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ABSTRACT In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is
accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval
system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of
approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé
approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown
numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs
and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which
third order system is reduced to first order model as well as second order model. To prove applicability of
the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative
comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits.
Further, performance indices are specified for dissimilarities between responses of system and model. The
obtained results depict the effectiveness and efficacy for the proposed method.

INDEX TERMS Discrete interval systems, interval system, padé-approximation, Routh approximation,
model order diminution.

I. INTRODUCTION
In many real-time engineering and industrial applications,
systems are represented by higher order (HO) transfer
functions. These higher order systems (HOSs) are very
complex for study and complicated for control design. Due
to limitations associated with HOSs, order diminution is nec-
essary to obtain the comparatively lower-order model (LOM)
without eliminating its important characteristics. In the
diminution process of stable HOS, it is also desired to
obtain stable LOM. But, in some cases, it is found that
stability of LOM is difficult to retain. In addition, matching
of steady-state of existing system with its LOM often fails
in some cases. In literature [1]–[10], various model order
diminution (MOD) techniques are available for determination
of stable LOMs. The steady state matching of these obtained
LOMs are also ensured to acquire better LOM.

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniruddha Datta.

The MOD techniques are employed for diminution of
large-scale systems in frequency-domain as well as in time-
domain, both. Some of the predominant techniques are
Padé approximation method [11], biased factor division
method [12], Routh approximation (RA) method [13]–[15],
stable approximation method [9], direct series and dominant
pole method [2], [3], stability equation method [16], etc.
Further, some other order diminution techniques utilized are
mixed methods [4]–[9]. In mixed approaches, two order
diminution methods are combined in order to achieve better
stable LOM. Generally, implementation of mixed methods
are limited to continuous non-interval systems.

In literature [2], [17]–[20], several methods are also
available for DIS. Some of the methods in this category
are direct series and dominant pole retention [2], Padé
and multipoint Padé approximation [17], [18], Gamma-
delta approximation [19], etc. The prospective two new
approaches of order diminution for DISs are differentiation
calculus [21] and Mikhailov stability criterion [20]. In some
articles [1], [22]–[24], relevant works on DIS are presented
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by exploiting different order diminution methods. Along with
these available MOD techniques in literature, Kharitonov
polynomials technique of MOD is also available and
implemented in several areas, related to control applications
[25]–[27], microgrid systems [28], [29], power systems [30],
[31], etc. This technique is oriented towards the solutions
which are relevant to expletive of dimensionality in HOSs.
The advantages of this technique lies not only in the matching
of steady-state but also in its preservation of stability,
transient state matching, efficiency of approximation, and
simpler computation. The salient features of this method can
be listed as simple to understand and ease of implementation.

In this proposed work, MOD of DIS is done by
employing mathematical procedures entitled as Kharitonov
polynomials technique. Diminution of DIS is accomplished
by utilizing Routh-Padé approximation and matching of
Markov-parameters (MPs) along with TMs for transformed
continuous interval system (CIS) fromDIS. The denominator
of desired LOM is determined using Routh table. However,
Padé approximation is employed for deriving the numerator
of desired LOM. In Padé approximation, the matching of
expansion coefficients about ω = 0 are utilized. The param-
eters calculated by this expansion are commonly termed as
TMs. The matching parameters derived by expanding HOS
about ω = ∞ are also utilized. The parameters derived from
this expansion about ω = ∞ are known as MPs [4]. The
MPs and TMs are achieved in a manner where inversion
of denominator of system transfer function is not required.
In addition, there is no necessity to solve a set of linear
interval equations to achieve MPs and TMs. With the help of
MOD of DISs, the superiority and effectiveness of derived
MPs and TMs are assured. A third order DIS as a test
system is considered in support of proposed methodology.
Moreover, the derived LOM from MOD preserves the
stability of system. The results are compared utilizing time
responses. The performance indices of proposed model
are compared with those of the recently proposed order
reduction methods. The illustrations show the significant
improvement in the system approximation through the
proposed method in comparison with the other conventional
approaches.

This paper is organized in five different sections. Section I
includes introduction of proposed method and motivation
behind the proposedworkwith the help of available literature.
A brief discussion of the previous works on MOD for CISs
and DISs is also provided. The description of problem state-
ment is specified in Section II. The proposed methodology
for determination of denominator coefficients and numerator
coefficients of desired LOM using diminution process of
HOSs is given in Section III. In this section, flow chart of
proposed method is also provided. The numerical experi-
ments and results are depicted in Section IV, The obtained
results are compared with the results already available in
literature in this section, to validate the proposed method.
Finally, Section V comprises conclusion by incorporating
future scope of the proposed work.

II. THE PROBLEM FORMULATION
Suppose, the transfer function of higher order (HO) discrete
interval system (DIS) of order h is represented as

Gh(z) =
[ξ−h−1, ξ

+

h−1]z
h−1
+ · · · + [ξ−1 , ξ

+

1 ]z+ [ξ−0 , ξ
+

0 ]

[ϕ−h , ϕ
+

h ]z
h + · · · + [ϕ−1 , ϕ

+

1 ]z+ [ϕ−0 , ϕ
+

0 ]
(1)

where, [ξ−0 , ξ
+

0 ], [ξ−1 , ξ
+

1 ], · · · , [ξ−h−1, ξ
+

h−1] and [ϕ−0 , ϕ
+

0 ],
[ϕ−1 , ϕ

+

1 ], · · · , [ϕ
−

h−1, ϕ
+

h−1] are coefficients of numerator
and denominator of HO system in discrete domain, respec-
tively. The discrete interval transfer function given in (1)
is transformed into transfer function in ω-domain by using
bi-linear transformation approach i.e z → (1 + ω). Thus,
higher order interval system (HOIS) in ω-domain changes to

Vh(ω) =
[u−h−1, u

+

h−1]ω
h−1
+ · · · + [u−1 , u

+

1 ]ω + [u−0 , u
+

0 ]

[v−h , v
+

h ]ω
h + · · · + [v−1 , v

+

1 ]ω + [v−0 , v
+

0 ]
(2)

The expansions of system given in (2) about ω = ∞ and
ω = 0 are obtained as

Vh(ω) = 81ω
−1
+82ω

−2
+ · · · +8kω

−k
+ · · · (3)

Vh(ω) = τ0 + τ1ω + τ2ω2
+ · · · + τkω

k
+ · · · (4)

where, Mk = 8k for k = 1, 2, · · · are MPs and Tk = τk
for k = 0, 1, · · · are TMs of (2). An l th order model of HO
system can be given as

V̂l(ω) =
[û−l−1, û

+

l−1]ω
l−1
+ · · · + [û−1 , û

+

1 ]ω + [û−0 , û
+

0 ]

[v̂−l , v̂
+

l ]ω
l + · · · + [v̂−1 , v̂

+

1 ]ω + [v̂−0 , v̂
+

0 ]
(5)

where, l < h.
The expansions of (5) about ω = ∞ and ω = 0 are given

by

V̂l(ω) = 8̂1ω
−1
+ 8̂2ω

−2
+ · · · + 8̂lω

−l
+ · · · (6)

V̂l(ω) = τ̂0 + τ̂1ω + τ̂2ω2
+ · · · + τ̂lω

l
+ · · · (7)

where, 8̂l for l = 1, 2, · · · are MPs of (6) and τ̂l for l =
0, 1, · · · are TMs of (7).

The required equivalent model of l th order model (l < h) is
calculated using the inverse bi-linear conversion method i.e.
ω→ (z- 1), as follows

ĝl(z) =
[ ˆα−l−1,

ˆα+l−1]z
l−1
+ · · · + [ ˆα−1 ,

ˆα+1 ]z+ [ ˆα−0 ,
ˆα+0 ]

[ ˆβ−l ,
ˆβ+l ]z

l + · · · + [ ˆβ−1 ,
ˆβ+1 ]z+ [ ˆβ−0 ,

ˆβ+0 ]
(8)

where, [ ˆα−0 ,
ˆα+0 ], [

ˆα−1 ,
ˆα+1 ], · · · , [

ˆα−l−1,
ˆα+l−1] and [ ˆβ−0 ,

ˆβ+0 ],

[ ˆβ−1 ,
ˆβ+1 ], · · · , [

ˆβ−l ,
ˆβ+l ] are the coefficients of numerator

and denominator of lower-order model (LOM) in discrete
domain, respectively.
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TABLE 1. Routh table for the denominator of CIS.

III. PROPOSED METHODOLOGY
A. THE STEPS FOR OBTAINING DENOMINATOR OF
MODEL
Using proposed method, denominator of continuous interval
system (CIS) is obtained with the help of Routh table. The
Routh table for denominator Dh(ω) of CIS is constructed as
shown in Table 1.
The elements of Routh table are derived using

εi,j =
εi−2,j+1εi−1,1 − εi−2,1εi−1,j+1

εi−1,1
(9)

In (9), i ≥ 3 and 1 ≤ j ≤ (h − i + 3)/2. The denominator,
D̂l(ω), of l th order model is calculated using (10) by utilizing
(h+ 1− l)th and (h+ 2− l)th rows of Routh Table 1.

D̂l(ω) = Dh+1−l,1ωl + Dh+2−l,1ωl−1

+Dh+1−l,2ωl−2 + · · · (10)

B. MARKOV-PARAMETERS (MPs) AND
TIME-MOMENTS (TMs)
The denominator of system shown in (2) can be expressed in
interval form as

Dh(ω) = ℘0 + ℘1ω + ℘2ω
2
+ ℘3ω

3
+ · · · + ℘hω

h

= [℘−0 , ℘
+

0 ]+ [℘−1 , ℘
+

1 ]ω + [℘−2 , ℘
+

2 ]ω
2

+ [℘−3 , ℘
+

3 ]ω
3
+ · · · + [℘−h , ℘

+

h ]ω
h (11)

where, [℘−h , ℘
+

h ] are coefficients of ωh with ℘−h as lower
bound (LB) and ℘+h as upper bound (UB) of interval
[℘−h , ℘

+

h ]. For (11), the Kharitonov polynomials derived are

Dh1(ω) = ℘
−

0 + ℘
−

1 ω + ℘
+

2 ω
2
+ ℘+3 ω

3
+ · · · (12)

Dh2(ω) = ℘
+

0 + ℘
−

1 ω + ℘
−

2 ω
2
+ ℘+3 ω

3
+ · · · (13)

Dh3(ω) = ℘
+

0 + ℘
+

1 ω + ℘
−

2 ω
2
+ ℘−3 ω

3
+ · · · (14)

Dh4(ω) = ℘
−

0 + ℘
+

1 ω + ℘
+

2 ω
2
+ ℘−3 ω

3
+ · · · (15)

The stability of the interval polynomial (11) can be
determined using the four Kharitonov polynomials listed
in (12)-(15). In general, the Kharitonov polynomials repre-
sented in (12)-(15) can be written as

Dhk (ω) = κ0 + κ1ω + κ2ω2
+ κ3ω

3
+ · · · (16)

Taking (16) into account in the place of (11), interval system
represented in (2) tends to be

Vh(ω) =
[u−h−1, u

+

h−1]ω
h−1
+ · · · + [u−1 , u

+

1 ]ω + [u−0 , u
+

0 ]

κ0 + κ1ω + κ2ω2 + κ3ω3 + · · · + κhωh

(17)

Now, MPs are computed by expansion of (17) about ω = ∞.
The MPs are given as

81 =
[u−h−1, u

+

h−1]

κh

82 =
[u−h−2, u

+

h−2]−81κh−1

κh

83 =
[u−h−3, u

+

h−3]−81κh−2 −82κh−1

κh
... (18)

Similarly, expansion of (17) about ω = 0 provide the TMs as

τ0 =
[u−0 , u

+

0 ]

κ0

τ1 =
[u−1 , u

+

1 ]− τ0κ1
κ0

τ2 =
[u−2 , u

+

2 ]− τ0κ2 − τ1κ1
κ0

... (19)

In general, MPs as obtained in (18) are written in (20).

8p =
uh−p
κh
−

p−1∑
i=1

κh−p+i8i

κh
, p = 1, 2, 3, · · · (20)

Similarly, the generalized expression for determination of
TMs can be given as

τp =
up
κ0
−

p−1∑
i=0

κp−iτi

κ0
, p = 0, 1, 2, · · · (21)

In similar fashion, expressions for MPs and TMs of model
given in (5) are denoted by

8̂p =
ûl−p
κ̂l
−

p−1∑
i=1

κ̂l−p+i8̂i

κ̂l
, p = 1, 2, 3, · · · (22)

τ̂p =
ûp
κ̂0
−

p−1∑
i=0

κ̂k−iτ̂i

κ̂0
, p = 0, 1, 2, · · · (23)

C. THE STEPS FOR OBTAINING NUMERATOR OF THE
MODEL
After attaining denominator, D̂l(ω) of desired model using
(10), numerator, N̂ l(ω) can be also obtained by matching first
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TABLE 2. Routh table for denominator Dh1(ω).

l MPs and TMs of system and model. The matching is done
as

τ̂k = τk , k = 0, 1, · · · , (u− 1)

8̂k = 8k , k = 1, 2, · · · , v; v = l − u (24)

It can be concluded from (24), that l MPs and TMs are
required for matching to derive the desired model in total.

D. IMPLEMENTATION OF PROPOSED METHOD
The steps of implementing the proposed method are
described in the flowchart as shown in Fig. 1.

IV. TEST CASES AND RESULTS
Let, a third order DIS [9], [19], [22], [23], [32] be

G(z) =
[8, 10]+ [3, 4] z+ [1, 2] z2

[0.8, 0.85]+ [4.9, 5] z+ [9, 9.5] z2 + [6, 6] z3
(25)

The discrete system represented in (25) is transformed by
replacing z = 1+ ω into continuous system as

Vh(ω)

=
[12, 16]+[5, 8]ω+[1, 2]ω2

[20.7, 21.35]+[40.9, 42]ω+[27, 27.5]ω2+[6, 6]ω3

(26)

Now, for this test case, Kharitonov polynomials obtained
in (12)-(15) turn out to be

Dh1(ω) = 20.7+ 40.9ω + 27.5ω2
+ 6ω3 (27)

Dh2(ω) = 21.35+ 40.9ω + 27ω2
+ 6ω3 (28)

Dh3(ω) = 21.35+ 42ω + 27ω2
+ 6ω3 (29)

Dh4(ω) = 20.7+ 42ω + 27.5ω2
+ 6ω3 (30)

Taking (27) in account, the transfer function given in (17)
becomes

Vh1(ω) =
[12, 16]+ [5, 8]ω + [1, 2]ω2

20.7+ 40.9ω + 27.5ω2 + 6ω3 =
Nh(ω)
Dh1(ω)

(31)

The Routh Table 1 for denominator of (31) is modified to
Table 2.

Using (10), first order and second order denominator
polynomials as derived from Table 2 are

D̂l,11(ω) = 20.7+ 36.38ω (32)

D̂l,12(ω) = 20.7+ 36.38ω + 27.5ω2 (33)

FIGURE 1. Flowchart of proposed method.

The first MP and first two TMs of (31) are calculated
using (20) and (21). These are obtained as

81 = [0.167, 0.333]
τ0 = [0.5797, 0.7729]
τ1 = [−1.285,−0.7589]

 (34)
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FIGURE 2. Step response of the original system and LOM for lower limit.

By matching of first TM of system and model, τ0 = τ̂0, the
first order model is attained as

V 1p
τ0 (ω) =

[12, 16]
20.7+ 36.38ω

(35)

The second order model is attained by matching first MP and
first TM as 81 = 8̂1 and τ0 = τ̂0, respectively. The second
order model obtained is

V 1p
τ81(ω) =

[12, 16]+ [4.4, 9.07]ω
20.7+ 36.38ω + 27.5ω2 (36)

While, the model attained by matching first and second
TMs as τ0 = τ̂0 and τ1 = τ̂1, is given by

V 1p
τ01(ω) =

[12, 16]+ [−5.5103, 12.4096]ω
20.7+ 36.38ω + 27.5ω2 (37)

Now, taking (28) into consideration, transfer function of (17)
replaces to

Vh2(ω) =
[12, 16]+ [5, 8]ω + [1, 2]ω2

21.35+ 40.9ω + 27ω2 + 6ω3 =
Nh(ω)
Dh2(ω)

(38)

The Routh table represented in Table 1 for denominator
of (38) is reconstructed into Table 3.

TABLE 3. Routh table for denominator Dh2(ω).

From (10), first order and second order denominator
polynomials are obtained by utilizing Table 3 as

D̂l,21(ω) = 21.35+ 36.16ω (39)

D̂l,22(ω) = 21.35+ 36.16ω + 27ω2 (40)

The first MP and first two TMs of (38) are calculated with the
help of (20) and (21) as

81 = [0.167, 0.333]
τ0 = [0.562, 0.7494]
τ1 = [−1.20,−0.7019]

 (41)
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FIGURE 3. Step response of the original system and LOM for higher limit.

By equating the first TM as τ0 = τ̂0, first order model is
attained as

V 2p
τ0 (ω) =

[12, 16]
21.35+ 36.16ω

(42)

The second order model is calculated by matching first MP
and TM, respectively, as81 = 8̂1 and τ0 = τ̂0. The obtained
second order model is given as

V 2p
τ81(ω) =

[12, 16]+ [4.3, 8.91]ω
21.35+ 36.16ω + 27ω2 (43)

However, by matching the first and second TMs, respectively
as τ0 = τ̂0 and τ1 = τ̂1, the second order model derived is
given as

V 2p
τ01(ω) =

[12, 16]+ [−5.2991, 12.1097]ω
21.35+ 36.16ω + 27ω2 (44)

Now, by considering (29), the transfer function given in (17)
modifies to

Vh3(ω) =
[12, 16]+ [5, 8]ω + [1, 2]ω2

21.35+ 27ω + 27ω2 + 6ω3 =
Nh(ω)
Dh3(ω)

(45)

For (45), Table 1 changes to Table 4.

TABLE 4. Routh table for denominator Dh3(ω).

The Table 4 is used to determine the denominator of
LOM for (45). By utilizing (10), first order and second order
denominator polynomials as calculated from Table 4 are

D̂l,31(ω) = 21.35+ 37.26ω (46)

D̂l,32(ω) = 21.35+ 37.26ω + 27ω2 (47)

The first MP and first two TMs of (45), are calculated
using (20) and (21). These are

81 = [0.167, 0.333]
τ0 = [0.562, 0.7494]
τ1 = [−1.24,−0.7308]

 (48)
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FIGURE 4. Impulse response of the original system and LOM for lower limit.

By matching first TM of system and model as τ0 = τ̂0, the
first order model calculated is

V 3p
τ0 (ω) =

[12, 16]
21.35+ 37.26ω

(49)

While, the second order model is obtained by equating first
MP,81 = 8̂1 and first TM, τ0 = τ̂0 of the system and desired
model. The second order model becomes

V 3p
τ81(ω) =

[12, 16]+ [4.3, 8.91]ω
21.35+ 37.26ω + 27ω2 (50)

The LOMmodel attained by matching first and second TMs,
τ0 = τ̂0 and τ1 = τ̂1, is provided as follows

V 3p
τ01(ω) =

[12, 16]+ [−5.5339, 12.3381]ω
21.35+ 37.26ω + 27ω2 (51)

Using (30), transfer function given in (17) changes to

Vh4(ω) =
[12, 16]+ [5, 8]ω + [1, 2]ω2

20.7+ 42ω + 27.5ω2 + 6ω3 =
Nh(ω)
Dh4(ω)

(52)

To obtain the desired LOM models, Routh Table 1 turns
out to be Table 5, for denominator of (52).

TABLE 5. Routh table for denominator Dh4(ω).

By utilizing (10), first order and second order denominator
polynomials are calculated as depicted in (53) and (54),
respectively.

D̂l,41(ω) = 20.7+ 37.48ω (53)

D̂l,42(ω) = 20.7+ 37.48ω + 27.5ω2 (54)

The first MP and first two TMs of (52), computed using (20)
and (21), are

81 = [0.167, 0.333]
τ0 = [0.5797, 0.7729]
τ1 = [−1.33,−0.7898]

 (55)
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FIGURE 5. Impulse response of the original system and LOM for higher limit.

The first order model derived by matching first TM of
system and model, τ0 = τ̂0 is given as

V 4p
τ0 (ω) =

[12, 16]
20.7+ 37.48ω

(56)

The second order model obtained by matching first MP and
first TM, 81 = 8̂1 and τ0 = τ̂0 is written as

V 4p
τ81(ω) =

[12, 16]+ [4.4, 9.07]ω
20.7+ 37.48ω + 27.5ω2 (57)

By matching first and second TMs, τ0 = τ̂0 and τ1 = τ̂1,
respectively, second order model obtained is given as

V 4p
τ01(ω) =

[12, 16]+ [−5.8042, 12.6187]ω
20.7+ 37.48ω + 27.5ω2 (58)

By combining the models given in (35), (42), (49) and (56),
first order interval model of original system modifies to

V p
1 (ω) =

[12, 16]
[20.7, 21.35]+ [36.16, 37.48]ω

(59)

Similarly, second order interval models, attained by
considering models given in (36), (43), (50) and (57),

and (37), (44), (51) and (58) are provided in (60) and (61),
respectively.

V p
τ8(ω) =

[12, 16]+ [4.3, 9.07]ω
[20.7, 21.35]+ [36.16, 37.48]ω + [27, 27.5]ω2

(60)

V p
τ (ω) =

[12, 16]+ [−5.8042, 12.6187]ω
[20.7, 21.35]+ [36.16, 37.48]ω + [27, 27.5]ω2

(61)

The models proposed in (59), (60) and (61) can be converted
into the continuous system by replacing ω with (z− 1). After
this replacement, models obtained are

V p
1 (z)=

[12, 16]
[−16.78,−14.81]+[36.16, 37.48] z

(62)

V p
τ8(z)=

[2.93, 11.7]+[4.3, 9.07] z
[10.22, 12.69]+[−18.84, 16.52] z+[27, 27.5] z2

(63)

V p
τ (z)=

[−0.61, 21.8042]+[−5.8042, 12.6187] z
[10.22, 12.69]+[−18.84, 16.52] z+[27, 27.5] z2

(64)
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FIGURE 6. Bode response of the original system and LOM for lower limit.

FIGURE 7. Bode response of the original system and LOM for higher limit.

A comparative study of step, impulse and Bode responses
of HOS and LOM are presented for proposed model as
depicted in (62) and proposed model as provided in (63),

along with the models obtained by existing methods [2],
[9], [17], [19], [32], [33]. The step responses are shown
in Fig(s). 2 and 3, and Fig(s). 4 and 5 depict the impulse
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TABLE 6. Comparison of time-domain specification for lower limits.

TABLE 7. Comparison of time-domain specification for upper limits.

TABLE 8. Comparison of performance indices of LOM for lower limit.

TABLE 9. Comparison of performance indices of LOM for higher limit.

responses. Bode responses are provided in Fig(s). 6 and 7.
From the figures presented, it is clear that LOMs derived
for original system employing proposed technique are much
closer than other techniques available in literature. Further,
the obtained LOMs from proposed method are compared
with already available LOMs in terms of time-domain
specifications and performance indices.

The Table 6 and Table 7 provide the information and
comparative analysis of proposed LOMs and other avail-
able LOMs on the basis of time-domain specifications.
Table 6 and Table 7 are presenting the time-domain
specifications for upper and lower limits of first order

model and second order model, respectively. The tabulated
time-domain specifications are peak-time, rise-time, peak-
value, and settling-time. It is clear from bold values of the
tables, that the values of proposedmodels are closer to system
in comparison with others LOMs.

To further demonstrate appropriate comparisons of pro-
posed models, various performance indices are also obtained
in Tables 8 and 9. The performance indices incorporated
in tables are integral-time-multiplied-absolute-error (ITAE),
integral-square-error (ISE), integral-time-multiplied-square-
error (ITSE), and integral-absolute-error (IAE). These perfor-
mance indices are tabulated for both, upper and lower limits.
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Performance error indices values, presented in Tables 8 and 9,
also prove the superiority of proposed method.

V. CONCLUSION
In this paper, Markov-parameters (MPs) and time-moments
(TMs) of discrete interval systems (DISs) are utilized for
model order diminution (MOD). The Routh-Padé approxima-
tion technique is utilized to obtain lower order model (LOM)
of DIS. The Routh-Padé approximation method guarantees
the stability of obtained LOM. The presented technique is
validated with the help of a test system. To describe the
superiority of proposed method, impulse, step, and Bode
responses are plotted. The results are compared with other
well-known and recently published works available in the
literature on the basis of performance indices and time-
domain specifications. The future work of this contribution
lies in extension of proposed technique for multi-input-multi-
output (MIMO) system. This work can also be extended to
design the controller for DIS in future. Additionally, other
approximation techniques should be investigated for order
diminution of single-input-single-output and MIMO DISs.

APPENDIX
Appendix A: Interval Arithmetic

[<,=]+ [µ, σ ] = [<+ µ,= + σ ],

[<,=]− [µ, σ ] = [<− σ,= − µ],

[<,=]− [<,=] = 0,

[<,=]× [µ, σ ] = [min (<µ,<σ,=µ,=σ) ,

max (<µ,<σ,=µ,=σ)],

[<,=]/[µ, σ ] = [<,=]
[
1
σ
,
1
µ

]
, µ 6= 0, σ 6= 0,

[<,=]/[<,=] = 1, < 6= 0, = 6= 0.
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