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ABSTRACT The use of sufficiently large datasets is important for most deep learning tasks, and emotion
recognition tasks are no exception. Multimodal emotion recognition is the task of considering multiple types
of modalities simultaneously to improve accuracy and robustness, typically utilizing three modalities: visual,
audio, and text. Similar to other deep learning tasks, large datasets are required. Various heterogeneous
datasets exist, including unimodal datasets constructed for traditional unimodal recognition and bimodal
or trimodal datasets for multi-modal emotion recognition. A trimodal emotion recognition model shows
high performance and robustness by comprehensively considering multiple modalities. However, the use of
unimodal or bimodal datasets in this case is problematic. In this study, we propose a novel method to improve
the performance of emotion recognition based on a cross-modal translator that can translate between the three
modalities. The proposedmethod can train amultimodal model based on threemodalities with different types
of heterogeneous datasets, and the dataset does not require alignment between modalities: visual, audio, and
text. We achieved a high performance exceeding the baseline in CMU-MOSEI and IEMOCAP, which are
representative multimodal datasets, by adding unimodal and bimodal datasets to the trimodal dataset.

INDEX TERMS Deep learning, emotion recognition, generative adversarial networks, machine learning,
multimodal emotion recognition.

I. INTRODUCTION
The perception of human emotions is becoming an essential
part of various human-computer interaction systems, as rec-
ognizing human emotions affect plays a crucial role in our
daily lives. People respond to and act according to their
perceptions of emotions in response to external stimuli. Intel-
ligent systems, such as surveillance, robotics, and medical
systems, benefit from the ability of understanding human
emotions and behaviors.

One of the most important tasks in recognizing emotions is
to assemble various types of information that express human
emotions. The expression of human emotions is intrinsically
multi-modal. Voice pitch, speed, facial expression, words
used, and gestures are among several means of expressing
emotions. Therefore, intuitively, using various modalities can
achieve higher performance and reliability compared to a
limiting use of one modality. One of the main challenges in
multi-modal emotion recognition is the difficulty in obtaining
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labeled data because it takes a long time for humans to
identify categories of emotions in video, audio, or text. Owing
to the efforts of several researchers to recognize emotions,
labeled image-based facial expression recognition datasets
[1]–[3] or text-based emotion recognition datasets [4]–[6]
became publicly available. However, the unified labeling
set for video, audio, and text modalities is much smaller
than that for single or bimodal datasets. Building large-scale
multimodal datasets for video, audio, and text is expensive
and time-consuming. The main motivation of this study is to
investigate the effective utilization of datasets with different
modal information by using a learning strategy to train tri-
modal emotion recognition with cross-modal translators.

To utilize datasets with different modalities, many
researchers have proposed cross-modal transferring methods;
targetmodal data are augmented through cross-modal transla-
tion with source modal data and used to train a target-modal-
based recognition model. For example, to transfer visual
information to audio, He et al. [7] used VAEGAN [8] as a
visual-to-audio translator. The conditional generative adver-
sarial network(GAN) [9] and cycle GAN [10] have also been
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used [7], [11], [12] to translate visual to audio information.
For audio-text transfer, a consistent prediction method for
real speech and synthetic speech has been proposed [13] to
improve the speech recognition performance. Yoon et al. [14]
translated birds and plants images into text to accurately
classify birds and plants.

In this study, we propose a multi-modal emotion recog-
nition model that takes the three modalities of video, audio,
and text as input and learns from a multimodal dataset con-
taining all three modalities as well as single or bimodal
datasets. To this end, we propose a feature-level cross-modal
transfer model for translation between the three modalities.
Data, including video, audio, and text used for emotion
recognition, were expressed in a time series. Therefore,
to transfer a word into an audio signal, word-level mul-
timodal alignment is required. However, aligning different
modalities generally requires human labor. To address this
problem, we propose a novel cross-modal translation model
using a sequence-level discriminator for unaligned multi-
modal datasets. Using additional heterogeneous single- or
bimodal datasets, we prove that the proposed method is effec-
tive in improving performance.

We trained a cross-modal translator and amultimodal emo-
tion recognizer with an end-to-end architecture that simulta-
neously learns both models. We tested the performance of
the proposed end-to-end cross-modal translation and emo-
tion recognition model by applying it to two benchmark
datasets, CMU-MOSEI and IEMOCAP. The contributions of
this study are as follows.

1) We proposed a strategy for training a multimodal emo-
tion recognition model using multiple heterogeneous
datasets with different modalities. We used cross-
modal translators and an end-to-end learning strategy
to achieve this goal. Cross-modal translators can be
used to leverage single or bimodal datasets and improve
the performance of emotion recognizers based on data
augmentation effects.

2) We propose a novel cross-modal translation model
between trimodal unaligned multimodal datasets.
By adding a sequence-level discriminator, we can train
a cross-modal translator without a human-labored word
or phoneme-level alignment job. To the best of our
knowledge, this is the first attempt at recognizing emo-
tion by augmenting three modals: visual, audio, and
text.

3) Our approach is evaluated on the representative
multimodal emotion recognition benchmark datasets
CMU-MOSEI and IEMOCAP; it exceeds the baseline
approach by 13.4% on CMU-MOSEI and 10.4% on
IEMOCAP.

II. RELATED WORKS
A. MULTIMODAL EMOTION RECOGNITION
Many prior studies have been conducted on multi-modal
emotion recognition. In recent years, considerable progress
has been made in this area by using modality fusion methods.

A dynamic fusion graph-based network [15], which fuses
modalities dynamically in a hierarchical manner, a tensor
fusion network that combines data representation from each
modality to an embedding [16], a capsule GCN considering
information redundancy and complementarity [17], and late
or early fusion networks [15], [18]–[20], which emphasizes
a relative place of network have been proposed and showed
better performance than single modality emotion recognition
systems. M3ER [21] also uses multiplicative fusion to deter-
mine a more important modality on a per-sample basis.

Previous fusion methods generally do not require align-
ment between modalities, and they are difficult to inter-
act in an intermodal sequential manner. To overcome this
limitation, the attention-mechanism-based fusion method
[22]–[24] or transformer algorithm [25]–[28] are widely
used. The transformer [29] algorithm uses self-attention
to analyze the correlation between items constituting a
sequence. Tsai et al. [25] introduced a cross-modal trans-
former. They proposed a multimodal transformer that pro-
vides latent cross-modal adaptation, which fuses multimodal
information by directly attending to low-level features in
other modalities.

To improve the performance with additional datasets,
a self-supervised training strategy that uses a pre-training
method with a large-scale unlabeled dataset is used for emo-
tion recognition tasks [26]–[28]. Rahman et al. [26] deployed
BERT [30] and XLNet [31] with multi-modal adaptation
gates. Khare et al. [28] trained a transformer on a masked
language-modeling task for trimodal emotion recognition.
They used a cross-modal-based transformer model to analyze
the input modalities in an intermodal sequential manner.

In this study, we also used a cross-modal based multimodal
transformer. However, to compensate for insufficient data, we
deploy a data augmentation method instead of fine-tuning
pre-trained transformers that require large-scale computing
resources.

B. CROSS-MODAL TRANSLATION
To address the problem of data shortage and imbalance
between modalities, recent studies on data augmentation
through cross-modality translation have been conducted. Pro-
jecting different modalities onto a shared semantic space is
a commonly used method for representing and manipulating
multiple modalities. Harwath et al. [32] proposed a method
for projecting audio and images onto a shared embedding
space and clustering embedding to translate them into related
text words. This method allows reading the text searches
using only the image and audio information. Qi et al. [33]
also used a shared semantic space for image-text translation.
They treated images and texts in two different languages,
trained a cross-modal translation model using reinforcement
learning, and then applied the training results to a cross-
modal retrieval task. To analyze sentiments, Yang et al. [34]
proposed a method for visual-to-text and audio-to-text trans-
lation with a pre-trained BERT using a shared semantic
space.
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While a simple linear mapping function for cross-modal
translation is used for the fusion based multi-modal emo-
tion recognition method [16], [21], standalone generative
models such as GANs or autoencoders can be deployed
for cross-modal translation [7], [11], [12], [33]–[35].
Tsai et al. [35] introduced an autoencoder-based modal-
ity reconstruction method for the missing modalities.
To augment audio datasets for audio emotion recognition,
He et al. [7] introduced a visual-to-audio translator based on
VAEGAN with cycle reconstruction loss.

Although prior studies have made progress in this task,
few attempts have been made to translate all three modalities
and use them to train an integrated multimodal classifier.
Additionally, little effort has been made into using multi-
ple heterogeneous datasets together, and there has been no
attempt to train an emotion recognizer and cross-modal trans-
lator simultaneously in an end-to-end manner, other than by
augmenting and feeding the data in a pipeline manner. In this
study, we propose a method to address data shortage and
imbalance problems by simultaneously training a generative
model and a classification model for visual, audio, and text
trimodal.

III. METHODOLOGY
Wedenote the audio, visual, and textmodalities asm ∈ a, v, t .
We embed the modalities into a shared latent semantic space
and denote them as Fa, Fv, Ft . To feed missing modalities
into the trimodal emotion recognition model, we translate
the given modality inputs into missing modalities with the
translators Tm1→m2 where m1 and m2 ∈ {a, v, t}.

A. END2END CROSS-MODAL TRANSLATION AND
EMOTION RECOGNITION ARCHITECTURE
Fig. 1 shows the architecture of the proposed multimodal
emotion recognition system using the cross-modal translation
method. For the trimodal data, we use the feature extrac-
tor FEm to extract the feature Fm from each modal and
feed it to the corresponding transformer module. The final
output Pavt is the result of the softmax and feedforward
layer with the Multimodal Fusion module, which takes the
weighted sum of each modality module output as input.
Equations (1–3) shows how the final output Pavt can be
derived from the modality modulesMMm and fusion module
MFM . We set a fixed weight of 0.33 for wa, wv and wt for the
experiments.

WSavt =
∑

m∈a,v,t
wmMMm (Fm) (1)

MFavt = MFM (WSavt) (2)

Pavt = Softmax (FF (MFavt)) (3)

One crucial factor that should be considered in sequential
data is the focus on important clues. For example, if one
focuses on a moment with a strong facial expression, a clear
emotional vocabulary, or a strong tone of voice, emotions can
be more easily recognized. A transformer is a well- known
neural network model that best reflects this characteristic.

Positional embedding [29] were added to the input features
to account for the order of sequence components. We also
used a transformer for the multimodal fusion module to learn
how to combine the results of each modality.

When a unimodal or bimodal sequence is provided, the
missingmodality is augmented using a cross-modal translator
and fed as an input to the corresponding transformer module.
In Fig. 1, the visual feature Fv is translated into the audio
feature F ′a and the text feature F ′t , via a visual-to-audio and
visual-to-text translator; then, they are fed into the corre-
sponding transformer module. Equations (4–8) shows how
the final output Pavt can be derived from the cross-modal
translator Tv→a, Tv→t ,modality modules MMm and fusion
module MFM .

F ′a = Tv→a (Fv) (4)

F
′
t = T v→t (Ft) (5)

WSavt = waMMa

(
F

′
a

)
+ wvMMv (Fv)+ wtMM t

(
F

′
t

)
(6)

MFavt = MFM (WSavt) (7)

Pavt = Softmax (FF (MFavt)) (8)

B. CROSS-MODAL TRANSLATOR FOR SEQUENTIAL INPUT
He et al. [7] proposed the VAEGAN-based visual-to-audio
modal translator. They augmented audio emotion data with a
translator. However, the previous work managed only a single
image and audio spectrum. In this study, we propose a sequen-
tial VAEGAN for trimodalities, visual, audio, and text. As we
use three modalities and pair each modality, our proposed
translation unit has six VAEGANS and each VAEGAN has
a feature extractor FE, an encoder Enc, a Decoder Dec, and
a discriminator Dis for a single image slide, a word, and an
audio piece. The translator also includes the sequence dis-
criminator SeqDis for the entire input sequence. Fig. 2 shows
the visual-to-text translator. The visual sequences fed into
the visual feature extractor and fake text feature sequence
can be generated along with the visual encoder and text
decoder with the discriminators. Each Encm, Decm and Dism
processes one slide at a time, not whole sequences at once,
whereas SeqDism manages sequential input to classify the
input feature more accurately. SeqDism uses a (K + 1)-class
objective; K classes are used for ground-truth samples, and
the (K + 1)-th class is used for fake samples. We used a
transformer-based sequential classifier for the discriminator.

The training objective includes four components: the VAE,
GAN, sequential discriminator, and cycle losses.

SLVAE =
∑|m|

i=1

∑|xmi |

j=1
LVAEmi

×

(
Dismi

(
xjmi ,Decmi

(
Encmi

(
xjmi

))))
(9)

SLGAN =
∑|m|

i=1

∑|m|

j 6=i

∑|xmi |

k=1
LGANmi→mj

×

(
Dismj

(
GTk

mj
,Decmj

(
Encmi

(
xkmi

))))
(10)
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FIGURE 1. Architecture of proposed Multimodal Emotion Classifier with Cross-modal Translator. Missing modalies can be augmented using the
Cross-modal Translator and fed into the Tri-modal Multimodal Emotion Classifier.

FIGURE 2. Architecture of proposed Cross-modal Translator. The sequence discriminator SeqDis manages
sequential input to classify the input feature more accurately wheres the Discriminator Dis processes one
slide at a time, not whole sequences at once.

SLSeqDis =
∑|m|

i=1

∑|m|

j 6=i
LSeqDismi

×
(
xmj ,Decmj

(
Encmi

(
xmi

))
, y
)

(11)

SLCycle =
∑|m|

i=1

∑|m|

j 6=i

∑|xmi |

k=1
LCyclemi→mj→mi

×

(
Dismj

(
xkmi

,Decmi

(
Encmj

×

(
Decmj

(
Encmi

(
xkmi

))))))
(12)

min
(Encm,Decm)

max
(Decm)

E
(m∈a,v,t)

×
(
SLVAE + SLGAN + SLSeqDis + SLCycle

)
(13)

x jmi indicates j-th constituent of sequence x of i-th modality.
LVAE indicates variational auto encoder loss for input modal
mi · GANmi→mj converts input model mi to output modal
mj and LGANmi→mj

indicates the loss of the GAN. The cycle
reconstruction loss Lcycle is also employed to reflect the

two-direction translation mi → mj and mj → mi. The
objective function of SeqDism can be calculated as follows:

max
SeqDismj

Ex∈Dg logPSeqDismj

(
k+ 1|x1, x2, . . . , xn

)
+Ex∈DgtPSeqDismj

(
y|x1, x2, . . . , xn

)
(14)

x i indicates i-th constituent of sequence x, Dg indicates the
generated sequence, andDgt indicates the ground-truth exam-
ples. To calculate LGANmi→mj

, aligned multi-modal ground
truth data were required. If the given data have no paired
aligned ground truth data, we update the modules, LVAE ,
Lcycle, and LSeqDis except LGAN .

C. TRAINING STRATEGY
The proposed model uses an end2end strategy that simulta-
neously learns the cross-modal translator and the multimodal
emotion classifier. To improve the learning performance with
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Algorithm 1
1 for data in dataset:
2 audio, visual, text = data.input # given modality inputs
3 augmented_inputs =[]
4 if audio != None:
5 audios.append(audio)
6 translator_loss, fake_visual =

CMTranslatorAtoV
(data.input)

7 visuals.append(fake_visual)
8 translator_loss.backward()
9 translator_loss, fake_text =

CMTranslatorAtoT
(data.input)

10 texts.append(fake_text)
11 translator_loss.backward()
12 if visual != None:
13 visuals.append(visual)
14 translator_loss, fake_audio =

CMTranslatorVtoA
(data.input)

15 audios.append(fake_audio)
16 translator_loss.backward()
17 translator_loss, fake_text =

CMTranslatorVtoT
(data.input)

18 texts.append(fake_text)
19 translator_loss.backward()
20 if text != None:
21 texts.append(text)
22 translator_loss, fake_text =

CMTranslatorTtoA
(data.input)

23 texts.append(fake_text)
24 translator_loss.backward()
25 translator_loss, fake_visual =

CMTranslatorTtoV
(data.input)

26 visuals.append(fake_visual)
27 translator_loss.backward()
28 for audio in audios:
29 for visual in visuals:
30 for text in texts:
31 loss, pred =MultimodalTransformer(audio, visual,

text)
32 loss.backward()

cross-modal data augmentation, possible fake features were
generated from real examples. Algorithm 1 describes the
learning strategy in detail.

Algorithm 1. Training strategy with cross-modal translator
and multimodal emotion classifier.

IV. EXPERIMENTS
A. DATASETS
To evaluate the performance of the emotion recognition task,
we applied the proposed method to the CMU Multimodal
Opinion sentiment and emotion intensity (CMU-MOSEI)
dataset [38] and the interactive emotional dyadic motion
capture database (IEMOCAP) dataset [39]. The CMU-
MOSEI dataset is currently the largest publicly available
multi-modal dataset for emotion recognition. It comprises

TABLE 1. Statistics of CMU-MOSEI dataset.

23,453 single-speaker video segments. 1,000 distinct speak-
ers and 250 topics were acquired from YouTube. The dataset
consists of six emotions: happiness, sadness, anger, surprise,
fear, and disgust. In addition to the visual and audio data,
human-labeled transcriptions were included for linguistic
emotion analysis. Detailed statistics are presented in Table 1.

The IEMOCAP dataset was built for multimodal human
emotion analysis. It was recorded from ten actors in dyadic
sessions with markers on the face that provided detailed
information about their facial expressions during scripted and
spontaneous spoken communication scenarios. It contains
four labelled emotion annotations: angry, happy, neutral, and
sad. Detailed statistics are presented in Table 2.

To gain accuracy from a cross-modal translator, we uti-
lized single-or bimodality emotion recognition datasets:
AFEW [40] (video and audio), CK+ (video) [3], RAVDESS
(video and audio) [41], and SemEval 2018 E-c (text) [4]. The
AFEW contains videos from different movies and TV series
with spontaneous expressions. The training, validation, and
test sets contained 773, 383, and 653 video files, respectively.
CK+ consisted of 529 videos from 123 subjects, ranging
from 18 to 50 years old of age, with a variety of genders.
The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) contains 7,356 files with 24 distinct
professional actors (12 females and 12 males). SemEval
2018 E-c (SemEval), a multilabeled text emotion dataset,
comprises 10,983 tweets and 11 labels for the presence or
absence of emotions.

For these datasets, we only used data that shared emotions
with CMU-MOSEI, and these datasets were merged into a
larger dataset.

B. TRAINING DETAILS
The model was trained using the Adam optimizer with a
learning rate 0.01 and 64 batch. The detailed settings for the
feature extractor, transformer-based emotion recognizer, and
cross-modal translator are as follows.

1) FEATURE EXTRACTION
To extract features from the visual, audio, and text data,
we deployed different feature extractors for each modality.
For the visual modality, we deployed the video-based facial
expression recognizer, FAN [42]. This method uses frame
attention to automatically highlight discriminative frames
from input video. For audio feature extraction, we follow
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TABLE 2. Statistics of IEMOCAP dataset.

the method and setting of the audio classification algorithm,
Panns [43], with the learnable audio frontend (LEAF) [44]
instead of Mel-filterbanks. For the visual and audio feature
extractor, we added a fully connected layer with 300 hidden
units to feed the output to the input of the cross-modal trans-
lator and multi-model emotion recognizer. For text modal-
ity, glove word embedding [45] was used to extract word
vectors from the transcripts. We deployed the setting of the
CMU-MOSEI SDK [46] to learn the embeddings.

2) MULTI-MODAL EMOTION RECOGNITION
Each transformer for the audio, video, text, and multimodal
fusion modules was configured with the same model archi-
tecture. The model had a feed-forward layer of dimension
128 and four attention heads. The number of hidden nodes
of attention was 128.

3) CROSS-MODAL TRANSLATION MODULE
Based on the work in [47], we added the SeqDis discriminator
for sequential features. SeqDis consists of one transformer
encoder with a feed-forward layer of dimension 128 and four
attention heads. The number of hidden nodes of attention
was 128.

We shared the weights of the last layer of the encoder and
decoders for each modality translator to embed features on
the same latent semantic spaces.

C. RESULTS
We used the weighted accuracy (WA) [48] and F1-score
for each emotion owing to natural imbalances across
various emotions. Table 3 lists the performance of the
proposed models on the CMU-MOSEI dataset. For com-
parison, we included the graph memory fusion network
(GraphMFN) [38], which was published along with the
CMU-MOSEI dataset, and Khare’s cross-modal transformer-
based multimodal emotion recognition method [28].
In Table 3, theMultimodal transformer indicates the proposed
transformer-based multimodal emotion recognition model
without a cross-modal translation module. +Cross-modal
translation shows the performance when applying the data
augmentation strategy in Algorithm 1 using the proposed
cross-modal translation model and a multimodal transformer.
Through data augmentation, the performance improved by
an average of 1.6% in terms of WA and 2.7% on average
in terms of F1 measure. When the proposed SeqDist was
used, the performance was improved by 2.2% based on WA
and 3.0% based on F1. + The auxiliary dataset indicates the

model performance when unimodal and bimodal datasets are
added, in addition to the CMU-MOSEI datasets. A significant
improvement of 5.4% in terms ofWAand 8.5% in terms of the
F1measure was observed. A similar trendwas observed in the
additionally tested IEMOCAP dataset. When the proposed
method and additional datasets were used, the performance
improved by 10.4% in the WA standards and 14.8% in the
F1 score, demonstrating the effectiveness of the proposed
method.

1) CONFUSION MATRIX
We show the per-class performance of the proposed model
with an auxiliary dataset on CMU-MOSEI and IEMOCAP
using the confusion matrix in Fig. 3. Using the auxiliary
dataset, the proposed algorithm achieved an accuracy of over
70% for each class. Owing to data imbalance, data samples
tend to be misclassified into classes with more samples. For
example, the most common type of error is the misclassifi-
cation of samples into happy classes in CMU-MOSEI and
neutral classes in IEMOCAP.

2) EFFECT OF DATA AUGMENTATION
Tables 5 and 6 show the results of analyzing the data aug-
mentation effect. When data are augmented through cross-
modal translation, even when using only 90% of the total
data, the performance is better compared to learning with
a 100% dataset without data augmentation in F1 measure-
ments. In addition, using data augmentation improves the
existing performance regardless of the data size. However, the
larger the data size, the better the growth effect. It appears that
the augmentation effect increases as the number of training
data increases because a sufficient amount of training data is
required for cross-modal translation learning.

3) ABLATION STUDY
To determine how much individual modality affects the
model, we conducted an ablation experiment. Tables 7 and 8
show the performance changes when the data were aug-
mented for each modality. T, V, and A represent the text,
video, and audio data, respectively. In both datasets, the
greatest performance improvement was achieved when aug-
mentation was applied to all the modalities. In particular, the
IEMOCAP dataset exhibited the highest performance for all
the classes.

4) EFFECT OF END2END STRATEGY
Table 9 compares the performances of the pipeline and
end2end strategies. In the pipeline strategy, we train the
cross-modal translator first and then train the multimodal
transformer-based emotion.

In the end2end strategy, we trained the cross-modal trans-
lator and multimodal emotion classifier simultaneously; we
set the ratio of n emotion classifier iterations per trans-
lator update and compare the performances. The results
in Table 9 show that, on average, the performance of the
end2end strategy with a 1:5 and 1:7 balance is better than
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TABLE 3. Model performance comparison on CMU-MOSEI dataset.

TABLE 4. Model performance comparison on IEMOCAP dataset.

FIGURE 3. Confusion matrix on CMU-MOSEI, IEMOCAP dataset for the proposed method with auxiliary single or double modality dataset.

that of the pipeline strategy. In particular, end2end with a
1:7 balance showed the best overall performance. When-
ever a fake feature is generated using the translator and
classification is performed using the fake features, both
the translator and classifier are updated according to the

backpropagation algorithm. Experimental results confirmed
that the performance was improved if only the transla-
tor was occasionally updated. However, when the rate of
learning only the translator was relatively high (1:3), the
performance was poor compared to the pipelined method.
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TABLE 5. Data size reduction test on CMU-IEMOCAP dataset.

TABLE 6. Data size reduction test on IEMOCAP dataset.

TABLE 7. Ablation studies on CMU-MOSEI dataset.

TABLE 8. Ablation studies on IEMOCAP dataset.

In fact, it seems that if the translator is frequently trained
alone, the features are translated independently of the
classifier.

TABLE 9. Comparison of end2end training strategies.

V. CONCLUSION AND FUTURE WORKS
We presented the multimodal emotion recognition model that
used cross-modal translators. Using the proposed method,
we can further exploit the heterogeneous types of datasets
with different modalities.

For inter-modal translation, we proposed novel cross-
modal translators that uses a sequential discriminator to cover
unaligned multimodal sequence data. The proposed model
learns cross-modal translators and multimodal emotion rec-
ognizers simultaneously, and this strategy further improves
the performance. The empirical results demonstrate that the
proposed method is efficient in handling multiple datasets
with different modalities. With our method, the cost of
constructing, aligning, or reorganizing the dataset can be
significantly decreased. In a future work, we shall apply
our method to self-supervised learning using multimodal
datasets. It is well known that self-supervised learning strate-
gies can help improve robustness and performance. To train a
multimodal model, we expect that unlabeled heterogeneous
datasets could be helpful, and that cross-modal translators
would become more robust in the self-supervised learning
process.
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