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ABSTRACT Dynamic optimization problems in chemical engineering are often described by complex
differential equations, In general, Due to the complexity of the model established in practice, it is not easy to
solve it with an accurate algorithm, so the study of numerical methods to solve such problems has received
much attention. As a new computingmodel, intelligent optimization algorithm has attractedmore attention in
solving dynamic optimization problems because of their easy operation. Based on the analysis of the Harris
Hawk Optimization algorithm, this paper proposes the Chaos Elite Harris Hawk Optimization algorithm
(CEHHO), which is used to improve the performance of CEHHO using control vector parameterization to
solve dynamic optimization problems of the chemical industry. First of all, when the population is initialized,
the population is initialized by Opposition-based learning Logistic chaos, which improves the diversity of
the population and the quality of the solution. Second, the linear decreasing escape energy factor is changed
to a nonlinear decreasing escape energy factor to balance the exploration and exploitation capabilities of
the algorithm. Finally, through the mutation strategy guided by elite individuals, the algorithm can jump out
of the local optimum. We use 8 test functions and 5 classical chemical optimization problems to evaluate
the feasibility of the algorithm and compare and analyze the research results with other solving methods,
showing the superiority of the CEHHO algorithm.

INDEX TERMS Chaos Elite Harris Hawk, opposition-based learning, elite individual, mutation strategy,
chemical optimization, control vector parameterization.

I. INTRODUCTION
The goal of chemical dynamic optimization is to optimize
predefined performance indicators, such as profitability or
productivity, and optimize control variables to make per-
formance indicators optimal, meet safety or environmental
specifications [1], improve chemical production efficiency,
and reduce energy consumption. The dynamic optimiza-
tion control of the chemical industry has received extensive
attention from domestic and foreign academic circles, and
scholars have done a lot of research on the development
of dynamic optimization problems. Generally speaking,
these methods basically consist of two parts, control dis-
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crete and parameter optimization [2]. Control discretiza-
tion transforms an infinite-dimensional problem into a
finite-dimensional nonlinear dynamic programming problem
(NLP). Parameter optimization methods are mainly divided
into three categories: (1) dynamic programming; (2) mathe-
matical programming algorithms; (3) intelligent optimization
algorithms.

Dynamic programming discretizes both time and con-
trol variables, Dadebo S A and McAuley K B added a
motion suppression criterion to the dynamic optimization
algorithm to punish excessive control motion, and proposed
a dynamic optimization for chemical engineering problems
based on dynamic programming [3], Bayón et al. based on
Pontryagin’s Minimum principle, obtained the initial guess
of the solution, and put forward the initial guess of the
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dynamic optimization solution of the chemical process [4],
However, when the dimensions of the control variables and
state variables are large, the calculation process becomes
very cumbersome. To solve this shortcoming, an improved
dynamic optimization method, iterative dynamic program-
ming (IDP), is proposed. Sundaralingam R proposed a
two-step method for solving dynamic optimization prob-
lems with state inequality constraints by iterative dynamic
programming [5]. Although IDP reduces the computational
time caused by the increase of dimensions, IDP is time-
consuming and inefficient [6], especially It is more prominent
when solving dynamic optimization problems of chemical
industry.

Mathematical programming algorithms include Newton’s
method, sequential quadratic method, control variable param-
eterization (CVP), etc. [7], Huang and Luo used the control
vector parameterization method to transform the dynamic
optimization problem into a mixed-integer nonlinear pro-
gramming problem, and used it to deal with the fluctuating
ethylene tower [8], Huang et al. proposed a dynamic opti-
mization algorithm based on control vector parameterization
and state transition algorithm [9], This method has a strong
dependence on the initial value and needs gradient infor-
mation. However, many differential equations, in reality, are
non-continuous and non-derivable. For these problems, this
method is no longer applicable.

The solution of the control variable parameterization
method is too dependent on the initial value, and the set-
ting of the initial trajectory value has a strong sensitivity
to the solution accuracy and affects the convergence speed
of the algorithm. To solve the above problems, a strategy
of combining an intelligent optimization algorithm with the
control variable parameterization method is proposed. The
intelligent optimization algorithm has few parameters, simple
principles, easy implementation, and does not require the
problem to be solved to be derivable and continuous, so it
is widely used to solve optimization problems in various
disciplines of engineering [10]. Zhang proposed a dynamic
optimization of chemical processes based on a modified sail-
fish optimizer combined with an equal division method [11],
Mattia Vallerio et al. discusses a computationally efficient
robust dynamic optimization approach based on the Sigma
Point method [12], Angira and Santosh proposed a trigono-
metric differential evolution method for solving dynamical
system optimization [13], Fan proposed a hybrid improved
genetic algorithm and its application in the dynamic opti-
mization problem of a chemical process [14], Chen et al.
proposed a sorting-based differential evolution algorithm to
solve the chemical dynamic optimization problem to improve
the performance of the differential evolution algorithm using
the control vector parameterization [15]. Chen et al. pro-
posed a chemical dynamic system optimization based on
quadratic interpolation for teaching and learning, and intro-
duced diversity-enhancing teaching strategies and quadratic
interpolation in basic teaching and learning to enhance the
exploration ability of the algorithm [16], Fan et al. proposed

a control vector parameterization method based on a dif-
ferential evolution algorithm and its application in dynamic
optimization of a chemical process [17]. The above-improved
algorithm can improve the accuracy and convergence speed
of chemical dynamic optimization to a certain extent. In this
paper, a chaotic elite Harris hawk optimization algorithm is
proposed to solve the chemical dynamic optimization prob-
lem. Firstly, the infinite-dimensional problem is transformed
into a finite-dimensional problem by using the control vari-
able parameterization method. Then use the improved algo-
rithm to optimize the problem.

Although the method proposed above can improve
the accuracy and convergence speed of solving chemical
dynamic optimization problems to a certain extent, it can
be seen from the literature that the trajectory of the solved
control variables has certain fluctuations, which cannot better
simulate the changing process of chemical problems. Har-
ris Harks optimization algorithm is a new intelligent algo-
rithm with good solving ability. Based on the NFL (No Free
Lunch) principle, this paper firstly initializes the population
through logistic reverse learning, dynamically adjusts the
global and local search, and better balances the relationship
between exploration and exploitation. Secondly, using the
elite individual guidance strategy and the piecewise constant
method to optimize the dynamic optimization problem of
the chemical industry, the trajectory of the control variable
tends to be smooth, Optimal performance index. In addi-
tion, recent optimization algorithms [18]–[22] provide other
ideas for solving dynamic optimization problems in chemical
engineering.

The rest of this paper is organized as follows:
Section 2 introduces the chemical dynamic optimization
problem, section 3 describes the Harris Hawks optimization
algorithm, section 4 describes the improved Harris Hawks
optimization algorithm, and section 5 tests the performance
of the improved algorithm through five chemical dynamic
optimization problems. Finally, section 6 summarizes the
work done.

II. PROBLEM DESCRIPTION
A. DYNAMIC OPTIMIZATION PROBLEM
The solution of the function extreme value problem is a
static problem. Comparedwith the static problem, Real-world
optimization problems are mostly time or space-dependent.
This kind of problem is called dynamic optimization problem.
It is usually described by complex differential equations.
Dynamic optimization is to optimize a certain performance
index by controlling operating variables [23]. Such as prof-
itability, product quality, productivity, etc. [24]. Typical
dynamic optimization problems are usually described by the
following mathematical models.

min J (u(t)) = ϕ(x(t0, tf ))+
∫ tf

t0
φ(t, x(t), u(t))dt
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FIGURE 1. Piecewise constant method.

s.t


x(t) = f (t, x(t), u(t))
x(t0) = x0
ul ≤ u(t) ≤ uu

t ∈ [t0, tf ]

(1)

In the formula, J is the performance index, namely the
objective function, The solution to this problem is to find
a control trajectory in the time interval [t0, tf ] to minimize
the performance index. x and u represent state variables and
control variables, respectively. x(t0) and x(tf ) represent the
initial and final state values, respectively. f , ϕ Represents
the constraints of the system on differential and algebraic
equations. ul, uu represents the lower and upper bounds of
the control variable.

B. CONTROL VECTOR PARAMETERIZATION
In order to better approximate the control trajectory, the
control vector parameterization transforms the control vector
from an infinite dimension into a finite dimension through
discretization, and each segment passes through the basis
functions (piecewise constant [25], [26], [27], piecewise
linear functions [28], [29], piecewise quadratic polynomial
functions [30], etc.).

The most common way to parameterize the control vector
is piecewise constant, as shown in Figure 1. Divide the control
time domain [t0, tf ] into a finite number of subintervals,
[ti−1, ti](i = 1, 2, . . . ,N ). as shown in Figure 2. The ith
component u(ti) of the control variable u(t) in the control
time domain can be represented by an approximation of the
ith subinterval [31].

ui(t) ≈
N∑
j=1

uij(t)τ [ti−1, ti] i = 1, 2, . . . ,N (2)

The CVP method flow is as follows:
(1) Divide the control time domain into several finite subin-

tervals from infinite dimensions.
(2) Use piecewise constants to approximate the control

variables in each subinterval.

(3) Optimize the parameters by using the chaotic elite
Harris hawk optimization algorithm.

(4)When the conditions aremet or the number of optimiza-
tions is reached, the optimal solution is output.

III. HARRIS HAWK OPTIMIZATION ALGORITHM
Harris hawk Optimization (HHO) is a population-based,
un-gradient meta-heuristic optimization algorithm [32].
By simulating the behavior of a Harris hawk to catch its
prey (rabbit). Harris hawk uses the ‘‘seven kills’’ strategy
to capture rabbits and changes different strategies to besiege
according to different escape methods. In the process of
attacking, there is a certain relationship between the rabbit’s
escape ability and energy. Therefore, the escape energy factor
is used to express the escape ability of rabbits. The algorithm
has a strong local search ability and requires fewer parameters
to adjust. High search accuracy and easy operation. HHO is
mainly composed of two parts: exploration and development.
The detailed process is as follows:

A. EXPLORATION PHASE
In the HHO algorithm, each Harris hawk individual is a
candidate solution, and they all have a chance to approach
the target value. During the exploration phase, all Harris
hawks will randomly perch on electric poles or large trees
to supervise and observe the prey. Monitoring is carried out
in two equal-probability ways. The mathematical model is as
follows:

X (t + 1)

=

{
Xrand (t)−r1|Xrand (t)−2r2X (t)| q≥0.5

Xrabbit (t)−Xm(t)−r3(lb+ r4(ub−lb)) q<0.5
(3)

Xm(t)

=
1
N

N∑
i=1

Xi(t) (4)

Among them, X (t) represents the current iteration indi-
vidual, X (t + 1) represents the next iteration individual,
Xrand (t) represents an individual randomly selected from the
population, and Xrabbit (t) represents the position of the prey,
that is, the position of the rabbit, Xm(t) represents the aver-
age value of the current population position, ub, lb represent
the upper and lower boundary values of the eagle position,
q, r1, r2, r3, r4 ∈ (0, 1), and N represents the number of
populations.

B. TRANSITION FROM EXPLORATION TO EXPLOITATION
Harris hawk has to adopt different strategies to besiege and
capture rabbits according to their escape methods. This com-
plex and changeable escape strategy is determined by the
escape energy factor. Therefore, the escape energy factor
determines whether the HHO algorithm performs a global
search or a local search.

E = 2E0(1−
t
T
) (5)
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E0 = 2r5 − 1 (6)

In the formula, E is the escape energy factor. E0 represents
the initial energy of the prey, the value range is (−1,1). t is
the current iteration number, T is the maximum number of
iterations. r5 ∈ (0, 1).

C. EXPLOITATION PHASE
In the exploration stage, Harris hawks are distributed in space,
observing and monitoring the behavior of prey, waiting for
opportunities to catch prey. Harris hawk attacking prey is
carried out in the development stage, and the prey is attacked
and captured by adopting four methods. When |E| ≥ 1, the
algorithm is in the exploration phase, when |E| < 1, the
algorithm is in the development phase, A random number r
to represent the probability of the prey escaping. r ∈ (0, 1).

1) USING SOFT SIEGE TO SIEGE THE PREY
When r ≥ 0.5&&|E| ≥ 0.5, The rabbit had enough energy
to escape and tried to escape by jumping, but it failed in
the end. In the process of escaping the rabbit, the eagle
gently surrounded it, exhausting the rabbit, and then caught
it, the behavior The simulation is carried out by the following
mathematical model.

X(t + 1) = 1X (t)− E|JXrabbit (t)− X (t)| (7)

1X (t) = Xrabbit (t)− X (t) (8)

J = 2(1− r6) (9)

In the formula. r6 ∈ (0, 1),1X (t) represents the position
difference between the current position of the rabbit and the
eagle. J represents the jumping intensity of the rabbit, and the
escape behavior of the rabbit is simulated by different values.

2) USING HARD SIEGE TO SIEGE THE PREY
When r ≥ 0.5&&|E| < 0.5, At this time, the rabbit does
not have enough energy to escape and is in exhaustion, so the
eagle directly captures the rabbit. Simulation is performed by
formula (11).

X (t + 1) = Xrabbit (t)− E|1X (t)| (10)

3) PROGRESSIVE DIVE SOFT SIEGE
When r < 0.5&&|E| ≥ 0.5, Rabbits have the energy to
run away, but eagles will adopt a more nimble strategy than
before. First, the concept of levy flight was introduced to imi-
tate the deceptive movements of the rabbit before escaping.
The eagle would make several irregulars, fast dives around
the rabbit in an attempt to correct its position and direction.
Second, a greedy selection mechanism is added at this stage
to compare the previous motion with the results of the levy
flight motion and choose the better one. The mathematical
model is as follows:

Y = Xrabbit (t)− E|JXrabbit (t)− X (t)| (11)

Z = Y + S · LF(D) (12)

whereD is the dimension to solve the problem, S is a random
vector of 1 · D,LF is the levy flight function.

LF(x) = 0.01
µσ

|ν|
1
β

, σ = (
0(1+ β) sin(πβ2 )

0( 1+β2 )β · 2(
β−1
2 )

)
1
β (13)

in the formula. µ, ν ∈ (0, 1), β is a constant of 1.5.

X (t + 1) =

{
Y if F(Y)<F(X(t))
Z if F(Z)<F(X(t))

(14)

Y ,Z are calculated by equations (12) and (13).

4) HARD SIEGE TO SIEGE OF PREY WITH PROGRESSIVE
RAPID DIVING
When r < 0.5&&|E| < 0.5, Rabbits don’t have enough
energy to escape. The hawk has formed a circle around the
rabbit. the siege is similar to the progressive dive soft siege,
During this process, by calculating the average position of the
rabbit and the eagle, it is better to evaluate the best position
from the rabbit. The model is as follows:

Y = Xrabbit (t)− E|JXrabbit (t)− Xm(t)| (15)

Z = Y + S · LF(D) (16)

X (t + 1) =

{
Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(17)

The pseudocode of the HHO algorithm is shown in Algo-
rithm 1.

IV. CHAOS ELITE HARRIS HAWK OPTIMIZATION
ALGORITHM
HHO algorithm is a competitive meta-heuristic optimization
algorithm, which shows good flexibility and robustness in
solving optimization problems, so it has received extensive
attention. Based on the free lunch theorem, the HHO algo-
rithm, like all algorithms, is not suitable for all optimization
problems. For complex problems, it also has slow conver-
gence speed, low solution accuracy, and is easy to fall into
local optimum. The main reason is. First, the HHO algorithm
adopts random initialization, resulting in low diversity of the
population.

Secondly, when the HHO algorithm transitions from the
exploration stage to the exploitation stage, the escape energy
factor decreases linearly. This method can find the solution
of the problem for solving simple problems, but for com-
plex problems, the algorithm cannot solve the global optimal
value. Finally, in the exploitation phase of hard siege and soft
siege strategies, the individuals of the population are not fully
communicated.

A. OPPOSITION-BASED LEARNING LOGISTIC CHAOS
INITIALIZATION POPULATION
For the meta-heuristic optimization algorithm, the distribu-
tion of the initial solution of the population in the solution
space has a great influence on the algorithm, affecting the
solution accuracy and convergence speed of the algorithm.
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Algorithm 1 : Pseudo-Codes of the HHO
Inputs: The Population size N , maximum number of itera-
tions T .
Outputs: Solution of the problem
While (t < T )
Calculate the fitness values, Find the best individ-
ual(Rabbit position)
Check whether it is out of bounds
for each hawk(Xi)
Update the escape energy factor with equation (5)
Update the initial energy of prey with equation (6)
Calculate the jumping degree of the rabbit with equation

(9)
if (|E| ≥ 1)
Use equation (3) to calculate the current hawks posi-

tion
End if
else if (|E| <1)
if (r ≥ 0.5&&|E| ≥ 0.5)
Use equation (7) to update the position of the hawks

End if
if r ≥ 0.5&&|E| < 0.5
Use equation (10) to update the position of the

hawks
End if
if r < 0.5&&|E| ≥ 0.5
Use equation (11)-(14) to update the position of the

hawks
End if
if (r < 0.5&&|E| < 0.5)
Use equation (17)-(19) to update the position of the

hawks
End if

End if
end for
t=t+1
end while

A population with a uniform distribution is beneficial to
improve the solution performance of the algorithm. However,
the standard HHO algorithm is initialized in a random way,
which is not evenly distributed.

Chaos is a bounded dynamic behavior that occurs in deter-
ministic nonlinear systems, with ergodicity, randomness, and
sensitivity. Chaos theory is usually described as the ‘‘butterfly
effect’’ [33]. In recent years, in the meta-heuristic algorithm,
the application of chaos theory to the initialization population
has become a hot spot. Chaos sequence replaces random
sequence to enhance population diversity, which is called
chaotic optimization algorithm. Due to the non-repetitive
characteristics of chaos, a chaotic optimization algorithm is
faster than a random search [34]. Commonly used chaotic
maps include a logistic map, tent map, Chebyshev map,
Gauss map, Circle map, and Sine map [35]. Compared with
other chaoticmaps, a logisticmap has the advantages of better

FIGURE 2. Comparison of chaotic sequence distribution.

ergodicity and convergence. Therefore, this paper uses the
logistic map to initialize the population. The logistic formula
is shown in (21).

zn+1 = λzn(1− zn) (18)

where χ (χ ∈ (0, 4)) is the logistic control parameter. Fig-
ure 2 shows the distribution of logistic chaos and random
distribution sequences with λ = 4 and 200 iterations. zn ∈
(0, 1)&&zn 6= 0, zn 6= 0.5, zn 6= 0.7, zn 6= 1.

Opposition-based learning (OBL) strategies can be used
to improve the search efficiency of metaheuristics [36]. The
probability that OBLs find a solution is related to the oppo-
site solution they find in the opposite region of the solution
space, compared to random directions, adversarial learning
provides a higher chance of finding unknown optimal solu-
tions to problems in a random direction, and they are closer
to the global optimum than random solutions. The strategy
of simultaneously examining candidate solutions and their
inverse solutions is adopted to speed up the convergence
of the algorithm to the global optimal solution [37], [38],
[39]. On this basis, this paper proposes the logistic chaotic
reverse learning. Based on the logistic chaotic initialization
population, adding the opposition-based learning mechanism
can not only enhance the diversity of the population but
also help to get closer to the solution of the problem faster.
Speed up the convergence of the algorithm. opposition-based
learning is defined as follows:

Let x(x ∈ [lb, ub]) be a number in one-dimensional space,
Then its opposite position x ′ can be expressed by the follow-
ing formula:

x ′ = lu+ ub− x (19)

Generalizing from one-dimensional space to n-dimensional
space, let xi ∈ [lbi, ubi],∀i ∈ 1, 2, · · · , n, Then its opposite
position is expressed as follows:

x0i = lbi + ubi − xi (20)
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FIGURE 3. E0 iteration diagram.

B. DYNAMICALLY ADJUST THE EXPLORATION AND
EXPLOITATION PHASE
The HHO algorithm uses a linear decreasing method to
change the escape energy factor. In the initial stage of iter-
ation, the population only conducts a global search. When
an individual falls into a local optimum, the strategy in the
exploration stage is not easy to make the population jump out
of the local optimum. Therefore, this paper proposes a non-
linear decreasing method to explore the dynamic adjustment
algorithm. and the development stage,

In the exploration stage, the population can have the oppor-
tunity to use the local exploration strategy to search, and the
current optimal position can be searched more accurately,
which is conducive to speeding up the convergence speed
of the algorithm and making the algorithm more harmo-
niously combined the exploration stage and the development
stage. The proposed nonlinear decreasing escape energy fac-
tor update formula is as follows:

E = ln(
t
T
)
1
3 (21)

C. ELITE MUTATION STRATEGY
In the exploration stage, the HHO algorithm only uses the
optimal position of the population and does not fully utilize
the individual information resources of the population, which
makes the population too close to the current optimal solu-
tion. When solving complex problems, the HHO algorithm is
easy to fall into local optimality. Therefore, in the hard siege
and soft siege strategies in the development stage, according
to the average position among the population individuals,
this paper proposes a new update strategy guided by elite
individuals. In this strategy, the population can not only use
the information of the current optimal individual, and fully
excavate and use all individual information, Finally, through
the comparison of fitness values, if the fitness value of the
new update strategy is better, keep it, otherwise keep the

FIGURE 4. E iteration diagram.

TABLE 1. Algorithm parameters.

previous position, which can make full use of the individual’s
position information and guide other individuals to move
closer to the optimal value more accurately move closer. The
newly proposed update formula is as follows:

X (t + 1) = Xrabbit (t)+ r7 ∗ (Xm(t)− X (t)) (22)

where r7 is a random number of (0, 1).

D. CEHHO ALGORITHM FLOW CHART
E. NUMERICAL EXPERIMENT SIMULATION ANALYSIS
To test the performance of the CEHHO algorithm, this section
will conduct a numerical experimental analysis. This paper
selects five algorithms (HHO, CEHHO, The whale opti-
mization algorithm (WOA) [40], Sparrow Search Algorithm
(SSA) [41], Moth-flame optimization algorithm (MFO) [42])
for a comparative study. In the experiment, the population
size was uniformly set to 30, the maximum number of
iterations T = 1000, and all algorithms were run indepen-
dently 30 times. In this experiment, the processor is Intel(R)
Core(TM) i5-9300H CPU @ 2.40GHz 2.40 GHz, and the
experimental software is MATLAB 2018b. In addition, this
paper lists the various parameters of different algorithms,
as shown in Table 1.
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FIGURE 5. CEHHO algorithm flow chart.

1) BENCHMARK FUNCTION
This paper selects eight benchmark functions to test the
algorithm, including unimodal functions (F1-F4) and mul-
timodal functions (F4-F8). The unimodal function has only
one solution, which is mainly used to test the convergence
ability of the algorithm. The multimodal function contains
multiple optimal solutions, of which there is only one global
optimal solution. For most algorithms, it is easy to fall into the
local optimal solution. Therefore, the multimodal function
can be better used to evaluate the development ability of the
algorithm. Table 2 gives the basic information of these eight
functions.

2) NUMERICAL ANALYSIS
In the experiment, the optimal value, worst value, average
value, and variance are analyzed. The experimental results
are shown in Table 3, and the optimal data is bolded. It can be
seen from the experimental results that the CEHHO algorithm

proposed in this paper has better solution accuracy than the
other four algorithms in optimizing the unimodal function
(F1-F4). and is at least 100 orders of magnitude higher. For
multimodal functions (F5-F8), when optimizing function F5,
HHO, WOA, SSA, and CEHHO algorithms can all solve the
theoretical optimal value, and when optimizing function F6,
HHO and CEHHO algorithms can solve the optimal value.
For functions F7 and F8, although none of the five algo-
rithms can solve the theoretical value, the CEHHO algorithm
shows a good solution accuracy compared with the other four
algorithms. From the perspective of variance, the CEHHO
algorithm shows good stability.

3) CONVERGENCE ANALYSIS
In order tomore intuitively observewhether the algorithm can
jump out of the local optimum, the convergence speed of the
algorithm and other performances in the whole experiment
process. Figure 4 lists the convergence diagrams of the 8 test
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TABLE 2. Benchmark functions.

functions. For functions F1-F4, the convergence speed and
solution accuracy of the CEHHO algorithm is much higher
than those of the other four algorithms. When solving the
function F3, the CEHHO algorithm is probably iterating to
The global optimal solution can be solved 380 times, and
the global optimal solution of the function F4 can be solved
when the number of iterations is about 100 times. For the
multimodal functions F5 and F6, it can be seen from the
figure that although the HHO, WOA, SSA, and CEHHO
algorithms can solve the global optimum, the convergence
speed of CEHHO is faster than other algorithms. It can be
seen from the convergence diagrams of F7 and F8 that the
CEHHOalgorithm can jump out of the local optimum. In gen-
eral, the CEHHO algorithm proposed in this paper has good

advantages in terms of solution accuracy and convergence
speed.

4) BOX PLOT ANALYSIS OF TEST RESULTS
Figure 7 draws the boxplots of the five algorithms running
independently 30 times. Table 4 shows the Inter Quartile
Range (IQR) values of the eight functions required. Com-
bining with the chart, it can be seen that when solving F3,
F4, and F7, F8, the IQR value is the smallest, indicating
that the result distribution of the CEHHO solution is more
concentrated. When solving F1, although the IQR value of
CEHHO is not the most concentrated relative to MFO, it can
be seen from Figure 5 that the fitness value of MFO is in - 10,
the solution accuracy is far inferior to the CEHHO algorithm,
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TABLE 3. Experimental data.

which verifies that the algorithm proposed in this paper has
better robustness.

5) FRIEDMAN TEST OF CEHHO AND OTHER ALGORITHMS
In order to verify that the experimental results are not acci-
dental, this paper uses Friedman statistics to test. The sta-
tistical results are shown in Table 5. This table shows the
Friedman ranking of the seven algorithms on the 8 test
functions. It can be seen from the table that the CEHHO
algorithm ranks first. Therefore, the algorithm proposed in
this paper is superior in solving unimodal and multimodal
functions.

V. APPLICATION OF CEHHO ALGORITHM IN DNAMIC
OPTIMIZATION OF CHEMACAL INDUSTRY
In this paper, five classical chemical dynamic optimization
problems are selected for experimental research to verify the
feasibility and effectiveness of the CEHHO algorithm for

chemical dynamic optimization. Each chemical problem is
independently run 30 times, and the optimal value is selected
as the experimental result. Compare the results of different
methods. The experiment is as follows:

(1) Divide the problem into equal parts.
(2) Numerical solution with Runge–Kutta.
(3) Use the CEHHO algorithm to optimize the problem.

A. CASE STUDIES AND ANALYSIS
1) CASE 1: CLASSICAL CHEMICAL DYNAMICS PROBLEM
This problem is a classic benchmark dynamic optimiza-
tion problem of the chemical industry dynamic optimization
problem. In the system, the problem is optimally controlled
by two state variables. The mathematical model is shown
below.

min J (u) = x2(tf )
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FIGURE 6. Convergence graph.

65842 VOLUME 10, 2022



L. Hong et al.: Chaos Elite Harris Hawk Optimization Algorithm to Solve Chemical Dynamic Optimization Problems

FIGURE 7. Boxplot.
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TABLE 4. IQR value.

TABLE 5. Friedman test of CEHHO and other algorithms.

s.t.



dx1
dt
= u

dx2
dt
= x21 + u

2

−1 ≤ u ≤ 0, tf = 1

x(0) = [1 0]T

(23)

In the formula, x1 and x2 are the two-state variables of the
system. u is the control variable, tf is the end time of the sys-
tem, The solution to this problem is to find an optimal control
variable u that minimizes the value of the state variable x2 at
the end time, Table 6 lists the results of different methods to
solve this problem. Figure 6 shows the change diagram of the
control variable U with the number of segments N = 10 and
N= 50. Figure 7 is the convergence diagram of the objective
function with N = 50 and 100 iterations, and Figure 8 is the
change diagram of the state variables in the iterative process.

In Table 6, Time/s represents the run time for the method
solving the chemical optimization problem.

It can be seen from Table 6 that the solution of this problem
solved by the analytical solution method in Reference [44]
is 0.761594156. Reference [6] proposes a hybrid differen-
tial evolution algorithm combined with Alopex. When the
number of segments is N = 50, the obtained solution is
0.76162. The ADIWO-CVP method proposed by the lit-
erature [40] has a solution of 0.76159417 when the num-
ber of segments is N = 50, and the difference from the
analytical solution is 0.000000014. The IWO-CVP method
proposed by the literature [45] is in the When the num-
ber of segments is N = 50, the solution at this time is

TABLE 6. Experimental results of different methods in case 1.

0.76159793, and the difference from the analytical solution
is 0.000003774. The CEHHO method proposed in this paper
has a solution of 0.761596089 when the number of segments
is N = 50, and the difference from the analytical solution
is 0.000001933. Among the six methods proposed above,
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FIGURE 8. Optimal control trajectory diagram.

the difference between the solution accuracy of the CEHHO
algorithm and the ADIWO-CVP method is the smallest, and
it is also the closest to the theoretical value. This proves the
feasibility of the CEHHO algorithm.

2) CASE 2: CONTINUOUS REACTION IN BATCH REACTOR
Abatch reactor refers to a device that performs chemical reac-
tions intermittently. In the process of chemical production,
it is often used to produce products of different specifications
in batches. The reaction process of the batch reactor takes
A as the production raw material, finally generates the target
product B, and makes the target product B. The concentration
value of product B is the largest at the terminal time, which is
accompanied by the formation of by-product C. The reaction
process is A → B → C . The reaction device is shown in
Figure 9, and the reaction model is as follows:

max J = CB(tf )

FIGURE 9. Iterative convergence diagram.

FIGURE 10. Trajectory convergence diagram of state variables.



dCA
dt
= −k1C2

A

dCB
dt
= k2C2

A − k2CB

298K ≤ T ≤ 398K , CA(0) = 1mol/L,
CB(0) = 0mol/L, tf = 1h

k1 = 4× 103 × e
−2500
T , k2 = 6.2× 105 × e

−5000
T

(24)

Among them, CA is the concentration of reactants in
the reaction process, CB is the concentration of the target
product in the reaction process, T is the temperature in the
reaction process, and J is the performance index of the
model. Table 7 lists the solution results of different methods,
Fig. 10 is the temperature control trajectories with the number
of segments N = 10, 20, 50 in the reaction process, Fig. 11 is
the iterative graph of the objective function, Fig. 12 is the
reactant, and A graph of the concentration change of the
product during the process.

VOLUME 10, 2022 65845



L. Hong et al.: Chaos Elite Harris Hawk Optimization Algorithm to Solve Chemical Dynamic Optimization Problems

FIGURE 11. Batch reactor.

TABLE 7. Experimental results of different methods in case 2.

It can be seen from Table 7 that when the number of seg-
ments isN = 10, the result of the literature [6] using the com-
bination of Alopex and the differential evolution algorithm is
0.61007, and the literature [48] using the improved seagull
optimization algorithm combinedwith the inequality method,
a solution is 0.6101, the solution result of the CEHHO algo-
rithm is 0.61016918, and the solution accuracy of the problem
is relatively high. When the number of segments is N = 25,
the result obtained by using the particle swarm combinedwith
the control variable method in Reference [46] is 0.6105359,
that of Reference [48] is 0.61053, and the solution of Ref-
erence [49] is 0.61055712 using the improved beetle, while
CEHHO When the number of subsections N = 20, the solu-
tion result is 0.61058090, with fewer subsections and higher
solution accuracy. When N = 50, the solution accuracy of

FIGURE 12. Variation diagram of control variables.

the CEHHO algorithm is also the highest. The experimental
results show that the CEHHO algorithm is effective in solving
the continuous reaction in batch reactors.
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FIGURE 13. Iterative convergence diagram.

3) CASE 3: TUBULAR REACTOR
In modern industry, a tubular reactor is one of the most
commonly used reactor forms due to its high volumetric
efficiency, large heat transfer area, simple structure, and
convenient processing. By mixing two reactants A and B,
a chemical reaction occurs, The target product C is finally
generated, and the concentration of the target product C is
maximized. The reaction process is A↔ B→ C . The model
of the tubular reactor is as follows:

max J (zf ) = 1− CA(zf )− CB(zf )

dCA
dz
=−u(z)[10× CB(z)−CA(z)]

dCB
dz
=u(z)[10× CB(z)−CA(z)]

− [1− u(z)]× CB(z)

0 ≤ u(z) ≤ 1, CA(0) = 1mol/L,
CB(0) = 0mol/L, zf = 12m

(25)

In the formula, z is the length of the tubular reactor, CA
and CB are the two reactants, and u(z) is the catalyst con-
tent. Table 8 lists the solution results of different methods.
Figure 13 shows the control trajectory of the control variable
u(z) when the number of segments is N = 10, 20, 40,
and 50 during the reaction process. Figure 14 shows the
iteration of the objective function. Fig. 15 is a graph showing
the concentration changes of reactants A and B during the
reaction.

It can be seen from Table 8 that when the number of
segments is N = 10, the result obtained by the control vec-
tor parameterized dynamic optimization based on the state
transition algorithm adopted in the literature [9] is 0.47636,
and the result in the literature [6] is 0.47363. The CEHHO
algorithm proposed in this paper The result obtained is
0.47363015. When the number of segments is N = 20, the
result obtained by the literature [3] is 0.475273, the result

FIGURE 14. Concentration trajectories of reactants and products.

TABLE 8. Experimental results of different methods in case 3.

obtained by the literature [13] is 0.47527, and the result
obtained by the CEHHO algorithm is 0.47527302. When
N = 40, the literature [ 3] The result obtained is 0.476946,
the result obtained by the literature [49] is 0.47697288, and
the result obtained by the CEHHO algorithm is 0.47698071.
When N = 50, the result obtained by the literature [6] is
0.47727, and the result obtained by the CEHHO algorithm
is 0.47734337, the feasibility of the CEHHO algorithm is
demonstrated by comparing the results of the above different
numbers of segments.

4) CASE 4: OPTIMIZATION OF CONTINUOUS STIRRED TANK
REACTOR
A continuous stirred tank reactor is a tool in chemical produc-
tion. In the CSTR system, the parameter with influence is the
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FIGURE 15. Variation diagram of control variable.

reaction temperature or concentration. If the temperature and
concentration exceed a deviation, the quality of the product
will be affected.so, it is particularly important to control
the variation range of temperature and concentration. The
reaction device is shown in Figure 16, and the reaction model
is as follows:

min
u
J =

tf∫
0

(x21 (t)+ x
2
2 (t)+ 0.1 ∗ u2(t))dt

s.t.


x1 = −(2+ u)(x1 + 0.25)

+ (x2 + 0.5) exp(
25x1
x1 + 2

)

x2 = 0.5− x2 − (x2 + 0.5) exp(
25x1
x1 + 2

)

x(0) = [0.09 0.09], 0 ≤ u(t) ≤ 5, tf = 0.78 (26)

In the formula, x1 and x2 represent the deviation of tem-
perature and concentration, respectively, u is the control
variable, which represents the control of the flow rate of
the cooling liquid inserted into the reactor through the coil,
and the function of the control variable u is to keep x1 and
x2 in their steady-state value. Table 9 shows the solution
results of different methods, Fig. 17 is the control variable
trajectory diagram, Fig. 18 is the objective function iteration
diagram, and Fig. 19 is the change diagram of temperature
and concentration.

It can be seen from Table 9 that when the number of
segments is N = 10, the solution result of literature [2] is
0.13406, the solution result of literature [25] using the dif-
ferential evolution algorithm is 0.13559, the result obtained
by literature [51] is 0.13342, the solution of literature [9]
is 0.13342 The result obtained is 0.13729, and the result
obtained by the CEHHO algorithm proposed in this paper is
0.13529454. At this time, the solution result of Reference [52]
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FIGURE 16. Iteration diagram of objective function.

FIGURE 17. Concentration changes of reactants A and B.

is better. When the number of segments is N = 20, the
solution result of the CEHHO algorithm is better than that of
Reference [50] and Reference [52], [4] has higher precision
and saves time overhead based on fewer segments. When
the number of segments is N > 40, the CEHHO solution
performance gets worse, and the CEHHO algorithm obtains
the optimal solution as N = 40.

5) CASE 5: PARALLEL REACTIONS IN TUBULAR REACTORS
Parallel reaction refers to the process in which the reactants
participating in the reaction can carry out several different
reactions in parallel without affecting each other, and finally
generate the main product and the secondary product. The
faster reaction or larger proportion is called the main reaction.
The rest are sided reactions. The reaction process is A- > B,
A->C, and themathematical model established is as follows:

max J (tf ) = C2(tf )

TABLE 9. Experimental results of different methods in case 4.

FIGURE 18. Continuous stirred tank reactor.



dC1

dt
= −[u(t)+ 0.5u2(t)]C1(t)

dC2

dt
= u(t)C1(t)

0 ≤ u(t) ≤ 5, C1(0) = 1mol/L,
C2(0) = 0mol/L, tf = 1h

(27)

In the formula, C1(t) is the concentration of reactant A
participating in the reaction, C2(t) is the concentration of
product B, and u(t) is the saturation of the control variable.
Table 10 shows the solution results of different methods.
Figure 20 shows the trajectory of the control variables with
N = 10, 20, 30, and 50. Figure 21 shows the iteration of
the objective function. Figure 22 shows the concentration
changes of reactants and products.

It can be seen from Table 10 that when the number of
segments is N = 10, the solution result of literature [6] is
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FIGURE 19. Control variable trajectory diagram.

FIGURE 20. Iteration diagram of objective function(N = 40).

0.57224, the solution result of literature [3] is 0.572241, and
the solution result of the CEHHO algorithm proposed in this
paper is 0.57224198, and the solution result is similar to the

FIGURE 21. Variable change diagram.

above literature.When the number of segments isN = 20, the
result of the literature [3] is 0.57330, and the solution result
of the CEHHO algorithm is 0.57339573. When the number
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FIGURE 22. Control variable trajectory diagram.

FIGURE 23. Iteration diagram of objective function.

of segments is N = 30, the result of the literature [6] is
0.57342, and the solution result of the CEHHO algorithm is
0.57349470. The solution accuracy of the CEHHO algorithm

FIGURE 24. Graph of height change of reactants and products.

is higher than that of the literature [45] with the number
of segments N = 40, which adopts the average segmenta-
tion combined with the seagull optimization algorithm and
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TABLE 10. Experimental results of different methods in case 5.

literature [3]. When N = 50, the solution result of the
CEHHO algorithm is 0.57357526, which is the highest in
Table 10. the figure of merit.

VI. CONCLUSION
This paper proposes a chaotic elite Harris hawk optimization
algorithm. First, since the initialized population influences
the quality of the solution, Logistics chaos is used instead
of random initialization to enhance the diversity of the pop-
ulation, which plays a role in preventing the algorithm from
falling into local optimum. Secondly, since the transition from
the exploration stage to the exploration stage is determined
by the escape energy factor, and the escape energy factor
used in the original text is linearly decreasing, only the global
search is carried out in the early stage of the population evolu-
tion, and only local exploration is carried out in the later stage,
which is easy to fall into Local optimization, to better adjust
the global and local dynamic balance, this paper proposes
a nonlinear decreasing escape energy factor. Finally, for the
hard siege and soft siege strategies in the development stage,
according to the average position information of individuals,
this paper proposes a new update strategy and based on the
idea of greedy selection, the position with better fitness value
is reserved. Through the numerical experiments of unimodal
and multimodal functions, the experimental results show that
the CEHHO algorithm has the advantages of avoiding the
population falling into local optimum, premature conver-
gence, and improving the solution accuracy. The CEHHO
algorithm combined with the bisection method is used to
solve various optimization problems in the dynamic opti-
mization of the chemical industry. Through five chemical
experiments, it is shown that the CEHHO algorithm has a
good solution ability.

Although the improved HHO algorithm shows good solu-
tion performance, in terms of time complexity, due to too
many divisions, the time cost is the largest. Therefore, in the

future research direction, non-uniform discretization can be
used to control the control variables are split.
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