
Received May 24, 2022, accepted June 13, 2022, date of publication June 17, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3184002

Improved MM-MADRL Algorithm for Automatic
Tuning of Multiparameter Control Systems
HONGMING ZHANG 1, WUDHICHAI ASSAWINCHAICHOTE 1, AND YAN SHI2
1Department of Electronic and Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi,
Bangkok 10140, Thailand
2Graduate School of Science and Technology, Tokai University, Kumamoto 862-8652, Japan

Corresponding author: Wudhichai Assawinchaichote (wudhichai.asa@kmutt.ac.th)

This work was supported in part by the Petchra Pra Jom Klao Scholarship; and in part by the Department of Electronic and
Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi.

ABSTRACT Control systems are widely used in our lives, and good control can be achieved by obtaining
the optimal tuning parameters of the control system. The number of parameters that need to be adjusted
for different control systems varies. With an increase in tuning parameters, the difficulty of tuning grows.
Therefore, this paper proposes an improved monkey multiagent DRL (IMM-MADRL) algorithm and selects
3 test functions to test the setting environment of 2-7 parameters. Thus, these parameters are adjusted. The
IMM-MADRL algorithm is based on the modified monkey-multiagent DRL (MM-MADRL) algorithm, and
its initialization method, position update method and somersault operation are further improved so that it
can perform good parameter tuning for a control system with many parameters. The simulation part of this
paper proves the advantage of the IMM-MADRL algorithm in a multiparameter control system.

INDEX TERMS Incomplete differential PID controller, modified monkey-multiagent DRL (MM-MADRL)
algorithm, improved modified monkey-multiagent DRL (IMM-MADRL) algorithm, optimization.

I. INTRODUCTION
Currently, many control systems are used in our lives, such as
PID control systems, QFT control systems, fractional-order
PID control systems, CRONE control systems and incom-
plete differential PID control systems [1]–[6]. The adjust-
ment parameters of these control systems are in the range
of 3-7, and different control methods have different advan-
tages. It is known that the PID control system is the most
widely used. On this basis, many researchers have proposed
more novel control systems based on PID control, such as
fractional-order PID control and incomplete differential PID
control. These two systems contain 4-5 adjustment param-
eters that can achieve better actual control (control effect).
The parameter autotuning algorithm will help us to better
determine the optimal parameter combination of various con-
trol systems. At present, many automatic tuning algorithms
have been proposed [7]–[36], and good results have been
achieved through experimental tests, such as the hybrid bacte-
ria foraging optimization algorithm and particle swarm opti-
mization (hBFOA–PSO) algorithm, Bat algorithm (BA), and
chaotic genetic algorithm (CGA). These swarm intelligence

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

algorithms follow fixed search patterns and automatically
tune the parameters of the control system through appropri-
ate parameter initialization settings. However, these swarm
intelligence algorithms may fall into a local optimal solu-
tion. Therefore, new swarm intelligence learning algorithms
that combine the reinforcement learning algorithm [37]–[50]
and swarm intelligence algorithm have been proposed by
researchers, such as the Q-SLP algorithm and MM-MADRL
algorithm [51] and [52]. These algorithms interact with the
environment by using reinforcement learning algorithms and
reward their users. Feedback reduces the interference of arti-
ficially set parameters while taking advantage of the swarm
algorithm.

The MM-MADRL algorithm [52] is a swarm intelli-
gence learning algorithm that was proposed in 2020. The
algorithm combines the Multiagent Reinforcement Learning
Algorithm (MADDPG) and the Monkey Swarm Algo-
rithm (MA) in a nonlinear PID control environment.
Combining the parameter environment with the operation
of the jump interval can obtain good parameter tuning
results. Furthermore, researchers have also expounded some
shortcomings and limitations of the MM-MADRL algo-
rithm, and the algorithm itself still has much room for
improvement.

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64729

https://orcid.org/0000-0003-3379-4858
https://orcid.org/0000-0003-1333-5646
https://orcid.org/0000-0001-5981-5683

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

Therefore, based on the principle of MM-MADRL, this
paper improves the four steps of initialization, environment
design, position update and hopping interval and proposes
the IMM-MADRL algorithm, which renders the preceding
algorithm suitable for various types of control systems.
In the simulation experiment, the test function and incomplete
differential PID control system are used for testing and
compared with the original MM-MADRL algorithm. The
experimental results prove the advantages of the improved
algorithm. Therefore, the contributions of this paper can be
summarized as follows:

1. The IMM-MADRL algorithm is proposed for the self-
tuning of incomplete differential PID parameters.

2. The IMM-MADRL algorithm control system has more
parameter dimensions.

3. We improve the environment design, initialization,
location update and somersault operation

4. The code for IMM-MADRL and the code for the
incomplete differential PID controller are written in
Python.

II. TECHNICAL BACKGROUND
A. INCOMPLETE DIFFERENTIAL PID CONTROLLER
From the basic principle of PID control, we know that the
introduction of differential signals can improve the dynamic
characteristics of the system, but there is also a problem
in that it is easy to introduce high-frequency disturbances,
especially when the deviation disturbance changes abruptly.
To solve this problem, people introduce low-pass filtering.
This is the basic idea of incomplete differential PID control.
In the literature [5], the incomplete differential PID controller
is compared with the original PID controller, and it has been
proven that the incomplete differential PID controller is supe-
rior to the original PID controller. This controller contains the
following two structures:

FIGURE 1. First type of control structure.

From Figures 1 and 2, the transfer function of the low-pass
filter is:

Gf (s) =
1

Tf s+ 1
(1)

From Figure 1, this structure is a combination of the dif-
ferential term and the first-order inertial ring. The calculation
formula of the kp and ki terms is unchanged, and the transfer

FIGURE 2. Second type of control structure.

function is as follows:

U (s) = (kp +
kp/TI
s
+

kpTDs
Tf s+ 1

)E(s)

U (s) = Up(s)+ UI (s)+ UD(s) (2)

Note that U (s) is the controller output. In addition, kp is
the proportion number, TI is the integration time constant,
TD is the differential time constant, Tf is the filter coefficient,
E(s) is the bias input and UP(s),UI (s) and UD(s) are the
outputs of the proportional term, the integral term and the
derivative term, respectively.

After discretizing Equation (2) and deriving the differential
term, we have:

UD(s) =
(
kpTDs
Tf s+ 1

)
E(s) (3)

If we rewrite Equation (3) as a differential equation, then
we obtain:

uD(t)+ Tf
duD(t)
T
= kPTD

de(t)
dt

(4)

After discretizing Formula (4), we finally obtain:

uD(k) =
Tf

Ts − Tf
uD(k − 1)+ kP

TD
Ts − Tf

(e(k)− e(k − 1))

(5)

Note that k is the time count, k = 0, 1, 2 . . . , n and e is the
error. Ts is the sampling time. If we set,

a =
Tf

Ts + Tf
, then

Ts
Ts + Tf

= 1− a

As a result, the calculation formula of the final differential
term is:

uD(k) = kD(1− a)(e(k)− e(k − 1))+ auD(k − 1) (6)

From Figure 2, in this structure, a low-pass filter is con-
nected in series after the main body of the PID parameter
calculation. The purpose of this setup is to suppress the
influence of high frequency.

Therefore, the final output calculation formula of the con-
troller is as follows:

Ufinal(s) =
U (s)
Tf s+ 1

(7)

The calculation formula of this structure is very similar to
the calculation method of the original position PID control.

64730 VOLUME 10, 2022

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

Because this formula can be directly written according to
Formula (7) combined with the position PID formula, it will
not be written in detail here.

The purpose of the two kinds of incomplete differential
PID controllers is to smooth the error and accumulate the
effect. The value of a is a number between 0 and 1. When
the two limit values are 0, we actually have an ordinary
differential link without filtering, and when these two values
are 1, there is no differential effect. Therefore, the value of a
is crucial to the effect of incomplete differentiation.

B. MODIFIED MONKEY-MULTIAGENT DRL (MM-MADRL)
TheMM-MADRL algorithm is a swarm intelligence learning
algorithm that combines the advantages of the multiagent
reinforcement learning algorithm and themonkey group algo-
rithm. This algorithm makes each monkey interact with the
environment to obtain its climbing step size, which reduces
the influence of artificially set parameters and uses rewards
as the correct direction in the monkey group search. Accord-
ing to the basic concept of the somersault operation in the
literature [52], the somersault operation’s primary notion is
to make the search less likely to fall into the local optimal
solution while also making the algorithm converge faster.The
pseudocode of the algorithm is as follows [52]:

Based on the literature [52], the MM-MADRL algorithm
still has some weaknesses as follows:

1. The design of its environment is too biased toward the
controller optimization environment with 3 or fewer
parameters.

2. In the design of the number of agents, the number of
agents is also within the artificial control range, and
the number of agents in the reinforcement learning
algorithm will also affect the efficiency.

3. In the somersault operation, the optimal solution for
each step is used to jump the parameter range. In fact,
the use of the current optimal solution has not been
maximized.

4. In each step of the update, the state is actually reini-
tialized. This step slightly wastes the optimization effi-
ciency of the agent that is already close to the optimal
position.

III. IMM-MADRL DESIGN PRINCIPLES AND IDEAS
First, in the initialization process, because the original algo-
rithm is within the search rangeMn, the agents are randomly
and uniformly distributed. Still, the optimal position that
was found may also be included. To make the work of the
algorithmmore accurate, in the initialization part of the IMM-
MADRL algorithm, a repulsion factor is added; its purpose
is to exclude the optimal position during initialization, dis-
tribute the agents in the range M2n far from the optimal
position, and at the same time move 20% ofM2n to a random
uniform distribution within 80% of the range. The principle
of the repulsion factor is that the reward of the agent in the
initial position is not included in the range of less than 1.

Algorithm 1 Modified Monkey – Multiagent Deep
Reinforcement Learning Algorithm (MM-MADRL)
Set cycle search times T
for episode = 1 to T do
Initialize a random process β for action exploration,
receive initial state information x.
Set the number of search rounds episode_length = TC
split search spaceM = (M1, . . .MN)
for t = 1 to max_episode do
For each monkeym, select the action am = uθm(om)+β(t)
Return to the collection of all of themonkeys’ actions−→a =

(−→a1 , . . .
−→aN)

Store reward r = (r1,rN) and new state X ′ (x, −→a , r ,
x ′) in relay buffer D
Record the best position best_x ′ for each episode_length
Set the stop condition of the loop episode >10 && r ′-r <

0.001
do somersault ()
Start interval update after NC rounds from best_x ′ to obtain

(MAX_x, MIN_x),
c← x − (x −MAX_x) ∗ 0.1d ← x − (x −MIN_x) ∗ 0.1
Return to the main loop
Reach the set goal
Output the global Best_x
for monkey i = 1 to N do

Sample random min-batch of S samples
(Xm, am, rm,X

′m) from D.
Set ym = rm + γQu

′

m(X
′m, a′1,, a

′
N) |a′k=u′k (omk)

Update the critic by minimizing the loss:

L(θi) =
1
S

∑
j

(
yj − Qµi

(
xj, aj1, . . . , a

j
N

))2
Update the actor using the sampled policy gradient:

∇θiJ ≈
1
S

∑
j

∇θiµi

(
oji

)
∇aiQ

µ
i

(
xj, aj1, . . . , ai, . . . , a

j
N

)∣∣∣∣∣∣
ai=µi

(
oji

)
end for
Update target network parameters for each monkey i
θ ′i ← τθi + (1− τ)θ ′i
end for

end for

At the same time, when initializing the boundary, a new
boundary operation instruction is added, and an ac parameter
is added. The function of the ac parameter is that when
the wall is hit, the agent will no longer directly reach the
boundary but move to the boundary according to the value
of the action; for example, when ac=0.5, the agent moves
half of the current margin to the boundary. This behav-
ior makes the search coverage of the agent more accu-
rate, and it is not easy for the agent to fall into the local
optimal solution position in the process of shrinking the
scope.

VOLUME 10, 2022 64731

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

Because the initialized search range is enlarged, corre-
sponding changes are also made in the termination condition,
and a new termination rule is added. After enlarging the
random range of the starting point, it is still possible to finally
reach a local optimum. Hence, we add a new item to the
Convergence Judgment Conditions:

If the convergence condition of Modification 1 is reached
and max_reward is still less than the expected threshold, the
exploration range is reset to the full space, and the entire
update process is repeated. The upper limit of the number of
cycles can be specified.

At the same time, changes are also made in each position
update, and the optimal solution position of the previous
step is taken as the initial point. The original MM-MADRL
algorithm is initialized to the initial position in every position
update but records every time the optimal position of the
agent is obtained according to the movement of the envi-
ronment. The optimal position data are used as the basis for
the algorithm to operate the jump interval, and the space is
reduced and jumped according to the operation. There are
some repetitive search operations of the agent.

The most important change in the IMM-MADRL algo-
rithm is the change in the somersault operation. In the som-
ersault operation, the idea of a multiagent reinforcement
learning algorithm is also introduced. The basic ideas are as
follows:

1. Record the final optimal solution obtained by the pre-
vious search.

2. Using the search boundary as the starting point, pull all
agents back to the boundary.

3. Take the optimal solution that has been obtained as the
target and let the agent make a quick jump in the target
direction.

4. Set a pseudogradient between the agent and the target,
and let the agent use the pseudogradient direction as its
search direction.

The specific implementation is as follows:
Space boundary setting: starting from the center point/zero

point and extending to both ends in any dimension, two
boundary points are obtained when the boundary is touched.
Hence, we have a total of 2×n_states boundary points.
Pseudogradient setting: when exploring the i step to the

known optimal point Best_state, record the current position
as statei, and then use statei−1 and statei to calculate the
previous drive gradient 1pre. The postdrive gradient 1pro
can be calculated by using statei andBest_state, and the linear
combination of these two gradients satisfies the requirement
of the pseudogradient. Currently, the linear combination coef-
ficient is 0.5 (the parameters have room for adjustment), i.e.,
1 = 0.5×1pre+ 0.5×1pro

Furthermore, the update step size λ is also reduced from
0.9 to 0.5 with the number of explorations:
statei = statei−1 + λ 1

‖1‖2
(the parameters have room for

adjustment).
Termination condition: the distance between the explo-

ration points from all directions and the previous optimal

point is less than a certain threshold (the parameters have
room for adjustment), namely, one thousandth of the original
space width.

In this way, our process is equivalent to making good use
of the final optimal solution obtained after the subject search
and using it as the goal to let the agent perform a fast jump
search of global scope. This process permits the algorithm to
eliminate the local optimal solution if possible. If there is no
better solution than the previous optimal solution in the final
search, this solution will be output. If there is a better position
than the previous optimal solution and there is no significant
change after several consecutive runs of the algorithm, this
solution will be output as the global optimal solution.

The pseudocode of the IMM-MADRL algorithm is as
follows:

Therefore, IMM-MADRL works as follows:
1. Initialization
2. Execute the subject search operation and record the

optimal position each time.
3. Continue the search with the optimal position as the

initial point, and repeat the operation of 2.
4. Repeat operations 2 and 3 until the termination condi-

tion is reached or the total number of iterations is met.
Then, the current optimal position is recorded.

5. Take the current optimal position as the target point,
pull all of the agents back to the boundary, and dis-
tribute them evenly on the boundary.

6. Use the pseudogradient direction as the search direction
to perform a full-scale fast search.

7. End the algorithm and output the final solution.

IV. PARAMETER TUNING BY THE IMM-MADRL
ALGORITHM
This section redesigns the environment for the control system
with more parameters and analyzes the environment design
by taking the incomplete differential PID controller used in
this paper as an example. First, when using the algorithm,
the number of parameters must correspond to the state in the
algorithm, which would imply that the search spaces formed
by different numbers of parameters are different. In short,
we have 3-7 possible dimensions. The parameter adjustment
environment of the control system for each tuning param-
eter is regarded as a 3-7 dimensional environment. Conse-
quently, the first step is to normalize the parameter range. The
so-called normalization process gives a total parameter range.
For example, we have 4 parameters such that each one has a
different range, but each one is within (0,2). This range can
include the range applicable to all parameters; then, when
using the algorithm, only one overall (0,2) range will be
given as the overall search space. This operation can make
the algorithm applicable to more dimensional adjustment.
The parameter system is not limited to a control system of
a certain dimension.

Here, semi_diameter is used to calculate the position of
the remaining n_agent-1 other points around the starting
point, and the current value is 1/3 of the size of the current

64732 VOLUME 10, 2022

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

Algorithm 2 ImprovedModifiedMonkey –Multiagent Deep
Reinforcement Learning Algorithm (IMM-MADRL)
Set cycle search times T
Enter shrinkage factor lamb (lamb∈(0,1))
Entry boundary (a, b)
Set somersault max steps = 200
for episode = 1 to T do
Initialize a random process β for action exploration,
receive initial state information x.
Set the number of search rounds episode_length = TC
split search space Mn = (M1n, . . .MNn), repel the range M2n
far from the optimal position.
for t = 1 to max_episode do

For each monkeym, select the action am = uθm(om)+β(t)
Return to the collection of all of themonkeys’ actions−→a =

(−→a1 , . . .
−→aN)

Store reward r = (r1,rN) and new state state′ (x, −→a ,
r , x ′) in relay buffer D

Record the best position state for each episode_length
if episode >0:
search_range = [
[search_range[i][a] ∗ lamb + state ∗ (1 - lamb),
search_range[i][b] ∗ lamb + state ∗ (1 - lamb)]
for i in range(n_states)

]
else:
search_range = Initialize state
state = (Best_state, n_agents, search_range)
episode+ = 1

Termination condition setting()
now_reward =max_reward
reward_increase_ratio = |(now_reward-pre_reward)| /
|max(pre_reward)|, a, b)
if reward_increase_ratio <=0.01:

final_done_episode+ = 1
else:

final_done_episode = 0
if final_done_episode > 10:

if now_reward > -0.1:
finally_episode = True

else:
search_range = Initialize state
final_done_episode = 0
print(’reset range’)

if episode >100:
finally_done = True

somersault ()
Enter the optimal solution obtained in the previous step
Best_state
Return all individuals back to the boundary and distribute
them equally
across the boundary

now_set_pre = State_set =Best_state

Algorithm 2 (Continued.) Improved Modified Monkey –
Multiagent Deep Reinforcement Learning Algorithm
(IMM-MADRL)
now_set =state_set + pseudo_gra
pseudo_gra_pro = np.array(
[[(env.reward(state_set[i]) - max_reward) / (state_set[i][j]

-
max_state[j]) for j in range(n_states)] for i in range(2 ∗

n_states)])
pseudo_gra_pre = np.array([[(env.reward(state_set[i]) -
env.reward(state_set_pre[i]))
/ (
state_set[i][j] - state_set_pre[i][j]) for j in range(n_states)]

for i in
range(2 ∗ n_states)])

Termination condition setting()
Output the global Best_state
for monkey i = 1 to N do:
Sample random min-batch of S samples (Xm, am, rm,X

′m)
from D.

Set ym = rm + γQu
′

m(X
′m, a′1,, a

′
N) |a′k=u′k (omk)

Update the critic by minimizing the loss:

L(θi) =
1
S

∑
j

(
yj − Qµi

(
xj, aj1, . . . , a

j
N

))2
Update the actor using the sampled policy gradient:

∇θiJ ≈
1
S

∑
j

∇θiµi

(
oji

)
∇aiQ

µ
i

(
xj, aj1, . . . , ai, . . . , a

j
N

)∣∣∣∣∣∣
ai=µi

(
oji

)
end for
Update target network parameters for each monkey i
θ ′i ← τθi + (1− τ)θ ′i
end for

end for

exploration space. This is a vector of n_state dimensions
because the exploration space may not be the same size in
each dimension.

When constructing other points, the method used is to start
from the starting point and move the semi_diameter length
in the positive or negative direction of a dimension to obtain
a newpoint. Therefore, considering that each dimension can
obtain two new points for a total of 2×n_state new points, the
number of agents is set to 2×n_state+1. After the construc-
tion is completed, if a point jumps out of the boundary, it falls
directly onto the boundary.

After this change, we can only change the value of n
according to the number of parameters, where n=1,2,3. . . n,
which corresponds to the number of parameters and the num-
ber of agents. The algorithmwill make its own decision based

VOLUME 10, 2022 64733

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

on the formula and then proceed to the initialization operation
in the previous section.

The basic parameters are set as follows:
It can be seen from Table 1 that the process of setting the

basic parameters has greatly reduced the need to manually
input the initial values of the parameters from the table, which
will further reduce the impact of the manual settings on the
algorithm search.

TABLE 1. Basic parameter list.

Taking the Ackley test function used in the simulation
in this paper as an example, based on the setting method
mentioned above, the basic parameters are set as follows:

It can be seen from TABLE 2 that when running the
IMM-MADRL algorithm in different environments, it is only
necessary to change the search range of the parameters and
the number of parameters for everything to work. In addition,
the specific environment for adjusting parameters needs to be
in the setting where the algorithm begins.

The design principle of the reward function is the same as
the design principle in the literature [52]. This paper uses IAE
as the reward function, and its expression is:

IAE =
∫
∞

o
|e(t)|dt (8)

In part of the somersault operation, in addition to IAE,
the design of the reward function also sets a pseudogradient
direction and uses double judgment criteria, which is equiva-
lent to setting a new search environment based on the optimal
solution of the previous operation during the flip operation.
Therefore, the agent can perform a full-range search more
accurately and comprehensively in the somersault operation.

In this paper, the environment is replanned and designed
for the control system of a multiparameter environment.
Moreover, the idea of reinforcement learning is also added to
the somersault operation, and a separate search environment
for the somersault operation is designed to make better use
of the best results found in the previous steps. The optimal
solution can also better solve the problem of falling into a
local optimal solution.

TABLE 2. Parameters list for ackley test function.

V. SIMULATION AND RESULTS ANALYSIS
The simulation uses Jupiter in Anaconda Navigator, Pycharm
2020.3.3, Python 3.6 and PyTorch to edit the IMM-MADRL
code and simultaneously edit the code of the incomplete
differential PID controller used in the simulation. Ornstein–
Uhlenbeck process (OU) noise has also been added to the
simulation, and the system running on the simulation is an
Intel(R) Core(TM) i7-6700TCPU@2.80GHz,Windows 10,
Alienware.

A. TEST FUNCTION SIMULATION
This paper uses three test functions to test the IMM-MADRL
algorithm. The three test functions are the Ackley func-
tion, Rastrigin function and Griewank function. They run in
a 2-7 dimensional environment and obtain results. The algo-
rithms are compared, and the resulting graph after the com-
parison is obtained. The maximum number of iterations
is 1000, dim= 2-7 and lamb=0.5. The results are as follows:

From Figures 3, 4 and 5, it can be seen that the
IMM-MADRL algorithm can perform well in different
parameter dimensions of the three test functions. In Figure 5,
to make the curve easier to observe, the rewards of different
dimensions are changed. The threshold has no effect on the
final result. It can clearly be seen from the image that the
IMM-MADRL algorithm can exactly find the optimal solu-
tion for parameter tuning in different parameter dimensions.

To intuitively see the advantages of the improved
IMM-MADRL algorithm, this paper compares it with the
MM-MADRL algorithm and obtains the corresponding
curves. The parameters are optimized, and the image is as
follows:

Figures 6, 7 and 8 show that the green and brown curves
in the figure mainly describe the state of a single opti-
mization, while the blue and pink curves mainly describe
the average curve state after multiple optimizations. The
improved IMM-MADRL algorithm has better performance
than the original MM-MADRL algorithm in the optimization
environment of each dimension. It can clearly be seen that

64734 VOLUME 10, 2022

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

FIGURE 3. Griewank function convergence curve.

FIGURE 4. Ackley function convergence curve.

FIGURE 5. Rastrigin function convergence curve.

IMM-MADRL’s convergence speed is faster and the accuracy
rate is guaranteed with higher efficiency. After using the
new initialization method designed in this paper, the initial
position of the algorithm optimization is very far from the
optimal position, while the original MM-MADRL algorithm

FIGURE 6. Griewank function contrast curve.

FIGURE 7. Ackley function contrast curve.

FIGURE 8. Rastrigin function contrast curve.

sometimes randomly selects the initial point close to the opti-
mal position at the beginning of the initialization. In this way,
the shrinking of the range needs to be carried out quickly;
otherwise, the algorithm will ignore the real optimal position,
causing the algorithm to fall into a local optimal solution.

VOLUME 10, 2022 64735

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

A random distribution can make the shrinking area of the
range smooth, and the shrinking of the range can force a
shrinkage coefficient to adjust according to different search
space ranges, which would improve the algorithm. Moreover,
changing the control system environment can make the algo-
rithm more suitable.

The new design method of the somersault operation can be
seen from the experimental results, and it has achieved good
performance. The specific comparison results of this step are
as follows: the threshold of the reward is set to −1, and the
number of steps of the flip operation is approximately 50-200
steps with dim=4, 5 and 6. The results are as follows:

The values in Tables 3, 4 and 5 are the reward values. The
smaller the value of the reward is, the better the performance
will be. It can be seen from the tables that the steps of the
somersault operation are well adapted to multidimensional
parameter optimization, which can make the algorithm more
accurate. As the search dimension increases, the effect of the
somersault operation is more obvious, and the global optimal
solution can be found more ideally. Thus, the algorithm has
been substantially improved.

TABLE 3. Somersault operation effect data with dim =4.

TABLE 4. Somersault operation effect data with dim =5.

TABLE 5. Somersault operation effect data with dim =6.

B. CONTROL SYSTEM SIMULATION
Based on the first part, this paper describes an incomplete
differential PID controller for the simulation of this part. The
code of the algorithm’s main function is as follows:

From Python example code 1, it can be seen that the
incomplete differential PID controller used in this article

Python Example Code 1 Incomplete Differential PID
Controller
error = pid.set_val - out_now
Res = pid.Kp ∗ (error - pid.error_last) + pid.Ki ∗ error +\

pid.Kd ∗ (error - 2 ∗ pid.error_last + pid.error_prev) +
pid..lam ∗ math..fabs(error - pid.error_last) +
pid..mu ∗ math..fabs(error - 2 ∗ pid.error_last +

pid.error_prev)
pid.error_prev = pid.error_last
pid.error_last = error
Return Res

FIGURE 9. Control diagram.

contains 5 parameters. This controller’s structure combines
the 2 structure diagrams in the first part of this article and
adds 2 low-pass filters. After the simulation test and verifica-
tion, the five parameters can run normally.

The transfer function is as follows:

Python Example Code 2 First-Order Relay System Transfer
Function
SystemFunc = lambda x: 5 ∗ x + np.random.normal
(0, 0.5, 1)[0]

From Python example code 2, the edited formula is con-
verted into a mathematical formula as follows:

G(s) = K s+ b (9)

Note that K is time constant, b is noise value.
It is similar to a PWM speed control system in that it is a

simple linear control system. Simultaneously, Gaussian noise
is introduced to the transfer function, causing the system to
become unstable and forming a linear unstable system. The
following is its control principle:

The search range of the controller parameters is (0,1),
n= 5, setpoint= 100 and the operation results are as follows

For more forensics, next change the target and set the target
to 200 and 400. The results are as follows:

Figures 11 and 12 show that using the IMM-MADRL
algorithm to change the setting height of the PID system with
incomplete differentiation of 5 parameters can also obtain
the optimal parameter combination, and the simulation curve
shows that the effect is good.

The reward part’s judgment requirements were then
adjusted, and ISE, ITAE, and ITSE [53] were employed to
make the control system operate at setpoint=200, with the
following results:

64736 VOLUME 10, 2022

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

FIGURE 10. Incomplete differential PID controller result.

TABLE 6. Result data with setpoint=100.

FIGURE 11. Result with setpoint = 200.

Figures 13-15 depict the control system’s output curves
when ITSE, ISE, and ITAE are utilized as rewards. The
data findings are shown in Tables 9, 10, and 11. The results
reveal that when different indicator functions are employed
as rewards, the derived parameters are varied, as are the
computation time and overshoot.

TABLE 7. Result data with setpoint=200.

FIGURE 12. Result with setpoint = 400.

TABLE 8. Result data with setpoint=400.

In the comprehensive simulation, the figure shows that
the improved IMM-MADRL algorithm in this paper can be
applied to the parameter setting of the control system in a
multiparameter environment, and the effect is better than that
of the MM-MADRL algorithm. The figure shows that the
IMM-MADRL algorithm is used for parameter tuning of the
actual PID control system with incomplete differentiation of
5 parameters, and good results have been achieved.

VOLUME 10, 2022 64737

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

FIGURE 13. Result with reward for ITSE.

TABLE 9. Result data with reward for ITSE.

FIGURE 14. Result with reward for ISE.

The IMM-MADRL proposed in this research combines
the benefits of the monkey group algorithm. According to
the literature [52], the original MM-MADRL algorithm is
suitable for 3-dimensional nonlinear PID due to the func-
tioning of the somersault step. The IMM-MADRL algorithm
in this study is a further refinement of the MM-MADRL
algorithm, which broadens the algorithm’s application area
and allows it to optimize the control system with additional

TABLE 10. Result data with reward for ISE.

FIGURE 15. Result with reward for ITAE.

TABLE 11. Result data with reward for ITAE.

parameters. Because the IMM-MADRL algorithm simulta-
neously blends the somersault operation with the concept of
reinforcement learning, the control system’s parameter self-
tuning produced good results; it is difficult to fall into the
local optimal solution, and it can also converge faster when
compared to the MM-MADRL algorithm and the traditional
Actor-Critic algorithm. According to the comparison curve
in Figure 6-8 of this work, the IMM-MADRL algorithm
has more advantages than the MM-MADRL algorithm, thus

64738 VOLUME 10, 2022

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

when improving the control system, the advantage is that
the ideal solution can be discovered more accurately, and the
convergence time is also enhanced.

VI. CONCLUSION AND DISCUSSION
In this paper, a new IMM-MADRL algorithm is proposed
based on the MM-MADRL algorithm. This new algorithm
focuses on the somersault step to design the somersault
operation based on reinforcement learning, and good results
are achieved. In addition, the environment is replanned and
designed so that the algorithm can be applied. For more
control system parameter tuning, our system has made a
certain contribution to the swarm intelligent learning algo-
rithm for controller parameter optimization and makes the
use of the algorithm more diverse. However, because the
algorithm is based on Python for code editing and simulation
and there is very little Python-related controller code, such
as some QFT-based controllers and fractional-order PID con-
trollers, the Python codes of these controllers have no relevant
literature.

Hence, in this paper, based on both PID control theory
and incomplete differentiation, a similar control system with
5 parameters has been written, the algorithm has been tested
and simulated, and good results have also been achieved.
It is proven that the IMM-MADRL algorithm can achieve
good results in a control system environment with more
parameters.

In future work, researchers can use Python to edit the
code of more complex control systems, such as the CRONE
controller mentioned above, so that the test of the algorithm
can be more diversified. Furthermore, in the algorithm itself,
some new ideas for agent action and position updating can be
set to further improve the algorithm itself.

Finally, researchers have read and understood more oper-
ation modes of the swarm intelligence algorithm, and
researchers have summarized some concepts, which can be
combined into the algorithm proposed in this article. The
proper use and combination can also improve the working
effect of the algorithm itself.

REFERENCES
[1] The Control Handbook, PID Control, IEEE Press, Piscataway, NJ, USA,

1996, pp. 198–209.
[2] A. Hoyo, J. C. Moreno, J. L. Guzman, and F. Rodriguez, ‘‘Robust QFT-

based feedback linearization controller of the greenhouse diurnal temper-
ature using natural ventilation,’’ IEEE Access, vol. 7, pp. 64148–64161,
2019.

[3] P. S. Rao and I. Sen, ‘‘Robust tuning of power system stabilizers using
QFT,’’ IEEE Trans. Control Syst. Technol., vol. 7, no. 4, pp. 478–486,
Jul. 1999.

[4] J. Z. Shi, ‘‘A fractional order general type-2 fuzzy PID controller design
algorithm,’’ IEEE Access, vol. 8, pp. 52151–52172, 2020.

[5] G. Hu, X. Q. Fu, M. Y. Nie, and H. Li, ‘‘Temperature control system
of chamber electromechanical based on incomplete differential PID algo-
rithm,’’ Adv. Mater. Res., vols. 1044–1045, pp. 885–888, Oct. 2014.

[6] A. Morand, X. Moreau, P. Melchior, M. Moze, and F. Guillemard,
‘‘CRONE cruise control system,’’ IEEE Trans. Veh. Technol., vol. 65, no. 1,
pp. 15–28, Jan. 2016.

[7] J. Pongfai, X. Su, H. Zhang, and W. Assawinchaichote, ‘‘A novel optimal
PID controller autotuning design based on the SLP algorithm,’’ Expert
Syst., vol. 37, no. 2, pp. 1–15, Apr. 2019.

[8] M. Jamil, A. Waris, S. O. Gilani, B. A. Khawaja, M. N. Khan, and
A. Raza, ‘‘Design of robust higher-order repetitive controller using phase
lead compensator,’’ IEEE Access, vol. 8, pp. 30603–30614, 2020.

[9] W. Assawinchaichote, ‘‘A non-fragile H∞ output feedback controller for
uncertain fuzzy dynamical systemswithmultiple time-scales,’’ Int. J. Com-
put., Commun. Control, vol. 7, no. 1, pp. 8–19, 2012.

[10] N. Kaewpraek and W. Assawinchaichote, ‘‘H∞ Fuzzy state-feedback
control plus state-derivative-feedback control synthesis for photovoltaic
systems,’’ Asian J. Control, vol. 18, no. 4, pp. 1441–1452, Jul. 2016.

[11] J. Pongfai, W. Assawinchaichote, P. Shi, and X. Su, ‘‘Novel D-SLP
controller design for nonlinear feedback control,’’ IEEE Access, vol. 8,
pp. 128796–128808, 2020.

[12] A. Sungthong and W. Assawinchaichote, ‘‘Particle swam optimization
based optimal PID parameters for air heater temperature control system,’’
Proc. Comput. Sci., vol. 86, pp. 108–111, Jan. 2016.

[13] S. Ruangsang and W. Assawinchaichote, ‘‘A novel robust H∞ fuzzy
state feedback plus state-derivative feedback controller design for non-
linear time-varying delay systems,’’ Neural Comput. Appl., vol. 36,
pp. 6303–6318, Oct. 2019.

[14] J. Günther, E. Reichensdörfer, P. M. Pilarski, and K. Diepold, ‘‘Inter-
pretable PID parameter tuning for control engineering using gen-
eral dynamic neural networks: An extensive comparison,’’ 2019,
arXiv:1905.13268.

[15] J. Fišer and P. Zítek, ‘‘PID controller tuning via dominant pole placement
in comparison with ziegler-nichols tuning,’’ IFAC-PapersOnLine, vol. 52,
no. 18, pp. 43–48, 2019.

[16] N. P. Putra, G. J. Maulany, F. X. Manggau, and P. Betaubun, ‘‘Attitude
quadrotor control system with optimization of PID parameters based
on fast genetic algorithm,’’ Int. J. Mech. Eng. Technol., vol. 10, no. 1,
pp. 335–343, 2019.

[17] J. Xu, ‘‘An expert PID control algorithm based on anti-integration satura-
tion,’’ in Proc. IEEE 2nd Adv. Inf. Technol., Electron. Autom. Control Conf.
(IAEAC), Mar. 2017, pp. 1536–1539.

[18] F. Kang and Y. B. Liang, ‘‘Research on modeling and simulation of
expert_PID controlled servo system based on MATLAB/S-function,’’
Appl. Mech. Mater., vols. 347–350, pp. 604–609, Aug. 2013. [Online].
Available: https://www.scientific.net/Home/Contacts

[19] B. Zhou, S. Xie, and J. Hui, ‘‘H∞ control for T-S aero-engine
wireless networked system with scheduling,’’ IEEE Access, vol. 7,
pp. 115662–115672, 2019.

[20] M. Farahani, S. Ganjefar, and M. Alizadeh, ‘‘Intelligent control of SSSC
via an online self-tuning PID to damp the subsynchronous oscillations,’’ in
Proc. 20th Iranian Conf. Electr. Eng. (ICEE), May 2012, pp. 336–341.

[21] I. Carlucho, M. De Paula, S. A. Villar, and G. G. Acosta, ‘‘Incremental Q-
learning strategy for adaptive PID control of mobile robots,’’ Expert Syst.
Appl., vol. 80, pp. 183–199, Sep. 2017.

[22] A. G. Alexandrov and M. V. Palenov, ‘‘Adaptive PID controllers: State of
the art and development prospects,’’ Autom. Remote Control, vol. 75, no. 2,
pp. 188–199, Feb. 2014.

[23] Y. Liao, L.Wang, Y. Li, Y. Li, and Q. Jiang, ‘‘The intelligent control system
and experiments for an unmannedwave glider,’’PLoSONE, vol. 11, no. 12,
Dec. 2016, Art. no. e0168792.

[24] Z. Jing, ‘‘Application and study of expert PID intelligent control,’’ in Proc.
IOP Conf. Mater. Sci. Eng., vol. 563, no. 4, Jul. 2019, Art. no. 042084.

[25] C. Vorrawan, W. Assawinchaichote, Y. Shi, and X. Su, ‘‘Fuzzy-modeled
prescribed performance integral controller design for nonlinear descriptor
system with uncertainties,’’ IEEE Access, vol. 8, pp. 89520–89533, 2020.

[26] S. Ruangsang andW. Assawinchaichote, ‘‘Control of nonlinear Markovian
jump system with time varying delay via robust H∞ fuzzy state feedback
plus state-derivative feedback controller,’’ Int. J. Control, Autom. Syst.,
vol. 17, no. 9, pp. 2414–2429, 2019.

[27] F.-J. Lin, H.-J. Shieh, L.-T. Teng, and P.-H. Shieh, ‘‘Hybrid controller with
recurrent neural network for magnetic levitation system,’’ IEEE Trans.
Magn., vol. 41, no. 7, pp. 2260–2269, Jul. 2005.

[28] V. Kachitvichyanukul, ‘‘Comparison of three evolutionary algorithms: GA,
PSO, and DE,’’ Ind. Eng. Manage. Syst., vol. 11, no. 3, pp. 215–223,
Sep. 2012.

[29] E. Anene and G. K. Venayagamoorthy, ‘‘PSO tuned flatness based control
of a magnetic levitation system,’’ in Proc. IEEE Ind. Appl. Soc. Annu.
Meeting, Oct. 2010, pp. 1–5.

[30] G. Chen, Z. Li, Z. Zhang, and S. Li, ‘‘An improved ACO algorithm
optimized fuzzy PID controller for load frequency control in multi area
interconnected power systems,’’ IEEE Access, vol. 8, pp. 6429–6447,
2020.

VOLUME 10, 2022 64739

H. Zhang et al.: Improved MM-MADRL Algorithm for Automatic Tuning of Multiparameter Control Systems

[31] S. Kansit andW.Assawinchaichote, ‘‘Optimization of PID controller based
on PSOGSA for an automatic voltage regulator system,’’ Proc. Comput.
Sci., vol. 86, pp. 87–90, Jan. 2016.

[32] S. Kiong Nguang, W. Assawinchaichote, P. Shi, and Y. Shi, ‘‘H∞ fuzzy
filter design for uncertain nonlinear systems with Markovian jumps: An
LMI approach,’’ in Proc., Amer. Control Conf., 2005, pp. 1799–1804.

[33] S. Panda, B. Mohanty, and P. K. Hota, ‘‘Hybrid BFOA–PSO algorithm for
automatic generation control of linear and nonlinear interconnected power
systems,’’ Appl. Soft Comput., vol. 13, no. 12, pp. 4718–4730, Dec. 2013.

[34] K. Premkumar and B. V. Manikandan, ‘‘Fuzzy PID supervised online
ANFIS based speed controller for brushless DC motor,’’ Neurocomputing,
vol. 157, pp. 76–90, Jun. 2015.

[35] R. K. Sahu, S. Panda, and N. K. Yegireddy, ‘‘A novel hybrid DEPS
optimized fuzzy PI/PID controller for load frequency control of multi-
area interconnected power systems,’’ J. Process Control, vol. 24, no. 10,
pp. 1596–1608, Oct. 2014.

[36] K. Premkumar and B. V. Manikandan, ‘‘Bat algorithm optimized fuzzy
PD based speed controller for brushless direct current motor,’’ Eng. Sci.
Technol., Int. J., vol. 19, no. 2, pp. 818–840, Jun. 2016.

[37] L. J. Ke and X. Q. Wang, Reinforcement Learning, 1st ed. Beijing, China:
Tsinghua Univ. Press, 2019, pp. 1–176.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. ICML, Jun. 2014,
pp. 387–395.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. ICLR, 2016, pp. 1–14.

[40] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ 2017,
arXiv:1706.02275.

[41] B. Luo, Y. Yang, and D. Liu, ‘‘Adaptive Q-learning for data-based optimal
output regulation with experience replay,’’ IEEE Trans. Cybern., vol. 48,
no. 12, pp. 3337–3348, Apr. 2018.

[42] C.-F. Juang, ‘‘Combination of online clustering and Q-value based GA
for reinforcement fuzzy system design,’’ IEEE Trans. Fuzzy Syst., vol. 13,
no. 3, pp. 289–302, Jun. 2005.

[43] Q. Wei, L. F. Lewis, Q. Sun, P. Yan, and R. Song, ‘‘Discrete-time deter-
ministic Q -learning: A novel convergence analysis,’’ IEEE Trans. Cybern.,
vol. 47, no. 5, pp. 1224–1237, May 2017.

[44] H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, ‘‘Modelling the dynamic
joint policy of teammates with attention multi-agent DDPG,’’
arXiv:1811.07029v1, 2018.

[45] E. Wei, D. Wicke, D. Freelan, and S. Luke, ‘‘Multiagent soft Q-learning,’’
arXiv:1804.09817, 2018.

[46] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[47] R. E. Wang, M. Everett, and J. P. How, ‘‘R-MADDPG for partially observ-
able environments and limited communication,’’ 2020, arXiv:2002.06684.

[48] J. Han, C.-H. Wang, and G.-X. Yi, ‘‘Cooperative control of UAV based on
multi-agent system,’’ in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA),
Jun. 2013, pp. 96–101.

[49] K. Shao, Y. Zhu, and D. Zhao, ‘‘StarCraft micromanagement with rein-
forcement learning and curriculum transfer learning,’’ IEEE Trans. Emerg.
Topics Comput. Intell. vol. 3, no. 1, pp. 73–84, Feb. 2019.

[50] J. E. Summers, J. M. Trader, C. F. Gaumond, and J. L. Chen, ‘‘Deep
reinforcement learning for cognitive sonar,’’ J. Acoust. Soc. Amer., vol. 143,
no. 3, p. 1716, Apr. 2018.

[51] J. Pongfai, X. Su, H. Zhang, and W. Assawinchaichote, ‘‘PID controller
autotuning design by a deterministic Q-SLP algorithm,’’ IEEE Access,
vol. 8, pp. 50010–50021, 2020.

[52] H. Zhang,W. Assawinchaichote, and Y. Shi, ‘‘New PID parameter autotun-
ing for nonlinear systems based on a modified monkey–multiagent DRL
algorithm,’’ IEEE Access, vol. 9, pp. 78799–78811, 2021.

[53] Y. J. Huo, ‘‘Auto-turning of optimum PID controller parameters based on
quantum-behaved particle swarm optimization,’’ Microelectron. Comput.,
vol. 29, no. 10, pp. 195–197, 2012.

HONGMING ZHANG was born in Kunming,
Yunnan, China, in 1993. He received the B.S.
degree in information and communication engi-
neering from the University of Mea Fah Luang,
ChiangRai, Thailand, in 2018, and theM.S. degree
in electronic and telecommunication engineering
from the King Mongkut’s University of Tech-
nology Thonburi, Bangkok, Thailand, in 2020,
where he is currently pursuing the Ph.D. degree.
From 2018 to 2020, he began research on PID

control systems, mainly in the aspects of intelligent algorithms and neural
networks, to optimize the PID system.

WUDHICHAI ASSAWINCHAICHOTE received
the B.S. degree (Hons.) in electrical engi-
neering from Assumption University, Bangkok,
Thailand, in 1994, the M.E. degree in electri-
cal engineering from Pennsylvania State Uni-
versity (Main Campus), University Park, PA,
USA, in 1997, and the Ph.D. degree in electrical
engineering from The University of Auckland,
New Zealand, in 2004. He is currently an Asso-
ciate Professor at the Department of Electronic and

Telecommunication Engineering, KingMongkut’s University of Technology
Thonburi (KMUTT), Bangkok. He has published a research monograph and
more than 20 research articles in international refereed journals indexed
by SCI/SCIE (Clarivate Analytics). His current research interests include
fuzzy control, robust control, optimal control, system and control theory,
computational intelligence, and PID controller design. He also serves as
an Associate Editor for the International Journal of Innovative Comput-
ing, Information and Control, and serves as a Reviewer for the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON FUZZY

SYSTEMS, the IEEE TRANSACTIONS ON CYBERNETICS, Neural Computing and
Applications, and IEEE ACCESS.

YAN SHI received the Ph.D. degree in informa-
tion and computer sciences from Osaka Electro-
Communication University, Neyagawa, Japan,
in 1997. He is currently a full-time Professor with
the Graduate School of Science and Technology,
Tokai University, Kumamoto, Japan. His research
interests include fuzzy reasoning and data mining.

64740 VOLUME 10, 2022

