IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 1, 2022, accepted June 14, 2022, date of publication June 17, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3183993

A Scalable Emulator for Quantum Fourier
Transform Using Multiple-FPGAs With
High-Bandwidth-Memory

HASITHA MUTHUMALA WAIDYASOORIYA™, (Member, IEEE), HIROKI OSHIYAMA ™,
YUYA KUREBAYASHI, MASANORI HARIYAMA, (Associate Member, IEEE),
AND MASAYUKI OHZEKI

Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
Corresponding author: Hasitha Muthumala Waidyasooriya (hasitha@tohoku.ac.jp)

This work was supported in part by Ministry of Education, Culture, Sports, Science and Technology, (Japan) (MEXT) Grants-in-Aid for
Scientific Research (KAKENHI) under Grant 19K11998 and Grant 20H04197.

ABSTRACT Quantum computing is regarded as the future of computing that hopefully provides exponen-
tially large processing power compared to the conventional digital computing. However, current quantum
computers do not have the capability to correct errors caused by environmental noise, so that it is difficult
to run useful algorithms that require deep quantum circuits. Therefore, emulation of quantum circuits in
digital computers is essential. However, emulation of large quantum circuits requires enormous amount of
computations, and leads to a very large processing time. To reduce the processing time, we propose an FPGA
emulator with high-bandwidth-memory to emulate quantum Fourier transform (QFT), which is a major
part of many quantum algorithms. The proposed FPGA emulator is scalable in terms of both processing
speed and the number of qubits, and extendable to multiple FPGAs. We performed QFT emulations up
to 30 qubits using two FPGAs. According to the measured results, we have achieved 23.6 ~ 24.5 times
speed-up compared to a fully optimized 24-core CPU emulator.

INDEX TERMS Quantum computing, quantum circuits, high-bandwidth memory, FPGA, quantum Fourier

transform.

I. INTRODUCTION

Quantum computing [1] is regarded as the future of com-
puting that hopefully provides exponentially large processing
power compared to the conventional digital computing. Some
examples of the latest quantum computers are 5000-qubit
quantum annealer by D-Wave Systems [2], and 127-qubit
quantum processor (Eagle) by IBM [3]. Quantum annealers
such as [2] is limited to solve combinatorial optimization
problems. Quantum-gate based computers such as [3] are
regarded as the potential replacement for general purpose
digital computers. However, such quantum computers do not
have the capability to correct errors caused by environmental
noise, making it difficult to run useful algorithms that require
deep quantum circuits. Therefore, emulation of quantum cir-
cuits in digital computers is extremely important, since it
allows us to invent and evaluate novel algorithms, explore
new fields such as quantum machine learning [4], etc. Such

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

quantum circuit emulators provide us a great advantage in
future when more powerful quantum computers are available.

Emulation of large quantum circuits requires enormous
amount of computations that leads to very large processing
time. Therefore, acceleration of quantum circuit emulation
is necessary. Usually, quantum computing emulations con-
tain a large amount of parallel operations. FPGAs are an
excellent candidate to accelerate such computations. Modern
FPGASs contain hardened floating-point modules that provide
over 20 TFLOPs of single-precision computation power [5],
and extremely capable of data-center oriented applications.
FPGAs are highly scalable and can be connected directly
using 400 Gbps high-speed connections. However, one weak
area of FPGAs is the small external memory bandwidth.
To solve this problem, high-bandwidth memory (HBM2)
based FPGAs [6]-[8] have been introduced. These FPGAs
contain a large number of parallel HBM modules that pro-
vide nearly 10 times larger memory bandwidth compared to
discrete DDR4-SDRAM:s. On the other hand, low-level opti-
mization is required to optimally utilize memory sub-systems
containing multiple HBM modules.

65103

https://orcid.org/0000-0001-5108-9891
https://orcid.org/0000-0002-0198-8052
https://orcid.org/0000-0001-8336-9150

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

In this paper, we propose an HBM-based scalable FPGA
emulator for quantum Fourier transform (QFT) [9], [10].
QFT is a major part of many quantum algorithms such
as Shor’s algorithm [11], quantum eigenvalue estima-
tion [12], etc. We propose a memory allocation method to
fully utilize the memory capacity and bandwidth of all HBM
memories in multiple FPGAs. The proposed emulator is
scalable in terms of both processing speed and the number
of qubits, and extendable to multiple FPGAs. We can opti-
mize it according to the resource and bandwidth constraints.
We use OpenCL design environment [13] to fully implement
the proposed architecture on one-FPGA and two-FPGAs.
Using two FPGAs, we can perform QFT emulations up to
30 qubits. According to the measured results, we achieved
23.6 ~ 24.5 times speed-up against fully optimized 24-core
CPU implementation. To the best of our knowledge, this work
is the largest and fully functional QFT emulation on FPGAs
up-to-date.

Il. BACKGROUND AND RELATED WORK

A. FUNDAMENTALS OF QUANTUM CIRCUITS

In classical computing, we use “bits” to represent informa-
tion. A bit has a well-defined state of either “0” or “1”.
A “quantum bit” or “qubit” on the other hand does not have a
well defined state until a measurement is made. When a mea-
surement is made, we get either O or 1. Otherwise, the qubit
is in a superposition which is mathematically represented by
Eq.(1), where ¢ is a qubit and « and 8 are complex numbers.

lp) = «|0) + 1) 6]

In Eq.(1), la|? is the probability of ¢ to be in the state of |0),
and |82 is the probability of ¢ to be in the state of |1). Since
the sum of all probabilities equals to 1, |a|> + |8|> = 1. The
notations |0) and |1) represent qubit states, and distinguish
themselves from the values 0 and 1. These two states are
represented by orthonormal vectors in the vector space as
shown by Egs.(2) and (3).

0) = (5) @
m=(3) ®

We can obtain the vector representation of |¢) by substituting
Eqgs.(2) and (3) to Eq.(1). This is called the state vector and

shown in Eq.(4).
a
lp) = (/3> 4)

We use state vectors to explain the quantum Fourier transform
in section II-B.

B. QUANTUM FOURIER TRANSFORM

Quantum Fourier Transform (QFT) is the quantum imple-
mentation of the Discrete Fourier Transform (DFT) [14].
Figure 1 shows an example of 4-qubit ‘“‘quantum Fourier

65104

T
L | mom—
L

Hadamard gates

i Controlled phase-shift gates

FIGURE 1. Circuit of quantum Fourier transform.

transform™ circuit using quantum gates. Two types of quan-
tum gates, 1-qubit Hadamard gates and 2-qubit controlled
phase-shift gates are used. The k™ Hadamard gate is denoted
by Hj. The term Ry ; denotes a controlled phase-shift gate,
where integers k and [are target and control bits respec-
tively. The 1-qubit Hadamard gate and 2-qubit controlled
phase-shift gate are given by the following matrix forms.

1 1
V2 2
1 0 0 0
R 0 1 0 0
k=10 0 1 0
0 0 0 eZTri/Zk

We use a state vector of 2" states to represent n qubits in a
superposition. The input state vector |{) is represented as
follows.

) =a(0..00)]0..00) +a(0..01)[0..01) . . .+a(1..11)|1..11)

After applying a quantum gate, the output state vector |/ is
represented as follows.

[¥'y =a’(0..00)]0..00) 4-a'(0..01)]0..01) . . .+a’(1..11)|1..11)

For example, coefficients corresponding to j# qubit of the
output state vector after applying the Hadamard gate, are
calculated as follows.

d (k. % 0j% %) = .k 0j % k) 4 a (+.. % 1 % %))

1
E(“(

a'(x.. % 1jx %) = % (a(x.. % 0j % %) —a (k. % 1 % ..%))

The j™ bit is represented by 0; and 1;. Similarly, we can
calculate the coefficients of the state vector after applying
controlled phase-shift gate.

Algorithm 1 shows the method used to emulate quantum
Fourier transform of n-qubits. It contains two loops. The
outer-most loop performs the Hadamard gate computations,
while the inner-most loop performs the controlled phase-shift
gates computations. Quantum gate computations are done for
the whole state vector ¥ that has 2" coefficients.

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

1 for [< 1tondo
// apply Hadamard gate to ¥
¥ = One-qubit-Hadamard(v/, [)
fork < [+ 1tondo
// apply controlled phase-shift
gate to ¢
// Target and control bits are 1
and k respectively
4 Y =Two-qubit-controlled-phase-shift(y, I, k)
5 end
6 end
Algorithm 1: An Extract of the Algorithm to Emulate
Quantum Fourier Transform of n Qubits

FIGURE 2. A part of the data-flow graph (DFG) corresponding to the
controlled phase-shift gate R, , of the QFT circuit in Figure 1.

Firstly, we discuss the controlled phase-shift gate opera-
tions in the inner-most loop of algorithm 1. When % is 1,
I changes from 2 to 4 while computing the operations corre-
sponding to controlled phase-shift gates R; 2, R1.3 and Ry 4 of
the QFT circuit in Figure 1. Let us consider an example of the
first controlled phase-shift gate Ry ». The computations of the
first four elements a’(0000), a’(0001), a’(0010) and a’(0011)
of the output state vector, are shown as follows.

a(0000) ' (0000)
R a©001) | [a'©001)
12X 40010) | = | «/(0010)
a(0011) a'(0011)

This computation is graphically represented using a data-flow
graph (DFG) in Figure 2. As we can see, most of the elements
in Ry are zero. Therefore, each coefficient of the output
state vector only depends on a single coefficient in the input
state vector. Utilizing this observation, we can optimize the
data-flow by removing all unnecessary computations.
Figure 3 shows the DFGs corresponding to the controlled
phase-shift gates. The DFGs are simplified based on the
observation that a coefficient of the output state vector only
depends on a single coefficient in the input state vector. For
example, the output a14(0111) of Ry 4 depends on the out-
put a13(0111) of R; 3, that depends on the output a;2(0111)
of Rj 2, that is computed from the input a1(0111). Therefore,
if we know the input a;(0111), we can compute the final
output aj4(0111), without depending on any other input or
intermediate data. As a result, we do not have to store all the

VOLUME 10, 2022

(2,(0000)] 2,(0001) | 2,(0010) [2,(0011) [2,(0100) | 2,(0101) | a(0110) | a,(0111)

[au(OOOO) a,,(0001)|a;,(0010)|a;,(0011)|a,,(0100) [a;,(0101)| a,,(0110) 312(0111)]

(a) Two-qubit-controlled-phase-shift (R1 2).

(212(0000)a1,(0001) 2,,(0010) [2,,(0011) a1,(0100) a1,(0101)[2,,(01.10)[a,,(0111)]

[a13(0000) 2,5(0001)|a,5(0010) [a;5(0011)|a,5(0100) | a,5(0101) [a,5(0110) a13(0111)]

(b) Two-qubit-controlled-phase-shift (R1 3).

[am(OOOO) a,5(0001)[a,5(0010)|a,3(0011)|a,3(0100) |a,5(0101) |a,5(0110) a13(0111)J

[314(0000) 214(0001)|a,,(0010) [a;,(0011)|a1,(0100) [a,,(0101) |a,,(0110) a”(onl)]

(c) Two-qubit-controlled-phase-shift (R1 4).

FIGURE 3. Relationship between input and output state vector
coefficients when applying controlled phase-shift gate as shown
in Algorithm 1.

FIGURE 4. Data-flow graph (DFG) of Hadamard gate operation
corresponds to the coefficients a’(0000) and a’(0001) of the resulting
state vector.

intermediate data in the external memory, and this reduces
the external memory access drastically. In order to accelerate
the computation, all we have to do is to access multiple
data values of the input state vector a; and process those in
parallel. The data of the state vector aj4 are written back to
the external memory to use as the inputs of the next Hadamard
gate computation.

Secondly, we discuss the operations of the outer-most loop
of algorithm 1. Hadamard gates are performed in the outer-
most loop. Let us consider an example of the first Hadamard
gate H|. The computations of the first two elements a’(0000)
and a’(0001) of the output state vector are shown as follows.

H % a(0000)\ _ (a'(0000)
a(0001)) — \d’(0001)
This computation is graphically represented using a DFG
in Figure 4. As we can see, two inputs are required to calculate
two outputs.

Utilizing the observation of every output is calculated
using two inputs, we simplified the DFGs corresponding

65105

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

('a(0000) | a(0001) | a(0010) | a(0011) [ato200) Ia(OlOl) I a(0110) | a(0111)

(2(0000) [2,(0001) [2,(0010) | 3,(0011) [2,(0100) a,(0101) [2,(0110) [a,(0111))

(a) One-qubit-Hadamard (H;).

a,(0000) | a,(0001) | a,(0010) | a,(0011) | a,(0100) | a,(0101) | a,(0110) | a,(0111)

(b) One-qubit-Hadamard (H3).

(c) One-qubit-Hadamard (Hs).

FIGURE 5. Relationship between input and output state vector
coefficients when applying Hadamard gate as shown in Algorithm 1.
Dividing by +/2 operations are not shown for simplicity and to focus only
on input and output data.

to Hi, Hy and H3 in Figure 5. Note that dividing by V2
operations are not shown for simplicity and to focus only on
input and output data. Figure 5a shows the DFG correspond-
ing to Hj. Input is the initial state vector a and the output
is a1. The output state vector a; is used as the input for the
controlled phase-shift gate Rj > as explained in Figure 3a.
After the computation of R; 4, the output state vector a4 is
generated. Figure 5b shows the DFG corresponding to Hj.
Input and output state vectors are ajq4 and ap respectively.
Similarly, the output of this computation a; is used again as
the input of controlled phase-shift gate R; 3. Figure Sc shows
the computation corresponding to H3, where input and output
state vectors are a4 and a3 respectively. Similar process is
applied for the computation of Hy.

Let us further analyze the relationship of inputs and out-
puts. In order to compute a3(0000), we need a»4(0000) and
a»4(0100). Outputs a24(0000) and a»4(0100) are generated
using a>(0000) and a»(0100) as the inputs in controlled
phase-shift gates. To obtain a>(0000) and a>(0100), we need
a14(0000), a14(0010), a14(0100) and a14(0110). If we con-
tinue this process, we can see that all inputs of the initial
state vector are required to generate a single output of the
final state vector. Therefore, we have to store the output state
vectors of every Hadamard gate in the memory. Moreover,
the data access pattern of every Hadamard gate is different.
We propose a novel memory allocation to fix the memory
access pattern to a single one and also to allow parallel access
to multiple memory modules.

C. PREVIOUS WORKS OF QFT EMULATORS

QFT emulators such as [15]-[20] that use FPGAs are already
proposed. All those emulators are not compatible with large
QFT circuits, while the larget emulation performed is only
16-qubit QFT in [18]. Moreover, emulators in [15]-[18] uses
fixed-point computation. According to the results in those
works, the error increases with the number of qubits, and may
not suitable for emulations with a larger number of qubits.

65106

The proposals in [21], [22] can perform large emulations of
over 20-qubits. A co-processor based on Xilinx Zyng-7000
SoC is proposed in [21] to find state changes. Although it
computes the whole state vector of 4-qubit QFT emulation,
it only computes 9 elements for 10-qubit and 3 elements for
32-qubit QFT emulations. Therefore, we can assume that it
cannot practically compute all elements of a state vector for
more than 10-qubit emulations. The work in [22] proposes a
method to accelerate large quantum circuit emulations using
tensor networks [23], [24]. However, the evaluation is done
based on assumptions and they have not physically imple-
mented the proposal on a real FPGA or measured the results.

There are multicore-CPU and GPU emulators for large
quantum circuit emulations. Examples of such emulators
are QCGPU [25], Qiskit [26], Qulacs [27], Qibo [28],
QuEST [29] and Yao [30]. However, the lack of scalability to
multiple processors is the major problem on these emulators.
We give a comprehensive evaluation by comparing the pro-
posed method against previous FPGA, CPU and GPU based
QFT emulations in section IV.

Ill. FPGA EMULATOR ARCHITECTURE FOR QFT USING
OPENCL

A. USING HBM-BASED MEMORY SUB-SYSTEM IN
OPENCL

FPGA boards contain two types of memory sub-systems.
One type of memory sub-system contains multiple channels
of DDR3 or DDR4 memories. All those memories are usu-
ally mapped to a single address space so that we can see a
one large memory. The total bandwidth is the additions of
the bandwidths of all memories. Data can be stored freely
and those data are automatically distributed among multiple
memory modules to utilize the bandwidth of all memories.
The other type is based on HBM (high-bandwidth memory)
modules. In HBM sub-system, there is no common address
space and all memories have separate address spaces. There-
fore, we have to be specific on which HBM memory we
are using. Figure 6 shows the HBM memory sub-system of
a Stratix 10 MX FPGA board. It has 16 HBM2 memories,
where each has two channels. This provides 32 pseudo mem-
ories that can be accessed independently in parallel. Data
should be accessed from multiple HBM memory modules in
parallel to get a large bandwidth.

We use OpenCL-based design environment to imple-
ment the FPGA emulator. OpenCL is a framework to write
programs to execute across heterogeneous parallel plat-
forms [31]. Currently it is used extensively as a high level
design environment for FPGA-based system designs [13].
CPU is the host and the FPGA is the device, while kernels are
the modules executed on FPGA. OpenCL channel is a data
transfer method between a source and a destination kernels
based on hand-shake protocol. I/O channels are an extension
that is used to transfer data between two kernels belonging to
two FPGAs. In OpenCL, memory access is done by accessing
arrays. Memory objects are bind to a specific memory mod-
ule at the beginning of the host program. Memory modules

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

1 HBM channel

FIGURE 6. High-bandwidth memory sub-system of Stratix 10 MX FPGA.

connected to FPGA kernels are specifically defined at the
compilation time. A kernel cannot access the data in HBM
modules that are not connected to it. In order to access the data
in other HBM memories, those data have to be transferred
into an HBM module that the kernel is connected with, either
explicitly by implementing the data-transfer in the kernel,
or implicitly by changing the binding from the host. This
results in a large data transfer time and data duplication.
Another method is to connect multiple memory modules to
every kernel. However, this increases the resource utilization
and decreases the clock frequency significantly.

Memory access optimization is a critical factor to increase
the processing speed. Therefore, when using HBM-based
memory sub-systems, it is extremely important to localize
the memory in such a way that every kernel always read
from the same memory and write to the same memory. This
will eliminate unnecessary data transfers, reduce the resource
utilization for memory access, and increase the usable mem-
ory bandwidth. Another important point is to optimize condi-
tional memory accesses. In Figure 7a, “arrayA” or “arrayB”
is accessed depending on the ‘““condition”. Note that arrayA
and array B can be assigned to one or two memory modules.
Since memory access can take many clock cycles, accessing
data after evaluating the condition can reduce the throughput.
Therefore OpenCL compiler generates a circuit that has par-
allel access to both arrays. Both arrays are accessed simulta-
neously and one data is selected while the other is discarded,
depending on the state of the condition. This implementation
maximizes the processing speed, but reduces the memory
access efficiency by wasting half of the bandwidth. The
solution for this problem is to combine both arrays into a
single one and allocate it to one memory module. Then select
the memory addresses conditionally as shown in Figure 7b.
In this case, there is only one memory address, so that only
one address is accessed in each clock cycle. In summary,
the following points must be considered to optimize memory
access.

« Avoid conditional access to multiple memories

« Evenly distribute data on all memories

o Data that are accessed in parallel must be allocated to
multiple memory modules

« Reduce/eliminate data duplication

« Avoid explicit/implicit data transfers among memories.

VOLUME 10, 2022

addrs=x

addrs=y

loop() {
if(condition == true)
data = arrayA[x]; [>
else
data = arrayB[y];
}

(a) Inefficient memory access method in OpenCL. Both memories
are accessed simultaneously, and only one is utilized while the other
is discarded.

arrayA

Multiplexer

condition

loop() { addrs = (condition) ? x : y
addrs = (condition) ? x : y; ——
data = arrayAB[addrs]; [>

} Data

(b) Efficient memory access method in OpenCL. Different addresses
of a single memory is accessed.

FIGURE 7. Memory access optimization for HBM-based memory
sub-systems.

The proposed memory allocation in this paper satisfies all of
the above conditions to fully utilize all HBM modules.

B. SINGLE FPGA IMPLEMENTATION

In this section, we explain the proposed memory allocation.
Firstly, we explain the memory allocation for controlled
phase-shift gate computations. As explained in Figure 3 in
section II-B, inputs and outputs have one-to-one relationship
where each output is calculated using only a single input, and
each input is used to calculate a single output. We allocate
the outputs to the same location of the memory of their
corresponding inputs. Therefore, the input data are replaced
by the output data.

Secondly, we explain the memory allocation for Hadamard
gate computation. Equation (5) shows how the data of an
input state vector is distributed to HBM modules. The number
of HBM modules is M, the number of qubits is N, the state
vector is a, HBM module number is [m], and memory address
is (n).

M
a(n x ?—i—m)

M
where,m<7,0§n<2N/M

HBM[m](n) = ©)

M M
a(2N*1 +nx ?—l—m—?)

where,m23,0§n<2N/M

As we can see, half of the state vector data are distributed
evenly to M /2 HBMs, while the other half is distributed to
the rest of M /2 HBMs.

Figure 8 shows a concrete example of the memory alloca-
tion of 4-qubit QFT emulation, assuming that we have 4 HBM
modules. Figure 8a shows the initial memory allocation
which is done according to Eq.(5). The first half of the state

65107

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

Memory allocation HBMO(0) HBM1(0) HBMO(1) HBM1(1) HBMO(2) HBM1(2) HBMO(3) HBM1(3) HBM2(0) HBM3(0) HBM2(1) HBM3(1) HBM2(2) HBM3(2) HBMZ2(3) HBM3(3)
Initial State vector a(0000) a(0001) a(0010) a(0011) a(0100) a(0101) a(0110) a(0111) a(1000) a(1001) a(1010) a(1011) a(1100) a(1101) a(1110) a(1111
(a) Memory allocation of the initial state vector.

Input memory addr. | HBMO(0) HBM1(0) HBMO(1) HBM1(1) | HBMO(2) HBM1(2) HBMO(3) HBM1(3) | HBM2(0) HBM3(0) HBM2(1) HBM3(1) | HBM2(2) HBM3(2) HBM2(3) HBMS3(3)
Input Data | a(0000) a(0001) a(0010) a(0011) | a(0100) a(0101) a(0110) a(0111) | a(1000) a(1001) a(1100) a(1011) | a(1100) a(1101) a(1110) a(1111)
Output memory addr. | HBMO(4) HBM2(4) HBM1(4) HBM3(4) | HBMO(5) HBM2(5) HBM1(5) HBM3(5) | HBMO(6) HBM2(6) HBM1(6) HBM3(6) | HBMO(7) HBM2(7) HBM1(7) HBM3(7)
Output data a,(0000) a,(0001) a,(0010) a,(0011) | a,(0100) a,(0101) a,(0110) a,(0111) | a,(1000) a,(1001) a,(1010) a,(1011) | a,(1100) a,(1101) a,(1110) a,(1111)
(b) Memory allocation for computations of H;.

Input memory addr. | HBMO(4) HBM1(4) HBMO(5) HBMA1(5) | HBMO(6) HBM1(6) HBMO(7) HBM1(7) | HBM2(4) HBM3(4) HBM2(5) HBMS3(5) | HBM2(6) HBM3(6) HBM2(7) HBM3(7)
Input Data ,4(0000) 24(0010) 2,,(0100) 24(0110) | 21,(1000) 214(1010) a1,(1100) a1,(1110) | 3,4(0001) a,4(0011) a,4(0101) a,(0111) [21,(1001) a1(1011) a1,(1101) ay,(1111)
Output memory addr. | HBMO(0) HBM2(0) HBM1(0) HBM3(0) | HBMO(1) HBM2(1) HBM1(1) HBM3(1) | HBMO(2) HBM2(2) HBM1(2) HBM3(2) | HBMO(3) HBM2(3) HBM1(3) HBM3(3)
Output data 3,(0000) a,(0010) a,(0100) a,(0110) | a,(1000) a,(1010) a,(1100) a,(1110) | a,(0001) a,(0011) a,(0101) a,(0111) | a,(1001) a,(1011) a,(1101) a,(1111)
(c) Memory allocation for computations of Ho.

Input memory addr. | HBMO(0) HBM1(0) HBMO(1) HBM1(1) | HBMO(2) HBM1(2) HBMO(3) HBM1(3) | HBM2(0) HBM3(0) HBM2(1) HBM3(1) | HBM2(2) HBM3(2) HBM2(3) HBMS3(3)
Input Data 3,4(0000) 3,4(0100) a,4(1000) a,4(1100) | 3,4(0001) a,4(0101) a,4(1001) a,4(1101) | 2,4(0010) a,4(0110) 8,4(1010) a,4(1110) | 3,4(0011) a,4(0111) a,4(1011) a,,(1111)
Output memory addr. | HBMO(4) HBM2(4) HBM1(4) HBM3(4) | HBMO(5) HBM2(5) HBM1(5) HBM3(5) | HBMO(6) HBM2(6) HBM1(6) HBM3(6) | HBMO(7) HBM2(7) HBM1(7) HBM3(7)
Output data 2,(0000) a4(0100) a(1000) a4(1100) | 35(0001) 2;(0101) a;(1001) a;(1101) | a;(0010) as(0110) as(1010) as(1110) | a5(0011) a4(0111) a4(1011) ay(1111)
(d) Memory allocation for computations of Hg.

Input memory addr. | HBMO(4) HBM1(4) HBMO(5) HBM1(5) | HBMO(6) HBM1(6) HBMO(7) HBM1(7) | HBM2(4) HBM3(4) HBM2(5) HBM3(5) | HBM2(6) HBM3(6) HBM2(7) HBMS3(7)
Input Data 334(0000) 334(1000) 334(0001) a34(1001) | 334(0010) 334(1010) 334(0011) 2334(1011) | 334(0100) a34(1100) 334(0101) a834(1101) | 334(0110) 2334(1110) 834(0111) a4,(1111)
Output memory addr. | HBMO(0) HBM2(0) HBM1(0) HBM3(0) | HBMO(1) HBM2(1) HBM1(1) HBM3(1) | HBMO(2) HBM2(2) HBM1(2) HBM3(2) | HBMO(3) HBM2(3) HBM1(3) HBM3(3)
Output data 2,(0000) 2a,4(1000) 3,(0001) a,(1001) | a,(0010) a,4(1010) a,(0011) a,(1011) | a,(0100) a,(1100) a,(0101) a,(1101) | a,(0110) a,(1110) a,(0111) a,(1111)
(e) Memory allocation for computations of Hy.

Memory allocation [HBMO(0) HBM1(0) HBMO(1) HBM1(1) HBMO(2) HBM1(2) HBMO(3) HBM1(3) HBM2(0) HBM3(0) HBM2(1) HBM3(1) HBM2(2) HBM3(2) HBM2(3) HBM3(3)
Output state vector a,(0000) a,(0001) a,(0010) a,(0011) a,(0100) a,(0101) a,(0110) a,(0111) a,(1000) a,(1001) a,(1010) a,(1011) a,(1100) a,(1101) a,(1110) a,(1111)

(f) Memory allocation of the output state vector.

FIGURE 8. Proposed memory allocation of Hadamard gates. After each Hadarmard gate computation, the output data are used as the inputs of the
controlled phase-shift gate computation. Since each output of controlled phase-shift gate replaces its inputs, the memory allocation remains the same.
The inputs of H2, H3 and H4 are the data after the controlled phase-shift gate computation.

vector is assigned to HBMO and HBM1, while the second
half is assigned to HBM2 and HBM3. Note that each color
represents a different memory module. We can see that the
data are equally distributed to all memory modules, while
neighboring data are allocated to different memory modules.

Figure 8b shows the memory allocation related to the
first Hadamard gate H;. In each step, minimum of four
data values are accessed in parallel. For example, inputs
a(0000), a(0001), a(0010) and a(0011) are read by access-
ing HBMO0(0), HBM1(0), HBMO(1) and HBM1(1) simul-
taneously. The outputs a;1(0000), a;(0001), a1(0010) and
a1(0011) are written to HBMO0(4), HBM2(4), HBM1(4) and
HBM3(4) respectively. This process continues for the rest of
the data in the first half of the input vector. When all the data
are read from HBMO and HBM1, we read the second half
of the state vector from HBM2 and HBM3. The input and
output addresses are different, where inputs are read from
the addresses 0 to 3, while the outputs are written to the
addresses 4 to 7, in each HBM module. These output data
are then used as the inputs for the controlled phase-shift gate

65108

operations. As already explained using Figure 3, the inputs
are over-written by the outputs of the controlled phase-shift
gate operations. Therefore, the data in the state vector a; are
replaced by the corresponding data in the output state vec-
tor aj4. For example, a1(0101) in HBM2(S) is replaced by
a14(0101) belonging to the state vector aj4, that is gener-
ated after the computation corresponding to the controlled
phase-shift gate Ry 4.

Figure 8c shows the memory allocation corresponding to
Hp computation. The input and output state vectors are
a4 and a; respectively. We read inputs a14(0000), a14(0010),
a14(0100) and a14(0110) by accessing HBM0(4), HBM1(4),
HBMO(5) and HBMI(5) simultaneously. The outputs
a>(0000), a>(0010), a»(0100) and a»(0110) are written to
HBMO0(0), HBM2(0), HBM1(0) and HBM3(0) respectively.
In this case, the same memory modules used in H; com-
putation are accessed after reversing the input and output
addresses. Other than the addresses, the memory allocation is
similar to that of H; in Figure 8b. Figure 8d shows the mem-
ory allocation corresponding to H3 computation. We read

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

HBMO | HBM1

write

[} }

FIGURE 9. Accelerator architecture using 2 processing elements (PEs) and
four memory modules.

inputs a24(0000), a24(0100), a24(1000) and a24(1100) by
accessing HBMO0(0), HBM1(0), HBMO(1) and HBMI(1)
simultaneously. The outputs a3(0000), a3(0100), a3(1000)
and a3(1100) are written to HBM0(4), HBM2(4), HBM1(4)
and HBM3(4) respectively. As we can see, the memory
access is similar to that of H; in Figure 8b, where the
same memory modules and the same memory addresses are
accessed for both inputs and outputs. Memory access of Hy is
shown in Figure 8e. It is similar to that of H, in Figure 8c.
Figure 8f shows the memory allocation of the output data
after rearranging for better visibility. (Note that the memory
allocations of the output data in Figure 8e and Figure 8f are
exactly the same). We can see that the memory allocation of
the output data is similar to that of the input data in Figure 8a.

_ _kernel void read (HBMO, HBM1, HBM2, HBM3)
{

1
2

3 base = (odd gate) ? 0 : size;

4

5 for (i=0; i<size/2; i++)

6 {

7 addr = base + 2*i;

8 dtmp0 = {HBMO[addr+0], HBM1[addr+0]};
9 dtmpl = {HBMO[addr+1], HBMI[addr+1l]};

1 write_channel_intel (ch_din0O, dtmpO0);

12 write_channel_intel (ch_dinl, dtmpl);
13 }

14

15 for (1i=0; i<size/2; i++)

16 {

17 addr = base + 2%i;

18 dtmp0 = {HBM2[addr+0], HBM3[addr+0]};
19 dtmpl = {HBM2[addr+1l], HBM3[addr+1l]};
20

21 write_channel_intel (ch_din0O, dtmpO0);
22 write_channel_intel (ch_dinl, dtmpl);

23 }
2 }

Listing 1. Extract of the read kernel. Coding is simplified and details are
removed for the explanation purpose.

Overall, the memory allocations of all odd number of
Hadamard gates are the same. Similarly, the memory allo-
cations of all even number of Hadamard gates are also the
same. The difference between the memory allocations of odd
and even is only the memory addresses. Despite the fact

VOLUME 10, 2022

that different data are required for different computations as
discussed in Figure 5, the same memory modules are accessed
in the same order for all computations belonging to all gates.
The required data are already allocated to the appropriate
location in the previous computation. Therefore, the structure
between the memory and kernels is the same and we do not
have to conditionally select memory modules. All the inputs
and output data are equally distributed among all memory
modules. The data can be read and write in parallel from
and to multiple memory modules. If we want to increase the
degree of parallelism further, we can do it by accessing more
data in parallel.

| __attribute__ ((autorun))

2 _ _kernel void PEO()

3

4 for (i=0; i<size; i++)

5 {

6 dat = read_channel_intel (ch_din0);
7
8
9

//Hadamard computation. k is a constant
dtmp0 = k«* (dat.s0 + dat.sl);

10 dtmp2 = k«x(dat.sO0 - dat.sl);

1

12 //Controlled phase-shift computation
13 #pragma unroll

14 for (all phase shift gates) {

15 dtmp0 = phase_shift (dtmpO) ;

16 dtmp2 = phase_shift (dtmp2);

17 }

18

19 //send to write kernel

20 write_channel_intel (ch_dout0, dtmpO0);
21 write_channel_intel (ch_dout2, dtmp2);

23 }

Listing 2. Computation kernel PEO. Coding is simplified and details are
removed for the explanation purpose.

Figure 9 shows the emulator architecture to use the mem-
ory allocation shown in Figure 8. It consists of a read kernel,
a write kernel and two computation kernels PEO and PE1.
All kernels execute concurrently, and the data transfer among
kernels are done through OpenCL channels. Listing 1 shows
an extract of the OpenCL code used for the “read kernel”.
It contains two loops executed one after the other in serial
manner. In the first loop, two neighboring data values each
from HBM 0 and HBM 1 are accessed in parallel. In the second
loop, two neighboring data values each from HBM?2 and
HBM3 are accessed in parallel. The size is the number of
data values per memory. When the number of qubits are N,
and the number of memory modules are M, size = N /M.
The memory address is dependent on whether the gate is an
odd number or even number. This gate number parameter is
transferred from the host. Note that all data are in complex
number format and we use a structure of two single-precision
floating-point numbers to represents the real and imaginary
parts.

Listings 2 and 3 show an extract of computation ker-
nels PEO and PEl corresponding to two PEs (processing
elements). These two kernels receive the data from the

65109

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

“read kernel” through OpenCL channels. After each com-
putation, the results are written back to the “write kernel”
through channels. Since computation kernels do not access
external memory directly, we can design those as ‘“‘autorun”
kernels. As a result, those kernels are automatically executed
without any host intervention, and this reduces the control
overhead of the CPU. The constants are stored internally
in the FPGA on a ROM (read only memory) and accessed
by kernels. Since all computations of controlled phase-shift
gates are mutually independent, we compute all phase-shift
gates in parallel, by using “unroll” directive.

1 __attribute__ ((autorun))

2 _ _kernel void PE1()

3 {

4 for (i=0; i<size; i++)

5 {

6 dat = read_channel_intel (ch_dinl);
7
8

//Hadamard computation

9 dtmpl = k«*(dat.s0 + dat.sl);

10 dtmp3 = kx(dat.sO0 - dat.sl);

1

12 //Controlled phase-shift computation
13 #pragma unroll

14 for (all phase shift gates) {

15 dtmpl = phase_shift (dtmpl);

16 dtmp3 = phase_shift (dtmp3);

17 }

18

19 //send to write kernel

20 write_channel_intel (ch_doutl, dtmpl);
21 write_channel_intel (ch_dout3, dtmp3);

23}

Listing 3. Computation kernel PE1. Coding is simplified and details are
removed for the explanation purpose.

__kernel void write (HBMO, HBM1, HBM2, HBM3)

1
2

3 base = (odd gate) ? size : 0;

4 for (unsigned i=0; i<size; i++)

5 {

6 unsigned addr = base + 1i;

7

8 HBMO [addr] = read_channel_intel (ch_dout0);
9 HBM1 [addr] = read_channel_intel (ch_doutl);
10 HBM2 [addr] = read_channel_intel (ch_dout2);
11 HBM3 [addr] = read_channel_intel (ch_dout3);

12 }
13}

Listing 4. Write kernel. Coding is simplified and details are removed for
the explanation purpose.

Listing 4 shows an extract of the “write kernel”. It receives
all the results from both PEs through channels. Those data
are then written to 4 HBM memories in parallel. All kernels
have loops that iterates for all data in the memory. Both read
and write kernels are executed by the host for each Hadamard
gate, while the autorun kernels are executed automatically.
We have a continuous data stream from read, computation
and write. Read, computation and write kernels are executed
concurrently in pipelined manner. Channels are implemented

65110

in blocking mode, so that the next execution is blocked if the
data are not received from the source kernel, or data are not
accepted by the destination kernel. Each kernel is in standby
state until it receives data from the previous kernel through
channels. In order to tolerate small differences of reading
and writing speeds, we use buffered channels. Therefore,
a channel can write to a buffered channel until the buffer is
completely filled.

Generalized memory allocation for ¥ HBM modules and
N qubits is shown in Egs.(6), (7) and (8). Memory access
from the input HBMs connected to PE[2m] and PE[2m + 1]
are given by Eq.(6). The HBM module number and
PE number are given by [m] and memory address is given
by (). In the first half, data are accessed from HBM[2m] and
HBM][2m + 1]. In the second half, data are accessed from
HBM[%’ + 2m] and HBM[% + 2m + 1]. Total of four data
values, two from each HBM, are required by two PEs in each
step. All M /2 PEs operate in parallel, while reading two data
values per HBM from M /2 HBMs per step. Since there are
2N data in the state vector, and 2 x M /2 data are read in
each step, a total of 2V /M steps are required for the whole
computation. The output HBMs connected to PE[2m] and
PE[2m + 1] are shown by Egs. (7) and (8) respectively. Input
and output data use different address spaces, where inputs are
read from the addresses 0 ~ 2V /M and outputs are written
to the addresses 2V /M ~ 2N*1/M in each HBM. These
address spaces are interchanged for each Hadamard gate
computation.

HBM[2m](2n),
HBM[2m + 1](2n),
HBM[2m](2n + 1),

HBM[2m + 1](2n + 1)
N1 M
where,0 <n< —,0<m < —
M 4
Inputs of
PE[2m], HBM M (2 N
HBM[M +2m+1](2 2N)
— m n——),
z M
HBM[M +2m]2n + 1 2)
> m](2n 7
HBM[M +2m+1]2n+1 2N)
2 M
2N71 2N
<n<—,0<m< —
M

4

<

where,

(6)
2N
HBM[m](ﬁ + n),
M 2N
HBM[— + ml(— +n)
Outputs of PE[2m] 2 AgN @)
where, 0 < n < i
M

0<m< —

4

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

Memory allocation| HBMO(0) ~HBM1(0) HBM2(0) HBM3(0) HBM4(0) HBMS5(0) HBM6(0) HBM7(0) HBMS8(0) HBM9(0) HBM10(0)

Initial State vector | a(00,0000) a(00,0001) a(00,0010) a(00,0011) a(00,0100) a(00,0101) a(00,0110) a(00,0111) a(00,1000) a(00,1001) a(00,1010)
HBM20(1) HBM21(1) HBM22(1) HBM23(1) HBM24(1) HBM25(1) HBM26(1) HBM27(1) HBM28(1) HBM29(1) HBM30(1) HBM31(1)
a(11,0100) a(11,0101) a(11,0110) a(11,0111) a(11,1000) a(11,1001) a(11,1010) a(11,1011) a(11,1100) a(11,1101) a(11,1110) a(11,1111)

(a) Memory allocation of the initial state vector.

Input mem. addr. | HBMO(0) HBM1(0) HBMO(1) HBM1(1) | HBM2(0) HBM3(0) HBM2(1) HBM3(1) | HBM4(0) HBMS5(0) HBM4(1)

Input Data a(00,0000) a(00,0001) a(01,0000) a(01,0001)|a(00,0010) a(00,0011) a(01,0010) a(01,0011)[a(00,0100) a(00,0101) a(01,0100)
HBM26(0) HBM27(0) HBM26(1) HBM27(1) | HBM28(0) HBM29(0) HBM28(1) HBM29(1) [HBM30(0) HBM31(0) HBM30(1) HBM31(1)
a(10,1010) a(10,1011) a(11,1010) a(11,1011))a(10,1100) a(10,1101) a(11,1100) a(11,1101)|a(10,1110) a(10,1111) a(11,1110) a(11,1111)

Output mem. addr.| HBMO(2) HBM16(2) HBMS(2) HBM24(2) | HBM1(2) HBM17(2) HBMS(2) HBM25(2) | HBM2(2) HBM18(2) HBM10(2)

Output data a,(00,0000) a,(00,0001) a,(01,0000) a,(01,0001)|a,(00,0010) a,(00,0011) a,(01,0010) a,(01,0011)[a,(00,0100) a,(00,0101) a,(01,0100)
HBMS5(3) HBM21(3) HBM13(3) HBM29(3) | HBM6(3) HBM22(3) HBM14(3) HBM30(3) | HBM7(3) HBM23(3) HBM15(3) HBM31(3)
a,(10,1010) a,(10,1011) a,(11,1010) a,(11,1011){a,(10,1100) a,(10,1101) a,(11,1100) a,(11,1101)}a,(10,1110) a,(10,1111) a,(11,1110) a,(11,1111)

Input mem. addr.
Input Data

Output mem.addr.
Output data

(b) Memory allocation for computations of H;.

HBMO(2) HBM1(2) HBMO(3) HBM1(3)
2,5(00,0000) 2,6(00,0010) a,¢(10,0000) a,¢(10,0010)

HBM2(2) HBM3(2) HBM2(3) HBMS3(3)
2,6(00,0100) a,5(00,0110) a,¢(10,0100) a,¢(10,0110)

HBM4(2) HBMS5(2) HBMA4(3)
2,6(00,1000) a,4(00,1010) a,¢(10,1000)

HBM26(2) HBM27(2) HBM26(3) HBM27(3)
a4(01,0101) 2,4(01,0111) a;¢(11,0101) a,4(11,0111)

HBM28(2) HBM29(2) HBM28(3) HBM29(3)
,6(01,1001) 2,4(01,1011) a,¢(11,1001) ay4(11,1011)

HBM30(2) HBM31(2) HBM30(3) HBM31(3)
2,6(01,1101) a,4(01,1111) a,(11,1101) ay¢(11,1111)

HBMO(0) HBM16(0) HBMS(0) HBM24(0)
a,(00,0000) a,(00,0010) a,(10,0000) a,(10,0010)

HBM1(0) HBM17(0) HBMS(0) HBM25(0)
a,(00,0100) a,(00,0110) a,(10,0100) a,(10,0110)

HBM2(0) A HBM18(0) HBM10(0)
a,(00,1000) a,(00,1010) a,(10,1000)

HBMS5(1) HBM21(1) HBM13(1) HBM29(1)
a,(01,0101) a,(01,0111) a,(11,0101) a,(11,0111)

HBM6(1) HBM22(1) HBM14(1) HBM30(1)
a,(01,1001) a,(01,1011) a,(11,1001) a,(11,1011)

HBM7(1) HBM23(1) HBM15(1) HBM31(1)

,(01,1101) a,(01,1111) a,(11,1101) a,(11,1111)

(c) Memory allocation for computations of Hs.

FIGURE 10. An extract of the proposed memory allocation for 6-qubit QFT emulation using 32 HBMs.

HBM[M + 2
7T m](ﬁ + n),
HBM[3—M + I’I’l](g +n)
4
I

where, 0 <n < —,

Outputs of PE[2m + 1] (8)

0<m< —
4

An example of the memory allocation for 6-qubit QFT
emulation using 32 HBMs is shown in Figure 10. The initial
memory allocation is done according to Eq.(5) and shown in
Figure 10a. We can see that the data are evenly distributed to
all 32 HBMs. The memory allocations for the first and the
second Hadamard gates are shown in Figures 10b and 10c
respectively. For each Hadamard gate computation, the same
memory modules are accessed, while interchanging the
address spaces. Exploiting this behavior, we implement the
architecture using 16 PEs as shown in Figure 11. As we can
see, the data path among PEs and memories is fixed for all
computations. Although each PE writes to only two memory
modules, one write kernel is shared among two PEs to reduce
the number of kernels and the kernel control overhead by
the CPU. We can scale the number of PEs by accessing

VOLUME 10, 2022

more HBM modules (or different data in the same modules)
in parallel. When more memory modules are used, data are
evenly distributed among all memory modules. Therefore,
we can simulate larger quantum circuits with more qubits.
Moreover, the total required bandwidth is the sum of all
bandwidths of all HBM modules.

C. MULTI-FPGA IMPLEMENTATION

This section shows how to scale both computation and data
storage across multiple FPGAs. Figure 12 shows the memory
allocation using two FPGAs. We use the same example used
for single FPGA in Figure 8, and assume that each FPGA con-
tains 4 HBM modules. Two FPGAs are identified by FPGAOQ
and FPGAL. Figure 12a shows the initial memory allocation.
The first-half of the state vector is stored in FPGA 0, and the
second-half is stored in FPGA 1. Half of the first-half (or the
first-quarter) is stored in HBMO and HBM 1 of FPGAOQ, while
the rest of the first-half (or the second quarter) is stored in
HBM?2 and HBM3 of FPGAQ. The second-half of the state
vector is stored similarly in FPGA1. For each half, memory
allocation is similar to that of a single FPGA as explained
in section III-B.

65111

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

FIGURE 11. Accelerator architecture extended to 16 PEs.

Figure 12b shows the memory allocation corresponding
to the computation of H;. Half of the output data generated
by each FPGA are retained, while the other half is sent to
the other FPGA. Therefore, both FPGAs exchange half of
their results after each Hadamard gate computation. The data
received by the each FPGA are then allocated to the appro-
priate memory module as shown in Figure 12b. Figure 12c
shows the memory allocation corresponding to the computa-
tion of H>. The memory allocation is similar to the previous
one, while the input and output addresses are reversed. Note
that, compared to the single FPGA implementation in 8, two
FPGA implementation use only half of the capacity of each
HBM module. This is because, data are evenly distributed
among the HBM modules of both FPGAs, without any data
duplication.

Figure 13 shows the emulator architecture using
two FPGAs. In each FPGA, half of the output produced
by each PE is sent to the other FPGA. This data transfer
is done using fiber optic cables connected to the QSFP28
ports in each FPGA. We use I/O channels to implement
inter-FPGA data transfers. I/O channels connect source and
destination kernels belonging to two different FPGAs. Each
channel contains two separate paths for both read and write.
The FPGA that is used for the evaluation contains 4 /O
channel per FPGA, while each channel is capable of 100 Gbps
transfer speed in either direction. When there are more PEs
than the number of I/O channels, outputs of multiple PEs are
combined and then sent through a single channel. We have
to consider the maximum I/O channel bandwidth when we
increase the degree of parallelism. If the required band-
width exceed the I/O channel bandwidth, the computation
is automatically paused until the data transfer is completed.
This is automatically done due to the blocking behavior of
I/O channels.

As explained in this section, two-FPGA implementation is
done by computing half of the state vector in each FPGA.
We can repeat this process again and again for each portion
of the allocated data per FPGA. For example, the portion of
data allocated to FPGAO can be divided again to two FPGAs.
Similarly, data allocated to FPGA1 can also be divided again
to two FPGAs. We can use four FPGAs, where each FPGA
computes a quarter of the state vector. As a result, the degree
of parallelism and the processing speed are doubled. Since
total memory capacity is also doubled, we can increase the
emulation size by one qubit. If we apply the same process

65112

repeatedly, we can use multiple FPGAs to do larger emu-
lations or to increase the processing speed. Therefore, the
proposed emulator can be scaled across multiple FPGAs to
increase the speed-up and the emulation size.

IV. EVALUATION

For the evaluation, we used a workstation with 16-core Intel
Xeon Gold 6226R processor, 192GB DDR4 memory and
two BittWare 520N-MX FPGA boards [32]. An FPGA board
contains Intel Stratix 10 MX2100 FPGA with 16GB HBM2
memory that have a theoritical bandwidth of 512 GB/s. Each
FPGA has four QSFP28 ports. QSFP28 ports of one FPGA
are connected directly to the QSFP28 ports of the other FPGA
through fiber-optic cables as shown in Figure 14. This pro-
vides a bi-directional data-paths between two FPGAs, where
all four paths collectively provide 400 Gbps data transfer
speed per direction. We use CentOS 7.9 operating system,
Intel C compiler version 2019 and Quartus pro version 19.4.0.

A. EVALUATION OF PROCESSING TIME AND RESOURCE
UTILIZATION

Figure 15 shows the computation time against the num-
ber of qubits. Computation time is measured from the host
CPU by running emulations for 100 iterations and then
taking the average. The kernel execution time, inter-FPGA
data transfer time, and control overhead by the host are
included in the computation time. The control overhead
includes kernel-execution control time and synchronization
time. One-FPGA implementation is faster up to 25 qubits,
and two-FPGA implementation is faster for over 25 qubits.
When the number of qubits is small, the control time is rela-
tively larger compared to the computation time. Moreover, the
control time is larger for two-FPGA implementation, since
CPU has to control more kernels compared to that of one-
FPGA implementation. As a result, two-FPGA implemen-
tation becomes slower for smaller number of qubits. When
the number of qubits is large, the control time is negligible
compared to the computation time. Therefore the processing
speed nearly doubles when using two FPGAs. For example,
two-FPGA 29-qubit implementation is two times faster com-
pared to that of one-FPGA implementation.

Figure 16 shows the total processing time including data
transfers between host CPU and FPGAs. Two-FPGA imple-
mentation is faster for larger number of qubits. Since,
we evenly distribute data on to two FPGAs, the amount of
data stored per FPGAs is reduced by half. Moreover, data
transfers to two FPGAs are done in parallel using two PCle
buses. Therefore, both computation time and data transfer
time are reduced by half. As a result, two-FPGA 29-qubit
implementation is 1.9 times faster compared to that of one-
FPGA implementation.

Table 1 shows the resource usage of one-FPGA imple-
mentations. When the number of qubits increases, there is
a small increase in logic, registers and DSP blocks, while
RAM blocks are nearly a constant. The clock frequencies
are nearly the same since there is no significant increase

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

FPGA number FPGAO

FPGA1

Memory allocation | HBMO(0) HBM1(0) HBMO(1) HBM1(1) HBM2(0) HBM3(0) HBM2(1) HBM3(1) | HBMO(O) HBM1(0) HBMO(1) HBM1(1) HBM2(0) HBM3(0) HBM2(1) HBM3(1)

Initial State vector | a(0000) a(0001) a(0010) a(0011) a(0100) | a(0101) a(0110)

a(0111) | a(1000) a(1001) a(1010) a(1011) a(1100) a(1101) a(1110) a(1111

(a) Memory allocation for initial state vector in two FPGAs.

FPGA number FPGAO
Input mem. addr.

Input Data a(0000) _ a(0001) a(0010) a(0011) | a(0100) | a(0101) a(0110)

FPGA1

HBMO(0) HBM1(0) HBMO(1) HBM1(1) | HBM2(0) HBM3(0) HBM2(1) HBM3(1) [HBMO(0) HBM1(0) HBMO(1) HBM1(1) | HBM2(0) HBMB3(0) HBM2(1) HBMS3(1)

a(0111) | a(1000) a(1001) a(1010) a(1011) | a(1100) a(1101) a(1110) a(1111

FPGA number FPGAO FPGA1 FPGAO FPGAL FPGAO FPGA1 FPGAO

FPGA1 FPGAO FPGAL FPGAO FPGA1 FPGAO FPGAL FPGAO FPGA1

Output mem. addr. | HBMO(2) HBMO(2) | HBM1(2) HBM1(2) [HBMO(3) HBMO(3) |HBM1(3) HBM1(3) [HBM2(2) HBM2(2) |HBM3(2) HBM3(2) | HBM2(3) HBM2(3) |HBM3(3) HBM3(3)

Output data a,(0000) a;(0001) _a;(0010) a,(0011) | a;0100) a,(0101) a4(0110) a,0111) | a,(1000) a,(1001) a,(1010) a;(1011) | a,(1100) a,(1101) = a4(1110) a,(1111)
(b) Memory allocation for computations of H; .

FPGA number FPGAO FPGAL

Input mem. addr. | HBMO(2) HBM1(2) HBMO(3) HBMA(3) | HBM2(2) HBM3(2) HBM2(3) HBM3(3) | HBMO(2) HBM1(2) HBMO(3) HBM1(3) | HBM2(2) HBM3(2) HBM2(3) HBM3(3)

Input Data a14(0000) a1,0010) a,4(0100) a14(0110) | 214(1000) a14(1010) a14(1100) @14(1110) | a14(0001) a14(0011) a;,(0101) a14(0111) | a15(1001) @1,(1011) a;4(1101) a;(1111

FPGA number FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1 FPGAO FPGA1

Output mem. addr. | HBMO(0) HBMO(0) ' HBM1(0) HBM1(0) [HBMO(1) HBMO(1) ' HBM1(1) HBM1(1) [HBM2(0) HBM2(0) HBM3(0) HBM3(0) | HBM2(1) HBM2(1) HBM3(1) HBM3(1)
3,(1110) | 3,(0001) a,(0011) ~a,(0101) a,(0111) | a,(1001) a,(1011) ~a,(1101) a,(1111

Output data a,(0000) a,(0010) = a,(0100) a,(0110) | a,(1000) a,(1010) a,(1100,

(c) Memory allocation for computations of Hs.

FIGURE 12. Proposed memory allocation for two FPGAs for Hadamard gates H, and H, computations.

HBMO [HBM1 |HBM16 [HBM17 HBM30|HBM31

FPGAO

HBM16 HBMS HBM23 HBM15
> I/O port € | 1/0 port s

~

1/0 port

[

HBMO |HBM16 HBMS8 | HBM24

> -4

HBM7 |[HBM23 HBM15|HBM31

1/0 port

HBMO | HBM1 [HBM16|HBM17 E=»Teyi% [l HBM14 | HBM15 | HBM30 HBM31

FIGURE 13. Accelerator architecture using two FPGAs.

in on-chip resource utilization. However, the DRAM usage
doubles with every additional qubit. DRAM is used to store
the input and output state vectors, and each vector has
2" complex floating-point elements for n qubits. Due to the
limited DRAM capacity, we can implement emulations up to
29 qubits in one FPGA.

Table 2 shows the resource utilization of two-FPGA imple-
mentations. The resource utilization except for DRAMs is
similar to those of one-FPGA implementations. Since we
distribute the state vector data on to two FPGAs evenly, the
DRAM usage per FPGA is reduced by 50% compared to one-
FPGA implementation. The clock frequencies are nearly the
same across two FPGAs for different number of qubits.

VOLUME 10, 2022

QSFP28 ports R I
QSFP28 ports
of FPGA 1

FIGURE 14. Multi-FPGA evaluation environment with two Intel
Stratix 10 MX FPGA boards connected directly using fiber-optic cables.

4096
2048

2 times speed-up
1024

PComputation time (ms)

64 -o-One-FPGA
32 -#-Two-FPGAs
16
20 21 22 23 24 25 26 27 28 29 30

Number of qubits

FIGURE 15. Computation time of one and two FPGA implementations for
different number of qubits.

As shown in Figures 15 and 16, the processing time can
be scaled using more FPGAs. In addition, we can increase
the emulation size by adding more FPGAs. This shows the
scalability of the proposed emulator. Note that, although the
total logic usage is nearly 50% per FPGA, we cannot increase
the degree of parallelism further. For example, if we doubles

65113

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

TABLE 1. Resource utilization of one FPGA implementations.

Number of Logic Registers DSP RAM SRAM DRAM | Frequency
qubits blocks blocks (MB) (MB) (MHz)
20 306,782 (44%) | 672,713 | 1,008 (25%) | 1,513 (22%) | 2.03 (12%) 16 299
21 309,186 (44%) | 680,786 | 1,040 (26%) | 1,513 (22%) | 2.04 (12%) 32 295
22 316,823 (45%) | 684,676 | 1,072 (27%) | 1,513 (22%) | 2.05 (12%) 64 294
23 322,266 (46%) | 693,077 | 1,104 (28%) | 1,513 (22%) | 2.05 (12%) 128 290
24 325,364 (46%) | 703,402 | 1,136 (29%) | 1,513 (22%) | 2.05 (12%) 256 286
25 327,185 (47%) | 710,937 | 1,168 (29%) | 1,513 (22%) | 2.05 (12%) 512 294
26 328,310 (47%) | 717,952 | 1,200 (30%) | 1,513 (22%) | 2.05 (12%) 1,024 295
27 325,005 (46%) | 722,814 | 1,232 (31%) | 1,513 (22%) | 2.05 (12%) 2,048 292
28 331,912 (47%) | 733,189 | 1,264 (32%) | 1,513 (22%) | 2.05 (12%) 4,096 300
29 331,238 (47%) | 742,779 | 1,296 (33%) | 1,513 (22%) | 2.05 (12%) 8,192 300

TABLE 2. Resource utilization of two FPGA implementations.

Number of Logic Registers DSP RAM SRAM DRAM | Frequency
qubits blocks blocks (MB) (MB) (MHz)
20 322,697 (46%) | 685,872 | 1,008 (25%) | 1,565 (23%) | 2.10 (12%) 8 293

318,223 (45%) | 689,638 | 1,008 (25%) | 1,565 (23%) | 2.10 (12%) 8 297
71 315,480 (45%) | 695,755 | 1,040 (26%) | 1,565 (23%) | 2.10 (12%) 16 306
323,168 (46%) | 692,962 | 1,040 (26%) | 1,565 (23%) | 2.10 (12%) 16 307
2 319,262 (45%) | 700,475 | 1,072 (27%) | 1,565 (23%) | 2.07 (12%) 32 286
324,806 (46%) | 705,734 | 1,072 (27%) | 1,565 (23%) | 2.07 (12%) 32 294
23 325,741 (46%) | 710,450 | 1,104 (28%) | 1,565 (23%) | 2.07 (12%) 64 300
326,516 (46%) | 712,470 | 1,104 (28%) | 1,565 (23%) | 2.07 (12%) 64 308
24 330,546 (47%) | 723,767 | 1,168 (30%) | 1,565 (23%) | 2.07 (12%) 128 320
334,973 (48%) | 720,280 | 1,168 (30%) | 1,565 (23%) | 2.07 (12%) 128 291
25 333,577 (47%) | 720,264 | 1,168 (30%) | 1,565 (23%) | 2.07 (12%) 256 320
336,722 (48%) | 728,715 | 1,168 (29%) | 1,565 (23%) | 2.07 (12%) 256 320
2 336,538 (48%) | 730,720 | 1,200 (30%) | 1,565 (23%) | 2.07 (12%) 512 304
339,058 (48%) | 735,390 | 1,200 (30%) | 1,565 (23%) | 2.07 (12%) 512 300
27 340,610 (48%) | 742,478 | 1,232 (31%) | 1,565 (23%) | 2.07 (12%) 1,024 313
332,636 (47%) | 743,433 | 1,232 (32%) | 1,565 (23%) | 2.07 (12%) 1,024 317
3 344,482 (49%) | 753,155 | 1,264 (32%) | 1,565 (23%) | 2.07 (12%) 2,048 313
343,468 (49%) | 758,784 | 1,264 (32%) | 1,565 (23%) | 2.07 (12%) 2,048 326
29 345,042 (49%) | 755,915 | 1,296 (33%) | 1,565 (23%) | 2.07 (12%) 4,096 300
345,922 (49%) | 752,401 | 1,296 (33%) | 1,565 (23%) | 2.07 (12%) 4,096 300
30 349,886 (50%) | 763,939 | 1,328 (34%) | 1,565 (23%) | 2.07 (12%) 8,192 276
346,457 (49%) | 763,193 | 1,328 (34%) | 1,565 (23%) | 2.07 (12%) 8,192 287

the degree of parallelism, the required logic usage is over 90%
and the compilation fails. However, if we use a slightly larger
FPGA, we can expect doubling the processing speed.

In quantum mechanics, “fidelity”’ [33], the absolute square
of the inner product between two state vectors, is a measure of
“closeness” of two quantum states. When two state vectors
are getting closer, fidelity gets closer to 1. If the two state
vectors are the same, fidelity equals to 1. We calculate fidelity
using the output state vector of the proposed method and
the output state vector obtained by CPU emulation. We use
double-precision floating-point computation on CPU, and
assume that the resulting state vector is the most accurate one

65114

we can obtain. According to the results, fidelity of all QFT
emulations are larger than 0.9999986, which is extremely
close to 1. Therefore, we can say that the proposed emulator
provides accurate emulation results. Such high accuracy is
obtained by using hardened floating-point units in FPGA that
are fully compatible with IEEE 754 standard [34].

B. COMPARISON AGAINST PREVIOUS WORKS

The work in [35] is one of the most recent and comprehensive
evaluation of large QFT emulations on modern multicore
processors. It exploits multiple techniques such as cache
access optimization, SIMD vectorization and OpenMP based

VOLUME 10, 2022

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

IEEE Access

8192

)

N
(=]
©
<

1.9 times speed-up {

2048
1024
512
256
128 One-FPGA

64 -#-Two-FPGAs

Total processing time (ms

32
20 21 22 23 24 25 26 27 28 29 30
Number of qubits

FIGURE 16. Total processing time of one and two FPGA implementations
for different number of qubits. Total processing time includes both
computation and data transfer times.

multicore processing on CPUs to maximize performance.
It used a system with a 2.3 GHz 24-core Haswell architecture
CPU and 128 GB memory for the evaluation. In [35], per-
formance is compared against another state-of-art quantum
computing emulator “QuEST” (Quantum exact simulation
toolkit) [29] that also utilizes parallel computation. Both
implementations are optimized using GNU and Intel com-
pilers with OpenMP multi-threading, and the comparisons
are done for up to 30 qubits. We compare the three largest
QFT emulations in Table 3. Note that the fastest implemen-
tation of each work is selected for the comparison. Due to
the unavailability of numerical values of processing times,
we read the values directly from the graphs in [35] as accu-
rately as possible. Compared to the fastest CPU emulation
of 28 ~ 30 qubits, we achieved 12.3 ~ 13.2 and
23.6 ~ 24.5 times speed-ups for one-FPGA and two-FPGA
implementations respectively, while considering all control
and data transfer overheads. If we compare only the compu-
tation time, two-FPGA implementation is over 46 times faster
compared to the fastest CPU implementation.

TABLE 3. Processing time comparison against multicore CPU emulations.

Processing time (s)
28-qubit | 29-qubit | 30-qubit
QuEST [29] 43 92 190
HpQC [35] 25 53 107
Proposed one-FPGA
(computation only) 0.95 1.90 -
(Total time) 2.02 4.00 -
Proposed two-FPGA
(computation only) 0.53 1.08 2.29
(Total time) 1.06 2.16 4.47

The work in [36] has done a comprehensive evalua-
tion on GPU-based quantum circuit emulators. It proposes
a GPU-based emulator called HyQuas, and compared the
performance against other state-of-the-art quantum circuit
emulators such as QCGPU [25], Qiskit [26], Qulacs [27],
Qibo [28], QuEST [29] and Yao [30]. The comparisons are
done for 28-qubit QFT on high-end GPUs such as V100
and A100. Note that we cannot compare the results of A100

VOLUME 10, 2022

GPU since only the normalized processing time values are
given and the absolute processing time values are not avail-
able. However, we were able to extract the processing time
values of V100-SXM2 GPU by reading data directly from the
figures, and then multiplying those by the absolute process-
ing time of the normalized unit, which is available in [36].
Figure 17 shows the comparison against the GPU-based
28-qubit QFT emulations. The comparison is done only for
the computation time since host-device data transfers are not
available in [36]. According to the results, both of the pro-
posed one-FPGA and two-FPGA implementations are faster
than all GPU-based emulators except HyQuas [36]. Accord-
ing to the method in HyQuas, a quantum circuit is divided
into multiple groups of gates. A hybrid of the following two
methods is used by applying the most suitable one for each
group of gates. One method is to use shared memory by ana-
lyzing data dependency of the computations among multiple
gates. This method is used for sparse circuits with low data
dependency. The other method is to combine the operations
of multiply gates into a large matrix multiplication task, that
is performed using highly optimized cuBLAS library [37].
This method is used for dense circuits. Since GPUs are very
efficient in matrix multiplication, have more computation
resources and a larger external memory bandwidth com-
pared to FPGAs, HyQuas provides better performance. Both
proposed and HyQuas are capable of using multi-FPGAs
and multi-GPUs respectively. However, the processing time
“scaling factor’” using 2 GPUs in HyQuas is only 1.56, while
the scaling factor using 2 FPGAs in the proposed method
is 2.0. Since it is possible to connect any number of FPGAs
in the proposed architecture, there is a great potential to
increase the processing speed for large emulations. More-
over, significantly larger processing speed can be expected
by using the latest Intel Agilex M series FPGAs [38], due to
the availability of more resources and larger clock frequency.

The BSP provided with Stratix 10 MX FPGA board
does not allow real-time on-board power monitoring, and
HyQuas [36] also does not provide power consumption
details. According to the FPGA board manual, the maximum
power consumption of the FPGA including core resources,
RAMs, HBM memories and transceivers is 140W. After
adding the power consumption of the board interface includ-
ing PSUs, the maximum power consumption is expected to
be 175W. Maximum power consumption of V100-SXM2
GPU is 300W [39], which is 1.7 times larger compared to
that of FPGA. Considering the fact that FPGA uses less than
50% of the logic resources, 34% of the DSPs and 23% of
the RAM blocks, there is a greater possibility that the power
consumption of the FPGA is significantly lower than the
maximum value. Therefore, we have measured the system
power consumption at the operational state of the FPGA, and
also the system power consumption without the FPGA board.
The difference of these measurements is 88W, and we can
assume that this is mostly caused by the power consumption
of the FPGA board. As a result, we can assume that the power
consumption of the FPGA is significantly lower than that of

65115

IEEE Access

H. M. Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory

4500

— 4000

(%)

£ 3500

© 3000

E 2500

=]

a0 2000

C

‘% 1500

(%]

§ 1000

S 500 I

& 70 m [

Bd ~
§ & 5 & s g £ &8
s & & 5§ 9 g3 & &
& < < g
Emulator S) ~

FIGURE 17. Comparison against GPU-based emulation methods for
28-qubit QFT. The GPU emulations are done on V100 GPU in [36].

the GPU implementation in HyQuas. However, real-time on-
board power monitoring of both FPGA and GPU is required
to compare the power consumption accurately.

Table 4 shows the performance of previous FPGA emu-
lators. All of those methods are only available for small
emulations of up to 16 qubits, while the proposed method
can process 30 qubits. Methods such as [15]-[18] uses fixed-
point computation, so that the results may inaccurate for
larger number of qubits. Moreover, none of these methods
are compatible with multiple FPGAs. Therefore, we cannot
expect these methods to be usable for large emulations, even
if those are implemented on latest FPGAs.

TABLE 4. Performance of previous FPGA emulators.

Previous Number Processing
Work FPGA of qubits time (ms)
[15] Stratix TV 8 1.2 x 1073
[16] Stratix IV 5 not given
[17] Xilinx Artix-7 3 not given
[18] Stratix II 16 not given
[19] Xilinx ZYNQ 6 115.47 x 1073
[20] Arria 10 4 not given

V. CONCLUSION

In this paper, we proposed an HBM-based scalable multi-
FPGA emulator for QFT. We discuss a memory allocation
method that efficiently utilize HBM-based memory sub-
system and inter-FPGA channels to evenly distribute data
while allowing parallel access to HBM modules on multi-
ple FPGAs. We implemented the proposed emulator up to
30 qubits using two FPGAs, and achieved 23.6 ~ 24.5 times
speed-up compared to a fully optimized 24-core CPU emu-
lator. The proposed emulator is faster than most of the GPU
emulators except HyQuas [36]. Since we use OpenCL soft-
ware for design, it is easy to optimize the proposed emu-
lator architecture for FPGA boards with different resource
constraints, while potentially compatible with FPGAs in
future generations. Therefore, we can increase the process-
ing speed further by using the latest Intel Agilex M series
FPGAs [38], and could expect even larger improvements with
future FPGAs.

65116

HyQuas [36] that uses GPUs is the fastest QFT emulator.
One of the significant difference in HyQuas [36] compared
to all other emulators is the usage of combined quantum
gates. This eliminates intermediate data transfers to the exter-
nal memory and also fully exploits highly efficient matrix
multiplication in GPUs. Usage of combined quantum gates
should be considered in future for FPGA-based emulators
also to increase the speed-up further. On the other hand, pro-
posed emulator has a better scalability compared to HyQuas.
Since we use direct data transfers among FPGAs using fiber-
optic cables, the inter-FPGA data transfer overhead is neg-
ligible. Therefore, we can expect high scalability for more
than two FPGAs. FPGA-based super computers such as
Cygnus [40] can be used to increase both the speed-up and
the number of qubits further. Recently, FPGAs are available
in cloud environments such as Amazon web services [41] and
Intel DevCloud [42]. Therefore, the proposed software-based
design can be optimized and distribute easily in such cloud
environments.

REFERENCES

[1] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge, U.K.: Cambridge Univ. Press. [Online]. Available:
https://www.amazon.com/Quantum-Computation-Information-10th-Ann-
iversary/dp/1107002176/ref=sr_1_1?crid=2HWZAAHFL7C1&keywords
=Quantum +Computation+and+Quantum+Information&qid=16554133
94&s=books&sprefix= quantum-+computation+and+quantum+informa-
tion%2Cstripbooks-intl-ship%2C209&sr=1-1

(2022). The Advantage Quantum Computer—D-Wave Systems. [Online].

Available: https://www.dwavesys.com/solutions-and products/systems/

[3] J. Chow, O. Dial, and J. Gambetta, “IBM quantum breaks the 100-
qubit processor barrier,” IBM, Armonk, NY, USA, Tech. Rep., 2021.
[Online]. Available: https://research.ibm.com/blog/127-qubit-quantum-
processor-eagle

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, pp. 195-202, Sep. 2017.

[S] M. S. Won, “Intel Agilex FPGAs deliver a game-changing combination
of flexibility and agility for the data-centric world,” Intel,
Santa Clara, CA, USA, Tech. Rep., 2019. [Online]. Available:
https://www.intel.com/content/dam/support/us/en/programmable/support-
resources/bulk-container/pdfs/literature/wp/agilex -fpgas-deliver-game-
changing-combination-wp.pdf

[6] Intel Stratix 10 MX FPGA, Intel, Santa Clara, CA, USA, 2021.

[7] Y.-k. Choi, Y. Chi, J. Wang, L. Guo, and J. Cong, “When HLS
meets FPGA HBM: Benchmarking and bandwidth optimization,” 2020,
arXiv:2010.06075.

[8] K. Mizutani, H. Yamaguchi, Y. Urino, and M. Koibuchi, “OPTWEB:
A lightweight fully connected inter-FPGA network for efficient collec-
tives,” IEEE Trans. Comput., vol. 70, no. 6, pp. 849-862, Jun. 2021.

[9] D. Coppersmith, “An approximate Fourier transform useful in quan-
tum factoring,” IBM, Armonk, NY, USA, Tech. Rep. RC 19642, 1994.
[Online]. Available: https://arxiv.org/abs/quant-ph/0201067

[10] Y.S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory,
“Implementation of the quantum Fourier transform,” Phys. Rev. Lett.,
vol. 86, no. 9, p. 1889, 2001.

[11] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124-134.

[12] A. Yu. Kitaev, “Quantum measurements and the abelian stabilizer prob-
lem,” 1995, arXiv:quant-ph/9511026.

[13] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama, Design of FPGA-
Based Computing Systems With OpenCL. Berlin, Germany: Springer,
2018.

[14] S. Winograd, “On computing the discrete Fourier transform,” Math. Com-
put., vol. 32, no. 141, pp. 175-199, 1978.

[15] Y. Qian, M. Wang, J. Chen, L. Wang, and Z. Feng, “Efficient FPGA emu-
lation of quantum Fourier transform,” in Proc. China Semicond. Technol.
Int. Conf. (CSTIC), Mar. 2019, pp. 1-3.

2

—

VOLUME 10, 2022

H. M.

Waidyasooriya et al.: Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory I E E E ACC@SS

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Y. H. Lee, M. Khalil-Hani, and M. N. Marsono, “FPGA-based quantum
circuit emulation: A case study on quantum Fourier transform,” in Proc.
Int. Symp. Integr. Circuits (ISIC), Dec. 2014, pp. 512-515.

T. M. Aye and M. Iwahashi, “Implementation and analysis of quantum
Fourier transform gates over FPGA framework,” in Proc. 8th Medit. Conf.
Embedded Comput. (MECO), Jun. 2019, pp. 1-5.

J. FE. Rivera-Miranda, A. J. Caicedo-Beltran, J. D. Valencia-Payan,
J. M. Espinosa-Duran, and J. Velasco-Medina, ‘“Hardware emulation of
quantum Fourier transform,” in Proc. IEEE 2nd Latin Amer. Symp. Circuits
Syst. (LASCAS), Feb. 2011, pp. 1-4.

A. Silva and O. G. Zabaleta, “FPGA quantum computing emulator using
high level design tools,” in Proc. Eight Argentine Symp. Conf. Embedded
Syst. (CASE), Aug. 2017, pp. 1-6.

N. Mahmud and E. El-Araby, “A scalable high-precision and high-
throughput architecture for emulation of quantum algorithms,” in Proc.
31st IEEE Int. Syst.-Chip Conf. (SOCC), Sep. 2018, pp. 206-212.

V. Hlukhov, “FPGA based digital quantum computer verification,”
in Proc. IEEE 1Ith Int. Conf. Dependable Syst., Services Technol.
(DESSERT), May 2020, pp. 178-182.

M. Levental, “Tensor networks for simulating quantum circuits on
FPGAs,” 2021, arXiv:2108.06831.

E. S. Fried, N. P. D. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and
A. Aspuru-Guzik, “QTorch: The quantum tensor contraction handler,”
PLo0S One, vol. 13, no. 12, Dec. 2018, Art. no. €0208510.

I. L. Markov and Y. Shi, ““Simulating quantum computation by contracting
tensor networks,” SIAM J. Comput., vol. 38, no. 3, pp. 963-981, Jan. 2008.
A. Kelly, “Simulating quantum computers using OpenCL,” 2018,
arXiv:1805.00988.

M. S. Anis, H. Abraham, A. Offei-Danso, and E. A. R. Agarwal,
“Qiskit: Open-source quantum development,” IBM, Armonk, NY, USA,
Tech. Rep., 2022. [Online]. Available: https://qiskit.org

Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen,
K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya, T. Yamamoto,
T. Yan, T. Kawakubo, Y. O. Nakagawa, Y. Ibe, Y. Zhang, H. Yamashita,
H. Yoshimura, A. Hayashi, and K. Fujii, “Qulacs: A fast and versatile
quantum circuit simulator for research purpose,” Quantum, vol. 5, p. 559,
Oct. 2021.

S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas,
D. Garcia-Martin, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, “Qibo:
A framework for quantum simulation with hardware acceleration,” Quan-
tum Sci. Technol., vol. 7, no. 1, Jan. 2022, Art. no. 015018.

T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high
performance simulation of quantum computers,” Sci. Rep., vol. 9, no. 1,
pp. 1-11, Jul. 2019, doi: 10.1038/s41598-019-47174-9.

X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, “Yao.Jl: Extensible, effi-
cient framework for quantum algorithm design,” Quantum, vol. 4, p. 341,
Oct. 2020.

Khronos Group. (2020). OpenCL Overview. [Online]. Available: https://
www.khronos.org/opencl/

BittWare. (2022). 520N-MX. [Online]. Available: https://www.bittware.
com/fpga/520n-mx/

R. Jozsa, “Fidelity for mixed quantum states,”” J. Mod. Opt., vol. 41, no. 12,
pp. 2315-2323, 1994.

Intel. Enabling High-Performance Floating-Point Designs. Accessed:
2022. [Online]. Available: https://www.intel.com/content/dam/support/us/
en/programmable/support-resources/bulk-container/pdfs/literature/wp/
wp-01267-fpgas-enable-high-performance-floating-point.pdf

H. Bian, J. Huang, R. Dong, Y. Guo, and X. Wang, “HpQC: A new
efficient quantum computing simulator,” in Proc. Int. Conf. Algorithms
Archit. Parallel Process., M. Qiu, Ed. Cham, Switzerland: Springer, 2020,
pp. 111-125.

C. Zhang, Z. Song, H. Wang, K. Rong, and J. Zhai, “HyQuas: Hybrid
partitioner based quantum circuit simulation system on GPU,” in Proc.
ACM Int. Conf. Supercomputing, Jun. 2021, pp. 443-454.

Nvidia. (2022). CuBLAS. [Online]. Available: https://developer.nvidia.com
/cublas

Intel. (2022). FPGA Solves Memory Bandwidth Bottleneck.
[Online]. Available: https://www.intel.com/content/www/us/en/
products/docs/programmable/agilex-m-series-memory-bandwidth-
solution-brief.html

Nvidia. (2022). NVIDIA V100 Tensor Core GPU. [Online]. Available:
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-
datasheet-update-us-1165301-r5.pdf

(2022). Overview of Cygnus: A New Supercomputer at CCS.
[Online]. Available: https://www.ccs.tsukuba.ac.jp/wp-content
/uploads/sites/14/2018/12/About-Cygnus.pdf

VOLUME 10, 2022

[41] (2022). Amazon Web Services. [Online]. Available: https://aws.
amazon.com/

[42] (2022). Overview of Cygnus: A New Supercomputer at CCS. [Online].
Available: https://www.intel.com/content/www/us/en/developer/tools/
devcloud/overview.html

HASITHA MUTHUMALA WAIDYASOORIYA
received the B.E. degree in information engineer-
ing and the M.S. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Japan,
in 2006, 2008, and 2010, respectively. He is
currently an Associate Professor with the Grad-
uate School of Information Sciences, Tohoku
University. His research interests include recon-
figurable computing, high-performance comput-
ing, processor architectures, and high-level design
methodology for VLSIs.

HIROKI OSHIYAMA received the B.S., M.S., and
Ph.D. degrees in physics from Tohoku Univer-
sity, Japan, in 2015, 2017, and 2020, respectively.
He is currently a Specially Appointed Assistant
Professor with the Graduate School of Information
Sciences, Tohoku University. His research inter-
ests include quantum many-body physics, tensor
networks algorithms, and quantum computing.

YUYA KUREBAYASHI received the B.S. and
M.S. degrees in physics from Tohoku University,
Japan, in 2017 and 2019, respectively, where he is
currently pursuing the Ph.D. degree with the
Graduate School of Science. His research inter-
ests include quantum many-body physics, ten-
sor networks algorithms, and quantum software
development.

MASANORI HARIYAMA (Associate Member,
IEEE) received the B.E. degree in electronic engi-
neering and the M.S. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sendai,
Japan, in 1992, 1994, and 1997, respectively. He is
currently a Professor with the Graduate School
of Information Sciences, Tohoku University. His
research interests include real-world applications
such as robotics and medical applications, big
data applications such as bio-informatics, high-
performance computing, VLSI computing for real-world application,
high-level design methodology for VLSIs, and reconfigurable computing.

MASAYUKI OHZEKI (Member, IEEE) received
the Ph.D. degree in physics from the Tokyo Insti-
tute of Technology, in 2008. He has subsequently
spent one and a half years as a Postdoctoral Fellow.
He has been working as an Assistant Professor
with Kyoto University, since 2010; and an Asso-
ciate Professor with the Graduate School of Infor-
mation Sciences, Tohoku University, since 2016.
Since 2020, he has been a Professor with Tohoku

/ University. His research interests include broad,
including machine learning and its potential from a perspective of theoretical
physics and itself. He was awarded the 6th Young Scientists’ Award of the
Physical Society of Japan and the Young Scientists’ Prize by The Commen-
dation for Science and Technology by the Minister of Education, Culture,
Sports, Science and Technology, in 2016.

65117

http://dx.doi.org/10.1038/s41598-019-47174-9

