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ABSTRACT Previous natural image segmentation algorithms through subspace learning method have
over-segmentation issues in the pre-segmentation process, which will compromise the edge information, and
the subspace learning model cannot effectively utilize the nonlinear structure in the image data and has weak
resistance to multiple noises. To address these problems, a multi-kernel subspace learning method based on
weight truncated Schatten-p norm for image segmentation is designed in this paper. First, the original natural
image pre-processing operation, which is conducting adaptive morphological reconstruction watershed
transformation on the image, then the original pixels are aggregated to form a superpixel image, of which the
obtained superpixel block would retain more comprehensive local information; Secondly, perform feature
extraction for each superpixel block, and stack the obtained feature vectors into the desired feature matrix;
Then, it is input into the weighted truncated Schatten-p low-rank multi-kernel subspace learning model
to obtain a similarity matrix with cluster structure on the diagonal; Finally, the similarity matrix is used
as the adjacency matrix in the spectral clustering model, and the final feature data clustering and image
segmentation results are obtained by the optimization solution. The final experimental results demonstrate
that contrasts to existing clustering models, the proposed method accomplishes the best clustering property
on two public datasets; Compared with seven segmentation algorithms on the BSDS500 dataset, and achieved

the best segmentation effect on two evaluation metrics.

INDEX TERMS Subspace learning, image segmentation, multi-kernel, superpixel, spectral clustering.

I. INTRODUCTION

The segmentation [1]-[3] of natural images is a current dif-
ficult research area in the direction of machine vision and
image recognition analysis. It refers to grouping the single
pixels in the original input image to form a series of regions
according to their feature similarity, and to separate fore-
ground objects and image backgrounds. Segmentation meth-
ods for natural images are usually considered as five types,
i.e., using specific threshold, pixel region-based, contour
detection-based, clustering-based, and neural network-based
segmentation methods. Subspace learning is often used in
popular fields such as data analysis and face recognition,
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and can effectively cluster high-dimensional data in images
[4]-[6]. The theoretical assumption [7] can be understand as
the known high-dimensional image feature data is contained
in the coalition of many lower-dimensional feature subspaces.
The high-dimensional image feature data is represented by a
lower-dimensional feature subspace, and the representation
coefficients are used to gain spatial properties of original
image feature data.

The natural image segmentation method based on sub-
space learning [8]-[11] regards the segmentation of natural
images as a data clustering issue of regional pixel feature.
As shown in Fig.1, the feature information of the superpixel
block is extracted from the preprocessed image, then the
subspace learning algorithm is used to gather the feature data
into clusters to achieve segmentation. Two more classical
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FIGURE 1. The Process of Image segmentation Based on Subspace Learning.

subspace learning methods are sparse subspace clustering
by Vidal et al. [12] and low-rank expression model of sub-
space clustering designed by Liu et al. [13], they impose a
simple /; norm or nuclear norm to the coefficient matrix.
However, this does not help the diagonal of coefficient matrix
to form a better cluster structure, which will cause con-
fusions in the classification of image feature data. Subse-
quent research scholars have expanded and derived many
linear subspace learning algorithms. By fusing the sparse
representation with the low-rank representation model, mak-
ing non-negative judgments, Zhuang et al. [14] designed a
method to joint low-rank model and sparse representa-
tion in non-negative(NNLRSC), Hu et al. [15] designed a
clustering model using smoothed representation (SMRC),
Wang et al. [16] proposed adding low-rank constraints on
the basis of SSC (LRSSC). The previous algorithms are
mostly using linear self-representation of the features data,
which can only work in linear subspace, but the fea-
ture data generated by actual images are often nonlinear
structures.

Some researchers use kernel techniques to map nonlin-
ear structural data to higher-dimensional Reproducing Ker-
nel Hilbert Space (RKHS) [17], for conversion into linear
structural data for processing, which can make up for the
limitations of linear subspace learning methods in process-
ing image feature data. Among the single-kernel subspace
learning algorithms, such as Spectral Clustering (SC) [18],
RKKM (Robust K-Means Using Kernel) [19] and model by
Simplex Sparse Representation (SLSR) [20] are relatively
popular. Tao et al. [21] designed a new sparse expression
clustering algorithm for natural image segmentation, which
takes weighted sparse constraints to better represent feature
data within clusters. Li ef al. [22] designed an improved
sparse expression subspace clustering model to natural image
segmentation, introducing the /, ; norm to expand, so that
the coefficient components tend to be uniform within the
class and sparse among the classes. But, the data clustering
and image segmentation capabilities of these single kernel
models depends mainly on the goodness of the mapping
function. so many researchers have made further enhance-
ments to this base. The Multi-Kernel Learning (MKL) [23]
frame of subspace clustering emerged. In the framework of
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multi-kernel fusion learning, the representation of image data
samples in the feature space mainly depends on the sparse
allocation of basic kernels and weights. Current mainstream
multi-kernel models, such as Robust k-means using Multi-
Kernel (RMKKM) [24], Multi-kernel learning model using
Self-weighted (SMKL) [25], Multi-kernel Spectral clustering
(SCMK) [26], Graph rank by Low-rank Kernel representation
(LKGr) [27], but the low rank property of the data structure
obtained by these methods is weaker in natural image feature
space. The low-rank constraint imposed by the relatively
simple kernel norm on the natural image data, which is not
sufficient to make the data possess good low-rank proper-
ties. Therefore, this paper incorporates weighted truncated
Schatten-p norm on the basis of multi-kernel subspace learn-
ing to impose low-rank constraints. The major dedications of
this work are as follows:

e A method for natural image segmentation based
on weighted truncated Schatten-p multi-kernel sub-
space learning (AMR-WT-WTSPSC) is proposed. The
adopted multi-kernel subspace framework not only
enables processing of nonlinear data, but also avoids the
limitations of using a single predefined kernel.

o The weighting of the correntropy metric is incorporated
into the multi-kernel weighting model, which improves
the previous issue of fixed weights or insufficient weight
distribution, and helps to study the good consensus ker-
nel. The optimal kernel learned with a weighted trunca-
tion Schatten-p constraint promotes it to maintain a good
low-rank structure.

o Clustering experiments with nine algorithms are per-
formed on two public face image datasets, and seg-
mentation experiments are performed on the BSDS500
dataset. The results demonstrate that the designed
method receives better clustering performance and seg-
mentation results.

The remainder of the paper is organized as follows.
We slightly comment on some developments of previous
methods in Section II. In Section III, we design a WTSPSC
clustering method, then list the optimal solution of the novel
model in detail. In subsequent Section IV, the complete
experimental and theoretical analysis is provided. The con-
clusion are presented in Section V.
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Il. RELATED WORKS

Next section, a brief description of some developments from
previous methods, i e., the adaptive morphological recon-
struction watershed transformation method, and the kernel
trick.

A. WATERSHED TRANSFORM FOR ADAPTIVE
MORPHOLOGICAL RECON-STRUCTION

FOR IMAGE PRE-SEGMENTATION

Seed region segmentation algorithms [28], such as Ran-
dom Walk(RW) [29], Graph Cut(GC) [30] and Watershed
Transform (WT) [31], etc., have been widely used in image
pre-segmentation process. Among them WT pre-segment an
image by combining topological ideas with mathematical
morphology, in which takes the similarity of two adjacent pix-
els as an criterion, so that the pixels that are spatially adjacent
and have similar characteristics are merged to form indepen-
dent contour regions. The basic steps of WT are to convert
the original natural image to grayscale natural image, then
calculate the gradient image, and then watershed transforma-
tion is applied to the gradient image to gain pre-segmented
boundary image. However, when the WT algorithm is exe-
cuted, the redundant seeds in the gradient image will cause
the image to be over-segmented. To this end, Lei et al. [32]
proposed a watershed transformation method for adaptive
morphological reconstruction to avoid over-segmentation of
images. AMR-WT employ multi-scope architecture elements
to rehabilitate the obtained extracted images, and then per-
forms point-by-point extremum operations on multiple gra-
dient images, finally the self-use reconstruction results are
obtained. Specifically set as follows:

Definition 1: Assume thatk, € ---kj Ckjy1 C--- Ckp
be a spectrum of nested architecture elements, where j is the
scope parameter of a architecture element, 1| < a < j <
b, a,j,beN *. Relative to the gradient natural image d
has that I = ¢;,(d) and I < d, the adaptive morphological
reconstruction represent by ¢ of d from I is defined as:

#(da,5) = Vazizs [RED (1

B. SUBSPACE LEARNING BASED ON SELF-REPRESENTING
LOW-RANK KERNELS

The LRR algorithm [33] adopts the “self-expression” of the
feature data, that is, the feature data points attaching to the
same subspace can be linearly combined with each other
to express the rest of the samples. Unluckily, this type of
method cannot be applied to data with nonlinear structure,
therefore, the kernel trick [34], [35] is needed to perform
kernel mapping on the original nonlinear structure data to
keep it in linear space for analysis (as shown in the fig. 2).
The non-linear transformation model of LRR is:

Iglligllsv(Y)Il*H»IICIIl st.o(Y)=9X)C, Ci=0 (2

where Y is a data sample feature matrix, C is a self-expression
coefficient matrix, H = (p(Y)T(p(Y) is Gram matrix,
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oY) =[¢ (v)). ¢ (y2). - .9 (yy)] represents the mapped
linear space, and A is a balance parameter. The best alter-
native to rank (¢(Y)) is ||@(Y)|l«. This guarantees that the
transformed feature sample data can be distributed in multiple
linear feature subspaces.

X " o(%)

FIGURE 2. The mapping of nonlinear structure data.

Ill. THE MODEL AND OPTIMIZATION OF MULTI-KERNEL
SUBSPACE LEARNING BASED ON WEIGHT TRUNCATE
SCHATTEN-P

A. THE MODEL OF WTSPSC

Since the image feature data contains non-linear structure,
it is mapped into a higher-dimensional RKHS to perform a
linear space analysis. The learning of the similarity matrix
is carried out in a self-expressive graph learning framework,
mainly for spectral clustering. At the same time, the kernel
mapping and self-expression characteristics are fused, and the
kernel self-representation majorization problem is reformu-
lated as formula (3):

1
min > l(¥) — @(Y)C|I7 + aR(C)
st.C >0, diag(C)=0 3)

where C in the penalty term R(C) represents the kernel
self-expression coefficient matrix, and « is a non-negative
compromise parameter.

With the kernel strategy, the kernel matrix E = ¢(¥ )7 ¢(Y)
in the kernel space is mainly considered, instead of depending
on the unknown kernel function, where E;; = ((p CHIN) (Yj)>
refers to the (i, j)-th element of E. In this regard, formula (3)
can be formulated as:

lo(¥) — p(Y)C||% = Tr (E —2EC + CTEC) @

In theoretical research, when a feature data matrix Y with
k clusters or categories is input, the similarity matrix con-
structed by the kernel self-representation coefficient matrix
C should also have k appropriately arranged block diagonals.
According to Lu [36] et al., in order to keep the diagonal
chunk property of C in the independent underlying subspace,
a Block Diagonal Regularizer (BDR) is incorporated into the
model. The Laplacian matrix L homologous to the similarity
matrix H € RV*N is defined as L = G — H, where
Gi = }_; Hjj. Assume that the i-th smallest eigenvalue of L is
Ai(L), i € (1, N) in descending sequence, and the sum of the
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k smallest eigenvalues is BDR:

1H 7= Z ai(L) ®)

i=N—k—1

The construction of a weighting strategy is the core con-
tent of MKL, which can effectively utilize complementary
information, especially in practical applications with noisy
situations. In the multi-kernel learning frame, assuming that
every single small disturbances of the prospective best con-
sistent kernel matrix E is the underlying kernel E’, denoted
as min ||E’ —E ”i,, and the weights of individual kernels are
robust to partial noise, thus considering the application of
the correntropy metric induced multi-kernel learning model
(CMMKL) [37] to deal with the non-linear structure of image
feature data and more study the consistent kernel. Eventually,
a weighted truncated Schatten-p norm (|| - ||ﬁ.,,) is used to the
model to constrain the learned optimal kernels, for induce a
low-rank feature structure.

Finally, the objective function model of this paper as a
whole is:

1
min = Tr (E _2EC + CTEC) T a||C||

C.E,w
,
+B Z w; ‘ E'
h=1

diag(C) =0, C =CT (6)

2
—E| +MEIL,

s.t.C >0,

where « and § are the non-negative penalty parameters of the
model, associated with BDR and CMMKL. A > 0, the w;
represents the i-th predefined base kernel.

B. THE OPTIMIZATION OF WTSPSC

Since the BDR is adopted in the model, the constraint of C
is non-negative and symmetric, namely, C > 0, diag(C) =
0,C = CT, which affects the self-representation ability
of C to some extent. In addition, since both C and E in
the optimization objective involve two terms, which are not
conducive to solving, we consider introducing two auxiliary
variables D and F to dissociate variables and optimize inde-
pendent sub-problems. Set C = D, E = F, the optimization
issue of Eq. 6 is changed into:

min LT (E 2EC + CTEC) +alblg

C.E.w.D.F 2
il 2
+ﬂ};wi1E’—EHF+A||F||';,r
st.C >0, diag(C)=0, C=CT,
C=D,E=F (7)

The introduction of two auxiliary matrices makes the sub-
problems of C and E extremely convex, so that a unique and
stable solution is obtained for all relevant variables. Then,
the augmented Lagrangian model of Eq.7 can be presented
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as formula &:
L(C,E,w,D,F)
1
=3 (E _2EC + CTEC>

. 2
E'—E| +2IFI,

,
FalDl+8 o
h=1

n
+ 5 (ID = €+ Li/ull} + IF — E+ Lo/ull})
st.C >0, diag(C)=0, c=cCT (8)

where 4 > 0 is a balance parameter, L; and L, are the
Lagrangian multipliers in the model, respectively.

The alternating direction method for multipliers (ADMM)
is used to iteratively optimize the above optimization model
to obtain the final closed-form solution. The next step is to
update in turn and fixing the other variables.

(1) Update D:

By fixing F = Fl,vo = o',C =
optimized by the following formula:

C',E = E', can be

D't = argmin @ Tr(LS) + = ||D C+Li/ul*
s.t.D >0,

SetM = C — Li/u — % (diag($)1" - S), M =M —
Diag(diag(M)), then the optimal solution of D can be found

as:
M+MmT
D't = max (O, M+ ) (10)

dlga(D) =0, D=D" )

2
(2) Update F:
By fixingD =D',w = o',C = C', E = E', for matrix F,

there is the following relationship:

: 3

min A|F I, + 2 IF = E + Lo/ ull; (1n
Among them, define Q = E — L/u, the singular value

decomposition of @ is @ = UZ VT, Its optimal solution is:

F'H' = U max{E — ndiag(g), 0}V’ (12)
(3) Update w:

Correlation entropy is highly robust to impulse and non-
Gaussian noise. Extends CIM (Correlation Inducement Met-
rics) to general similarity measures between arbitrary kernel
matrices or square matrices. The fresh strong metric is named
Matrix Correlation Induction Metrics (MCIM), and it can be
expressed as equation 13:

MCIM(U, V) =

1 M M
k) = —5 D> ks (M) | (13)

i=1 j=1

Amongthem A = U —V ks (AU) = exp (— (Aij)z /282>,
82 = (2M2||A||12p)_1, the closed-form solution of w
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can be obtained as:
o' =1 - MCIM (E", E) (14)
(4) Update C:

By fixing D = D'.F = F',0 = o',E = E', then
the following sub-problems can be optimized to update the
variables:

1 r n L |?
mm—Tr(E—ZEC—I—C Ec)+— p—c+=2t| s
c 2 2 Wl
Let %g) = 0, the optimal solution of C can be obtained
by further optimizing the solution as follows:
C'Hl = (uwl +E)\(E+ puD + L)) (16)
(5) Update E:

By fixing D = D',F = F',0 = o',C = (', the
optimal solution of E can be obtained by further optimizing
the solution as follows:

1 T : . 2
ngnzTr(E—zECJrc EC) +,BZwi E —EHF
H 2
+EIIF—E+L2/M||F a7
The optimal solution can be made % = 0 to obtain:

h . T
2B Gy i+ uF+ L — 5 +CT — €5
h
W+ 2BD ey i

The pseudo-code of WTSPSC is shown in Algorithm 1

to update the corresponding value of the relevant variable,

and stop the update when the count of iterations run surpass

the maximum or the convergence condition is reached. For

each iterative calculation, use Eq 19 to determine whether the
stopping criterion is met:

Et+1 —

(18)

diffp = HD’“ —D‘HF, diffy = HF'“ —F‘HF
diffe = Hcf“ - C‘HF, diff 5 = HE’“ —E‘HF

diff, = L™ — L,
max (diffe, diffp, diffp, diffg) < ¢ (19)

where the value of the optimization model at iteration ¢ is L,
and ¢ refers to the stopping threshold.

After solving to the auxiliary matrix D, construct A =
(ID] + [D”|) /2 using the uniform construction form, and
then perform spectral clustering on A to obtain the final data
clustering results.

IV. EXPERIMENTAL DATA VERIFICATION AND
THEORETICAL ANALYSIS

Next section, the proposed WTSPSC is experimentally vali-
dated. The face image clustering experiments were conducted
on two public benchmark datasets, and segmentation experi-
ments are performed on the BSDS500 natural image dataset.
The experiments were conducted with MATLAB R2020b on
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Algorithm 1 Solving WTSPSC via ADMM

Input: Y, kernel matrix{Ei 1
numbers of clusters k.

1: Initialize: S' =0,C' =0,E' = 1Y/ | E {a)ll}lr:l =
%,Ll =0,L2=0,e =10"% ¢t =1,¢ > max lter =
100.

2: while the algorithm does not converged and t < maxlter,
perform the following steps do

paramenter «, B, A, U,

3: for t = 1 to maxlter do

4 Assuming F', o', C', E' is known, slove D'*!

5: according to (10);

6: Assuming D', !, C', E' is known, slove F'*!
according to (12);

7: Assuming D't F'*1 €' E' is known, slove
w'*1 according to (14);

8: Assuming D't F'*1 o1 E' is known, slove
C'*! according to (16);

9: Assuming D'T! F'H1 ot €' s known,
slove E ! according to (18);

10: end for

11: Update Lagrangian parameters L; and Lj;

12: Updatet =t + 1;

13: Check the convergence conditions according to (19);

14: end while

15: End the algorithm until the algorithm converges or t >
maxlter.

Output: The learning results.

(b OR

(a) Yale

FIGURE 3. Some samples of face dataset.

a computer with Intel Core i5-11400 CPU (2.70GHz) and
16GB memory.

A. CLUSTERING EXPERIMENT OF WTSPSC
To verify the performance of the WTSPSC algorithm, multi-
kernel clustering experiments will be performed on the pub-
lic datasets Yale and ORL. Nine clustering algorithms are
compared, namely LRR [33], MKKM [38], AASC [39],
RMKKM [24], SCMK [26], LKGr [27], SMKL [25],
JMKSC [40] and LRMKC [41]. The parameter settings of
the comparison method refer to the original paper.
« Yale dataset': The dataset contains 15 test persons with
a total of 165 grayscale face images. Grayscale images
of 11 different facial expressions or external environ-
ments, such as blinking, happy, normal, left glare,

1 http://www.vision.caltech.edu/archive.html
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TABLE 1. Details of Kernel Functions.

Kernel Expressions #n Parameter settting

Gaussian k(z1,z2) = exp (f lz1 — =213/ (2t0'2)> 7 o is the maximum distance between z1 and z2
Linear k(z1,22) = zfxg 1 -

Polynomial k(z1,22) = (2T 22 + a)b 4 a € {0,1},b € {2,4}

FIGURE 4. Face image clustering.

without glasses, etc. Fig. 3(a) is a partial sample of the
Yale dataset.

o ORL dataset’: The dataset was expanded to reach
40 test subjects, each with 10 different pictures. These
images were taken at a certain time of day, with different
states of expression and under different intensity lighting
conditions. Fig. 3(b) is a partial sample of the ORL
dataset.

The above two face datasets are mainly used to assess
the robustness of multiple methods and image clustering
property of different models. In all comparison algorithms in
the experiment, the count of clustering is based on the true
count of standard categories, the clustering experiments were
performed 20 times without difference and the average of the
run results was taken as the final clustering result. This paper
shares 12 kernels, and the minutiae of the kernel functions are
shown in Table 1.

In this experiments, the image clustering property of
all algorithms is evaluated by three manifold evaluation
metrics [42], including Purity, Normalized Mutual Informa-
tion (NMI) and Clustering Accuracy (ACC). The three eval-
uation values after the run are sorted in descending order,
and the algorithm with the highest value has the best prop-
erties, where ACC is the calculation of the optimal matching
arrangement between the clustered labels and the standard
labels; NMI is mainly a weigh of the resemblance among
two clustering results; For purity, it is measured by calcu-
lating percentage of the count of rightly assigned clusters
to the overall count of data samples. Face image cluster-
ing is to perform orderly clustering of multiple disordered
images through the feature information of faces, as shown
in Fig. 4.

2http://mlg.ucd.ie/datasets/Ssources.html
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By setting a series of parameters and combining the evalu-
ation metrics, the experimental results can be obtained on the
Yale and ORL face image datasets as shown in Table 2.

It can be seen that a proper kernel weighting strategy
in multi-kernel learning can improve the clustering perfor-
mance, as expected, the proposed WTSPSC method in this
paper obtains the best clustering property among all the
contrasting methods, which illustrates the effectiveness of
the multi-kernel weighting strategy in subspace clustering.
Compared with the previously proposed methods such as
SMKL, JMKSC, LRMKC, etc., the WTSPSC method pro-
duces dramatically different results. Theoretically, the largest
difference is that WTSPSC utilizes a low-rank constraint
based on weighted truncated Schatten-p norm, and secondly it
uses an entropy-based weighting strategy, which improves the
previous simple measure of euclidean distance. In the multi-
kernel weighting strategy, kernels with high correlation are
weighted more (with an upper limit of 1), while insignificant
kernels are approached to 0. In addition, BDR is incorporated
into the WTSPSC model to promote the similarity matrix to
have a block-diagonal architecture. In the MKL framework,
WTSPSC can obtain the lowest weight standard deviation,
resulting in good robustness. Finally, the experimental effects
on the Yale and ORL face image datasets display that com-
pared with existing clustering methods, WTSPSC has better
clustering performance on three evaluation metrics.

B. SEGMENTATION EXPERIMENT OF AMR-WT-WTSPSC

In this subsection, Fig. 5 clearly shows the block diagram
of the image segmentation process based on AMR-WT-
WTWPSC. Firstly, the original image is pre-segmented,
and the superpixel image is obtained by adaptive mor-
phological watershed transformation. Secondly, the feature
information is extracetd from the independent superpixel
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TABLE 2. Experimental results of Yale and ORL dataset.

Dataset Metrics LRR MKKM AASC RMKKM SCMK LKGr SMKL JMKSC LRMKC WTSPSC
ACC 0.470 0.456 0.406 0.523 0.527 0.542 0.583 0.627 0.670 0.685
Yale NMI 0.526 0.501 0.468 0.554 0.573 0.563 0.616 0.630 0.658 0.680
Purity 0.543 0.473 0.423 0.537 0.613 0.554 0.664 0.681 0.701 0.715
ACC 0.663 0.474 0.274 0.553 0.654 0.617 0.575 0.723 0.719 0.728
ORL NMI 0.812 0.687 0.437 0.747 0.808 0.792 0.733 0.850 0.854 0.858
Purity 0.698 0.513 0.314 0.601 0.699 0.659 0.648 0.751 0.763 0.795
Original Image Superpixel Image Feature Data Segmentation Result
e = Feature Matrix |

e 2

) T
//

S

SE Inverse Image

| W
i | |

[
>

Similarity Matrix

Coefficient Matrix

Pre-Segmentation

FIGURE 5. The flowchart of the AMR-WT-WTSPSC.

block. The feature data matrix is formed and input into
WTSPSC to learning coefficient matrix and similarity
matrix. Then perform spectral clustering operation on the
obtained similarity matrix. Finally, receive the clustering
and segmentation result of the image. So as to confirm
the segmentation capability of the AMR-WT-WTWPSC
algorithm, we use two superpixel segmentation methods
[43], [44] and the other three novel subspace learning meth-
ods to form seven comparison algorithms, namely SLIC-
LRR, AMR-WT-LRR, SLIC-JMKSC, AMR-WT-JMKSC,
SLIC-LRMKC, AMR-WT-LRMKC, and SLIC-WTSPSC.
Then, perform image segmentation experiments with the
AMR-WT-WTSPSC method on the BSDS500 dataset [45],
The dataset contains a total of 500 natural images, such
as: people, animals, plants, buildings and landscapes, etc.
The size of each image is 321 x 481, and they are
all color images. Each image has a corresponding seg-
mentation standard map (Ground Truth), which is cali-
brated by multiple experts according to corresponding rules,
and the segmentation effects of all algorithms are shown
in Fig.6.

By observing the experimental performances, it can be
found that when using the same superpixel segmentation
algorithm, the impact on the natural image segmentation
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Subspace Learning

capability mainly relies on the clustering ability of the
subspace learning method on the feature data matrix. After
the feature data matrix is obtained from the superpixel block,
different ways of subspace learning will produce different
subspace representations, which can lead to significantly
varying performances, while the block diagonal regularizer
introduced by WTSPSC can obtain a better block diagonal
structure, and the group effect of image feature data is better.
For the first line of segmentation display, in contrast, ours
divides the foreground trees into two regions, and the con-
trast algorithm divides the foreground into three regions. The
mid-range area comparison algorithm does not adequately
segment the contours of the mountains, and divides the two
mountains into a whole area, while the AMR-WT-WTSPSC
method clearly segments the contour edges of the mountains.
When using the same subspace learning method, it can be
found that the SLIC superpixel segmentation method has
poor segmentation performance, because SLIC is always
segmented into rectangular areas of similar shape or size,
while AMR-WT more focus on the edge detail information
of objects in the image, not just focus on the number of
superpixel blocks, which makes up for the defect that the
superpixel blocks contain both foreground objects and back-
ground patterns, making the obtained image feature data more
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FIGURE 6. Experimental results of each method.

TABLE 3. Experimental results of Yale and ORL dataset.

Metrics SLIC- AMR- SLIC- AMR- SLIC- AMR- SLIC- AMR-
LRR WT-LRR JMKSC WT-JMKSC LRMKC WT-LRMKC WTSPC WT-WTSPSC

PRI 0.651 0.759 0.691 0.776 0.667 0.770 0.677 0.810

VOI 4.364 2.480 3.591 2.210 4.805 2.306 4.295 1.970

accurate. It can accurately reflect the essential information of
the image, which is beneficial for subsequent segmentation
tasks.

In order to evaluate the image segmentation perfor-
mance of each segmentation method from a quantitative per-
spective [46], two popular evaluation metrics: Probabilistic
Rand Index (PRI) [47] and Rate of Change of Information
(VOI) [48] are used to reflect the experimental performances,
as shown in Table 3. When the PRI value is the highest and
the VOI value is the lowest, the segmentation effect is the
best at this time. By observing the results in the table, it is
not difficult to find that for the same pre-segment method, the

VOLUME 10, 2022

segmentation performance depends on the subspace learning
model. When clustering and segmenting image feature data,
the AMR-WT-WTSPSC method uses the Schatten-p norm
with weighted truncated to constrain the data with low rank,
and receives the best result compared with other algorithms.
At the same time, the superpixel segmentation method has an
important impact on the segmentation task of the subsequent
subspace learning. The more the superpixel block conforms
to the local information of the image, the more conducive to
the subsequent segmentation. It can be seen from the evalua-
tion indicators that ours method obtains the best segmentation
performance.
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V. CONCLUSION

In this work, a novel image segmentation algorithm with
weighted truncated Schatten-p multi-kernel subspace learn-
ing is proposed. First, the adaptive morphological watershed
transform is used as a superpixel segmentation method to
pre-segment the original image. Second, a weighted truncated
Schatten-p subspace learning model with low-rank multi-
kernel is designed, and the correlation entropy measure is
introduced into the weighting strategy. The optimal consen-
sus kernel can be learned when processing data. Besides,
applying low-rank constraints to the learned optimal kernel to
induce it to fit the image feature data effectively, which can
handle nonlinear structure in image feature data with good
robustness to impulse noise and non-Gaussian noise. At the
same time, applying block diagonal constraints on the coeffi-
cient matrix, so that a tighter block-diagonal structure can be
obtained, which is beneficial to the correct classification of
data. The clustering and segmentation experiments demon-
strate that the proposed algorithm receives the best data
clustering and image segmentation performances. In future
research works, we will study the multi-dimensional feature
information of images and consider image segmentation with
multi-view subspace clustering.
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