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ABSTRACT This paper presents a method to design a modal controller with simple 1-DOF models for an
active suspension system. Full-state feedback controller, especially, linear quadratic regulator (LQR) and
H∞ controller, designed with 7-DOF full-car model is hard to implement in actual vehicles because there
are so many state variables and gain elements needed to be precisely measured and finely tuned, respectively.
To overcome the problem, it is required to design a simple controller with a smaller number of gain elements
and sensor signals. For the purpose, a modal controller is designed from controllers designed with three 1-
DOF models describing heave, roll and pitch motions of a sprung mass. With these 1-DOF models, discrete-
time LQR and sliding mode control (SMC) are adopted to design three feedback controllers which generate
vertical force, roll and pitch moments for controlling the heave, roll and pitch motions of a sprung mass,
respectively. In the modal controller, three control inputs are converted into active forces at four corners with
input decoupling transformation. The modal controller is a type of static output feedback (SOF) one. By LQ
SOF control methodology, the modal controller itself is designed with a heuristic optimization method. A
frequency domain analysis and a simulation on vehicle simulation software, CarMaker R©, show that the
proposed modal controllers are effective in controlling the active suspension system for ride comfort.

INDEX TERMS Active suspension control, modal control, 1-DOF vehicle model, linear quadratic regulator,
sliding mode control, LQ static output feedback control.

NOMENCLATURE
cs damping coefficient of suspension of

quarter-car model
csi damping coefficient of suspension of full-car

model, i = 1,2,3,4
Cz damping coefficient of 1-DOF heave model
Cφ roll damping coefficient of 1-DOF roll model
Cθ pitch damping coefficient of 1-DOF pitch

model
fq suspension force of quarter-car model
fi suspension force of full-car model, i = 1,2,3,4
fzc control force of 1-DOF heave model
hr height of center of gravity of 1-DOF roll model
hp height of center of gravity of 1-DOF pitch

model
Ix roll moment of inertia in full-car model
Iy pitch moment of inertia in full-car model

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

Jq LQ objective function for quarter-car model
Jf , Jfq LQ objective functions for full-car model
Jz, Jφ , Jθ LQ objective functions for 1-DOF heave,

roll and pitch models
Kz spring stiffness of 1-DOF heave model
Kφ roll stiffness of 1-DOF roll model
Kθ pitch stiffness of 1-DOF pitch model
ks spring stiffness of suspension of quarter-car

model
ksi spring stiffness of suspension of full-car

model, i = 1,2,3,4
kt tire stiffness of quarter-car model
kti tire stiffness of full-car model, i = 1,2,3,4
lf , lr distances from center of gravity to front and

rear axles
Mφ control roll moment of 1-DOF roll model
Mθ control pitch moment of 1-DOF pitch model
mf sprung mass of full-car model
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mu unsprung mass of quarter-car model
ms sprung mass of quarter-car model
mu unsprung mass of quarter-car model
tf , tr half of track width of front and rear axles
Ts sampling time or rate in discrete-time model
uq control input in quarter-car model
ui control input in full-car model, i = 1,2,3,4
zc vertical displacement of sprung mass in

full-car model
zr road profile acting on unsprung mass in

quarter-car model
zri road profile acting on unsprung mass in

full-car model, i = 1,2,3,4
zs vertical displacement of sprung mass of

quarter-car model
zsi vertical displacement of sprung mass at each

corner in full-car model
zu vertical displacement of unsprung mass in

quarter-car model
zui vertical displacement of unsprung mass in

full-car model, i = 1,2,3,4
zv vertical displacement of 1-DOF heave model
α tuning parameter for convergence speed

in SMC
φ roll angle of sprung mass in full-car model
φv roll angle of 1-DOF roll model
η maximum allowable value of each term in J
θv pitch angle of sprung mass in full-car model
θ pitch angle of 1-DOF pitch model
ρ maximum allowable value on each term in

Jq, Jf and Jfq
ζi, ξi, σi maximum allowable values on each term in

Jz, Jφ and Jθ , i = 1,2,3

I. INTRODUCTION
Generally, ride comfort and road holding are two key goals for
vehicle suspension design. These are directly related to two
physical measures: vertical acceleration of a sprung mass and
tire deflection, respectively [1]. According to ISO2631-1, ride
comfort is evaluated with vertical acceleration of a sprung
mass [2], [3]. On the other hand, Road holding depends on
tire deflection. It has been well known that there is conflict
between the two goals, i.e., ride comfort and road holding [1],
[4], [5]. In other words, the one is improved while the other
is deteriorated.

An active suspension system has been developed for the
purpose of improving ride comfort by reducing the vertical
acceleration of a sprung mass with an active actuator. Up to
now, lots of studies on controller design methods for an active
suspension system have been done [6]–[8]. Since 2015, LQR,
LQ SOF control,H∞ control, fuzzy control, adaptive control,
sliding mode control, back-stepping control, neural network
based control and model predictive control (MPC) have been
adopted as controller design methodology [9]–[22]. Most
of these papers have taken actuator limitations and state
constraints such as actuator saturation, actuator bandwidth,

dynamic tire load and suspension space limits into account in
controller design stage. However, no actuator dynamics was
considered nor experimental investigation was done in those
studies except the reference [12].

Among the controller design methodologies applied to an
active suspension system, LQR and H∞ control have been
adopted because those can systematically design a full-state
feedback controller [1], [4], [5], [13], [21], [22]. Those
controllers have been designed with the 2-DOF quarter-
car, 4-DOF half-car and 7-DOF full-car models. Hereafter,
the terms 2-DOF and 7-DOF are omitted. Most of stud-
ies [9]–[22] have used the quarter-car model except two
studies [13], [15] because it is simple to be used for con-
troller design and performance analysis on active suspension
system. However, this model cannot handle the roll and pitch
motions of a sprungmass.Whereas, the full-carmodel is most
pertinent to controller design for an active suspension system
because it can handle the roll and pitch motions of a sprung
mass [5]. Meanwhile, a LQR designed with the quarter-car
model has not been used for the full-car case except in two
studies [21], [22]. In the previous studies, the LQR designed
with the quarter-car model was adopted for the full-car model
and it was verified that it can provide equivalent performance
to LQR designed with the full-car model [21], [22].

The number of state variables in the state-space equation
derived from the full-car model is fourteen. Hence, these state
variables must be measured if the full-car model is used to
design a full-state feedback controller, e.g., LQR and H∞
controller, for an active suspension system. However, it is dif-
ficult tomeasure the state variables in themodel using sensors
on actual vehicles. To overcome this problem, a state observer
or an output feedback controller such as Kalman filter or LQG
has been designed with the model [13], [23]. Moreover, it is
also difficult to implement a full-state feedback controller
designed with the full-car model on an actual vehicle because
the size of gain matrix in the full-state feedback controller is
large. For example, there are four control inputs in the full-
car model. Hence, the dimension of the gain matrix of the
full-state feedback controller is 4 × 14, which is too large
to be implemented in actual vehicles. For this reason, it is
challenging to implement the full-state feedback controller
on actual vehicles or on vehicle simulation software such as
CarMaker or CarSim. Therefore, it is required to design a
controller with fewer sensor signals for feedback control and
fewer elements in the gain matrix.

For the purpose in this paper, a modal control can be
adopted as a controller design methodology [24]–[30]. The
first step of the modal control is to design three controllers
separately for heave, roll and pitch motions of a sprung mass
[24], [30]. Let these controllers denote heave, roll and pitch
controllers, respectively. The second step of themodal control
is to convert three control inputs calculated from heave, roll
and pitch controllers to four ones at each corner with input
decoupling transformation [25], [26], [29]. The controllers
designed in the first step have a simpler structure and require
a smaller number of states for feedback.
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FIGURE 1. Schematic diagram of the modal controller for an active
suspension system.

Following the idea of the modal control, this paper uses
three 1-DOF simple models describing heave, roll and pitch
motions of a sprung mass. Three controllers, i.e., heave, roll
and pitch controllers, are designed with corresponding three
1-DOF models using discrete-time LQR and SMC in order to
generate vertical force, roll and pitch moments, respectively.
Each controller requires two state variables for feedback. So,
six state variables are needed for active suspension control.
Three control force and moments are converted into four
vertical control forces at each corner. Compared to LQR
designed with the full-car model, this controller requires
six state variables and has six corresponding gain elements.
Fig. 1 shows the schematic diagram of the modal controller to
be designed in this paper [25], [29]. As shown in Fig. 1, the
heave, roll and pitch controllers require two sensor signals,
and generate the vertical force and roll and pitch moments.
These three control inputs are converted into control forces at
four corners with input decoupling transformation.

The modal controller designed in this paper is a type of
structured SOF controller [21], [25], [29]. For example, the
dimension of the gain matrix of the modal controller adopted
in this paper is 3×6, whichmeans that there are six sensor sig-
nals and three control inputs. However, there are six non-zero
gain elements in the gain matrix. Hence, this is a structured
controller, as given in [22], [25], [29]. For this reason, the gain
matrix of the modal controller can be determined by LQ SOF
control methodology. In this paper, a heuristic optimization
method is adopted to find an optimum gain matrix of the
modal controller.

The contributions of this paper are condensed as follows:

1) For active suspension control, the modal controller is
designed with 1-DOF simple models describing the
heave, roll and pitch motions of a sprung mass.

2) Discrete-time LQR and sliding mode control are
adopted to design controllers with 1-DOF simple mod-
els. Among them, sliding mode control is quite simple
to design.

3) The modal controller is designed with LQ SOF control
methodology. For the purpose, an optimization prob-
lem is formulated and the solution of the problem is
obtained by a heuristic optimization method.

To evaluate the performance of the proposed modal con-
trollers for an active suspension system, an analysis on fre-
quency responses and a simulation on the vehicle simulation
software, CarMaker, are done. The designed modal con-
trollers are compared with one another using the analysis and
simulation from the viewpoint of ride comfort.

FIGURE 2. 2-DOF quarter-car model.

This paper is organized with four sections. In Section II,
discrete-time state-space equations are derived from quarter-
car, full-car and three 1-DOF models. With those equations
obtained from 1-DOF models, the discrete-time LQR and
sliding mode controller are designed. In Section III, for the
designed controllers, singular value plots are drawn and sim-
ulations on a vehicle simulation software are done. Section IV
concludes this paper.

II. CONTROLLER DESIGN FOR ACTIVE SUSPENSION
A. CONTROLLER DESIGN WITH QUARTER-CAR AND
FULL-CAR MODELS
Fig. 2 shows a quarter-car model, which describes the vertical
motions of the sprung and unsprungmasses. The control input
uq is generated by an actuator. The disturbance is the road
profile.

The force fq acting on the sprung and unsprung masses is
calculated as (1) with the suspension displacement and its
velocity. With fq, the equations of motion of the quarter-car
model are derived as (2). The state vector of the quarter-car
model is defined as (3). With the definition and some alge-
braic manipulations on (2), the continuous-time state-space
equation for the quarter-car model is obtained as (4). the
system and input matrices, Aq, B1q and B2q, are given in (5).
The procedure of how to obtain these matrices can be found
in the previous study [21]. Those matrices are discretized into
8q, 0q and �q by (6) with the sampling time Ts. After dis-
cretization, the discrete-time state-space equation is obtained
as (7).

fq (t) = −ks {zs (t)− zu (t)} − cs {żs (t)− żu (t)}

+ uq (t) (1){
msz̈s (t) = fq (t)
muz̈u (t) = −fq (t)− kt {zu (t)− zr (t)}

(2)

xq (t) =
[
zs (t) zu (t) żs (t) żu (t)

]T (3)

ẋq (t) = Aqxq (t)+ B1qzr (t)+ B2quq (t) (4)

Aq =


0 0 1 0
0 0 0 1

−
ks
ms

ks
ms

−
cs
ms

cs
ms

ks
mu

−
(ks + kt)
mu

cs
mu

−
cs
mu

,
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B1q =


0
0
0
kt
mu

, B2q =


0
0
1
ms
−

1
mu

 (5)


8q ≡ eAqTs ≈ I+ Aq · Ts

0q ≡

(∫ Ts

0
8q (τ ) dτ

)
B1q ≈ B1q · Ts

�q ≡

(∫ Ts

0
8q (τ ) dτ

)
B2q ≈ B2q · Ts

(6)

xq (k + 1) = 8qxq (k)+�qzr (k)+ 0quq (k) (7)

With the state variables and control input of the quarter-
car model, LQ objective function for an active suspension
system is defined as (8). The weights 1/ρ2i in (8) are set by
Bryson’s rule, where ρi is the maximum allowable value on
the corresponding term [31]. If a particular ρi is reducedwhile
maintaining the other weights constant, then the correspond-
ing term will decrease. For the purpose of improving ride
comfort, ρ1 on the vertical acceleration of the sprung mass
must be set to a lower value while maintaining the other ρi
constant. Whereas, for the purpose of enhancing road holding
or cornering, ρ2 and ρ3 on the suspension displacement and
the tire deflection must be set to a higher one, respectively.
The LQ objective function, (8), is converted into the vector-
matrix form, (9), with the weighting matrices,Qq,Nq andRq.
LQR is a full-state feedback controller, as given in (11), which
minimizes Jq. The controller gain matrix Kq is obtained by
solving Riccati equation comprising8q, �q, Qq, Nq and Rq.
As shown in (11), the number of elements in the gain matrix
is 4, which is the same as the number of state variables given
in (3).

Jq =
∞∑
k=0


1

ρ21

z̈2s (k)+
1

ρ22

{zs (k)− zu (k)}2

+
1

ρ23

z2u (k)+
1

ρ24

u2q (k)

 (8)

Jq =
∞∑
k=0

[
xq (k)
uq (k)

]T [Qq Nq

NT
q Rq

] [
xq (k)
uq (k)

]
(9)

ρi =
1
/
η2i
, i = 1, 2, 3, 4 (10)

uq (k) = −Kqxq (k) = −
[
k1 k2 k3 k4

]
xq (k)

(11)

Fig. 3 shows a full-car model, which describes the heave, roll
and pitch motions of a sprung mass, and the vertical motions
of 4 unsprungmasses. In Fig. 3, the four corners, i.e., front left
(FL), front right (FR), rear left (RL) and rear right (RR) ones
are indexed as ¬, ­, ® and ¯ for convenience, respectively.
In the model, there are 4 external disturbances, i.e., the road
profiles, zr1, zr2, zr3 and zr4, on the unsprung mass. The
longitudinal and lateral accelerations caused by braking and
cornering are not considered in this paper.

FIGURE 3. 7-DOF full-car model.

The suspension forces at each corner in the model are
calculated in (12). In (12), ui is the control input or active
force acting on the i-th suspension or corner. The equations
of motion for the sprung and unsprung masses are derived
as (13) and (14), respectively. The equations of motion for
the sprungmass in (13) can be rewritten into the vector-matrix
form of (15). In (15), the matrix G stands for the geometric
relationship between the suspension forces fi at each corner
and the vertical force, roll and pitch moments acting on the
sprung mass. This is called input decoupling transformation
matrix or modal transform matrix or modal decomposition
matrix [24], [25], [30].

fi (t)

= −ksi {zsi (t)− zui (t)} − csi {żsi (t)− żui (t)} + ui (t) ,

i = 1 · · · 4 (12)
mf z̈c (t) = f1 (t)+f2 (t)+f3 (t)+f4 (t)
Ix φ̈ (t) = tf · f1 (t)−tf · f2 (t)+tr · f3 (t)−tr · f4 (t)
Iyθ̈ (t) =−lf · {f1 (t)+f2 (t)}+lr · {f3 (t)+f4 (t)}

(13)

muiz̈ui (t)

= −fi (t)+ kti {zui (t)− zri (t)} , i = 1, 2, 3, 4 (14)mf z̈c (t)Ix φ̈ (t)
Iyθ̈ (t)



=

 1 1 1 1
tf −tf tr −tr
−lf −lf lr lr



f1 (t)
f2 (t)
f3 (t)
f4 (t)

 ≡ G


f1 (t)
f2 (t)
f3 (t)
f4 (t)


(15)

To derive the state-space equation, new vectors and matri-
ces are defined in (16) and (17), respectively. With those
vectors and geometric relationship of a vehicle, the vertical
displacements of four corners are calculated as (18) [21].
With (16), (17) and (18), the suspension forces are con-
verted into the vector-matrix form of (19). The equations of
motions of the sprung and unsprung masses are converted
into the vector-matrix form of (20). By replacing f(t) in (20)
with (19) and converting (20) into the vector-matrix form,
(21) is obtained.With the new definitions of matrices as given
in (22), (21) is converted into (23). From the definition of the
state vector xf and (23), the state-space equation of the full-car
model is derived as (24) [21]. The matrices Af , B1f and B2f
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in (24) are given in (25). By using the formula of (26), the
continuous-time state-space equation is discretized into the
discrete-time state-space one (27) with the sampling time Ts.

zs (t) ,
[
zs1 (t) zs2 (t) zs3 (t) zs4 (t)

]T
zu (t) ,

[
zu1 (t) zu2 (t) zu3 (t) zu4 (t)

]T
zr (t) ,

[
zr1 (t) zr2 (t) zr3 (t) zr4 (t)

]T
p (t) ,

[
zc (t) φ (t) θ (t)

]T
q (t) ,

[
p (t)
zu (t)

]
, xf (t) ≡

[
q (t)
q̇ (t)

]
wf (t) ≡

[
zr1 (t) zr2 (t) zr3 (t) zr4 (t)

]T
f (t) ≡

[
f1 (t) f2 (t) f3 (t) f4 (t)

]T
uf (t) ≡

[
u1 (t) u2 (t) u3 (t) u4 (t)

]T
(16)

Ms , diag
(
ms, Ix , Iy

)
,

Mu , diag (mu1,mu2,mu3,mu4)
Ks , diag (ks1, ks2, ks3, ks4) ,
Kt , diag (kt1, kt2, kt3, kt4)
Cs , diag (cs1, cs2, cs3, cs4)

(17)

zs (t) = GTp (t) (18)

f (t) = −Ks {zs (t)− zu (t)}

−Cs {żs (t)− żu (t)} + uf (t)

= −Ks

{
GTp (t)− zu (t)

}
−Cs

{
GT ṗ (t)− żu (t)

}
+uf (t) (19){
Msp̈ (t) = Gf (t)
Muz̈u (t) = −f (t)+Kt {zu (t)− zr (t)}

(20)[
Ms 0
0 Mu

] [
p̈ (t)
z̈u (t)

]
=

[
−GKsGT GKs

KsGT
−Ks +Kt

] [
p (t)
zu (t)

]
+

[
−GCsGT GCs

CsGT
−Cs

] [
ṗ (t)
żu (t)

]
+

[
G
−I

]
uf (t)+

[
03×4
−Kt

]
zr (t) (21)

Me ,

[
Ms 03×4
04×3 Mu

]
,

Ke ,

[
−GKsGT GKs

KsGT
−Ks +Kt

]

Ce ,

[
−GCsGT GCs

CsGT
−Cs

]
,

Ue ,

[
G
−I

]
, Le ,

[
03×4
−Kt

]
(22)

Meq̈ (t) = Keq (t)+ Beq̇ (t)+ Ueuf (t)+ Le wf (t)

(23)

ẋf (t) = Af xf (t)+B1fwf (t)+B2f uf (t) (24)

Af =

[
07×7 I7×7

M−1e Ke M−1e Ce

]
,

B1f =

[
07×4

M−1e Le

]
,

B2f =

[
07×4

M−1e Ue

] (25)


8f ≡ eAf Ts ≈ I+ Af · Ts

0f ≡

(∫ Ts

0
8f (τ ) dτ

)
B1f ≈ B1f · Ts

�f ≡

(∫ Ts

0
8f (τ ) dτ

)
B2f ≈ B2f · Ts

(26)

xf (k + 1) = 8f xf (k)+ 0fwf (k)+�f uf (k) (27)

LQ objective function for the full-car model is defined
as (28). The weights 1/ρ2i can be set by Bryson’s rule, just
as (8) [31]. The LQ objective function, (28), is converted into
the vector-matrix form, (29), with theweightingmatrices,Qf ,
Nf and Rf . LQR is a full-state feedback controller, as given
in (30), which minimizes Jf . The gain matrix Kf of LQR is
obtained by solving Riccati equation comprising8f ,�f ,Qf ,
Nf and Rf . Let denote this controller as LQRf1.

Jf =
∞∑
k=0



1

ρ21

z̈2c (k)+
1

ρ22

4∑
i=1

{zsi (k)− zui (k)}2

+
1

ρ23

4∑
i=1

z2ui (k)+
1

ρ24

4∑
i=1

u2i (k)

+
1

ρ25

φ̈2 (k)+
1

ρ26

φ̇2 (k)+
1

ρ27

φ2 (k)

+
1

ρ28

θ̈2 (k)+
1

ρ29

θ̇2 (k)+
1

ρ210

θ2 (k)


(28)

Jf =
∞∑
k=0

[
xf (k)
uf (k)

]T [Qf Nf

NT
f Rf

] [
xf (k)
uf (k)

]
(29)

uf (k) = −Kf xf (k) (30)
By setting ρ5 ∼ ρ10 to infinity, the LQ objective func-

tion (28) is reduced into (31), which has the same terms
as (8). The LQ objective function, (31), is converted into the
vector-matrix form, (32), with the weighting matrices, Qfq,
Nfq andRfq. It is easy to obtainKf by solving Riccati equation
comprising Qfq, Nfq and Rfq. Let denote this controller as
LQRf2.

Jfq =
∞∑
k=0


1

ρ21

z̈2c (k)+
1

ρ22

4∑
i=1

{zsi (k)− zui (k)}2

+
1

ρ23

4∑
i=1

z2ui (k)+
1

ρ24

4∑
i=1

u2i (k)


(31)
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FIGURE 4. Simple 1-DOF models describing heave, roll and pitch motions
of a sprung mass.

Jfq =
∞∑
k=0

[
xf (k)
uf (k)

]T [Qfq Nfq

NT
fq Rfq

] [
xf (k)
uf (k)

]
(32)

A LQR requires full-state feedback. Hence, it is required
that all state variables should be available for feedback.
As shown in (16), there are 14 state variables in the full-
car model. The dimension of Kf , given in (30), is 4 × 14.
Hence, 14 state variables must be measured or estimated for
Kf . However, it is very difficult to measure or estimate those
variables with sensors in actual vehicles. For this reason,
it is required to design a controller with a smaller number
of state variables and gain elements. In the previous research,
the controller Kq of (11) is used to derive Kf [21], [22]. The
procedure of how to derive Kf from Kq can be found in the
previous studies [21], [22]. Let denote the full-state feedback
controller for the full-car model derived from Kq as LQRfq.

B. CONTROLLER DESIGN WITH SIMPLE 1-DOF MODELS
In the previous study, 3-DOF reference model was adopted to
describe three motions, i.e., heave, roll and pitch motions of a
sprung mass [27]. In the model, three motions were coupled
with one another. In other words, there are cross-coupling
terms on stiffness and damping matrices in the equations of
motions under the basic assumption that the sprung mass is a
rigid body. On the other hand, three separated 1-DOF models
describing heave, roll and pitch motions are adopted in this
paper. Fig. 4 shows three 1-DOF models, which describe the
heave, roll and pitch motions of the sprung mass. In Fig. 4,
Fzc,Mφ andMθ are the vertical force, roll and pitch moments
needed to control the corresponding motion of the sprung
mass, respectively. Different from the model used in the pre-
vious study, these models have coupling terms among them.

The equations of motion for 1-DOF models are given
in (33). In (33), Fzc, Mφ and Mθ , are the control inputs of
the 1-DOF heave, roll and pitch models, respectively. The
parameters of three 1-DOFmodels are calculated as (34) from

FIGURE 5. Free body diagram of 1-DOF roll model.

the geometry and those of springs and dampers in the full-car
model in Fig. 3.

msz̈v + Czżv + Kzzv = Fzc
Ix φ̈v + Cφ φ̇v + Kφφv − msghrφv = Mφ

Iyθ̈v + Cθ θ̇v + Kθθv − msghpθv = Mθ

(33)



Kz = ks1 + ks2 + ks3 + ks4
Cz = bs1 + bs2 + bs3 + bs4
Kφ = t2f (ks1 + ks2)+ t

2
r (ks3 + ks4)

Cφ = t2f (bs1 + bs2)+ t
2
r (bs3 + bs4)

Kθ = l2f (ks1 + ks2)+ l
2
r (ks3 + ks4)

Cθ = l2f (bs1 + bs2)+ l
2
r (bs3 + bs4)

(34)

The procedure how to derive Kφ , Cφ , Kθ and Cθ is
explained. Fig. 5 shows the free body diagram of 1-DOF
roll model. In Fig. 5, xf and xr are the vertical displacement
of the sprung mass at each corner caused by roll motion.
The equation of roll motion is derived as (35). xf and xr are
calculated as (36) from the geometry. The suspension forces
acting on the sprung mass are calculated as (37) from (12)
and (36). By replacing fi of (35) with those of (37), (35)
is rearranged into (38). From (38), Kφ and Cφ are obtained
as (34). With the same manner, Kθ and Cθ of 1-DOF pitch
model are calculated as (34).

Ix φ̈ = tf f1 + tr f3 + tf f2 + tr f4
= tf (f1 + f2)+ tr (f3 + f4) (35){

xf = tf sinφ ≈ tf φ
xr = tr sinφ ≈ trφ

(36)
f1 = −ks1xf − bs1ẋf = −ks1tf φ − bs1tf φ̇
f2 = −ks2xf − bs2ẋf = −ks2tf φ − bs2tf φ̇
f3 = −ks3xr − bs3ẋr = −ks3trφ − bs3tr φ̇
f4 = −ks4xr − bs4ẋr = −ks4trφ − bs4tr φ̇

(37)

Ix φ̈ = tf ·
{
−ks1tf φ − bs1tf φ̇ − ks2tf φ − bs2tf φ̇

}
+ tr ·

{
−ks3trφ − bs3tr φ̇ − ks4trφ − bs4tr φ̇

}
= t2f

{
− (ks1 + ks2) φ − (bs1 + bs2) φ̇

}
+ t2r

{
− (ks3 + ks4) φ − (bs3 + bs4) φ̇

}
= −

{
t2f (ks1 + ks2)+ t

2
r (ks3 + ks4)

}
φ

−

{
t2f (bs1 + bs2)+ t

2
r (bs3 + bs4)

}
φ̇

= −Kφφ − Cθ φ̇ (38)
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For controller design, the state-space equations of these
models are needed. The state-space equation of the 1-DOF
heave model is derived as an example. The state variables
of 1-DOF heave model are defined as (39). With the defini-
tion, the state-space equation is derived as (40). Under the
assumption that the sampling time is Ts, the discrete-time
state-space equation of 1-DOF heave model is obtained as
(41). In (41), the definitions of the matrices 8z, 0z, and �z
are calculated by the identical way to (6). For the 1-DOF roll
and pitch models, the identical procedure can be applied with
the definitions of state variables, given in (42), in order to
obtain the discrete-time state-space equations as (43).

xz (t) ≡
[
zv (t) żv (t)

]T (39)

ẋz (t) = Azxz (t)+ B2zFzc (t)

=

 0 1

−
Kz
ms

−
Cz
ms

 x (t)+
[

0
1
ms

]
Fzc (t) (40)

xz (k + 1) = 8zxz (k)+�zFzc (k) (41) xφ (t) ≡
[
φv (t) φ̇v (t)

]T
xθ (t) ≡

[
θv (t) θ̇v (t)

]T (42)

{
xφ (k + 1) = 8φxφ (k)+�φMφ (k)
xθ (k + 1) = 8θxθ (k)+�θMθ (k)

(43)

With the discrete-time state-space equations of (41) and
(43), LQR is designed. The LQ objective functions are
defined as (44), (45) and (46) for the 1-DOF vertical, roll and
pitchmodels, respectively. The full-state feedback controllers
or the control inputs of these models are defined as (47). The
controller gain matrices,KLQR,z,KLQR,φ andKLQR,θ , in (47)
are calculated by solving Riccati equations with the matrices
in the state-space equations and LQ objective functions.

Jz =
∞∑
k=0

{
1

ζ 21

z̈2v (k)+
1

ζ 21

F2
zc (k)

}

=

∞∑
k=0

[
xz (k)
Fzc (k)

]T [ Qz Nz

NT
z Rz

] [
xz (k)
Fzc (k)

]
(44)

Jφ =
∞∑
k=0

{
1

ξ21

φ2v (k)+
1

ξ22

φ̇2v (k)+
1

ξ23

M2
φ (k)

}

=

∞∑
k=0

[
xφ (k)
Mφ (k)

]T [Qφ Nφ
NT
φ Rφ

] [
xφ (k)
Mφ (k)

]
(45)

Jθ =
∞∑
k=0

{
1

σ 2
1

θ2c (k)+
1

σ 2
2

θ̇2c (k)+
1

σ 2
3

M2
θ (k)

}

=

∞∑
k=0

[
xθ (k)
Mθ (k)

]T [Qθ Nθ
NT
θ Rθ

] [
xθ (k)
Mθ (k)

]
(46)

Fzc (k) = −KLQR,zxz (k)
Mφ (k) = −KLQR,φxφ (k)
Mθ (k) = −KLQR,θxθ (k)

(47)

For sliding mode controller design, the sliding surface for
the 1-DOF heave model is defined as (48). To make the
sliding surface be zero, the convergence condition is given
in (49). However, the condition (49) is so severe that the
control input obtained from it becomes quite large. As a
result, responses of a vehicle with the controller designed
with (49) show severe chattering phenomena [32]. To avoid
the case, the new relaxed convergence condition (50) is used.
Generally, a necessary and sufficient condition for the exis-
tence and the sliding motion and the convergence of sliding
surface onto hyperplane is given as (51). Evidently, the new
condition, (50), satisfies (51) [33]. In (50), αz is the parameter
used to tune the convergence speed. If αz becomes smaller,
the convergence speed gets faster and the control input does
larger. According to the previous study, there is chattering
in the responses of a vehicle and the control input of the
controller if αz is set to 0.3 or less in spite of better control
performance [32]. By combining (41), (48) and (50), the
equation (52) is obtained. From (52), the vertical force Fzc is
calculated as (53). In (53), ()+ represents the pseudo-inverse.
With this manner, the control roll momentMφ and the control
pitch moment Mθ can be easily derived as (54). For closed-
loop stability, the tuning parameters, αz, αφ and αθ , should be
less than 1.

sz (k) = Hxz (k) (48)

sz (k + 1) = sz (k) = 0 (49)

sz (k + 1) = αzsz (k) (0 < αz < 1) (50)

|sz (k + 1)| < |sz (k)| (51)

sz (k + 1) = H8zxz (k)+H�zFzc (k) = αzHxz (k)

(52)

Fzc (k) = − (H�z)
+H (8z − αzI) xz (k)

= −�+z (8z − αzI) xz (k)

= −KSMC,zx (k) (53)
Mφ (k) = −�+φ

(
8φ − αφI

)
xφ (k)

= −KSMC,φxφ (k)
Mθ (k) = −�+θ (8θ − αθ I) xθ (k)
= −KSMC,θxθ (k)

(54)

The control inputs, i.e.,Fzc,Mφ andMθ , obtained from (47)
and (54), are converted into the active forces, u1, u2, u3, and
u4, using the input decoupling transformation, given in (15),
as (55) [25]. This is called modal control or Lotus Modal
Control (LMC) [24,30]. In (55), G+ is the pseudo-inverse of
G. The control inputs, Fzc, Mφ and Mθ , are stable because
those are designed by LQR and SMC. The magnitudes of the
singular values ofG+ are less than 1. In view of the small gain
theorem, Fzc, Mφ and Mθ are not amplified by G+. For this
reason, the control inputs at each corner, i.e., u1, u2, u3 and
u4, obtained with G+ from Fzc, Mφ and Mθ are also stable.

uf (k) = G+

 Fzc (k)Mφ (k)
Mθ (k)


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= −G+

KFB,z 01×2 01×2
01×2 KFB,φ 01×2
01×2 01×2 KFB,θ

 xz (k)
xφ (k)
xθ (k)


= −G+KFB

 xz (k)
xφ (k)
xθ (k)

 (55)

In (55), the gain matrices, KFB,z, KFB,φ and KFB,θ can
be replaced with KLQR,z, KLQR,φ and KLQR,θ of (47) or
with KSMC,z, KSMC,φ and KSMC,θ of (54). Let denote the
controller with the gain matricesKLQR,z,KLQR,φ andKLQR,θ
of (47) as the modal LQR or MDLQR. Let denote the con-
troller with the gain matrices KSMC,z, KSMC,φ and KSMC,θ
of (47) as the modal SMC or MDSMC.

As shown in (55), six gain elements in KFB are needed
for MDLQR and MDSMC. On the contrary, LQR with the
full-car model, i.e., Kf in (30), requires 56 gain elements for
full-state feedback. Moreover, six state variables are required
for the feedback controllers, i.e., MDLQR and MDSMC,
as shown in (55). On the other hand, LQR with the full-car
model requires 14 state variables for full-state feedback.
Therefore, MDLQR and MDSMC are much simpler and
easier to implement.

C. DESIGN OF STRUCTURED LQ STATIC OUTPUT
FEEDBACK CONTROLLER
The controller (55) represents the form of structured static
output feedback in terms of 7-DOF full-car model, given
in (55). The controller (55) can be rewritten as (56). The
feedback controller in (56) is the form of the static output
feedback (SOF) control [21], [22], [34]–[37]. The controller
gain matrix KFB of (56) can be rewritten as (57). As shown
in (56) and (57), the available outputs for the structured SOF
control are the vertical position and velocity, the roll angle,
the roll rate, the pitch angle, and the pitch rate of the sprung
mass, as given in (39) and (42). These outputs can be selected
from the state xf , given in (16), with the output matrix Cf .
To derive Cf , new vectors are defined as (58). With those
vectors, Cf is derived as (59).

uf = −G+KFB

 xz (k)
xφ (k)
xθ (k)

 = −G+KFBCf xf (k)

= −KFBSxf (k) (56)

KFB ≡

KFB,z 01×2 01×2
01×2 KFB,φ 01×2
01×2 01×2 KFB,θ


=

Kv1 Kv2 0 0 0 0
0 0 Kr1 Kr2 0 0
0 0 0 0 Kp1 Kp2


(57)

Z ,
[
1 0 0

]
, 8 ,

[
0 1 0

]
,

2 ,
[
0 0 1

]
(58)

Cf ≡


Z 01×4 01×7

01×7 Z 01×4
8 01×4 01×7

01×7 8 01×4
2 01×4 01×7

01×7 2 01×4

 (59)

Different from MDLQR and MDSMC, the six gain ele-
ments in KFB can be optimized with the LQ objective func-
tion, (31). In other words, the six gain elements inKFB should
be determined in order to design the LQ SOF controller.
If these elements can be found to minimize the LQ objective
function (28) using some heuristic optimization methods,
then it is the optimal LQ SOF controller. This problem is
formulated as the optimization one, (60). In (60), eig(X) and
mag(y) are the operators used to calculate the eigenvalues
of the matrix X and the magnitudes of the complex num-
bers y, respectively. In this paper, the evolutionary strategy,
CMA-ES, is used to find the optimum KFBS [38]. The sta-
bility of the closed-loop system with KFBS is guaranteed
by solving (60) because the objective function Jfs cannot be
calculated if the closed-system is unstable. Let denote this
structured LQ SOF controller as SLQSOF.

min
KFB

Jfs =
1
2
trace (Ps) , Ps = PTs > 0

s.t.


max

{
mag

(
eig

[
8f −�fKFBS

])}
< 1(

8f −�fKFBS
)T Ps

(
8f −�f KFBS

)
− Ps

+Qfq−K
T
FBSN

T
fq−NfqKFBS+KT

FBSRfq KFBS = 0
(60)

As shown in (44), (45) and (46), the tuning parameters of
MDLQR are ζi, ξi and σi. So, there are eight tuning parame-
ters in designingMDLQR. ForMDSMC, there is a single tun-
ing parameter, α. On the other hand, the tuning parameters of
SLQSOF are theweights ρi in the LQobjective function, (31).
So, there are four tuning parameters in SLQSOF. In terms of
the number of tuning parameters, MDSMC is the simplest
controller among those controllers.

III. SIMULATION
In this section, analysis on frequency responses and sim-
ulation are performed to evaluate the performance of the
designed controllers, MDLQR, MDSMC and SLQSOF.
Through frequency response analysis, five controllers,
LQRf2, LQRfq, MDLQR, MDSMC and SLQSOF, are com-
pared to one another. In the previous work, it was shown that
LQRf2 and LQRfq are equivalent to each other [22]. So, these
controllers are used as a base one for comparison.

Table 1 shows the parameters of 7-DOF full-car
and 1-DOF simple models, which were referred from
Demo_Lexus_NX300h given in CarMaker. LQRf2 and
LQRfq are designed with the weights given in Table 2.
To avoid the chattering in control responses, the values
of the tuning parameters, αz, αφ and αθ , in MDSMC are
set to 0.6.
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FIGURE 6. Frequency responses from the road profile to each output.

Table 3 shows the largest magnitudes of the eigenvalues of
the closed-loop system with the designed controllers. For sta-
bility, the largest magnitude of the eigenvalues of the discrete-
time closed-loop system should be less than 1. As shown in
Table 3, all the designed controllers are stable because the
largest magnitudes of the eigenvalues are smaller than 1.

A. ANALYSIS ON REQUENCY RESPONSES
To check the effects of MDLQR, MDSMC and SLQSOF
on ride comfort, singular value plots were drawn from the

road profile into several outputs. To draw the plots for these
controllers, the state-space equation of the full-car model,
(27), with the parameters given in Table 1 was used.

Fig. 6 shows singular value plots from the road profile
into several outputs. In these plots, the outputs are those of
the sprung mass, the suspension displacement and the tire
deflection. As shown in Fig. 6-(a), MDSMC show the best
performance in controlling the vertical acceleration of the
sprung mass. This means that MDSMC can provide good
ride comfort. Moreover, MDLQR is also effective for ride
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TABLE 1. Parameter descriptions of its values of the 2-DOF quarter-car
and 7-DOF full-car models.

TABLE 2. Maximum allowable values in LQ cost function.

TABLE 3. Largest magnitudes of eigenvalues of the closed-loop systems
with the designed controllers.

comfort. Notable feature of MDLQR and MDSMC, i.e.,
a modal controller, is that those make ride comfort near 10Hz
worse than the passive system, and that the resonant fre-
quency of the tire was move to slightly lower. These are typ-
ical phenomena when using a modal controller [39]. On the
other hand, SLQSOF shows worse performance in terms of
ride comfort, compared to MDLQR and MDSMC. This ten-
dency is also valid to the height of the sprung mass, as shown
in Fig. 6-(b). As shown in Fig. 6-(c) and -(d), five controllers
are nearly equivalent to one another in controlling the roll
and pitch motions of the sprung mass. As a counter effect
to good ride comfort, the suspension displacements were
increased and the tire deflections decreased. This means that
road holding was deteriorated by those controllers. Among
those controllers, MDSMC shows the largest suspension dis-
placement and the least tire deflection within the range from
2 to 10Hz as a result of the minimum vertical acceleration
and height of the sprung mass. This is well-known trade-off
between ride comfort and road holding. From the frequency
response analysis, it can be concluded that MDSMC is the
best controller in terms of ride comfort.

B. SIMULATION IN VEHICLE SIMULATION SOFTWARE
WITH THE DESIGNED CONTROLLERS
Simulation was conducted on the vehicle simulation soft-
ware, CarMaker, connected with MATLAB/Simulink. IPG
CarMaker has been widely used for validation on vehicle sta-
bility and active/semi-active suspension control over the last
decade [40]–[43]. The vehicle model used for simulation was
Demo_Lexus_NX300h provided in CarMaker. Fig. 7 shows
the single bump profile used for simulation. There were no

FIGURE 7. Bump profile.

TABLE 4. Peak-to-peak values of responses for each controller at front
right corner.

actuator models in the simulation. In other words, an actuator
used to generate a control force has infinite bandwidth and
has no limits on themagnitude of it. The vehicle speed was set
to 30km/h and maintained as it by a speed controller given in
CarMaker. Then, the vehicle passes the bump. The tire-road
friction coefficient is set to 0.85. There are no roll motions
since the bump is evenly applied to left and right wheels.

Fig. 8 shows the simulation results for the designed con-
trollers. As shown in Fig. 8-(a) and -(b), MDLQR shows the
best performance in controlling the vertical acceleration and
the pitch angle of the sprung mass. This is natural because
MDLQR generates the largest control inputs, as shown in
Fig. 8-(e). As a result, MDLQR gives the largest suspension
displacement and the smallest tire deflection, as shown in
Fig. 8-(c) and -(d). MDSMC shows relatively good perfor-
mance in terms of ride comfort. These results are different
from those presented in the frequency response of Fig. 6.
On the other hand, SLQSOF shows good performance in con-
trolling the pitch angle. However, it gives poor performance
in controlling the vertical acceleration. This is opposite to
LQRfq. LQRfq shows relatively poor performance in con-
trolling the pitch angle because the LQ objective function of
LQRfq has no terms on it.

Tables 4 and 5 show the peak-to-peak and root-mean-
square values of the responses of Fig. 8 for each controller at
front left corner, respectively. In Tables 4 and 4, SD and TD
denotes the suspension displacement and the tire deflection
at front left corner, respectively. As shown in Tables 4 and 5,
MDLQR shows the best performance from the viewpoint
of ride comfort. MDSMC can be also good choice for ride
comfort. However, SLQSOF is not recommend because it
cannot control the vertical acceleration of the sprung mass.
These results are coincided with those given in Fig. 8.

Three controllers, MDLQR, MDSMC and SLQSOF, have
the identical structure of (57). The difference among them is
controller design methodology. So, it is not valid that these
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FIGURE 8. Simulation results obtained from CarMaker for each controller.
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TABLE 5. Root-mean-square values of responses for each controller at
front right corner.

controllers are compared with simulations under the identical
condition. For example, the performance of MDSMC can
be improved by decreasing the value of α. Moreover, the
performance of SLQSOF can be improved by reducing the
value of η1 in (31).

The key point of this paper is to reduce the number of
elements of the controller gain matrix, which is identical to
that of signals used for feedback control. The number of the
gain elements of LQRfq is 4, which means that it requires
4 signals for feedback control. On the contrary, the number
of the gain elements of MDLQR, MDSMC and SLQSOF
is 6. This is much smaller than that of LQRf2, i.e., 56.
Moreover, MDLQR and MDSMC are much easier to design
than LQRf2, LQRfq and SLQSOF.

IV. CONCLUSION
In this paper, themodal controller was derived from three con-
trollers, i.e., heave, roll and pitch controllers, designed with
three 1-DOF models describing the vertical, roll and pitch
motions of the sprung mass. In the discrete-time domain,
heave, roll and pitch controllers are designed with these
1-DOFmodels by applying discrete-time LQR and SMC. The
control inputs of these controllers are converted into four ones
at each corner in the full-car model with input decoupling
transformation. The modal controller requires six state vari-
ables and has six gain elements. Hence, the number of gain
elements of these controllers is much smaller than those of
LQR for the full-car model. By the nature of structured and
SOF control of the modal controller, the modal controller
itself was designed by the heuristic optimization method,
i.e., CMA-ES. Through a frequency response analysis and
a simulation on the vehicle simulation package, the modal
controllers designed with LQR and SMC show quite effective
in controlling the motions of the sprung mass in terms of ride
comfort. Further research will include the design of feedfor-
ward controller design with measured acceleration signals,
which can improve the control performance against external
disturbances.
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