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ABSTRACT We present the Interactive Classification System (ICS), a web-based application that supports
the activity of manual text classification. The application uses machine learning to continuously fit automatic
classificationmodels that are in turn used to actively support its users with classification suggestions. The key
requirement we have established for the development of ICS is to give its users total freedom of action: they
can at any time modify any classification schema and any label assignment, possibly reusing any relevant
information from previous activities. We investigate how this requirement challenges the typical scenarios
faced in machine learning research, which instead give no active role to humans or place them into very
constrained roles, e.g., on-demand labeling in active learning processes, and always assume some degree of
batch processing of data. We satisfy the ‘‘total freedom’’ requirement by designing an unobtrusive machine
learning model, i.e., the machine learning component of ICS acts as an unobtrusive observer of the users,
that never interrupts them, continuously adapts and updates its models in response to their actions, and it
is always available to perform automatic classifications. Our efficient implementation of the unobtrusive
machine learning model combines various machine learning methods and technologies, such as hash-based
feature mapping, random indexing, online learning, active learning, and asynchronous processing.

INDEX TERMS Active learning, automatic text classification, online learning, machine learning.

I. INTRODUCTION
The task of text classification consists of selecting labels that
are relevant to the content of a document. This label assign-
ment process gives an explicit and structured form to the
information that is latent and represented in an unstructured
way in the text.

Classification enables the successive use of information
processing/mining tools that otherwise would not be directly
applicable to the original information represented using nat-
ural language. For example, it is possible to classify a stream
of social posts to mark those relevant to a certain political
topic, doing it for a set of topics emerging from an ongoing
political debate. The availability of this classification enables
to perform various tasks on the data, e.g.: to measure the
variation of the engagement of the public over time and topics
in order to identifywhich are themost relevant ones; to profile
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users’ interests, possibly targeting each different profile with
different messages; to select the content that is relevant to
one specific topic in order to perform further analysis, e.g.,
sentiment analysis.

The classification of documents is an intellectual task that
requires giving a semantic to the concepts represented by
the labels and recognizing such concepts in the content of
documents. Some concepts may be simple to define and
recognize, e.g., the mention of a brand name, others may be
much harder to give a clear and shared definition, e.g., the
expression of sarcasm.With the exception of trivial tasks, i.e.,
those that can be solved by simple string matching, the effort
required to read, understand the document, and match it to the
relevant labels makes classification performed by humans a
low-productivity activity that is expensive to scale. This is
why the automatic classification of texts is a research topic
that has a long history in computer science [1].

The leading approach to automatic classification is
based on supervised machine learning [2], [3]. Supervised
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information, i.e., a set of documents with their associated
labels, is exploited by the machine learning algorithm to fit
a classification function that is then applied to unlabeled
documents to produce their automatic classification.

Developing an accurate automatic classifier thus always
requires a human effort to define the classification schema
and label the training examples for the learning algorithm.
Yet, the machine learning research focus is on the learning
algorithms, and the human effort of defining the classification
schema, and the manual labeling activity are assumed to be
already done and they are typically outside the focus of the
research activity. Whenever human users are considered to
have a role in the machine learning process, they are usually
constrained to a limited set of actions to be performed in
specific moments of the learning process, e.g., on-demand
labeling in active learning processes [4]. These constraints
mostly derive from the need to model the user within a rigor-
ous scientific investigation, and we contend that these limits
must be removed when implementing a practical application.

In this work, we define a ‘‘total freedom of action’’ sce-
nario, where users are allowed to perform any action, e.g.,
label any document, modify the classification schema, at any
moment. Giving such freedom to users is especially relevant
in the early phases of the classification process when the
concepts to be labeled emerge and are refined while the clas-
sification progresses. It is thus very important in these phases
to allow users to freely create and modify the classification
schema and label assignments.

The freedom of action we seek also includes the require-
ment that any machine learning-based functionality involved
in the process should never interrupt users with the need
to perform any machine learning-related action or let them
wait for any machine learning-related process to complete.
The machine learning component has to act as an observer,
that eagerly follows the actions of the human classifiers
and rapidly updates its automatic classifiers. The machine
learning component must be always available to provide
automatic classification for any document. Such automatic
classifications can be used as suggestions presented to the
users during their manual classification activity, thus imple-
menting an active learning process, or to produce, once its
accuracy is deemed to be adequate, the automatic classifi-
cation of an entire dataset. We call this model of interac-
tion between human and machine ‘‘unobtrusive’’ machine
learning, because of the role of an always-available, non-
interrupting observer that is played by the machine.

In this context, we developed, and present in this paper,
the Interactive Classification System (ICS), a web-based
application for manual text classification. ICS provides users
with many interfaces and functionalities to perform manual
text classification, all adhering to the requirement of giv-
ing total freedom of action to its users. ICS uses machine
learning to support users in their activities and to produce
automatic classifiers. Anymachine learning element in ICS is
implemented following the ‘‘unobtrusive’’ machine learning
approach. As detailed in the rest of the paper, this approach is

a challenge that asks for original machine learning methods
to effectively and efficiently solve the problems it poses. The
machine learning solution we implement in ICS is our first
proposal for the problem, which we hope will lead to more
interest in the topic.

ICS is implemented in Python. The source code is pub-
licly available under an open-source license on GitHub
(https://github.com/aesuli/ics) [5]. The software is pub-
lished also as a package on the Python Package Index
(https://pypi.org/project/ics-pkg/).

The main contributions in this article can be summarized
as follows:

• We present the Interactive Classification System (ICS),
a web-based application for manual text classification
designed and implemented following the ‘‘total freedom
of action’’ scenario.

• We motivate the need for the total freedom scenario,
discussing how it challenges the assumptions typically
made in machine learning research (e.g., batch index-
ing, batch learning, fixed schema. . . ), and why existing
machine learning methods do not fit this scenario.

• We propose an ‘‘unobtrusive’’ machine learning solu-
tion, based on an original combination of technological
and theoretical solutions, which satisfies all the require-
ments set for the machine learning component of ICS.

• We show with experiments that the proposed solution
is efficient, effective, and competitive against traditional
approaches that are not constrained to the requirements
of ICS.

The rest of the paper is organized as follows. Section II
presents the related work, framing the context of our work
and comparing ICS with similar existing systems. Section III
describes the interfaces and functionalities provided by ICS
to the users. Section IV details on the architecture and imple-
mentation of ICS, with a special attention on the machine
learning component of ICS. In Section V we present exper-
iments that evaluate the machine learning component of
ICS, on four relevant classification problems (i.e., single-
label classification, multi-label classification, binary senti-
ment classification, transfer learning). Conclusions are drawn
in Section VI.

II. RELATED WORK
A. TERMINOLOGY
This paper follows the terminology currently used in machine
learning research. Yet, given that its subject can be of inter-
est to a diverse audience we will briefly discuss here the
terms used over time and across disciplines to refer to the
process of labeling documents according to a classification
schema, before moving on to the specific topics of our work.
The activity of labeling documents has been called in many
different ways: text filtering [6]–[8], text routing [9], text
categorization [10]–[12], text classification [13]–[15], text
coding [16], [17]. The terms filtering and routing somewhat
imply the goal of the classification process, i.e., to filter out
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non-relevant documents or to route documents to different
processing channels depending on their content. However,
most papers that use these terms just focus on the accurate
assignment of labels to documents, with no actual interest
in the subsequent processing. The other three terms do not
denote any assumption about the use of the assigned labels.
In the domain of computer science, and especially in machine
learning, the terms categorization and classification are used
almost as synonyms. The term classifier is typically used to
denote an actual instance of an automatic method that assigns
labels, while the terms category and class are the ones most
used to refer to the concept and properties represented by a
label. The term label is often used as a synonym for the term
category, especially when defining the constraints on how to
assign labels, i.e.: in a single-label classification, a document
must be assigned with one and only one label from the set
of available labels, in a multi-label classification a document
can be assigned with zero, one, or more labels. The last term,
coding, is more frequently used in social sciences and market
research, fields in which the classification activity is mostly
carried out by humans (called coders) and rarely by means of
automatic methods.

B. CLASSIFICATION SCENARIOS FOR MACHINE
LEARNING
Research on automatic text classification addresses several
machine learning problems and scenarios, each defined by a
specific set of boundary conditions on the task.

The dominating research scenario is the one that considers
a predetermined and fixed classification schema, a predeter-
mined and fixed training set of labeled documents, and a
predetermined and fixed test set of documents to be labeled.
In this scenario, the human effort of defining the classification
schema, and the manual labeling activity are assumed to
be already done and are outside the focus of the research
activity. This scenario dominates machine learning research
because, by using fixed shared corpora and removing any
human intervention from the process, it focuses the attention
on the machine learning methods, supporting a rigorous,
repeatable/reproducible, and comparable evaluation.

Other scenarios do consider some intervention of humans,
i.e., in order to provide labels for a selection of previ-
ously unlabeled documents that an automatic learning pro-
cess deems to have a relevant impact on the learned model.
These scenarios are typically related to research on active
learning [4], [18], which can be considered to belong to
the emerging class of ‘‘human in the loop’’ processes [19].
The goal of the active learning process can be maximiz-
ing the accuracy given a fixed amount of human effort or
minimizing the human effort required to reach a given level
of accuracy. In both cases, the research focus is on the
machine learning process, with humans playing the role of
a resource that is expected to act as required by the process.
[20] highlights some challenges that make the theoretical
active learning process more realistic and close to an actual
human-centered classification experience. Relevant to our

work is the problem of considering the human as an oracle
that acts on-demand, waiting for interrogations by the system.
Batch-mode active learning methods [21], [22] let the human
work on sets of documents at a time, before waiting for the
retrain and the definition of a new batch. Even though some
batch-mode active learning methods have shown competitive
results with respect to sequential sampling [23], they do not
satisfy our requirements, given that the learning algorithm
still dictates the actions of the human actor. Relevant to our
goals is the ‘‘machine in the loop’’ scenario [24], which
switches the role of the human and themachine. This scenario
puts the human at the center of the action, while a machine
learning component observes and suggests actions to humans,
collecting some eventual feedback to improve its models (see
Section IV-B).

Some scenarios deal with the scarcity of labeled
documents. In this context, some approaches assume the
availability of labeled documents for very similar tasks,
exploiting transfer learning methods [25]. This assumption
may hold especially in sentiment analysis. Any language
has sentiment-related expressions that are independent of the
domain, making it possible to use a sentiment training set
for a domain (e.g., product reviews) to perform sentiment
classification on a different domain (e.g., posts on social
networks) [26]. Other approaches focus instead on boot-
strapping a classifier from external information sources [27].
An extreme approach is to generate a classifier leverag-
ing only the names of the classes in the classification
schema [28], [29]. In Section V-B we show how the use of
online learning algorithms supports the reuse and adaptation
of an already available automatic classifier trained on prob-
lems and domains similar to the one on which a new classifier
has to be bootstrapped.

Research on supervised text classification always worked
on a predefined classification schema, as the classification
schema is the defining element of the task. The scenario in
which a classification schema is not defined for a collection of
documents is usually faced as a distinct problem that involves
unsupervised learning methods, such as clustering [30], [31].
Yet, this is a scenario of interest in practical text classification
problems as nowadays many events, expected or unexpected,
can result in huge amounts of information published on the
web, especially on social platforms. The timely analysis of
such events can benefit from the classification of content,
even though at the beginning of data collection there could
be no clear idea of the classes the content will fit into. Our
system supports this scenario by providing powerful tools to
modify classifiers at any time (see Section III-B).

C. CLASSIFICATION INTERFACES
With respect to research on user interfaces for data labeling,
there is limited literature on the topic, especially regarding
text classification. A well-known tool for text annotation
is GATE (General Architecture for Text Engineering, [32]).
GATE has been originally designed for annotation of pas-
sages of text, e.g., traditional named entities [33], but its suite
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of machine learning tools supports building complex NLP
pipelines, e.g., to perform complex social media analysis [34]
that also include document classification. GATE does not
offer interactive functionalities in which models are updated
live while humans produce annotations.

INCEpTION [35] is a web application that follows an
approach that is very similar to ours, though working on
text annotation rather than classification. The INCEpTION
platform allows multiple users to collaboratively upload doc-
uments and annotate them, using complex annotation layers.
An annotation layer can be connected to a recommender, i.e.,
a machine learning algorithm that is continuously updated on
new annotations and can be used to present suggestions on
text yet to be annotated. This is an example of unobtrusive
machine learning, as the annotators are never imposed to
perform a task by the machine learning component of the
system. INCEpTION provides some support for modification
of the annotation schema, yet the system does not check the
consistency of previous annotations with the new schema, nor
can adapt a recommender trained on the previous version of
the schema.

BRAT [36] is an earlier example of a web application
focused on manual text annotation. It supported complex
annotation schema and collaborative annotation of multiple
users.With respect tomachine learning, it included only func-
tionality for the automatic annotation of the current document
by means of externally pre-trained machine learning models.

The Verbatim Coding System (VCS, [37], [38]) is a text
classification application that exploits both human labeling
and machine learning. When compared with the aims of this
work, VCS follows a rather rigid and traditional approach
to the problem, with the machine learning component at the
center of its design. In VCS the classification schema must
be defined in advance of any classification activity. Any
change in the classification schema requires restarting the
classification process from scratch.Machine learning training
follows a typical batch processing approach: the machine
learning classifiers are trained on request (e.g., when the
user makes a guess that a sufficient number of documents
have been labeled), and the training process takes some time
to complete (because batch learning algorithms are used).
A trained classifier can be used to perform training data
cleaning [39], and/or active learning [40], yet these activities
do result in an updated machine learning classifier only after
an explicit request by the user, which then must wait for
the training process to complete. Classification of unlabeled
documents is performed in batches too, so the architecture
of the system is not fit to produce on-the-fly classification
suggestions.

Table 1 compares the systems described above and ICS.
Each column identifies a functionality: fitting a machine
learning model from a training set (batch learning); updating
an existing model using novel examples (online learning);
the possibility of implementing an active learning process;
creating a model starting from an existing one; modifying a
schema, i.e., adding/renaming/removing a label; combining

parts of fitted models into a new model (merge of models,
see Sections III-B3 and IV-B2); classifying/annotating a set
of documents (batch predictions); quickly classify/annotate a
single document (live predictions).

In the crowdsourcing model, a requester distributes many
small, quick - and low-paid - jobs to a large population
of workers, then collects the outcome of every single task
to obtain a large set of processed data. The most famous
platform for such activities is AmazonMechanical Turk [41].
Classification, of different media types including text, is a
frequent task in crowdsourcing. A worker is presented with
some content to be classified and the set of possible labels
from which to select those that are relevant. The requester
must define the batch of classification tasks to be distributed
to workers in advance. Therefore the classification schema
must be also defined in advance, and workers have no means
to change it. Due to this batch processing design, and other
aspects related to trust in the workers’ reliability, no crowd-
sourcing platform supports continuous interaction between
humans and automatic classifiers. An online survey [42]
collected feedback from users of online annotation platforms,
asking for the ideal characteristics of ‘‘your dream annotation
platform’’, one of the most desired features was ‘‘Flexibil-
ity (ability to customize annotation project, labels, tasks,
schema, in-/output formats)’’, which is a requirement of this
work.

III. ICS: ELEMENTS AND OPERATIONS
The activities carried out on the system revolve around two
entities: datasets and classifiers. Both such entities have ded-
icated interfaces (Figures 1 and 7) that list their instances and
give access to the actions that are relevant to them.

A. DATASETS
A dataset is a dynamic set of documents. The collection
of documents forming a dataset can change over time, e.g.,
adding new tweets from a running filtered stream, even when
classification is already ongoing. A user can perform manual
classification of a dataset in two ways: ‘‘browse and code’’,
and ‘‘live classification’’.

1) DATA UPLOAD
Documents can be added to a dataset in batches or single
instances. The web application interface allows uploading a
CSV file, in which a document is represented as an external
unique identifier (to link it to its external source) and its text.
The web service API has methods to upload a CSV file or
to send text data directly in the POST request. This second
method is used for example by a Twitter filtered stream script
included in the package, which continuously collects tweets
from Twitter and populates datasets on ICS.

2) BROWSE AND CODE
In the ‘‘browse and code’’ interface (Figure 2) the user is
presented with the content of a document and the possibility
to classify it using any selection of classifiers. The user
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TABLE 1. Comparison of the machine learning functionalities implemented by the systems described in Section II and ICS. Notes: (*) requires re-training
on the whole training set; in ICS active learning works together with online learning, not requiring a full re-train. (†) requires access to all the documents
in the training set of the source domain; in ICS the transfer learning works using just the parameters of the model of the source domain, thanks to the
combined use of an online learning algorithm, random indexing, and feature hashing (see Section IV-A).

FIGURE 1. Main view of the dataset management interface. The list shows the names of datasets along with other information, e.g., number of
documents, description. The three bars symbol on the left opens a menu of possible actions, e.g., go to browse and code mode, rename, delete,
download.

can classify documents in any order. Any document can be
accessed at any time by using a unique numeric id assigned
at load time. A ‘‘Filter’’ text input field enables to work only
on the subset of documents in the dataset that match a given
query text. An ‘‘unlabeled’’ option restricts the browsing to
documents that have an incomplete label assignment with
respect to the current selection of classifiers. A number of
custom browsing functions are implemented, from brows-
ing documents in the same order they were loaded into the
system, inverted order, random order, or following an active
learning policy.

The selection of the classifiers to work with is com-
pletely free, and there are no constraints on which have to
be actually used for a document. For example, two clas-
sifiers ‘‘brand’’ and ‘‘sentiment’’ are selected; if unsure
about the ‘‘sentiment’’ classification, the user can classify
the document only for ‘‘brand’’, moving to the next doc-
ument and leaving the other decision to a later moment.
Similarly, for a multi-label classifier (which is a collection of
binary classifiers) there are no constraints on how to perform
the labeling. For example, for a multi-label classifier with
six labels, a user can mark a label as not relevant, other

two as relevant, and skip the decision on the remaining
three. All the cases of missing labels can be retrieved eas-
ily using the ‘‘unlabeled’’ filtering option of the browsing
mode.

The actual classification by the user is performed by click-
ing/touching the labels to be assigned, which are then high-
lighted with a marked color. Note that if a document has
been already classified, the assigned labels are shown and the
user can eventually change the classification by clicking on a
different label.

Multiple users can work simultaneously on the same
dataset, each user free to use any browsing mode, and any
selection of classifiers. Any classification produced by a user
is immediately visible by any other user working on the same
information (see Section IV). Any classification produced by
a user is immediately notified to themachine learning compo-
nent that updates the relevant automatic classifier accordingly
(see Section IV-B).

3) ACTIVE LEARNING
The presence of the active learning browsing mode is
one of the few hints about the existence of a machine
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FIGURE 2. The ‘‘browse and code’’ interface. The upper part lets the users select the classifiers to be used and select the browsing mode. The central part
shows the content of the document to be classified. The lower part shows the classifiers in use, with any eventual suggestion or already assigned label.
Classification is done by directly clicking/touching the labels.

learning component in the system (the other two being
label suggestions and automatic classification). Yet, active
learning is implemented in a way that makes it no different
in the interaction with the user from any other browsing
method. The active learning browsing mode presents the user
with a document that is deemed to contribute the most to
improving the accuracy of the automatic classifier. When the
user requests the next document to classify, a large random
sample of documents in the dataset that are still unlabeled is
quickly classified by the system and the one with the lowest
confidence in the prediction is presented to the user as the
next document to be classified. The user is not obliged in
any way to classify the document, completely or partially,
and can request another one. This selection policy is the
uncertainty sampling policy, which is the best policy for text
among the simpler, and faster active learning policies [40].
The use of a sample instead of the full dataset to perform the
selection is dictated by performance requirements, as datasets
may be arbitrarily large. Note that the sample is different for
every request, thus the dataset is fully explored as requests
are made.

4) LABEL SUGGESTION
As mentioned above, the machine learning component of the
system can provide users with suggestions of which labels
should be assigned to a document for the currently selected
classifiers. These suggestions come in the form of a symbol
and a color hint on the suggested labels (see Figures 3 and 4).
Suggestions are always available, independently of which
browsing mode is in use.

Whenever an automatic classifier is updated, any sugges-
tion produced by that automatic classifier that is currently
shown to any user is updated accordingly to the output of the
updated version.

The user is not required to act any differently than when
label suggestions are not shown. When label suggestions
are shown, the interface also shows a bar with the history
of agreements/disagreements and the agreement percentage
(i.e., accuracy) over the last n labeling actions (see Figure 2,
lower part).

The purpose of suggestions is twofold. The most obvious
one is that label suggestions from a good automatic classifier
can ease the work of the user. Less obvious, but of great
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FIGURE 3. Visualization of classifiers and label assignments in the browse and code mode,
single-label classifier. Top to bottom: no suggestion shown and no label assigned by users;
suggestion from the automatic classifier shown; classification made by users.

FIGURE 4. Visualization of classifiers and label assignments in the browse and code mode, multi-label
classifier. Top to bottom: no suggestions shown and no labels assigned by users; suggestion shown;
partial classification by users; complete classification by users.

importance, is allowing the user to collect evidence about
the accuracy and robustness of the automatic classifier. This
workflow, with an unobtrusive machine learning component
in the loop, is meant to be a trust-building experience in
the automatic classifier. Starting from the first suggestions,
which would likely be almost random, users can see how
their manual classification work translates into more accurate
suggestions and increased agreement with automatic sugges-
tions, to the point where enough trust is built on the auto-
matic classifier to use it to produce automatic classifications
of unlabeled documents. At any time during this process,
nothing prevents the use of rigorous evaluation based on solid
experimental protocols, e.g., k-fold validation, to quantita-
tively assess the quality of the automatic classifiers.

5) LIVE CLASSIFICATION
The ‘‘live classification’’ interface is a paged view that lists
a number of documents (10, 20, 50. . . ) alongside the labels
assigned for a classifier (see Figure 5). Similarly to the

browse and code mode, the user-assigned labels, or those
suggested by the automatic classifier, are highlighted with
specific colors and kept updated in the interface as new
information is available. This classification mode may be
preferred when focusing on a single classifier and exploiting
the ‘‘Filter’’ function to quickly search and classify specific
sets of documents.

6) AUTOMATIC CLASSIFICATION
The automatic classification mode is the only place in the
dataset management part of the system that is actively focused
on the automatic classifiers (see Figure 6). Given a dataset,
it is possible to select a classifier and request the entire
dataset to be automatically classified. The automatic clas-
sification is performed in the background, with the state
of the process updated live in the interface. Once the pro-
cess completes, a copy of the dataset with labels assigned
to every document by the machine learning model can be
downloaded.
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FIGURE 5. Live classification interface. Automatic suggestions and classification by users are shown similarly to the browse and code view. Any label
assignment can be made or changed by clicking/touching on the label to be assigned. The text filter box allows the user to work on the subset of
documents matching a given query.

The downloaded data also marks the source of any label,
i.e., if it comes from a user or from an automatic classi-
fier. Any user-assigned label has precedence over automatic-
assigned ones. Note that automatic classification does not
alter the user classification stored on the system. The clas-
sification it produces is only an output of the system.1

B. CLASSIFIERS
A classifier is defined by a set of labels and a labeling con-
straint (i.e., single-label or multi-label). For example, a user
can define a ‘‘News topic’’ classifier with the set of labels
‘‘Politics, Economy, Entertainment, Sport, Health’’ and a
single-label constraint. The web application (see Figure 7)
allows users to create and modify classifiers. For every clas-
sifier, the system holds a machine learning model (detailed in
Section IV-B) and its training data, which are updated when-
ever an event on the system produces relevant information.

The first event that is relevant for a classifier is its cre-
ation. A new classifier consists of an empty training set and

1Such output uses the same data format that is used to input training
data (see Section III-B). This simplifies the process of uploading back into
the system any externally validated data as additional training data for the
classifier.

a machine learning model that is initialized with random
parameters. Datasets of already labeled documents, in the
form of CSV files with text and assigned labels on each row,
can be uploaded at any time into the system, resulting in the
immediate update of the relevant classifiers.

A new classifier may be created also from existing clas-
sifiers. This is a key feature with respect to the possibility of
reusing any information that has been accumulated in the past
and that could be relevant for a current task. This refers not
only to the simple reuse of an existing classifier as is but also
to the interactive learning process [43] that enables the con-
tinuous evolution and adaptation of an automatic classifier
to a new task. In Section V we show how reusing a classifier
already trained for a task that is similar to a new one can boost
the learning speed and accuracy of the new classifier.

The creation of new classifiers from existing ones is
implemented by three different actions: copy, extraction, and
merge.

1) COPY
The copy operation clones the information stored for the
original classifier into the new one. The new classifier is
thus immediately available to produce suggestions and to be
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FIGURE 6. The automatic classification interface lists ongoing and completed automatic classifications. Automatically classified documents can be then
downloaded as a CSV formatted file.

FIGURE 7. The interface for creation and management of classifiers. Similarly to the dataset interface (see Figure 1), it shows classifiers and their
properties, each with a menu of action to modify them, e.g., rename/delete classifier, add/rename/delete labels, download training data or the
classification model.

updated using new training data, independently of the original
one. The copy operation is useful to perform versioning of a
classifier, and whenever there is a transfer learning scenario.
For example, a copy of a sentiment classifier trained on
product reviews can be the starting point to work on a new
dataset composed of tweets. The machine learning model of
the original classifier will likely obtain a decent performance
right from the beginning of the classification activity, reduc-
ing the effort required to obtain a good automatic classifier
for the domain of the new dataset.

2) EXTRACTION
The extraction operation let the user select a label from a
classifier and creates a newmulti-label classifier with that sin-
gle label, i.e., a classifier that classifies documents as either
relevant or not relevant for the concept represented by the
original label. The classification model of the new classifier

consists of the part of the model of the original classifier
that is devoted to the selected label. Similarly to the copy
operation, the extracted model is immediately available for
use. The extraction operation enables isolating a classifier for
a specific label. For example, a classifier for the ‘‘Economy’’
class can be extracted from a single label classifier that clas-
sifies news by multiple topics, obtaining a binary classifier
that labels documents as either relevant for ‘‘Economy’’ or
not relevant. The extracted classifier can be then merged with
other classifiers to create another new classifier, using the
merge operation.

3) MERGE
The merge operation takes as input any number of classi-
fiers, of any type, and combines them into a new classi-
fier. The merge operation also takes as input the type of
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FIGURE 8. Architecture of the system.

labeling constraint (i.e., single-label or multi-label). The set
of labels for the new classifier is the union of all the labels
of the classifiers being merged. The merge operation is the
most complex operation among the three described here,
as it must combine information from models and training
sets from different sources. Its implementation is detailed,
along with the other machine learning-related operations,
in Section IV-B.

The copy, extraction, and merge operations, along with
add, rename, and remove label operations, enable users to
quickly adapt at any time their classification schema to any
new and changing classification task they face.

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION
The core of ICS consists of four main components,
as depicted in Figure 8:

• A database that holds all the system information: doc-
uments, collections of documents, labels, classification
schemata, automatic classification models, users, and
all the relations that occur among them, e.g., assigned
labels, ownership of objects, and access rights.

• A stateless2 web service API that publishes all the
functionalities of ICS. The methods are grouped
into sub-services that pertain to a specific type of
information: datasets, classifiers, users, and admin
functionalities.

• A user interface, in the form of a web application that
connects to the web-service API.

• A machine learning module that continuously observes
classification events and updates automatic classifica-
tion models accordingly.

Being stateless, the web services, the web application, and
the machine learning modules can run in multiple instances

2The web service uses only a session token to manage user authentication.

and on different hardware, making them easily scalable. The
database is the only element of the system that conceptually
exists in a single instance, yet modern database technology
allows to easily adopt solutions, e.g., replication, partitioning,
to scale the system.

Additional components may be easily integrated using the
web service API. The software package currently includes
two applications:

• A command-line interface that implements all the meth-
ods published by the web service API. This allows
browser-less access to the system and also provides a
reference implementation in Python of all the requests
that can be made to the system.

• ATwitter API3 based application that continuously pop-
ulates ICS datasets as tweets are collected in the back-
ground from a given set of filtered stream queries.

A. TEXT INDEXING
The scenario of use we set for ICS imposes relevant con-
straints on both the text indexing and the machine learning
components.

The machine learning algorithm, which is described in
the next Section, works with the vector representations of
text used by most statistical machine learning methods, i.e.,
real-valued, high dimensional vectors x ∈ V = Rn where
V is a high dimensional vector space. The transformation
of a document into a vector consists of two phases: feature
extraction and indexing.

The feature extraction process identifies in the text all the
linguistic features (e.g., words, lemmas, n-grams, PoS, enti-
ties. . . ) that may result in useful information for the machine
learning algorithm. The set D of all the linguistic features

3https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-
stream/introduction

64750 VOLUME 10, 2022



A. Esuli:ICS: Total Freedom in Manual Text Classification Supported by Unobtrusive Machine Learning

observed in the training set by feature extraction is called the
feature space.

In this initial release of the software we adopt a simple
(yet effective, as shown by experiments in Section V-A),
language-agnostic processing that consists of splitting the text
string on blank characters (e.g., space, tab) and punctuation.
The feature extraction function also extracts word bi-grams
and tri-grams, and character five-grams. Character n-grams
are helpful with languages that do not use blanks as word
separators (e.g. Chinese and Japanese). Some typical ele-
ments of text from social platforms (i.e., hyperlinks, @-based
mentions, hashtags) are also recognized.

The typical text indexing process defines a vector space
V as a one-to-one mapping with the feature space D. Every
feature is mapped to a distinct, independent dimension of
the vector space, n = |D|. All the subsequent elements of
the machine learning pipeline use this mapping to properly
link the features observed in a text to the parameters of the
machine learning model.

Our training sets are expected to evolve continuously:
when a single label is assigned to a document, and when
batches of examples are added (via upload, or during the
merge operations, see Section IV-B2). This makes the prob-
lem we face different from most experimental setups in text
classification research in which a fixed training set of doc-
uments is assumed to be available since the beginning of
the learning process. A fixed training set allows to perform
a batch processing, defining the feature space, and thus the
vector space, once and for all by means of a feature extraction
pass on the whole training set.

Our scenario is closer to an active learning one, in which
new examples are added to the training set one by one or
in small batches. This means that the set of documents from
which the training documents are sampled may evolve con-
tinuously. We thus cannot assume to be able to perform text
indexing on a fixed dataset of documents (labeled or not) a
single time, and then always use the vector space the indexing
produced. However, indexing the training set every time it
changes is not a viable solution, due to the cost of indexing,
and also due to the need to not change the vector space
if we want to use efficient online learning algorithms (see
Sections IV-B and V-A).

We solved the above issues using a stateless indexing
function based on Random Indexing [44], [45]. In random
indexing, the feature space and the vector space are decoupled
by a random projection function that maps every feature
into a random vector in a vector space with a given num-
ber of dimensions, independent of the size of the feature
space. A document is described as a vector in such space by
summing up the random vectors for all the features that are
extracted from it.

With respect to our goals, random indexing brings several
advantages. It lets us control the size of the vector space,
which directly determines the size of the machine learning
models, allowing us to explore the trade-off between effi-
ciency/high bias of smaller models and higher computational

Algorithm 1 The Lightweight Random Indexing function
1 def LRI(features: list, n: int):
2 # features is the list of features extracted from a document.
3 # v is initialized as a vector of length n, the number

of dimensions of the vector space, filled
with zero values.

4 v = zeros(n)
5 for feature in features:
6 # hash is the murmurhash3 hashing function.
7 h1 = hash(feature, seed=0)
8 # The hash values are 32-bit signed integers, with

an equal probability of being greater or lesser
than zero.

9 #Modulus of hash determines the non-zero dimension.
10 #We use the sign of the hash to determine the sign

of the random component.
11 if h1>0:
12 v[h1%n] += 1
13 else:
14 v[h1%n] −= 1
15 #We determine the second component of the

random vector of the feature by changing the
seed value.

16 h2 = hash(feature, seed=1)
17 if h2>0:
18 v[h2%n] += 1
19 else:
20 v[h2%n] −= 1
21 return v

cost/low bias of larger models. It supports online learning
algorithms, which require a fixed vector space. Compared
to traditional indexing and to other projection methods, such
as Latent Semantic Analysis (LSA, [46]), random indexing
is much more efficient to compute, and also it produces a
vector space in which learning algorithm run quicker, per-
forming comparably in terms of accuracy [47]. More specifi-
cally, we adopted the Lightweight Random Indexing method
(LRI, [47]), in which the random vector is constrained to
have exactly two non-zero dimensions. This definition of
random vectors maximizes the probability of orthogonality
among vectors assigned to features. In experiments on text
classification [47] LRI performed better, both in terms of
efficiency and effectiveness, than any other random indexing
method.

A basic implementation of LRI uses a dictionary that maps
each feature to its random vector. Whenever a feature is
extracted from text, the dictionary is checked to retrieve the
random vector, if it is missing a random vector is generated
by means of some random number generator and added to the
dictionary for future use. This implementation has a memory
cost, to store the dictionary, i.e., feature-vector pairs, and a
computational cost, to retrieve the vector given a feature.

The more efficient implementation replaces the use of an
explicit, memorized dictionary, with the use of an implicit
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dictionary based on hashing functions, a method known as
feature hashing [48], or hashing trick. Feature hashing deter-
mines the vector representing a feature by means of a hashing
function that takes in input the representation of the feature
and returns a numeric value. That numeric value is then
mapped, typically via modulus operation, to a dimension in
the vector space, in which a +1 or −1 value (the sign is also
determined from the hash) is set. Feature hashing removes
the need to store the dictionary and is in theory able to
handle feature spaces of infinite size. Algorithm 1 shows the
pseudo-code that implements the LRI method based on fea-
ture hashing. Note that the hashing function is called twice,
to determine the two non-zero dimensions of the random
vector, using two different seeds, as different seeds determine
completely independent outputs.

We use the same hashing function for all the classifiers.
More specifically, our python implementation of LRI relies
on the FeatureHasher class of scikit-learn package [49],
which uses the Murmurhash3 [50] hashing function. Mur-
murhash3 takes in input an integer seed value to prime the
random number generator.We always use the same seed value
on the system. The vector space is thus the same for all
classifiers and documents. This makes it possible to perform
the merge operations among different classifiers without the
need to perform remapping or projection operations among
their vector spaces.

An interesting aspect of using LRI and feature hashing is
that a working model can be shared without the need to share
neither the training set nor the feature dictionary. Being the
hashing function not reversible, and considering also the use
of two non-zero dimensions by LRI, it is not possible to uni-
vocallymap a single dimension to a specific feature in the fea-
ture space. This property of the implementation we adopted
can be thus an aspect of interest in situations in which there
is the will to share a classifier but there are privacy concerns
or intellectual property constraints about sharing information,
even single features, contained in the training set.

For example, documents in the training set of a sentiment
classifier built on customers’ feedback could contain names
of customers, phone numbers, and similar critical informa-
tion. An attacker trying to get information about the content
in the training set may proceed only by guessing potential
features, generating vectors for them, and checking how they
correlate with the parameters of the model. The only features
for which an attacker can get hints about their presence in
the training data are those that have a high correlation with
the supervised learning task, thus getting high weights in the
model. These features are typically less critical with respect
to privacy concerns as they model the concept that is the
goal of the classification task (shall also those features be
critical, it would mean that also the model should not be
shared). Referring to the example, names and phone numbers
in a sentiment classifier likely have irrelevant weights in the
model, making them almost indistinguishable from any never
observed feature, that would get a random vector picking
some random weights in the model.

Another interesting possibility deriving from the use of
hashing is that a user can deliberately change the seed value
used for a new classifier, scrambling its featuremapping. That
classifier can be publicly shared, but only those knowing the
associated seed will get the real predictions, any other seed
resulting in senseless predictions.

B. THE MACHINE LEARNING MODEL
The machine learning model used by the system is a vec-
tor space-based model, more specifically every label ` of a
classifier is associated with a linear classification model, i.e.,
a vector of weights w` ∈ Rn that produces a prediction ŷ` for
an input document x by means of a simple dot product based
linear combination:

ŷ` = f`(x) =

{
+1 w` · x > 0
−1 w` · x ≤ 0

(1)

where ŷ` = +1means that the prediction is to assign the label
to the document and ŷ` = −1 means that prediction is to not
assign the label to the document. Basically, the sign of w` ·
x determines the assignment of the label and the magnitude
|w` · x| indicates the degree of confidence of the prediction.
A single instance of the model is thus a binary classifica-

tion decision for a label of the classifier. The complete pre-
diction for a classifier C , likely composed of more than one
label, is determined by combining the predictions of all the
labels of the classifier, taking into account the classification
constraints. The prediction of amulti-label classifier is simply
union of all the predictions for the labels of the classifier, i.e.:

Ŷm
C = Fm

C (x) =
⋃
`∈C

f`(x) (2)

The prediction of a single-label classifier assigns the label
whose model returns the highest classification score, i.e.:

Ŷ s
C = F s

C (x) = argmax
`∈C

w` · x (3)

The learning algorithm used to fit the linear model is
the Passive-Aggressive (PA) algorithm [51]. PA is an online
learning algorithm that uses a hinge loss function:

l(y, x,w) =

{
0 y(w · x) ≥ 1
1− y(w · x) y(w · x) < 1

(4)

The passive-aggressive name derives from the update rule
of the algorithm, which does not change the model if the pre-
diction is correct (passive case), while it updates the weights
aggressively to correct any incorrect prediction. We adopt the
PA-I version of the update rule:

wt+1 = argmin
w∈Rn

1
2
||w− wt ||

2
+ Cξ

s.t. ξ ≥ max(l(y, x,w), 0) (5)

which introduces a slack variable ξ and an aggressiveness
parameter C that allows performing non-perfect correction
of the weight when the update would require changing them
too much. This makes the algorithm robust to outliers that
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would corrupt an alreadywell-fittedmodel to adapt to a single
anomalous case.

1) TRAINING OF CLASSIFIERS
A newly created classifier is initialized with random weights,
and thus it produces random label assignments, as expected
from an untrained classifier that has never observed a training
example.

Any label assignment made by a user with respect to any
piece of text triggers both the update of the training set of
the classifier that the label belongs to and the update of the
machine learning model.

The training set logs all the pieces of text that have a
label assignment from a user. The purpose of the training set
is twofold. First, any request for a prediction that finds an
exact match in the training set gets as the answer the user-
assigned label, with a flag that tells that the assignment is
from a user and not from a machine learning model.4 The
rationale is that whenever human-generated information is
available, it is preferable to the machine learning one. Note
also, that this approach can be considered a trivial machine
learning model, that is able only to memorize and not to
generalize.Whenevermemorization fails (text was never seen
before), generalization is used (the machine learning model
makes a prediction). The second purpose of the training set
is obviously to store the supervised information produced
during labeling so as to be able to inspect it in the future and
eventually make corrections (see Section III-A5), and to use
it to train new models in all the cases in which it is better to
train a new model from scratch rather than cloning existing
models (see Section IV-B2).

For the machine learning model, the update process is
asynchronous. A machine learning module (lower right cor-
ner of Figure 8) watches a queue of labeling events on the
database. When a labeling event occurs, the relative clas-
sifier is retrieved from the database and updated. This is
the core functionality of the machine in the loop scenario
we aimed at.

The update process changes with respect to the labeling
constraints. In the multi-label case, each label is handled sep-
arately from the others. Given a label ` of a classifier, the user
may have clicked the ‘‘yes’’ or the ‘‘no’’ value for that label
(see Figure 4), this determines if the example is a positive
or a negative one. Only the model w` is retrieved from the
database, updated using the PA-I learning algorithm, and the
updated model is loaded back to the database, replacing the
previous one. In the single-label case, if a user selects a label
(see Figure 3) it means that a positive example is generated
for that label but also a negative example is generated for all
the other labels. This means that multiple update processes
will occur, eventually in parallel, as many as the number of
labels in the classifier.

4This flag is by default not returned on the public classification interface,
to avoid giving away information about the composition of the training set.

The machine learning module consists of multiple
instances that work in parallel. Minimal locking is required
to avoid the simultaneous update by two instances of the
same model. Locks concern only the update operations, and
models are always available to make predictions. The current
machine learning model is used to make predictions until
an updated version is available, which instantly replaces the
previous model.

The other cases that trigger a training process are the
upload of a training set and the merge operation. The case of
upload is handled as the case of a single document labeling
described above, with the only difference that many label
assignments are available at the same time, and grouped in
batches for processing by the machine learning module. The
case of merge requires dedicated processing, as described in
the next section.

2) MERGE
The merge operation is the only operation on classifiers that
may require training of the new machine learning model.
The extraction operation simply copies the relevant part of
a model as is, while rename and deletion do not create new
models.

In a merge operation, training from documents is not
required when none of the source classifiers have any label
in common with the others. In this case, each label of the
new classifier is independent of the others and there are no
training sets for a shared label to be merged, which would
require training a label classifier on the union of the source
training sets for that label. The machine learning models for
every label of the merged classifier can thus be produced by
copying the models for every label of the source classifiers.

If some source classifiers have any label in common with
others, then each of the new models for those labels must be
produced by performing training on the union of the training
sets for the respective labels. For example, two classifiers,
one with labels ‘‘Ford’’ and ‘‘Renault’’, the other with labels
‘‘Fiat’’ and ‘‘Ford’’ are merged. The new classifiers will have
as the models for the labels ‘‘Renault’’ and ‘‘Fiat’’ the copy
of the respective models from the relevant source classifiers.
The model for the label ‘‘Ford’’ will be produced by training
a new model on the union of the training sets stored for that
label for each of the two source classifiers.

The merge operation works with incomplete information.
There is no complete information about label assignments
for all the documents in the training sets of source classifiers
with respect to the entire set of labels of the target classifier.
In the case of a multi-label constraint, a document in the
training set of a source classifier may be relevant also for a
label of a different source classifier. In the case of a single-
label constraint, a label assignment for a document is also
implicitly a negative example for all the other labels. This
may be not the case for a label that originally belonged to a
different classifier. Any policy that tries to fill in the missing
labels, e.g., by assuming they are not assigned, introduces a
baseless bias in the resultingmodel. For this reason, the actual
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implementation of the merge operation, as described above,
does not make any assumption about the missing labels,
leaving the improvement of the target classifier to successive
activities of revision of training data and labeling of more
documents.

V. EXPERIMENTS
The accuracy of classification is always a key metric to evalu-
ate an automatic classification method. In the case of systems
such as ICS, in which the attention is on the experience of
the human classifier, also the efficiency and responsiveness
of the system play a relevant role. We have run experiments5

to compare different active learning (Section V-A) and batch
learning algorithms when deployed as the machine learning
component of the system. We have also run experiments
on using the system to perform transfer learning, i.e., lever-
aging an already fitted model to bootstrap a new classifier
that is targeted for a slightly different problem or domain
(Section V-B).

A. ACTIVE LEARNING
These experiments are focused on measuring which config-
uration of machine learning algorithm and browsing mode
achieves the best performance, in terms of accuracy and
efficiency of the learning process.

1) CONFIGURATION
The experiments are performed on three datasets selected
to represent different labeling scenarios, covering topic and
sentiment classification, binary, single-label, and multi-label
classification:

• IMDB [52], a dataset of 50,000 movie reviews with
binary positive/negative sentiment classification.

• 20 Newsgroups [53], a dataset of 20,000 newsgroup
posts single-labeled on 20 topic labels.

• Reuters 21578 [54], a dataset of 21,578 news published
on Reuters Newswire, multi-labeled on 113 topic labels.

We simulated a user that starts classifying the dataset from
scratch, labeling the documents adopting the active learning
browsing mode described in Section III-A3. We tested a
number of different configurations:

• SVM - A linear SVM.6 Every time a new training exam-
ple is available the SVM retrains the model from scratch
on the whole set of training examples that have been
labeled so far. This batch learning method is expected
to perform well in terms of accuracy, but it has a higher
computational cost than the online learning algorithms.

• PA-1 - The PA algorithm performs a straightforward
online learning step, i.e., an incremental update of its

5The code to replicate the experiments is available at
https://github.com/aesuli/ics-exp

6In preliminary experiments we tested other learning algorithms, i.e.,
Polynomial SVM, Random Forest, Multinomial Naïve Bayes. Linear SVM
performed better in almost any test and thus we selected it as the reference
method for batch learning.

model executing the training function on the new labeled
document.

• PA-L-N - When a new training example is available,
the PA algorithm performs an online learning step on
a ‘‘mini-batch’’ of training documents composed of the
last N labeled documents.7 We tested the values 10 and
100 for N, in this and the next configuration.

• PA-R-N - Similar to PA-L-N, but the mini-batch of
training documents is composed of the newly labeled
document plus N − 1 documents randomly selected
among the previously labeled ones7.

Given a dataset, all the documents in the dataset are
loaded into the system, and then we simulated the labeling
of 1,000 documents by the user. After each simulation step
we measured the time required by the learning algorithm to
update the model and the accuracy of classification on the
whole dataset, i.e., using the human label for the documents
labeled until the current step, and prediction from the current
model for the documents still unlabeled. For eachmethod, the
active learning browsing mode uses the classification scores
returned by the method itself. We also tested the use of a
random browsing mode, in which the next document to label
is randomly selected among the unlabeled ones. We ran each
experimental setting 10 times and averaged the results.

Both the SVM and the PA algorithms have various param-
eters to fine-tune their behavior to the specific data being
processed. The fine-tuned value of the parameters is usually
determined when the training set creation process is com-
pleted and the user aims at obtaining the best performance
from it. The fine-tuning process involves repeated exper-
iments that explore a portion of the many configurations
parameters can have, usually adopting a k-fold validation
protocol or similar protocols. The fine-tuning process is thus
a costly process that does not fit in the scenario we are facing
in this work.8 For this reason, we set any learning algorithm
tested in our experiments to use the default value for any
parameter not explicitly mentioned in this paper.

2) RESULTS
Tables 2, 3, and 4 report the accuracy figures for the various
tested configurations. IMDB and 20 Newsgroups are single-
label datasets, so accuracy and macro-averaged measures for
precision, recall, and F1 are reported. Reuters 21578 is a
multi-label dataset, so micro- and macro-averaged measures
for precision, recall, and F1 are reported. Reuters 21578 has
only 5 labels that are assigned to more than 5% of documents
in the dataset, and 62 labels that are assigned to less than
1.5% of documents in the dataset [55]. In cases like this
one, of a multi-label setup with high imbalance, the accuracy
measure is not informative, as it is dominated by the vast
majority of ‘‘simple’’ predictions of not-assigned labels. This

7If the set of labeled documents is smaller than N, then all the available
labeled documents are used.

8Eventually, fine-tuning may happen once a large enough training set is
created using our system, to give a final boost to the automatic classifier.
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TABLE 2. Results on the IMDB dataset of active/random learning
experiments using different learners and configurations. Measured after
1,000 documents have been labeled.

TABLE 3. Results on the 20 Newsgroups dataset of active/random
learning experiments using different learners and configurations.
Measured after 1,000 documents have been labeled.

is confirmed in our experiments on Reuters 21578, in which
accuracy is higher than 99% for all the experiments we run.

Comparing the two browsing modes, the Active one per-
forms better than the Random one in 17 of the 18 tested
configurations (6 learners by 3 datasets). Averages by
datasets are largely in favor of the active learning browsing
mode. The most relevant improvements are observed for the
macro-averaged measures on Reuters 21578. Reuters 21578
consists of 113 binary imbalanced classification problems,
the differences observed on IMDB are amplified, with the
Active configurations performing much better than Random
ones. On Reuters 21578 it is important to note that the active
learning browsing mode results in a better balance between
precision and recall than the random one. In both brows-
ing modes precision is higher than recall. This is somewhat
expected, given the high imbalance of the dataset that makes
it much harder to find positive examples for rarer labels.

On IMDB, SVMalways performs better than any PA-based
configuration, with PA-R-100 being the second-best method.
On 20 Newsgroups and Reuters 21578, PA-R-100 is the only
configuration that performs better than SVM.

Within the PA-based configurations, the PA-R-100 one
always performs better than the others. The ‘‘R’’ strategy
for mini-batch-based learning always performs better than

TABLE 4. Results on the Reuters 21578 dataset of active/random learning
experiments using different learners and configurations. The upper half
of the table reports micro-averaged measures, the lower half reports
macro-averaged measures. Measured after 1,000 documents have been
labeled.

the ‘‘L’’ strategy. This indicates that the learning algorithm
benefits from being exposed to varied samples of documents
from the training pool. A larger size of the mini-batch always
produces better results.

Figure 9 shows how accuracy/macro-F1 varies step after
step of the labeling simulation. PA-L-N configurations are
not shown, their curves are similar to the relative PA-R-N
versions, only a bit lower. The differences observed in
Tables 2, 3, and 4, are confirmed across the whole learn-
ing curves. On IMDB and 20 Newsgroups, PA-R-100 and
SVM follow very similar paths. On Reuters 21578, SVM
reaches a better macro-F1 earlier, to be reached by PA-R-100
only toward the end of the simulation. A key aspect in the
comparison of SVM and PA-based configurations is thus the
computational cost.

Table 5 shows the total time required to update the classifi-
cation models for the 1,000 labeling steps. The time required
to update the classification models at each step in the labeling
process is shown in Figure 10. Training times for PA-based
configurations are significantly lower than those required by
SVM. SVM requires every time to train from scratch on the
whole training set and thus it has a linearly increasing training
time with respect to the size of the training set. The plots
clearly show how the PA-based configurations have a stable
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FIGURE 9. Learning curves for SVM, PA-1, and PA-R-N configurations using the active learning browsing mode. Simulation of 1,000 labeling steps.

update time, due to the fact that the training set has a fixed
size. Larger batch sizes for PA-based configurations require
more time than smaller batch sizes, yet sensibly less than
SVM.

Considering that the mini-batch size can be changed at
any moment, that there is no large drop accuracy/macro-
F1 moving from a mini-batch size of 100 to 10, and that
instead training times drop sensibly, it is reasonable to think to
implement in the system the use of a variable mini-batch size
determined by the current load on the system. When there are
few concurrent model update requests on the system, a high
mini-batch size can be used (even larger than 100). Whenever
a spike of requests generates a high load on the system, the
mini-batch size can be temporarily lowered, allowing the
system to remain responsive to the actions of users.

B. TRANSFER LEARNING
We have also run experiments to evaluate the performance
of the system in a transfer learning/domain adaptation setup.
The scenario is about facing a new classification problem
when a well-performing classifier for a very similar task is
available. This is the case of sentiment classification, where
many expressions of evaluation, sentiment, and attitude are

TABLE 5. Cumulative time (in seconds) required by the various
configurations to update the machine learning models in the 1,000 steps
of the labeling simulation.

common to most domains (e.g., ‘‘I like it’’). Each domain
has also its own sentiment expressions, with a specific sen-
timent valence. For example, ‘‘unpredictable’’ typically has
a positive valence when it describes the plot of a movie, and
a negative valence when it describes an electronic appliance.
In this scenario, instead of creating a new sentiment classifier
for product reviews, a user can create a copy of an already
trained classifier for movie reviews. The initial performance
of the copied classifier on the new domain will be not perfect
but better than a new random classifier. As more training
examples are produced by users, the copied classifier will
achieve good accuracy much faster (i.e., requiring fewer
human-labeled examples) than one created anew.
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FIGURE 10. Time (seconds, logarithmic scale) required to update the classification models for SVM, PA-1, and PA-R-N configurations using the active
learning browsing mode. Simulation of 1,000 labeling steps.

1) CONFIGURATION
The datasets used in these experiments are the IMDB dataset
already described and the Fine Foods dataset [56]. The Fine
Foods dataset consists of 568,454 Amazon reviews for food
products. The star rating associated with each review is used
to derive a sentiment label. The label is positive if the review
has four or five stars, and negative if it has three stars or
less. For our experiments, we extract from the original Fine
Foods dataset a subset of 50,000 reviews, with a perfect
balance between positive and negative labels, similar to the
composition of the IMDB dataset.

The experiments consist of simulating a user labeling 1,000
documents of a ‘‘target’’ dataset (i.e., one among IMDB and
Fine Foods) starting from two initial conditions:
• New(target) - A new classifier with labels Positive and
Negative is created just before the first label is assigned
to documents in the target dataset.

• Copy(source, target) - A copy of a classifier created
simulating 1,000 labeling steps on a ‘‘source’’ dataset
(different yet similar to the target dataset) is created just
before the first label is assigned to documents in the
target dataset.

The Copy setup thus models the transfer learning case,
in which there exists a classifier for a similar domain/task to
the one faced on the target dataset. We tested both datasets
in both roles of source and target datasets, i.e., Copy(IMDB,
Fine Foods) and Copy(Fine Foods,IMDB).

As the learning algorithms, we tested the SVM and
PA-R-100 algorithms, both using the Active browsing mode.
The SVM algorithm cannot be used in the Copy learning
mode, as it does not support incremental learning. We ran
each experimental setting 10 times with random initialization
and averaged the results. For every run, we randomly sampled
a new subset from the Fine Foods dataset.

2) RESULTS
Figure 11 shows the learning curves for all the tested config-
urations. Table 6 shows the accuracy values at various steps.
The New configurations start from an accuracy of 0.5, which
is the expected accuracy of a random binary classifier on a
balanced dataset. The Copy configurations start from a much
higher accuracy, over 65%, confirming that the classifier
trained on the source dataset models a classification problem
that is close to the one of the target dataset. It is interesting
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FIGURE 11. Learning curves for the transfer learning experiments on IMDB and Fine Foods datasets. Simulation of 1,000 labeling steps using
Active browsing.

TABLE 6. Comparison of accuracy for various number of labeling steps
for transfer learning experiments. FF=Fine Foods.

to see that the New/PA-R-100 configuration seems not able
to reach the accuracy of the Copy/PA-R-100 configuration.
The New configuration that uses SVM tends to reach the
accuracy of the Copy/PA-R-100 configuration in the long
run. Yet, the Copy/PA-R-100 has better performance at any
step. Note that the computational cost of Copy/PA-R-100 and
New/PA-R-100 is identical. Thus, whenever possible, Copy
is preferable for the obvious advantage of resulting in higher
accuracy, but also for the not so evident advantage of getting
from the beginning better suggestions, which should result in
quicker labeling decisions by users.

VI. CONCLUSION
We presented ICS, a web-based application that supports the
activity of manual text classification. ICS has been designed
and implemented to give its users total freedom of action.
This is an innovation with respect to the typical approach of
machine learning research applied to text, which focuses on
the algorithms, and assigns the human actors to constrained
roles within the workflow of the algorithm.

Online learning methods, especially when coupled with
active learning, do give some freedom to their users. They

also bring in the advantage of having usable models for
prediction since the early steps of training set construction.
Yet, they still do not cover the additional freedom of action
we require for our system, e.g., adding/removing labels, and
merging existing models to define new, different models
that leverage the already acquired supervised information.
To implement such solutions, we combined the flexibility of
online learning methods with additional theoretical and tech-
nological tools, such as feature hashing, random indexing,
and asynchronous processing. The resulting system satisfies
our requirements, and also shows new avenues for the devel-
opment of classification systems.

A typical barrier to access to machine learning is the need
for training data. The perceived cost of labeling a training
set without any hint of the potential quality of the resulting
automatic classifier until the training set labelingwork is done
can be a psychological barrier that hinders the adoption of
machine learning methods. A counterargument to this obser-
vation is that if some labelingworkmust be done, the eventual
switch to machine learning has no impact on the cost of
the manual labeling activity, which must be done regardless.
Yet, drawing from personal experience, once some relevant
manual labeling work is done, it is not uncommon to find
opposition to the use of machine learning with the motivation
‘‘we have been able to do this work up to now without
machine learning, we can continue without it’’. This is the
manifestation of a bias that confers a higher cost to themanual
labeling already done, and a lower cost to the one to be
still done. In this way, the perceived cost-benefit trade-off is
shifted against the adoption of machine learning.

By shifting the focus from the machine learning algorithm
to the user, the machine learning component assumes the
role of a virtual collaborator who, from the earliest stages
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of the labeling activity, supports the user by giving labeling
suggestions of increasing quality as the labeling proceeds.
In this setup, the user perceives a contribution of the machine
learning component to the labeling effort since the beginning,
contrasting the bias in the estimation of the cost-benefit trade-
off. This process, in addition to actually easing the user’s
work, and producing better automatic models (as shown in
Section V-A), also helps the user to build trust in the auto-
matic classifier, assess the quality of the automatic model,
and decide when to switch to fully automatic classification.
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