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ABSTRACT Distributed intelligence is a well-known approach for optimizing interactions among numerous
smart devices that interconnect and operate together as Internet of Things (IoT) systems. A modern form of
human-machine collective intelligence emerges when humans interact with IoT systems in sociotechnical
environments such as smart homes. Fifth-generation (5G) communication networks are designed for
high-speed reliable wireless connectivity and expected to boost IoT and (distributed) collective intelligence
by revolutionizing human–device–human interactions. In this paper, we contribute a comprehensive review
of state-of-the-art sociotechnical environments that exhibit collective intelligence, supported by 5G-enabled
IoT. We discuss the latest developments in 5G and their implications for collective intelligence. Further,
we explain the key challenges for using 5G to support collective intelligence, e.g., data processing, security,
and radio resource management. Finally, we describe four practical applications of collective intelligence
to sociotechnical environments—road traffic control, unmanned aerial vehicles, electrical load demand
response, and augmented democracy.

INDEX TERMS Collective intelligence, fifth generation (5G) communication, sociotechnical environments,
wireless networks, Internet of Things (IoT).

I. INTRODUCTION
Throughout human history, humans have gathered as a
group and collectively made decisions that benefited the
group and its members. Collective decision-making has been
discussed and advocated by social scientists, economists,
and philosophers on the basis that a diverse collection of
independent decision-making individuals is often more likely
to make better decisions than individuals or even experts [1].

Until the 20th century, studies on collective
decision-making were usually confined to small groups

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

of humans (e.g., Condorcet’s jury theorem (1785) [2]).
However, two recent technological revolutions have trans-
formed the collective decision-making landscape. First, the
computing revolution—characterized by a tremendous boost
in computational power and storage capabilities—has led to
the development of devices that can observe the environ-
ment, perform computations, make independent decisions,
and act autonomously. Second, the Internet revolution—
characterized by a system of interconnected distributed
computers—has enabled these devices to communicate with
each other nearly synchronously with high accuracy. As a
result, the modern world consists of local and global systems
of networked architectures where numerous distributed
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devices—often called agents—exchange information and
take actions with a high level of autonomy. These distributed
agents are normally characterized by some amount of
intelligence, i.e., the ability to independently observe the
environment, make decisions, and perform actions to achieve
goals. Moreover, since these ‘‘agents’’ also typically interact
with other nearby agents through a communication network,
they are capable of active coordination to collectively make
decisions using, for example, mathematical tools such as
game theory. Furthermore, human and virtual (software)
agents often operate in the same environment today.

Thus, in modern collective decision-making, human and
virtual intelligent agents, who are distributed throughout
the action domain, interact to exchange information and
collectively make decisions to achieve goals, with or without
active discussions. This leads to a form of ‘‘shared’’
or ‘‘group’’ intelligence that is generally referred to as
collective intelligence. Thus, while earlier adopters of
the collective-intelligence concept referred to a form of
decision-making where humans alone collectively make
decisions to achieve a desirable outcome, a more updated
modern definition is as follows [3]:
Collective intelligence is a form of decision-making where

intelligent, distributed human and software agents, situated
in a networked communication system, receive information
and feedback from their immediate environment and other
agents and make decisions collectively to perform tasks that,
together, achieve a common desirable outcome.

Collective intelligence in this modern sense is character-
ized by four main features:

1) Collaboration: Human and intelligent software agents
make coordinated decisions.

2) Information exchange: Human and intelligent soft-
ware agents exchange information that is required to
achieve a common desirable outcome.

3) Distribution: Human and intelligent software agents
are dispersed in the network.

4) Self-management and adaption: Human and intel-
ligent software agents are capable of autonomously
adapting behaviors to manage themselves.

Here, it is important to note that collective intelligence
can include interactions between human–human agents,
human–machine agents or machine–machine agents, and this
paper focuses on human–machine agents wherever possible.
The key idea in collective intelligence is that collaboration
or cooperation among various individuals enables them to
accomplish tasks that are beyond the aggregation of their
individual capabilities. Note that in this sense, collective
intelligence expands on the concept of collective learning
that refers to a dynamic and cumulative process in which
knowledge is produced as an emergent result of dynamic
and evolutionary interactions where information is shared
between humans and software agents [4], [5]. Collective
learning and collective intelligence are complex and highly
inter-disciplinary concepts. Just as knowledge and learning
are important essential ingredients for the formation of

human intelligence, the collective learning process is impor-
tant for the development of collective intelligence. In other
words, collective intelligence is the outcome of collective
learning, where collective learning is a fully decentralized
approach for coordinated multi-objective decision-making in
multi-agent distributed systems.

Collective intelligence (Fig. 1) concepts are most often
applied to decentralized sociotechnical environments, i.e.,
to system environments wherein people and technology inter-
act regularly using a decentralized approach for managing
the interactions. Many modern and futuristic technological
applications, e.g., traffic systems and smart homes, are decen-
tralized sociotechnical environments. Furthermore, in such
sociotechnical environments, the underlying communications
network is crucial for enabling the interactions among
the distributed agents. The fifth-generation communications
technology—popularly called 5G—is the latest commu-
nications technology standard that has emerged from a
tremendous collective effort to standardize, specify, design,
and manufacture the next generation of mobile communica-
tions [6]. 5G is an ambitious advancement that is expected to
go beyond the fourth generation of mobile networks (4G) and
its important innovation, mobile broadband communications.
In particular, 5G is expected to provide greater bandwidth and
higher download speeds and to revolutionize the way humans
interact with each other and with smart devices. Hence, 5G
is a key enabler of the Internet of Things (IoT) paradigm
and machine-to-machine communications, and consequently
collective intelligence [7], [8].

Therefore, in this paper, we discuss collective intelligence
enabled by 5G communications technology and applied to
decentralized sociotechnical environments characterized by
distributed agents and distributed intelligence. We present
the latest developments in 5G along with a discussion of
a recently developed related computing concept—pervasive
edge computing—and describe its theoretical foundations.
Both 5G and pervasive edge computing are expected to
revolutionize human–device–human interconnections and
support collective intelligence, butmany challenges remain to
realize fully developed practical solutions.We have identified
the key challenges—e.g., data processing, security, privacy,
and radio resource management—and described them in
detail, focusing on the current research status and future
research potential.

Since many modern and future technologies comprise
strong interactions between people and technology, espe-
cially via the increasingly ubiquitous Internet, collective
intelligence is applicable tomany fields, for example, medical
technology, energy sector, and public transportation. In par-
ticular, Internet-enabled applications are proliferating today,
leading to the creation of several sociotechnical environments
with strong human–machine interactions, and collective
intelligence (and learning) is a valuable paradigm to model
and optimize these interactions. In this paper, we have chosen
four modern practical sociotechnical environments where
some form of collective intelligence can be applied: road
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traffic control, unmanned aerial vehicles (UAVs), electrical
load demand response, and augmented democracy. We have
chosen these examples carefully to illustrate the application
of collective intelligence to different fields—transportation,
robotics, electricity grid, and sociology, respectively—that
have a huge impact on society and societal progress,
often directly affecting the environment, social interactions,
economic progress, politics, etc. The transportation sector, for
example, has one of the largest carbon footprint in several
countries, whereas electrification influences numerous socio-
economic factors, ranging from health to education [9], [10].
Therefore, in this paper, we demonstrate the wide appli-
cability of collective intelligence in modern society and to
impactful fields by surveying important previous and current
academic research, developments, and trends.

In contrast to this work, most survey papers and books on
collective intelligence have focused on general frameworks
and discussions without explicitly discussing the impact
of 5G communication technologies and 5G-enabled IoT,
and the consequent challenges and opportunities [11]–[13].
In this paper, we provide a holistic perspective on a
missing link in the current state-of-the-art on collective
intelligence, viz., the relationship of 5G communication with
collective intelligence and its impacts. First, based on the
discussions in prior literature and modern trends, we provide
a timely definition for collective intelligence. Then, the paper
explicitly and extensively surveys and discusses state-of-the-
art research on collective (distributed) intelligence in the
5G context. Moreover, this paper also highlights cross-layer
aspects of 5G and collective intelligence; that is, the paper
not only considers the application layer and the challenges
in their implementations, but also discusses the requirements
from the lower communication and infrastructural layers for
enabling efficient collective intelligence. Thus, this paper
presents state-of-the-art research in collective intelligence
and 5G-enabled collective intelligence that will enable
researchers to clearly the key ideas and principles, the
challenges that hinder successful implementations, and the
potential future developments.

The rest of this paper is organized as follows. Section II
explains the key concepts underlying the implementation
of collective intelligence in decentralized sociotechnical
environments. Section III deals with the challenges that still
remain before the promise of 5G-based collective intelligence
is realized. Section IV describes some practical applications
of collective intelligence to decentralized sociotechnical
environments, and Section V summarizes and concludes the
paper.

II. KEY CONCEPTS IN COLLECTIVE INTELLIGENCE
In this section, we explain the key concepts underlying the
implementation of collective intelligence—the decentralized
sociotechnical environments and IoT systems where it is
most naturally applied, 5G communications network that
supports its deployment, and the pervasive edge computing
architecture that enhances its capabilities and performance.

A. DECENTRALIZED SOCIOTECHNICAL ENVIRONMENTS
Collective intelligence is particularly suitable for decen-
tralized sociotechnical environments because they promote
all four characteristics, collaboration, distribution, infor-
mation exchange, and self-management. In this section,
we first explain the idea of the near-ubiquitous decentralized
sociotechnical environments and explain the impact of the
IoT paradigm on its proliferation.

Sociotechnical environments refer to system environments
defined by regular interactions between people and tech-
nology such as human–machine interactions and tactile
internet [14]–[16]. They are enabled by sociotechnical
systems in which designers attempt to jointly optimize both
the social and technical elements so that social criteria
such as human well-being and productivity have the same
weight as technical criteria such as device lifetimes or
efficiencies. In decentralized sociotechnical environments
(Fig. 2), the primary actors—people and technology—are
not only distributed in the network, but can also make
independent decisions. Decentralization is an important
approach for designing complex social environments with
distributed actors, giving several benefits such as pri-
vacy preservation, self-adaption, independence, and social
welfare [17]. The concept of sociotechnical systems and
environments has evolved from simple one-to-one interac-
tions between humans and machines to today’s idea that
sociotechnical environments comprise a collection ofmassive
number of IoT devices, where IoT refers to a network
of ‘‘intelligent’’ physical objects—i.e., objects embedded
with sensors, software, and technologies—that connect and
exchange data with other devices and systems over the
Internet [14]–[16].

IoT for decentralized sociotechnical environments has
been an active research area since early 2010s. In 2011,
Vermesan et al. [18] suggested a roadmap to practically
realize the IoT concept and design a complex social environ-
ment that enables pervasive IoT objects to dynamically and
sustainably coordinate with each other. Further, the benefits
of decentralized sociotechnical systems in the context of
self-adaption of IoT applications for decentralized services
have been explored extensively. For instance, Cherny-
shev et al. in [19] reported recent technological trends of IoT
devices and key challenges facing their implementation from
the viewpoints of network connectivity, data communication,
and smart services. They contended that the key feature of IoT
would be self-* capabilities, whichmeans that the IoT devices
will need to be designed such that they learn, configure,
act and react in runtime. In another work [20], Christian
and his group extensively discussed the design patterns for
self-adaptive systems and IoT. They defined self-adaptive
systems based on [21] and [22] along with a taxonomy of
centralized and decentralized self-adaptive systems. Four key
steps—monitor, analyze, plan, and execute (MAPE)—were
considered to be key for the basic implementationmechanism
of self-adaptive systems and dynamic IoT services. Some
real-world examples of MAPE include SmartSantander [23],
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FIGURE 1. Collective intelligence: a form of ‘‘group’’ intelligence that emerges when intelligent, distributed humans and software agents in a networked
communication system interact to take collective decisions or perform collaborative actions to achieve a common desirable outcome.

Feed me [24], DeltaIoT [25], Platform as a service, and
Xively [19].

Agent-based and multi-agent-based methods can also be
used to design complex decentralized self-adaptive systems
with key features such as autonomous control and cooperative
decisions [26]. In [27], interaction patterns were designed to
improve human interactions with ubiquitous IoT applications
considering social and behavioral relationships. Similarly,
the authors in [28] addressed the heterogeneity problem of
IoT devices using agent-based modeling with a three-pattern
strategy (strategy, dependency injection, and reflection),
while the authors in [29] designed the following eight patterns
for enabling the dynamic communication of IoT devices:
device gateway; device shadow; rules engine; device wakeup
trigger; remote lock and wipe; delta update; remote device
management; and visible light communication. And in [30],
the authors proposed security patterns for IoT for mobile
applications. Further, in [31], the authors investigated the
concepts of self-integration of various devices at run time
and proposed a decentralized framework that encourages

the re-usability of (i) application-independent decentralized
services and (ii) various IoT applications by the same
decentralized service.

These researches into IoT-enabled decentralization imple-
ment some form of collective intelligence, and Table 1 lists
the key collective intelligence principle explored by the
researchers. However, none of these researches implement
a complete collective intelligence solution, because of two
reasons. First, managing numerous decentralized devices and
their tradeoffs is a complex task. Secondly, an important
enabling technology—a fast, reliable, and secure communi-
cation network for numerous small interconnected devices—
is still not fully mature. In the next section, we will discuss
recent and current technological developments in the search
for building such a communication network.

B. FIFTH GENERATION (5G) COMMUNICATION
NETWORKS AND BEYOND
To realize its full potential, IoT-enabled decentralized
sociotechnical environments require a flexible
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TABLE 1. Collective-intelligence principles and characteristics in researches into IoT-enabled decentralized sociotechnical environments.

communication network that can support different require-
ments, from ultra-reliable low-latency communications to
massive connectivity [32]. Recent advances in 5G hold
great promise since they offer greater bandwidth, faster data
transmission, and improved spectral efficiency supported by
localized private networks and micro-operators [33]–[35].
In this section, we introduce the 5G communications
network and discuss its present status and future potential
as a key enabling technology of collective intelligence,
having been developed with the explicit intention to enable
communication between pervasive devices.

The International Telecommunication Union (ITU) estab-
lished the requirements for 5G through International Mobile

Telecommunications-2020 ((IMT-2020) and its specifica-
tions are still currently being deployed worldwide along with
the values and trends from the current International Com-
munications Union - Radio-communication Sector (ITU-R)
recommendations for 5G such as usage scenarios, traffic
estimates for 2020 and beyond, etc [35]. In these recom-
mendations, there is no explicit indication of the expectation
of traffic generated by collective intelligence (or collective
intelligence-like paradigms) or a proper traffic model for
collective intelligence. Further, 5G standards development
organisations, such as ITU, Third Generation Partnership
Project (3GPP), Institute of Electrical and Electronics
Engineering (IEEE), and 5G Infrastructure Public Private
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FIGURE 2. Decentralized sociotechnical environments, where people and technology are distributed in the network, but interact regularly and make
independent or collective decisions.

Partnership (5G PPP), have established the full buffer packet
arrival and Poisson packet arrival as the main traffic mod-
els [7], [36]. In the full buffer trafficmodel, an infinite amount
of data waits for transmission in the output buffer associated
with each data source. Since collective intelligence operates
with relatively numerous mobile terminals, it is plausible
to assume that the devices’ processing capacities and the
amount of information useful for training data generated by
each user are heterogeneous. Therefore, it yields random
time intervals (statistically different for two distinct mobile
terminals) between the sending packets. Thus, regardless
of the collective-intelligence technique adopted, the full
buffer model is a somewhat unrealistic approach to collective
intelligence. On the other hand, the Poisson packet arrival
model, in which the Poisson process is used to represent the

message arrivals in a packet-data network, characterizes this
scenario better.

5G is being specified to support a broad range of applica-
tions with diverse requirements such as gigabyte rates, smart
homes, smart cities, self-driving cars, industrial automation,
augmented reality, 3D videos, and Ultra-High Definition
(UHD) screens. These applications can be classified into
three major classes—enhanced mobile broadband (eMBB),
massive machine-type communications (mMTC), and ultra-
reliable low-latency communications (URLLC) [32]. eMBB
comprises applications with ultra-high data rate requirements
that can exceed 1 Gbits per second, e.g., interactive control of
IoT devices via augmented reality or communication among
industrial wireless routers or IoT gateways. The mMTC class
is focused on enabling energy-efficient communication to
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massive numbers of low-powered devices with low data
rate requirements, possibly reaching up to one million
connections/km2; this can support, for example, the massive
number of sensors in futuristic smart factories and smart
grids. URLLC incorporates a set of features that aim to
provide low latency (as low as onemillisecond) and ultra-high
reliability for time- and mission-critical applications such as
smart grids, remote surgery, industrial internet, and intelli-
gent transportation systems. The most important stringent
requirements, or the key performance indicators, are latency,
reliability and, availability [37]. Table 2 lists some of the
key requirements of 5G technology as specified in IMT-
2020 along with its relevance to collective intelligence
principles and applications [35], [38]–[40]. In this table,
peak data rate refers to the maximum attainable data rate
under error-free conditions; peak spectral efficiency to the
maximum theoretical data rate under standardized conditions
divided by channel bandwidth; user experienced data rate
to the fifth percentage point of the cumulative distribution
function (CDF) of the number of correctly received bits for a
certain time; 5th percentile user spectral efficiency to the fifth
percentage point of the normalized throughput of any user,
i.e., the number of bits that are accurately received; latency to
the time interval for a response to be received by the sender
with respect to the transmitted data; connection density to
the overall number of devices satisfying a targeted quality
of service (QoS) in a given area; reliability to the success
probability of a given amount of traffic transmission within a
determined duration of time, that is, the success probability
of transmission of the packets (layer 2 and layer 3) within
a mandatory time limit; and mobility to the maximum speed
of user equipment (UE) at which a predetermined QoS set is
achievable [35], [38]–[40].

To make these stringent applications possible, new tech-
nologies and strategies have been incorporated into 5G.
Massive multiple-input multiple-output (MIMO) is one such
technology [41]. By using a large number of antennas,
massive MIMO can realize spatial multiplexing through
beamforming and thereby support massive parallel access,
which is crucial for enabling low-latency communica-
tion [42]–[44]. Important advanced technologies have been
implemented in the core network of 5G, including novel
resource allocation protocols, network slicing, which is
enabled by software-defined networking (SDN), and network
function virtualization.

Furthermore, 5G expands the bandwidth of previous
generations of communication systems by leveraging new
radio frequencies, spanning from low and mid bands (sub-
1 GHz to 6 GHz) for long-range communication (important
to mMTC), to high bands above 26 GHz, known as
millimetric wave (mm-wave) spectrum, for ultra-high data
rates (important to eMBB) [45]. High-range bands have
the capacity to provide huge amounts of capacity across a
limited geographical area. Thus, mm-wave is key for 5G
implementations in areas where there are many devices and
a need for high capacity, such as dense cities [46]–[48].

However, a drawback of adopting the mm-wave spectrum
is that the transmitted signals are susceptible to stronger
attenuation and absorption, which limits the communication
range. To address this, the pervasive deployment of small
cells, also known as network densification [6], has become a
key feature of 5G networks. The employment of super-large
antenna arrays (with several hundreds of antenna elements) in
massive MIMO has also become indispensable to overcome
deep fading in mm-wave systems. Further, to overcome
propagation losses in mm-wave systems, a hybrid analog
and digital beamforming technique is employed resulting in
sufficient beamforming gains, along with reasonable energy,
cost and complexity [49].

The decentralized infrastructure of 5G makes it very suit-
able for supporting collective intelligence in sociotechnical
environments. It is possible, for instance, to implement
collective self-adaptive systems (CSAS) [3] by exploiting
the edge servers of small cells and efficiently computing
even the most complex tasks in a distributed and intelligent
manner. Diverse collective learning strategies, relying on
local or aggregate information of the network agents,
can be employed in such 5G-supported collective self-
adaptive systems; the agents’ information can be exchanged
both directly, between neighboring small cells (ideal for
reducing latency), and indirectly, by exploiting the core
network with ‘‘cloud computing’’ (ideal for ultra-complex
tasks). Further, grant-free random access techniques support
dynamic and asynchronous communication (required in
many IoT applications), and its integration into 5G is being
investigated [50]–[52].

Today, 5G is in the deployment phase around the world,
heralding a new era of ubiquitous connectivity, where
decentralized sociotechnical environments will become a
reality. However, although 5G generally provides a better
user experience to end users, there are a few drawbacks.
As commented previously, a typical issue of operating in
the mm-wave spectrum is the attenuation and absorption by
trees, towers, walls, and buildings [53]. Another drawback
is the costs related to the development and maintenance of
5G infrastructure, including the adaptation cost of existing
cellular infrastructure and the need for using massive antenna
arrays [54], [55]. The battery drain on 5G devices is
inefficient because of the complexity of signal processing
algorithms deployed in the end device. Moreover, current
commercial deployments of 5G are limited to urban areas,
which reduces the possibilities of ubiquitous rural access.
In general, most of the drawbacks can be summarized as
inefficient usage of the energy utilized during transmission.
This issue is one of the fundamental motivations for the
current research on sixth generation (6G) communication
networks [56]–[58].

Even as 5G is evolving and maturing, engineers and
researchers have already initiated the development of 6G
connectivity. Advanced multiple access techniques such as
non-orthogonal multiple access (NOMA) and rate-splitting
multiple access (RSMA) are being considered for boosting
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the connectivity capacity of 6G networks and supporting
super-overloaded scenarios [59], [60]. In some cases, solu-
tions based on some form of collective intelligence, such as
swarm intelligence, have been proposed [61], for example,
for joint task offloading and resource management in mobile
edge computing (MEC) systems that use NOMA [62].
Swarm intelligence and especially machine learning (ML)-
assisted swarm intelligence is still a nascent topic and a
prospective technique that has significant potential to address
the problems with existing multiple access technologies, such
as connectivity capacity, speed, and fair usage. UAVs are
another alternative since their flexibility and coverage make
them attractive for extending the communication range [63].
Furthermore, some sociotechnical applications envisaged in
6G, such as 3D holograms, may demand data rates of
the order of terabits per second, and achieving terahertz
communication, i.e., tetrahertz-spectrum bandwidths, is an
active topic of 6G research [45].

Intelligent reflecting surfaces (IRSs) are expected to be
another key technological component of 6G communication
systems. These disruptive devices can deliver higher spectral
and energy efficiencies by making the wireless environment
controllable and smart. More specifically, an IRS consists of
a set of software-configurable elements that, with adequate
phase and amplitudes of reflection, can collectively forward
impinging electromagnetic signals with an optimized radi-
ation pattern [64]. This attractive capability enables IRSs
to fine-tune the properties of the propagation environment
and implement functions such as beam steering, signal
absorption, and polarization control (potentially imposing
ultra-low power consumption) [64], [65].

C. PERVASIVE EDGE COMPUTING WITH 5G AND BEYOND
1) INTRODUCTION
Although recent advances in 5G hold great promise, new
developments in both radio access technologies and core
network solutions are needed to fully realize its potential.
Currently, the predominant network design comprises cellu-
lar systems based on human-generated data communication,
such as web browsing, video streams, or telephone calls,
that typically involves long data streams with dominance
of downlink, and cloud computing that involves centralized
data processing units working as X-as-a-Service [66]). In this
paradigm, the computations for data processing often require
tremendous processing capacity along with a high amount
of energy during the process of training and operation.
Current research aims to replace this traditional paradigm
by a new network design that is based on machine-type
communications comprising automated data communication
among devices and data transport infrastructures (without
involving humans) and edge computing [32], [67].

The edge computing paradigm aims to exploit the storage
and computing capabilities of different devices at (or near)
the network edge, where edge can be considered to be
any computing and networking resource, such as a smart

phone or a 5G base station, that lies between the data
source and the core network, also called the ‘‘cloud.’’ The
term pervasive edge computing then refers to a distributed
architecture with widespread deployment of these (potential)
edge computing elements in a network.1 The main aim of
pervasive edge computing is to move data processes away
from centralized servers so that at least some IoT applications
do not need to send their data through the core network,
thereby avoiding congestion and potentially high delays [68].
This can also reduce the processing capacity needed for
deep learning computations. Moreover, because pervasive
edge computing can pre-process data by filtering during the
acquisition phase, it improves the speed of data analysis
and decision-making processes [69]. Sensitive data can be
processed on a local edge device to ensure data security
and privacy [70]. Pervasive edge computing has numerous
applications, including virtual reality and augmented reality,
network optimization, and vehicular computing [70].

2) COMPUTATION OFFLOADING
The key idea behind pervasive edge computing in 5G
(and other communication) networks as well as its main
challenge is effective computation offloading [71]. Com-
putation offloading refers to the ability of end devices
to offload computation tasks to edge servers as well as
receive the results from servers after they have executed the
tasks. Computation offloading could have many objectives,
such as network latency minimization, energy consumption
minimization, task dropping minimization, computation rate
maximization, computation efficiency (or energy efficiency)
maximization, and payment minimization [71]. In the 5G
case, the offloading problem can be formulated as an opti-
mization problem with, for example, latency minimization as
an objective as follows:

minfl ,Pt ,λ L(fl,Pt , λ)

Here fl represents the number of computing resources that
should be allocated; Pt , the transmission power setting; and
λ, the ratio of locally executed tasks.

As a more concrete example, consider the work by Chen
and Hao [72] who achieve binary offloading using mixed
integer linear optimization. In binary offloading, the task
dataset is fully processed either locally or remotely on an edge
server. This contrasts with partial offloading where the task
dataset can be subdivided further into several sub-tasks so
that a part of the task is processed locally and the remaining is
processed at the server [73]. Chen and Hao [72] use multiple
edge computing servers with the objective of minimizing the
overall latency. Their objective function is as follows:∑

taski

[xit li + (1− xi)tEi ]

1It also incorporates the more restrictive (or fuzzy) concepts of mobile
edge computing, edge servers, edge nodes, and fog network.
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TABLE 2. Technical requirements envisaged in 5G in terms of the minimum values for the applicable usage scenarios, and their relevance to collective
intelligence (CI) principles and applications. Here, eMBB: enhanced mobile broadband; mMTC: massive machine-type communications; and URLLC:
ultra-reliable low-latency communications (URLLC).

This represents the sum of the latency of the local
processing task, tLi , which is fixed, and the latency of the
offloading task, tEi , which is variable.
Computation offloading and the resulting resource alloca-

tion challenges play a crucial role in determining the overall
edge computing performance, and more complicated tech-
niques and their mathematical basis have been explored, for
example, energy efficient algorithms [74], game theory-based
solutions [75], non-convex mixed-integer programming [76],
and deep learning [77].

However, computation offloading has a few drawbacks,
the most important of which are delays, energy consumption,
and problems dealing with time-varying task arrivals and
stochastic channel conditions [78]. To resolve this and
improve the performance of edge computing systems, task
caching or cache-assisted edge computing has been proposed
as a promising technique. The idea here is to cache some
tasks, such as popular or repetitive or common tasks, and their
related data at the network edge, and to execute or offload
only uncached tasks to the server [79]. Caching popular

IoT data items at the network edge reduces duplicate
content transmissions, latency, and energy consumption [80].
It should be noted here that the tasks can be quite diverse in
terms of computational complexity, content popularity, and
input data size, and it is important to manage cache-assisted
edge computing smartly, for example, using novel architec-
tures for green and secure computations [80] or taking advan-
tage of artificial intelligence (AI)-based technologies [78].
Today, the design of energy-efficient cache-assisted edge
computing systems that jointly optimize communication,
caching, and computation resources continues to be an
active and interesting research area in modern wireless
communication systems.

3) FEDERATED LEARNING
A key new technique that enables pervasive edge computing
for ML- and AI-based techniques was introduced by Google
in 2016—federated learning [81], [82]. Since federated
learning enables AI-based edge computations, it is poised
to become a crucial technology for building 5G-enabled
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collective intelligence [83]. In federated learning, an ML
algorithm is trained across multiple decentralized edge
devices havingmultiple local data samples, without explicitly
exchanging any data. It is important to note the differ-
ences between federated learning and traditional distributed
learning. Distributed learning aims to process datasets by
parallelizing computing power under the assumption that the
local datasets are independent and identically distributed and
roughly have the same size. Federated learning, on the other
hand, aims to train heterogeneous datasets of different sizes.
Moreover, distributed learning nodes typically comprise
datacenters with powerful computational capabilities and fast
network connections, whereas federated learning aims to deal
with small clients, such as smartphones and IoT devices,
on unreliable networks such as Wi-fi.

Thus, federated learning deals with data that is not
independent and identically distributed and has unbalanced
usage, massive distribution, and limited communication.
As described in the original paper that proposed federated
learning [81], consider a (fixed) set of K clients and that
each client has a fixed local dataset. Further, for efficiency,
consider that a random fraction C of the K clients is selected.
The central server sends the current global algorithm state
(e.g., the current model parameters) to each client. Now,
consider the following general finite-sum objective:

minw∈Rd f (ω)

where

f (ω)
def
=

1
n

n∑
i=1

fi(w)

In ML, fi(w) = l(xi,yi;w), i.e., a function yielding the
prediction loss on a data pair (xi, yi) with model parameters
w. The federated learning objective can then be written as
follows:

f (w) =
K∑
k=1

nk
n
Fk (w)

where

Fk (w) =
1
nk

∑
i∈Pk

fi(w)

Here, the assumption is that the data is partitioned over
K clients, with Pk being the set of indexes of data points
on client k and nk = |Pk |. Then, their paper proposed a
‘‘FederatedAveraging’’ optimization algorithm to solve the
above objective assuming a non-IID setting (that is, non-
independent and identically distributed data and Fk as an
arbitrarily bad approximation to f ) [81]. Interestingly, they
also used additional computations as an explicit goal to
decrease the number of communication rounds required to
train a model.

4) CHALLENGES
Although pervasive edge computing provides significant
benefits to IoT systems, cloud computing cannot be elimi-
nated completely because having a centralized location for
the data storage and analysis still has many benefits in
different applications. Pervasive edge computing is important
for offloading some tasks from the core network and to
fulfill strict latency requirements, but the remaining data
may still have to be sent to the cloud for processing
because of its better processing capabilities. Moreover, the
limited processing power and storage capabilities of the
edge device could lead to a loss of generalisation of
the training process with increasing susceptibility to unseen
data [84]. Further, the danger with datasets having locally
obtained samples is that we may obtain non-IID data, and
migrating to a training process with non-IID datasets is
not trivial [85]–[87]. It is also important to note that the
benefits of pervasive edge computing, such as lower end-
to-end latency, is not always attained in all scenarios. For
example, latency depends not only on the distance between
the user and the processing server, but also on other factors
such as the edge traffic, processing power of edge servers,
and computational complexity of tasks. Similar tradeoffs
are present between pervasive edge computing and cloud
computing in the case of backhaul bandwidth, robustness
of failure, monetary cost, etc. [70]. Therefore, cooperation
among local, edge, and cloud computing is often essential
to meet the diverse network requirements of collective
intelligence. Fig. 3 illustrates the decentralized process of
edge computing and contrasts it with the centralized process
of cloud computing.

Thus, implementing collective intelligence requires data
processing to be driven to the edge of the network, and
this implies three main processes with its own challenges—
data acquisition, data processing, and communication of
the results [88], [89]. In effect, there exists a symbiotic
relationship between IoT, pervasive edge computing, 5G
on the one hand and collective intelligence on the other:
IoT, pervasive edge computing, and 5G enable collective
intelligence, while at the same time, require collective
intelligence to function efficiently.

III. CHALLENGES WITH 5G COMMUNICATION IN
COLLECTIVE INTELLIGENCE
In this section, we describe the key challenges faced by 5G
and 5G-enabled collective intelligence to enable a complete
collective-intelligence solution for decentralized sociotechni-
cal environments with distributed intelligent agents.

A. SECURITY AND PRIVACY CHALLENGES
Collective intelligence is based on human–device connectiv-
ity and networks, and the scale of interactions and continuous
connectivity lead to numerous concerns about security, safety,
and privacy. The security of distributed multi-agent systems
can be defined as its ability to deal with threats to its goals
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FIGURE 3. Cloud versus edge computing. (a) Typical cloud computing architecture: mainly centralized with computational tasks being performed in the
servers at the core network and the Internet. (b) Typical edge computing architecture: decentralized with computational tasks distributed among nodes
that are located at the edge of the core network; the cloud acts as a complementary processing and storage unit (adapted from [70]).

that are intentionally caused by other intelligent agents [90].
The security of distributed multi-agent systems is threatened
when its agents fail, usually by not always consistently follow
pre-specified rules or protocols. The resulting failure leads
to the so-called Byzantine fault in networked systems, where
it is clear that there is a failure but it is not easy to identify
the agent causing the failure, since their behavior may be
different to different observers [91]–[93]. Byzantine fault
tolerance is an important research area in communication
networks and their applications [94]–[96]. Inappropriate or
incorrect agent behaviour can have many undesired effects,
including enhanced security and privacy threats, loss of data,
financial costs, and injuries to humans or systems.

Significant research work has explored methods to solve
security issues with communication networks (5G or other-
wise) deployed in multi-agent systems embedded with some
form of collective intelligence [97], [98]. A popular method is
to use blockchain; for example, a blockchain consortium was
proposed in [99] to guarantee secure data sharing and storage
on a vehicular ad-hoc network; a digital signature technique
based on the nature of bilinear pairing for elliptic curves
was used to ensure reliability and integrity when transmitting
data to a node. Giechaskiel et al. presented an analysis of
scenarios in which cryptographic building blocks can break;
they discussed the subsequent effects depending on the type
of breakage, ranging from minor privacy violations to a

complete breakdown of the currency [100]. In [101], the
authors proposed a cooperative jamming approach where
UAV jammers help the UAV transmitter to defend against
ground eavesdroppers using a fake beamforming noise. The
UAV jammers cooperatively jam a ground-based eavesdrop-
per using a multi-agent deep reinforcement learning method.
A distributed tracking problem for a complex dynamical
network of cyber-physical systems was investigated in [102].
The authors considered that the communication channel
for controllers and observers was subject to frequent
malicious attacks and proposed an algorithm to properly
select the feedback gain matrices based on the Lyapunov
stability theory. To reduce security vulnerabilities in IoT
communication layers, a model was proposed in [103]
based on a combined multi-agent and multi-layered game
formulation with the aim to detect/prevent intrusion systems
that can effectively identify the malicious nodes and restrict
it from further communications. Finally, in order to increase
security in decentralized intelligent systems that employ
distributed ledger technologies, the authors in [104] proposed
a decentralized application model following the principles
of Ethereum blockchain network, including a Casper-like
consensusmechanism and a graphmodel for the functionality
of the blockchain components.

In many cases, the goal is to enable privacy preserva-
tion. Privacy preservation is considered to be achieved in
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multi-agent systems when every agent’s local information is
known only to itself. An agent’s local data, e.g., personal
data, is used for local processing and only selected results
of the processing is transmitted into the larger network
[5], [105]. Thus, the agents preserve the privacy of their
local training datasets while also benefiting from the results
of other participants [106]. For instance, in [107], privacy
preservation was addressed for a decentralized optimization
scenario in which adversaries try to steal information from
other participating agents. An important method of enabling
privacy and security in wireless communication networks that
constitute the collective-intelligence support framework is
distributed ledger technology. Distributed ledger technology
makes it possible to securely and safely transmit data
processed at edge servers to other edges or to the cloud. In this
context, a privacy-by-design approach has been proposed
with which several critical operations of decentralized and
distributed systems can be performed, such as decentralized
data analytics [108], [109], social interactions analysis [110],
[111], and decentralized planning and resource alloca-
tion [105]. These operations integrate several state-of-the-
art techniques such as informational self-determination,
homomorphic encryption, differential privacy, obfuscation,
and anonymity. Privacy preservation may sometimes limit
the quality of service since the accuracy and quality of
data are deteriorated to hide information content. To combat
this problem, privacy-preserving semi-supervised learning
over graphs has been considered in [112]. However, the
precise tradeoff between (lowering of) privacy protection and
learning accuracy is still unknown. Pareto optimal tradeoffs
can be configured and regulated by tuning the parameters of
the privacy techniques, as shown in [113]. Incentives, such as
monetary incentives or incentives related to well-being and
comfort, can be used to coordinate data sharing choices in a
crowd.

Edge computing enables content perception, real-time
computing,massive data processing, parallel communication,
and distributed architectures. However, it has also introduced
several new challenges in the field of data security and
privacy preservation, such as denial of service attacks, man-
in-the-middle attacks, and information injection [114]. Since
processing is now performed away from a central server at
network edges, it is often more difficult to effectively control
information and data flow. At the same time, distribution of
information means that an attacker has to carry out multiple
attacks to fully compromise a system.

In particular, cache-assisted edge computing (discussed
earlier in Section II-C3) enhances security and privacy
because fewer information needs to be exchanged. At the
same time, edge caching has more frequently changing
wireless channels and mobile traffic, making it vulnerable
to cyberattacks and privacy invasions. In addition to generic
cyberattacks such as wireless jamming, malware attacks,
etc., edge caching faces caching-specific threats such as
cache poisoning attacks, cache pollution attacks, cache side-
channel attacks, and cache deception attacks [115]. Federated

learning is another promising enabler of enhanced data
security and privacy in edge computing [116], [117]. Since
a user only needs to transfer limited data for improving
a particular machine learning model, sensitive metadata
cannot be transmitted, mixed with other data, perturbed,
or anonymized, thereby ensuring that personal information
is not unintentionally disclosed, i.e., privacy). Nevertheless,
any transmission of information automatically implies the
possibilities of privacy and security breaches. Hence, consid-
erable research is ongoing to ensure data security and privacy
in federated learning, with many different techniques being
proposed, such as homomorphic encryption and differential
privacy [118], [119].

B. RADIO RESOURCE MANAGEMENT CHALLENGES
5G needs to provide different quality of service for delay,
reliability, data rate, and massive connectivity, depending on
the sociotechnical system. This leads to several key radio
resource allocation challenges. Most of these challenges are
important topics of ongoing and future research, and some of
them are described below:

1) Joint collective intelligence and time-critical com-
munication services design: Some sociotechnical sys-
tems such as autonomous driving require time-critical2

communication services, but this is difficult due to
possible resource limitations and rapidly changing
dynamics of wireless communications. In designing
resource allocation algorithms for such use cases,
service performance metrics such as latency and
reliability should be considered. Moreover, many sys-
tems requiring time-critical communication nowadays
have significant ML components, and as a result,
performance metrics such as loss, accuracy, and
convergence time should also be considered. This
requires joint design of collective intelligence and time-
critical communication, which is not easy to solve.

2) Joint collective-intelligence design and resources
allocation for pervasive edge computing: The joint
allocation of radio and processing resources along
with offloading decisions by users is a challeng-
ing task. In pervasive edge computing, processing
power and storage are distributed on the edge of
the radio access network (RAN), as discussed pre-
viously; battery-powered and resource-limited users
can then use the available processing power to per-
form computationally-extensive tasks. Since process-
ing resources for pervasive edge computing are limited
and shared by users, the allocation of processing
resources and limited RAN resources to users becomes
problematic and requires some kind of tradeoff.
Therefore, the joint allocation of RAN resources and
processing resources for pervasive edge computing is a

2Ultra-reliable low-latency communications is referred to as time-critical
communication here to emphasize that it is designed for applications that
are sensitive to time, but with very precise reliability and availability
requirements.
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necessity. Finally, the heterogeneity of multiple servers
in terms of processing power and server allocation to
each user ensures users’ quality of service. In general,
given the tolerable latency and processing resources
required by each user, whether the task should be
performed locally, offloaded to the pervasive edge
computing server, or offloaded to the cloud is a
challenging decision.

3) Resource allocation for joint device–to–device com-
munication, uplink and downlink: Since informa-
tion exchange among human and software agents is
observed in systems exhibiting collective intelligence,
it is important to jointly allocate resources for uplink
and downlink device–to–device communication. The
resource allocation for joint uplink, downlink, and
device-to-device communication outperforms disjoint
allocation, because the joint optimization results in
more degrees of freedom than the disjoint case. This is
especially important for delay-sensitive sociotechnical
systems. A recent interesting research area in this
context is the dynamic resource allocation for sidelink
communication, which has been introduced in standard
3GPP Release 16 and 17 [120]–[123].

4) Joint radio access and core resources allocation for
network slicing: Collective intelligence in sociotech-
nical systems requires different services with diverse
requirements that can be provided by network slicing,
enabled by softwarization and network function visu-
alization. Network slicing must be performed in an
end-to-end manner from the radio access network to
the transport networks, with joint resource allocation
for access, core, and transport networks. Moreover,
since service demands and network conditions vary
dynamically, slices need to be dynamically created,
modified, and deleted; this requires resources to be
flexibly and dynamically allocated to logical networks
based on their service requirements and desired
collective-intelligence performance.

Since 5G and beyond networks should be able to
provide critical and real-time services, traditional resource
management methods (based on optimization, heuristics,
and exhaustive searches) are not suitable for addressing the
challenges mentioned above, due to their high computational
complexity and possibility of being far from the optimal
solution [124]. A fewML techniques have been demonstrated
to work well with resource allocation challenges in 5G [125].
For example, deep reinforcement learning was used by the
authors in [126] for network slicing using radio resource
allocation, whereas Huang et al. [127] used convolutional
neural networks to optimize channel state information
through cooperative resource allocation.

However, these researches are still limited in terms of
supporting a collective intelligence framework and meeting
the abovementioned challenges. Resource management algo-
rithms enabled by ML should be devised for 5G to realize
an autonomous network in which dynamic, efficient and

agile resource allocation is performed in radio access, edge,
core, and transport networks to address the aforementioned
challenges. To accomplish this, a combination of multiple
classification and regression methods, unsupervised learning,
and reinforcement learning techniques, under the umbrella of
collective intelligence, can be employed so that the higher
degree of freedom provided by the key enabling technologies
of 5G can be efficiently utilized and the corresponding
resource allocation challenges can be adequately addressed.
It is worth noting that convex optimization may nevertheless
still be required not only for benchmarking, but also for
provisioning of the training data for supervised learning
techniques.

C. SUPPORTING KEY CHARACTERISTICS OF COLLECTIVE
INTELLIGENCE WITH 5G
Collective intelligence has several general key characteristics,
listed as follows, and it is an ongoing important research
challenge to apply 5G to enhance their implementations [3].

1) Neighbor connectivity: To achieve collective intelli-
gence, it is important to ensure that the neighboring
nodes (i.e., the agents) of a network are connected
either statically or dynamically. In static connections,
the interactions and the network remain constant, i.e.,
the same nodes interconnect throughout the time frame,
whereas in dynamic connections, different nodes inter-
connect at different time steps. In dynamic connections,
a network can also be only partially connected, i.e.,
not all nodes are interconnected at every time step.
For example, consider an electricity distribution grid
where n prosumers (customers who also generate
electricity) connect to a substation through power
lines, exchanging electricity; this represents static
connectivity since the neighboring nodes are always
interconnected identically. However, if the prosumers
also exchange electricity with each other, selling or
buying excess production, then the network is dynam-
ically connected; different customers may sell (buy)
electricity to (from) different customers in the network
at every time step. Using 5G communications to enable
dynamic neighbor connectivity is an ongoing research
topic. One approach is to implement network function
visualization that can provide agile provisioning of
mobile functions on demand by allowing customized
network slicing and creating programmable networks
for 5G-enabled IoT applications so that devices can be
reconfigured to create multiple networks [128]–[130].

2) Interaction protocols: An important characteristic of
collective intelligence is the nature of interactions
in the network and the protocols that structure the
interactions. Interactions could be topology-based
(e.g., tree or ring structure), random graphs (e.g., with
gossip algorithms), random walks or agent migrations,
or bioinspired models (ant/phermones, etc.) [131].
5G communication technologies have the potential
to enhance these interactions in multiple ways, for
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example, multi-tenancy [132], bioinspired resource
allocation [133], cognitive radio networks [134], and
dense multiple-radio access technology [134].

3) Knowledge exchange: A key factor that characterizes
a collective-intelligence-based network is the quantity
of information in the network and how it is handled.
As explained earlier, the pervasive edge computing
concept allows local data to be processed locally,
and only essential information is sent to a central
cloud for further processing, with the nature and type
of knowledge exchange depending on the applica-
tion/service [70]. Thus, none of the individual nodes
have full information. However, interactions could be
organized separately as well, with all the nodes having
full information and the aggregation and processing
being done centrally. The role of 5G in both cases was
explained earlier in Section II-C.

4) Exploration–exploitation tradeoff: Optimizing the
efficiency of collective intelligence involves making a
tradeoff between ‘‘exploitation,’’ which implies using
known solutions, and ‘‘exploration,’’ which implies
looking for new solutions [135], a choice that often
leads to a tradeoff between cost and effectiveness.
While current 5G research has not explicitly focused on
this issue, the key features of 5G communication, such
as speed, latency, and reliability, will play key roles in
designing future collective-intelligence networks.

IV. COLLECTIVE INTELLIGENCE IN PRACTICE
In this section, we describe four modern real-world appli-
cations of collective intelligence in distributed-intelligence
scenarios—road traffic control, UAVs, electrical load demand
response in smart grids, and augmented democracy (Fig. 4).

A. ROAD TRAFFIC CONTROL
In road traffic control, distributed intelligent decision
makers—humans, vehicles, vehicular devices, and signalling
systems—constantly interact to achieve a common goal
(e.g., minimum travel time for all participants) under some
constraints (e.g., safety and comfort). Optimizing road traffic
flow is challenging when there are numerous vehicles using
the road, for example, in cities. Safety requirements must be
balanced with delays while ensuring fair treatment to all users
of the road infrastructures, including pedestrians. Early traffic
control systems relied on traffic policing personnel or traffic
lights. Modern systems typically use automated variants of
traffic lights, but often incorporating some form of central
planning and control to deal with peak traffic situations
in crowded cities with a high population. Although it is
extremely complex to plan ahead for all possible situations
and the signal control process requires huge amounts of
traffic data and excellent communication, rapid advances in
the communication abilities of IoT-enabled devices, e.g., 5G,
promise new and effective solutions for road traffic control.

Initially, Adaptive Signal Traffic Control (ASTC) was
developed and widely discussed to succeed traditional

traffic control mechanisms. ASTC is usually deployed at
intersections to adapt the traffic signal timing based on
actual traffic demand [136]. Since monitoring and control
processes are repeated regularly, ASTC requires detectors
such as loop detectors and a communication network to
exchange information with local traffic controllers and/or
a server. ASTC is well known to reduce congestion and
delays, and many recent researches have focused on its
safety aspects [136]–[138]. Its main benefits are that it
equally distributes green-light time for all traffic movements,
progressively moves vehicles through green lights, and
reduces unnecessary delays by decreasing congestion and
creating smoother flow.

More recently, tremendous advances in data acquisition
and manipulation methods and computing power are driving
the development of data-driven approaches to solve the
road traffic control problem. Intelligent Traffic Control
Systems (ITCS) is based on intelligent and data-driven
monitoring, feedback, and evaluation systems. Various dis-
tributed sensors monitor traffic flow and collect relevant
data using detection and image processing algorithms. The
data is communicated to a central server that analyzes
the data and gives real-time traffic feedback to vehicles,
for example, by broadcasting traffic statuses to electronic
signboards or directly to vehicles. The main objective of
ITCS is to streamline the operation of vehicles, assist
drivers with traffic information, and ensure safety and ease
of travel of passengers. ITCS implementations often use
multi-agent methodologies (e.g., [139]), or AI methods such
as reinforcement learning [140], long short-term memory
(LSTM) [141], and deep learning [142].

Two new IoT-enabled communications paradigms—
vehicle to vehicle (V2V) and vehicle-to-everything (V2X)—
are key drivers for data-driven approaches [143]. In V2V,
autonomous vehicles communicate with each other, for
example, by signalling approaching challenges such as
faster routes, weather conditions, traffic jams, pedestrians,
and crises [144]. In V2X (sometimes called vehicle-to-
infrastructure (V2I)), the vehicles connect to everything so
that not only vehicles but also pedestrians and associated road
infrastructure (e.g., traffic lights, lane markers, street lights,
signage, and parking meters) are connected in one reliable
network, exchanging data wirelessly. As a result, continuous
information about the weather, road conditions, traffic jams,
etc. can be used to improve travel efficiency and safety.
V2X is especially useful under bad weather conditions,
where traditional systems may fail. Dedicated short-range
communication has been proposed to enable V2X, since it
provides low latency, fast network connectivity, high-speed
communication, and secure networks [145], [146]. However,
dedicated short-range communication infrastructure can
be expensive and alternatives are also being explored,
including long range (LoRA) communications [147]. The
long term evolution (LTE) V2X standard (from 3GPP
Release 14) and the new radio (NR) V2X standard
(from 3GPP Release 16) are significant enablers for V2X
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FIGURE 4. Four real-world applications of collective intelligence—road traffic control, unmanned aerial vehicles, electrical load demand response in smart
grids, and augmented democracy.

communications [148], [149]. Today, V2X technology is
being studied intensively (e.g., [150]–[155]).

Research and development of traffic control systems
has been significantly aided by simulation software [156].
Traffic simulation tools can be divided into four types: (1)
Macroscopic, where average vehicle dynamics (e.g., traffic
density) are simulated; (2) Microscopic, where vehicles and
their dynamics are modeled individually; (3) Mesoscopic,
a combination of macroscopic and microscopic models; and
(4) Submicroscopic, where not only vehicles but also their
functions (e.g., gear shifts) are explicitly simulated [157].
Some prominent examples of traffic flow simulators are
Simulation of Urban MObility (SUMO) [158], Green Light
District Simulator (GLD) [159], Approximately Orchestrated
Routing and Transportation Analyzer (AORTA) [160], and
CityFlow [161].

The discussion so far primarily clarifies the historical
development and current status of practical intelligent traffic
management. These approaches show some features of
collective intelligence, e.g., interconnection and distribution,
but the use of modern collective-intelligence methodologies,
such as swarm intelligence, is still at a nascent stage and
primarily theoretical, because supporting technologies are
continually evolving. Hence, other collective-intelligence

features such as collaboration and self-management are yet
to be fully realized. The dominant collective-intelligence
methodology that has been explored so far in the literature
is swarm intelligence, and algorithms such as ant colony
optimization (ACO) and particle swarm optimization (PSO)
have proven to be reasonably effective in traffic routing
optimization when the vehicles are connected [162]–[165].
The authors in [162] and [164] have extensively surveyed
swarm optimization techniques applied to intelligent traffic
management. Today, theoretical ideas based on collective
intelligence are continuously advancing, and there is signifi-
cant possibility to implement them practically due to the rapid
progress in fast and reliable communication networks. This
has, for example, already led to the proposal and development
of exciting paradigms such as V2V and V2X. Hence, traffic
management can be expected to soon become a prominent
modern example of collective intelligence in practice.

B. UNMANNED AERIAL VEHICLES (UAVs)
Unmanned aerial vehicles (UAVs), popularly called drones,
and UAV swarms are an important modern example of
collective intelligence. In UAV swarms, humans interact with
and control a swarm of UAVs equipped with intelligence
characterized by an ability to sense and respond to their
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environment. UAV technology has progressed rapidly, both
in terms of its capabilities—e.g., explorations of remote areas
or dangerous environments—and the type of problems it can
help solve. Equipped with advanced cameras, sensors, and
communication abilities, UAVs have numerous applications
today, including aerial surveys and monitoring, delivery of
goods, search-and-rescue operations, agriculture, and aerial
photography.

Based on the idea that collaboration can lead to the emer-
gence of a form of collective intelligence that enables UAVs
to perform tasks that are otherwise beyond the aggregation of
their individual capabilities, many researchers have applied
the principles of collective intelligence to solve various
problems related to UAVs. In the most popular approach,
swarm intelligence—that deals with the collective behaviour
arising from decentralised self-organising systems, where
individuals only interact locally with one another and with the
environment—is applied to the self-coordination of numer-
ous simple robots or multi-agent systems such as UAVs. This
approach, called swarm robotics, emphasises the physical
embodiment of individuals and scalability [166], [167].
From a broader perspective of multi-agent robot systems and
their diverse applications, Osaba et al. gave a comprehensive
review of the contributions of multiple researchers to
several problems, including the path planning problem,
target localization problem, and swarm segregation problem
that are solved using techniques such as particle swarm
optimization, ant colony optimization, and evolutionary
algorithms [168]. Swarm intelligence and swarm robotics
have also been applied specifically for UAVs. For example,
in [169], the authors employed swarm intelligence and swarm
robotics to use UAVs for fighting wildfires autonomously.
The key problem solved by the authors is to enhance
fire suppression capabilities by enabling robot swarms to
be coordinated and controlled simultaneously, while also
maintaining centralised communication with ground control
during wildfire events. In another study, Vásárhelyi et al.
focused on ensuring that large swarms of autonomous UAVs
are able to seamlessly and easily navigate in confined
spaces, with the basic premise that their solution promotes
stable swarm behavior, resembling those of natural systems
with collective intelligence [170]. Taking advantage of
collective-intelligence principles, Alfeo et al. presented a
swarm intelligence-based algorithm to enable a swarm of
autonomous drones to discover static targets in unstructured
environments in minimum time [171].

Some other collective-intelligence type approaches have
also been applied to UAVs. For example, Howden and Hendt-
lass proposed a collective-intelligence algorithm to control
many UAVs that survey complex areas for bushfires [172].
In their paper, the UAVs are in regular contact with a
base station to report any bushfires but they autonomously
determine their path over the area to be surveyed. Further,
they periodically share information to avoid duplication.
Howdem also employed distributed pheromone maps to track
a moving fire front using a UAV swarm that is controlled in a

fully decentralized and self-containedmanner [173]. In [174],
Varela et al. proposed a collective-intelligence model to
achieve real-time co-ordination of a UAV swarm performing
search operations. They employed exploitation algorithms to
solve this problem on the basis that evolutionary algorithms
are good for coordination and cooperation strategies in
systems comprising multiple units and at regulating the
exploration-versus-exploitation tradeoff, both of which are
intrinsic in collective intelligence. They compared their
results to the more common swarm intelligence approach
and found that their proposed evolutionary algorithm out-
performs swarm intelligence-based approaches when the
number of targets increase. In [175], the authors proposed a
heuristics-based solution for increasing the intelligence of a
group of UAVs by using a distributed intelligence approach
for cooperatively searching for a target. They found out that
distributed decision-making methods were more effective
than an autonomous intelligence approach where the drones
do not cooperate or act collectively. UAVs often have to
operate in quickly evolving ‘‘emergency’’ situations where
they have to be capable of flying nearly autonomously and
cooperatively without central control. Flexible plans must be
quickly created with mutual collaboration. To address this
problem, the authors in [176] discussed the applicability of
a collective-intelligence model architecture that uses cloud
computing, semantic agents, and some form of evolutionary
computing algorithms for the co-ordination and co-operation.
Collective-intelligence-based models and solutions have also
been used for computation offloading in aerial edge networks
using UAVs [177].

C. DEMAND RESPONSE IN SMART GRIDS
Demand response (DR) programs are an important and
highly researched component of modern smart grids, and
many studies have explored communication-related aspects
of their implementations, including 5G-enabled IoT-based
smart grids [178]. In DR programs, end users actively
participate in the electricity distribution business by trading
their controllable loads; this, in turn, benefits the distribution
system by reducing peak load demand and flattening the
system load profile. End users determine their preferences
for operating their home appliances based on their comfort
levels and exchange this information with the electricity
grid operator. Thus, end users interact with smart devices
to balance their comfort levels and profits, and this leads to
a better electricity grid. DR programs comprise two main
types—incentive-based programs and price-based programs.
Incentive-based programs regulate load by providing various
incentives to customers, such as bonuses or credits, whereas
price-based programs influence customer behaviors explic-
itly through different time-of-use (TOU) price policies [179].

DR programs require a robust communication system
that can enable the exchange of data such as price signals,
incentives, and load-usage preferences. Data from the
customer end is transmitted by an advanced metering infras-
tructure (AMI) system (smartmeters). Collective-intelligence
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concepts have a key role to play in the design of DR programs,
since many benefits can be obtained by the collective efforts
of many individuals [180]. For example, consider end users
who have agreed to cooperate in a DR program. A single
end user calculates several possible schedules based on
the degree of flexibility and (dis)comfort levels, with each
schedule having a different cost. These plans are sorted
from fully non-cooperative (no flexibility, maximum comfort,
and highest cost) to fully cooperative (complete flexibility,
minimum comfort, and lowest cost). All end users submit
their individual plans to a server that calculates and proposes
a schedule based on the system-level optimization objectives
such as peak-load-demand minimization. Cooperating users
can be further rewarded based on their plans. Using such
an idea, the authors in [181] used collective intelligence to
develop an appliance-level flexible scheduling framework
based on consumers’ self-determined flexibility and comfort
requirements. In their study, the cooperative approach had
higher peak-shaving than non-cooperative schemes that
focused on the efficiency of individual appliances.

In [105], the authors developed an algorithm based on
collective intelligence and learning—the Iterative Economic
Planning and Optimized Selections (I-EPOS) algorithm—
and used it to solve the DR problem. I-EPOS is a combinato-
rial optimization tool with a multi-agent, fully decentralized
structure. Every I-EPOS agent—representing a user—has
a set of discrete energy consumption plans provided by a
scheduling entity. The task of I-EPOS is to coordinate and
choose a subset of the users’ plans such that the variance of
the total energy demand is minimized over the day, with the
objective to flatten the system load. I-EPOS has also been
used to present a new flexible schedulingmodel for a commu-
nity microgrid; here, the authors proposed a coordinated net
load scheduling of the households by utilizing a decentralized
and cooperative strategy based on the technical, social, and
economic viewpoints of prosumers [182]. Another collective-
intelligence-based platform is EnergyUse, an online platform
to visualize energy consumption and share experiences
regarding the energy savings in an energy community [183].

D. AUGMENTED DEMOCRACY
Democracy refers to self-governance, i.e., to the right of
people living in a community to govern themselves [184].
Democratic decision-making refers to decisions that are
made collectively by a group of people, through discussions
and deliberations. Decisions made by deliberations usually
result in fair and legitimate actions since they are repre-
sentative decisions that result from reasoning rather than
corruptible individual choices [185]. Augmented Democracy
is a relatively new concept that originated as a result of
the rapid recent advances in communications technology
and AI. In augmented democracy, software agents called
avatars or digital twins expand the ability of people to
participate directly in democratic decisions. An avatar is
a personalized virtual representation of a human, which
augments or enhances the human’s ability to make decisions

by either providing additional information or making deci-
sions themselves. Internet users regularly interact with simple
versions of digital twins, e.g., on music or movie streaming
websites, such as Spotify, where virtual representations of
users can automatically choose the next item on a playlist.
Similarly, social networking sites and digital advertisements
often function as digital twins making recommendations and
assisting decision-making.

In augmented democracy, citizens are empowered to create
avatars to augment their ability to participate directly to
make democratic decisions, including voting in elections or
on newly proposed bills [186]. In practice, the augmented
democracy process can begin when a proposal is tabled by
community representatives or lawmakers, and the community
members are either required to vote on it or provide
feedback. In a profiling process, all the participants from the
community are identified through their registered electronic
devices (cellphones, tablets, computer, etc.), or through fixed
electronic points. During this profiling, an avatar with a
participant’s personal information, desires, political views,
etc., is created as the participant’s virtual representative. This
avatar is further developed and refined by collecting data
from the participant; the data can include active data such as
surveys, questionnaires, and other feedback, and passive data
such as reading habits and social media behavior.

Subsequently, the avatar collects information regarding the
bills and predicts how the user will vote on such a bill. The
avatar can then make a choice regarding the proposal, which
can be ratified by the user. The avatar’s decision is available
only to the user and may or may not be enforceable. Thus,
the avatar only provides the user the crucial ability to make
informed choices. The user’s final decision is communicated
to a cloud device that performs data aggregation to make a
final decision on the proposal. Or, lawmakers can capture
the level and geographic distribution of the predicted support
for a bill. Thus, in augmented democracy, avatars expand the
ability of people to participate directly in a large number of
democratic decisions. Note that in this system, all the virtual
processes are enhanced by the latest 5G communication
technologies and federated learning techniques with the
edge–cloud paradigm. Moreover, encryption techniques and
distributed ledgers such as blockchain can be used to increase
the security of the process.

Augmented democracy has been proposed as a method
to rectify a flaw that has been observed in conventional
democratic political systems. Conventionally, a proposal
is debated among a few selected individuals who were
elected previously. These community representatives are
often chosen based on their broad beliefs and goals and
not their opinions on some specific policies or proposals.
As a result, when decisions have to be taken on specific
bills, there is no direct link between community members
and community representatives, leading to a lack of trust
in the system to take fair and legitimate decisions [187].
In augmented democracy, participants would be more willing
to accept the final decision since all community members
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can participate, via their avatars, in making decisions on
proposals that affect their community. Thus, augmented
democracy enhances citizen participation and engagement in
decision making and public policy such that the outcomes are
meaningful to citizens.

Augmented democracy has been discussed most promi-
nently in political and social sciences centering on sys-
tems and processes that involve digital and/or participatory
elements that could be used in decision-making processes
[186]–[191]. Interestingly, in [190], the augmented democ-
racy paradigm has been applied to urban transport in
smart cities. Their idea is that vehicle users can act as
witnesses with the capacity to intervene and testify about
the physical world. Consider citizens navigating over several
urban points of interest. They cannot only make informed
and trustworthy choices by proving witnessed presence in
one of these points but they can also access live updates
about the collective choices made by other citizens in relevant
points of interests. The authors showed that this scenario,
while challenging, is technically feasible using secure,
privacy-preserving, decentralized information systems such
as blockchain consensus.

V. CONCLUSION
In this paper, we have surveyed and reviewed an important
approach to distributed intelligence called collective intelli-
gence that emerges when humans interact with IoT systems in
sociotechnical environments. Collective intelligence is char-
acterized by four main features—collective decision-making,
information exchange, distributed (dispersed) decision mak-
ers, and self-management and adaption. Further, human–
device–human interactions are also being transformed by
the latest communications technology standard—5G. Hence,
we discuss 5G technologies and 5G-enabled IoT and their
implications for collective intelligence.

We also focus on key challenges facing 5G implementation
for supporting collective intelligence. In particular, the
current version of 5G is designed for large-scale IoT
deployments that focus on telemetry, and hence, it is uplink
dominated, based on short messages. On the other hand,
collective intelligence will require both uplink and downlink
resources, especially if enabled by pervasive edge computing,
and 5G may not necessarily be the optimal technology for
collective intelligence. At the same time, tradeoffs exist in
any IoT systems that are designed for telemetry.

Today, collective intelligence is built ‘‘inter-cooperatively’’
in large-scale Internet-based networked systems [192]. As a
result, network-level advancements, in addition to commu-
nication technologies, are crucial for the successful practical
deployment of collective intelligence [192]. Network-level
technologies are being intensively researched today with
several promising prospective technologies being introduced.
This includes node–network interfacing technologies such
as pervasive edge computing with federated learning
(mentioned earlier in Section II-C) where, for example,
Casadei et al. [88] recently proposed an interesting aggregate

computing framework to apply collective intelligence at
the edge. In addition, research is ongoing for establish-
ing ideal network structures [193], network technology
standardization, low-power high-speed networks [194],
big data sharing over networks [195], network software
technologies [196], and network technologies in IoT-based
sociotechnical environments [197].

In this paper, we also show that despite these challenges,
in practice, some form of collective intelligence has already
been applied to some sociotechnical environments, e.g.,
road traffic control and unmanned aerial vehicles. In the
future, we will study and compare various communication
technologies and their implications for IoT systems and
collective intelligence. We will also develop collective-
intelligence-based algorithms for IoT networks supported by
robust 5G communication systems, overcoming the various
technical challenges mentioned in this paper.
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