does not deviate from the minimum and maximum
of the ground truth due to the operation of the limiter.

FIGURE 5. The percent error extracted when the Sparaestimated by the
decoder is the input to the pre-trained encoder.

delay, and device analysis was performed through them. Note
that our NN results are not optimizations of semiconductor
devices. Instead, our goal is to find the device Spara of a larger
dimension when input FOM of a small dimension for each
application. Thus, the NN result does not estimate one Spara
set for one FOM value but can quickly find several Spara sets
that satisfy the desired FOM. For the LOP application, the
boxplots of the selected Spara corresponding to the delay that
meets the upper 5%, upper 10%, and lower 5% requirements
are shown in Fig. 6. All y-axis units are in micrometers. Our
proposed design aims to create a device that performs well for
all FOMs determined based on the minimum value because
small values indicate good performance. Thus, we consider
the estimated Spara in the lower 5 % case as the failure
device. The dashed lines at the top and bottom of the figure
indicate the set minimum and maximum values of each Spara.
First, when comparing the upper 5 % and upper 10 %, each
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FIGURE 6. A boxplot expressing values belonging to the FOM of upper 5 %, upper 10 %, and lower 5 % for some Sparas.

TABLE 5. Median values for upper 5 %, upper 10 %, and lower 5 % of
estimated Spara.

Spara implies the target criteria for the design it should have,
considering the correlation with other Spara. Tendencies of
the individual Spara values can be observed as the boundary
becomes larger. Through parameter splitting, this work can
reduce the load of analyzing the influence of the related Spara.
Furthermore, if the vertical range for each Spara is narrow,
it must be carefully controlled during device design. This
implies that the design margin is rather large in the opposite
case. Second, when comparing the upper 5 % and lower
5 %, we can confirm that Spara has opposite tendencies or
overlaps with the upper and lower cases. Therefore, when
actual measurements result in unwanted FOM values such
as lower 5 %, these FOM values can be entered into the
trained decoder. Then, the NN can determine which Spara
is abnormal by estimating the Spara set corresponding to the
FOM value. This allows for immediate feedback on the unit
process associated with the abnormal Spara. It can also help
with device design considerations that should be avoided.

Table. 5 shows the median values of some Sparas for semi-
conductor analysis on the delay of LOP application. Delay is
affected by gate capacitance (Cg) and effective current (Ieff ),
and a small value is required to enable high-speed opera-
tion (Eq. 2). Therefore, five Sparas to be analyzed in terms
of semiconductor technology were selected as examples.
First, we selected the Lg, Tsoi, and Lspd , mainly affecting Cg
and Ieff . Second, with Lsps and Lsdj, we show the impressive
results found by NN, usually not picked up by human
experts. In devices small enough to show the short channel
effect (SCE), an increase in gate length (Lg) decreases the
area where the source/drain-substrate depletion region pene-
trates the channel. Thus, gate controllability increases, SCE
minimizes, and Ieff increases. Also, the Cg increases due
to the wider gate area at fixed oxide thickness. In Fig. 7,

FIGURE 7. Changed values (solid lines) and rates (bars) in gate
capacitance (Cg) and effective current (Ieff ) when gate length (Lg)
increases within the range of a given technology node.

FIGURE 8. Cg and Ieff as a function of SOI thickness (Tsoi ). The change
rate in Ieff is larger than the change in Cg, so the delay according to Tsoi
is affected by the Ieff .

in devices where SCE occurs, an increase in Lg affects the
increase in Ieff more than an increase in Cg. In general, it is
attempted to decrease Lg to reduce device size, but it shows
that Lg needs to be increased to decrease the delay within the
range set from 20 to 26 nm. Therefore, the NN estimates a
large Lg value to satisfy a smaller delay value (upper 5 %)
and a small Lg value for the lower 5% case. Since the purpose
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FIGURE 9. Delay change according to Lg and Tsoi . Tsoi is sensitive when
Lg is small, and the trained NN estimated large Lg and small Tsoi to
achieve the small delay.

FIGURE 10. Delay and Ieff according to Lspd . Ieff increases significantly
with Lspd increases, and thus delay decreases.

of the NN is not an optimization process to find an optimal
value but a process to find a Spara that satisfies the input FOM
value, themaximum/minimum Lg values are not estimated for
the minimum/maximum delay values.

Reducing FDSOI FET device size requires thinner SOI
thicknesses (Tsoi) to maintain the strong electrostatic prop-
erty. Thinner Tsoi can reduce SCE by eliminating the leakage
path, thus, increasing Ieff . Also, it causes an increase in Cg.
At this time, the change in Ieff is more sensitive than the
change in Cg, which is more pronounced when Lg is small
(Fig. 8). Therefore, a thin Tsoi is required to obtain a good
delay characteristic (small value), which agrees with the NN
results that estimate a low Tsoi value in the upper case and
a high Tsoi value in the lower case. Fig. 9 shows the delay
characteristics according to Lg and Tsoi. When Tsoi is the
minimum value, it has a fairly small delay value regardless
of Lg. However, when Lg is relatively large, the change in
delay according to Tsoi is less sensitive due to the improved

FIGURE 11. The amount of delay change according to the Lsps/d when
the other side is fixed as the lower value. To satisfy the large delay value,
Lsps with a small change amount moves to a relatively large value.

SCE. Therefore, the NN estimates large Lg and small Tsoi to
find Spara satisfying good delay characteristics.

Drain-side spacer length (Lspd ) was estimated to have a
large value for the upper 5 % case and a small value for the
lower 5 % case. Fig. 10 shows the delay and Ieff as a function
of Lspd . When Lspd increases, doping at the drain moves
away from the gate edge, so the parasitic fringing capaci-
tance decreases, and thus Cg decreases. In addition, as Lspd
increases, the series resistance increases due to the extension
of the gate underlap, resulting in a linear decrease in Ion.
However, as effective channel length increases, SCE such as
DIBL and SS is minimized, and Ioff decreases exponentially,
resulting in an Ieff increase. Therefore, delay reduction can
be achieved due to a decrease in Cg and an increase in Ieff .
Thus, it can be seen that the trained NN adopts a large Lspd to
satisfy a small delay value and a small Lspd value to satisfy a
large delay value.

Note that our NN estimation result is not an optimization
process to find the best device, and the semiconductor physics
is not reflected in the NN training process. Therefore, Lsps
shows that the NN estimation results are different from the
human expert selection, and Lsdj shows that the numerically
found results by the NN do not necessarily have maximum
or minimum values. For a device symmetry, Lsps and Lspd ,
spacer lengths in the source and drain regions, are designed
to have the same value. In addition, Lsps and Lspd have the
same effect on the device. Especially, Lsps/d determines the
overlap length in the source and drain regions and greatly
affects SCE. Therefore, the NN will estimate large Lsps and
Lspd for good delay characteristics and low for poor. However,
since the NN finds a solution that satisfies the proposed NN
without learning the physical mechanism of the semiconduc-
tor, different values of Lsps and Lspd were estimated, as shown
in Table. 5. In particular, the difference between Lsps and Lspd
was more than 2 nm in the lower case, and Lsps was estimated
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to be relatively high. When Lsps and Lspd have the same low
value, the extracted delay is out of the range of the ground
truth due to severe Ieff degradation. Therefore, the NN cannot
estimate the delay within the set range, and Lsps is estimated
to be relatively high to satisfy the lower 5% case. Since a high
bias is applied to the drain, the delay has a larger change rate
in Lspd than Lsps when the spacer length increases (Fig. 11).
Thus, NN satisfies the ground truth by slightly increasing the
Lsps, having relatively little change rate. As a result, in the
lower 5 % case, the difference between Lsps and Lspd occurs,
which Lsps has a slightly higher value. This is a different
result from the human expert designing symmetrically with
the same values of Lsps and Lspd . As such, our NN can present
a variety of design perspectives by providing options for Spara
that are not normally selected.
Lsdj is the junction gradient, which means the distance at

which S/D doping is 1/10 from the peak. As Lsdj increases,
the effective doping concentration in the channel increases,
and the S/D resistance decreases. Therefore, a suitably large
Lsdj will achieve a small delay value. Therefore, Lsdj was
estimated to be relatively higher than the lower 5 % case
in the upper 5 % case. However, values above 9 nm are not
estimated (Table. 5). Because, as a result of TCAD simulation
according to Lsdj with other Sparas fixed as median values, the
extracted delay exceeds the delay of ground truth when Lsdj is
9 nm ormore. Therefore, the delay through the Lsdj in the non-
estimated interval does not satisfy the ground truth, so the NN
did not estimate the Lsdj for this interval. In other words, the
estimation result through the numerical correlation between
input and output does not always become the maximum or
minimum of the range set. In addition, although NN does
not learn the physical mechanism, it can confirm that the
semiconductor mechanism is reflected through the ground
truth that cannot find due to the degradation caused by a
specific Spara. Actually, Lsdj is controlled according to the
annealing temperature and time in the actual process, but Lsdj
in FDSOI FET has a small value, and the value itself is not
a parameter that changes as much as the set range. That is,
the amount of change in Lsdj is significantly less than that of
other Spara changes. We gave an example of semiconductor
analysis through 5 Sparas, but similarly, detailed analysis of
semiconductor aspects can be applied to other Sparas as well.

Our method can estimate the Spara set in different scenarios
for the same FOM value (duplicate input values). There-
fore, Spara offers numerous design alternatives to satisfy the
desired conditions. The design and production of semicon-
ductor devices is a conservative process. Thus, if unfavorable
results are produced, semiconductor engineers frequently try
to solve the problem by altering the cause. However, using the
proposed method to rapidly and diversely provide the range
of the corresponding Spara to satisfy the desired FOM, makes
a design perspective over a wider range possible.

V. CONCLUSION
We proposed an NN algorithm using two MLP NNs to esti-
mate the Spara affecting the device design and unit process of

14-nm node FDSOI FETs. The NN input is a set of FOMs
with smaller dimensions than the Spara output. In addition,
a correlation exists between the input features and dupli-
cate input values, which overcame the problem of non-
convergence and enabled NN training. For all FOMs, the
pre-trained encoder used to calculate the loss function for
convergence is trained with an R value close to 1. Fur-
thermore, in both the training and test datasets, the percent
errors from the actual value show average values of 1 %
or less. The encoder was used to train the decoder, and the
training loss of the decoder fell in line with the validation
loss without over- or under-fitting. Thus, 17 Spara values
were successfully estimated within the range specified by the
14-nm technology node. The percent errors of the decoder
show averages of 0.1 % after inputting the estimated Spara
into the pre-trained encoder. The parameter trend can be
confirmed through the Spara that satisfies the FOM values
belonging to the upper 5 % and 10 %. In addition, the Spara
estimated from the duplicate inputs provides a different set of
optional Sparas. If an abnormal FOM value is derived, as in
the case of the lower 5 %, the corresponding Spara can be
derived, and feedback on the unit process corresponding to
the abnormal Spara is available. Therefore, the cause of failure
on the device side can be immediately identified using the
proposed NN algorithm in the semiconductor test process.
In addition, we performed a detailed physical analysis as an
example of a delay in LOP application. NN estimation results
were analyzed using Lg, Tsoi, and Lspd , which mainly affect
Cg and Ieff . Lsps and Lsdj showed behaviors different from
those generally selected by human experts and cases where
maximal values were not estimated within the set range. Our
methodology can improve the inspection speed and yield
during the test process by aggregating the estimated Spara val-
ues and spotting trends. This is more stable (non-destructive
inspection) and economical compared to the existingmethods
(TEM or SEM image, destructive inspection) to extract the
Spara of the manufactured wafer or chip. Furthermore, since
our proposed method learns the relationship between input
and output, the artificial neural network does not learn the
physical phenomena of the device or the side effects that may
occur when scaling. Therefore, this can be applied regardless
of the type of device or technology node.Moreover, it is appli-
cable to arbitrary non-linear function modeling. Finally, the
proposed NN algorithm can be applied to various tasks in the
semiconductor manufacturing process, including estimating
and analyzing any systems with more outputs than inputs.
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