
Received May 9, 2022, accepted June 10, 2022, date of publication June 16, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3183747

Event-Triggered Sliding Mode Control With
Hysteresis for Motion Tracking of
Piezoelectric Actuated Stage
NGUYEN NGOC SON , CAO VAN KIEN, AND TRAN MINH CHINH
Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

Corresponding author: Nguyen Ngoc Son (nguyenngocson@iuh.edu.vn)

This work was supported by the Industrial University of Ho Chi Minh City (IUH) under Grant 79/HÐ-ÐHCN.

ABSTRACT In this study, an event-triggered sliding mode control with hysteresis is proposed for motion
tracking of a piezoelectric actuator (PEA) in the presence of uncertainties, disturbances, and nonlinear
hysteresis characteristics. First, the dynamic model with hysteresis characteristics of the piezoelectric
actuator (PEA) is described by the Bouc-Wen model. Second, the design of an event-triggered sliding
mode control (ETSMC) with hysteresis for the PEA system is discussed, and its stability is proved using
Lyapunov’s law. Finally, piezoelectric actuator PZS001 of THORLABS is used to validate the proposed
controller. The simulation results demonstrated the effectiveness of the ETSMC approach.

INDEX TERMS Event-triggered control, sliding mode control (SMC), event-triggered sliding mode control,
Bouc-Wen model, piezoelectric actuator (PEA).

I. INTRODUCTION
Piezoelectric actuators (PEA) produce a micro-displacement
with high speed, force, and resolution. These actuators are
widely used in various fields, including aerospace technol-
ogy [1]–[4], microrobots [5]–[7], flexure-basedXYplatforms
[8], and biological engineering [9]. However, the hystere-
sis nonlinearity and parametric uncertainties of piezoelectric
actuators significantly affect motion-tracking precision and
response time. To deal with the hysteresis effect, a mathe-
matical model-based approach has been used to describe the
hysteresis of PEA, such as the Bouc-Wenmodel [10], Prandtl-
Ishlinskii model [11], Duhem model [12], and Preisach
model [13].

To obtain a fast response time and high-quality control,
sliding mode control (SMC) has been widely investigated
to guarantee the stabilization of the hysteresis system in the
presence of uncertainties and external disturbances [14]–[16].
However, a chattering phenomenon occurs, and the system
trajectory slips in the vicinity of the sliding manifold when
deploying SMC control to impact the accuracy and life of
the system. To overcome these drawbacks, many different
studies have been introduced to reduce the sliding band, and
chattering phenomena, and improve accuracy. For example,
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neural network-based SMC control [17] was proposed to
obtain robust adaptive precision motions of a piezoelectric-
actuated system. Where, a singularity-free neural network
was used to identify online and compensated. Feedback SMC
control ensured stability. An extended state observer (ESO)
applied to the RBFNN and SMC [18] was developed for
motion tracking of the piezoelectric actuator. The ESO was
used to cancel uncertainties and disturbances of the system
and the RBFNN with SMC was deployed to improve accu-
racy. An adaptive neural network sliding mode control with
hysteresis compensation [19] was proposed to improve the
motion tracking of the piezoelectric actuator. An extended-
state observer-based SMC [20] was developed to cancel the
unmodelled dynamics and disturbances of the system. Sliding
mode neural fuzzy control [21] was introduced to address
the vibration of a double flexible beam system equipped
with an AC servomotor and piezoelectric actuators. In which,
a neural-fuzzy model was used to alleviate the chattering
phenomenon.

In recent years, event-triggered control has received atten-
tion due to its advantages in terms of saving computational
resources. Unlike classical time-driven control with sampled
data, control tasks are not executed until an event-triggering
strategy is satisfied. In which, an event-triggering strategy is
designed to generate a triggering instant for sampling and
updating the control signal for closed-loop system stability.
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Therefore, event-triggered control has been widely applied in
many types of nonlinear systems such as multiagent systems
[22], [23], time-delay system [24], [25], fault-tolerant sys-
tems [26], [27], and nonlinear hysteresis systems [28]–[30].
Based on the advantages of event-triggered control, a com-
bination of SMC and event-triggered control should be con-
sidered to reduce the sliding band and improve the control
performance of the system [31]–[34].

In this paper, an event-triggered sliding mode control
(ETSMC) with hysteresis is proposed for motion tracking of
piezoelectric actuator (PEA). First, the hysteresis character-
istics of the piezoelectric actuator (PEA) are described by
the Bouc-Wen model. Second, the design of event-triggered
sliding mode control for the PEA system is discussed and
proved the stability. Finally, the Bouc-Wen parameters of
piezoelectric actuator PZS001 of THORLABS which are
identified using aDE-Jaya algorithms [10], are used to val-
idate the proposed controller.

The rest of this paper is structured with the Section 2 pre-
senting the dynamic model of the PEA system. Section 3
presents the proposed ETSMC control. Section 4 analyses
and discusses the motion tracking control of the PEA system.
Finally, Section 5 presents the conclusions.

II. DYNAMIC MODEL OF PIEZOELECTRIC ACTUATOR
The Bouc-Wen model was used to describe the hysteresis
characteristics of the piezoelectric actuator (PEA), which is
expressed as

Mÿ (t)+ Bẏ (t)+ Ky (t) = K (Pu (t)− h (t)) (1)

ḣ (t) = αPu̇ (t)− β |u̇ (t)| h (t)

− γ u̇ (t) |h (t)| (2)

where u and y represent the input voltage and output displace-
ment of the piezoelectric actuator respectively. Where M, B,
and K are the equivalent mass, damping coefficient, and stiff-
ness coefficient respectively. P represents the piezoelectric
coefficient. h is a hysteresis term of the Bouc-Wen model and
coefficients α, β, and γ influence the shape and magnitude of
the hysteresis curve.

The parameters (M, B, K, P, α, β, and γ ) of the PEA
system can be identified byminimizing the objective function
as follows

f (M ,B,K ,P, α, β, γ ) =
1
N

∑N

i=1

(
yr i − yBWi

)2 (3)

where yr represents the displacement of the experimental
PEA system, yBW represents the Bouc-Wen model output.

III. EVENT-TRIGGERED SLIDING MODE CONTROL
A. DESIGN OF SLIDING MODE CONTROL
From (1), we define x1 = y, and the state-space of the PEA
system is determined as, ẋ1 = x2

ẋ2 = −
K
M
x1 −

B
M
x2 +

K
M
(Pu− h)

(4)

where f1 (x) = − K
M x1 −

B
M x2, g1 (x) =

K
M P. We denote

f (x) =
[

x2
f1 (x)

]
. To design the ETSMC, the tracking error

is defined as {
x̃1 = x1 − xd
x̃2 = x2 − ẋd

(5)

where xd (t) and x(t) represent the desired displacement
and actual displacement of the PEA system, respectively.
From (4), (5), and (6), we obtain
˙̃x1 = x̃2
˙̃x2 = f1 (x̃)+ g1 (x) u−

K
M
h− ẍd −

K
M
xd −

B
M
ẋd

(6)

We denote f (x̃) =
[

x̃2
f1 (x̃)

]
=

[
x̃2

−
K
M x̃1 −

B
M x̃2

]
.

The following assumptions are considered as
Assumption 1: The desired displacement xd (t) is bounded

and differentiable, and the second derivative of xd (t) exists,
and is bounded.
Assumption 2: The function f (.) is Lipschitz in a compact

domain D ∈ Rn.
The sliding surface is defined as follows

s = cT x̃ (7)

where, cT =
[
cT1 1

]
with c1 ∈ Rn−1 and x̃ =

[
x̃T1 x̃2

]T .
We design the control input as

u=−
1

g1 (x)
(cT f (x̃)+Kssigns−

K
M
h− ẍd−

K
M
xd −

B
M
ẋd )

(8)

where Ks > 0.
Theorem 1: Consider the PEA system (1) with the sliding

surface (7), the tracking error x̃ =
[
x̃T1 x̃2

]T satisfies lim
t→∞

x̃ =
0 if the control law is given by (8).

Proof: The Lyapunov function is selected V = 1
2 s

2.
Differentiating V can be obtained as

V̇ = sṡ (9)

Taking the time derivative of (7) obtains

ṡ = cT1 ˙̃x1 + ˙̃x2
= cT1 x̃2 + ẋ2 − ẍd

= cT1 x̃2 −
K
M
x1 −

B
M
x2 + g1 (x) u−

K
M
h− ẍd

= cT1 x̃2 −
K
M
x̃1 −

B
M
x̃2 −

K
M
xd −

B
M
ẋd + g1 (x) u

−
K
M
h− ẍd

= cT f (x̃)+ g1 (x) u−
K
M
h−

K
M
xd −

B
M
ẋd − ẍd (10)

Substituting (10) into (9), we can obtain

V̇ =s(cT f (x̃)+g1 (x) u−
K
M
h−

K
M
xd −

B
M
ẋd − ẍd ) (11)
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Next, substituting (8) into (11) yields

V̇ = s(cT f (x̃)− (cT f (x̃)+ Kssigns−
K
M
h− ẍd −

K
M
xd

−
B
M
ẋd )−

K
M
h−

K
M
xd −

B
M
ẋd − ẍd )

= s(−Kssigns) ≤ −K s |s| (12)

Since Ks > 0, we deduce that V̇ < 0.

B. EVENT-TRIGGERED SLIDING MODE CONTROL
For the event-triggered mechanism, the corresponding con-
trol signal is given as

u (t) = u (ti) , ∀t ∈ [ti, ti+1) (13)

where {ti}∞i=1 and t0 = 0 is defined as the event-trigger
instants generated by the event-triggering strategy, and Ti =
ti+1 − ti is the inter-event time.
Define the event-trigger error e (t) = x̃ (ti) − x̃ (t), where

t ∈ [ti ti+1). The control signal can be written as

u(t) = −
1

g1 (x)
(cT f (x̃(ti))+ Kssigns(ti)

−
K
M
h− ẍd −

K
M
xd −

B
M
ẋd ) (14)

Theorem 2: Consider the nonlinear system in (1) and the
control law in (14). Let µ > 0 be given that

L ‖c‖ ‖e(t)‖ < µ (15)

For all time t ≥ 0. The gain Ks is chosen as

Ks > µ (16)

Proof: The Lyapunov function is selected as V = 1
2 s

2.
Differentiating V with t ∈ [titi+1) can be obtained as

V̇ (s) = sṡ

= s(cT f (x̃)+ g1 (x) u−
K
M
h−

K
M
xd −

B
M
ẋd − ẍd )

(17)

Substituting (14) into (17), we obtain

V̇ (s (t))

= s (t)
(
cT f (x̃ (t))−cT f (x̃ (ti))− Kssigns (ti)

)
≤ −s (t)Kssigns (ti)+ |s (t)|

∥∥∥cT f (x̃ (t))−cT f (x̃ (ti))∥∥∥
≤ −s (t)Kssigns (ti)+ |s (t)| ‖c‖ ‖f (x̃ (t))− f (x̃ (ti))‖

≤ −s (t)Kssigns (ti)+ |s (t)|L ‖c‖ ‖x̃ (t)− x̃ (ti)‖

= −s (t)Kssigns (ti)+ |s (t)|L ‖c‖ ‖e (t)‖ (18)

It is known that the sliding variable does not change until
it reaches the sliding manifold, so it can be conducted that
signs (ti) = signs (t). Substituting (15) into (18), we can
obtain as

V̇ (s (t)) ≤ − |s (t)|Ks + |s (t)|µ

= − |s (t)| (Ks − µ)

< −ρ |s (t)| (19)

where ρ > 0 such that Ks > µ. From this V̇ (s (t)) < 0,
the system trajectory can move toward the sliding manifold
s (t) = 0 during the time interval t ∈ [titi+1). When
signs (ti) 6= signs (t), V̇ (s (t)) < 0 cannot be guaranteed.
However, from (15), we can see that the system trajectory can
be maintained in the ultimate region, which can be calculated
as

|s (ti)− s (t)| =
∣∣∣cT x̃ (ti)− cT x̃ (t)∣∣∣

≤ ‖c‖ ‖e(t)‖ <
µ

L
(20)

Based on this, the maximum value of region � can be
obtained by setting s (ti) = 0 and the band is given as

� =
{
x̃ ∈ D : |s| =

∣∣∣cT x̃∣∣∣ < µ

L

}
It can be seen that the closed-loop system has finite-

time convergence into a bounded set �. Thus, the proof is
completed.
Remark 1: The value of µ determines the steady-state

bound of trajectory tracking. So, µ is chosen for the next
triggering instant to be larger than the sampling intervals of
hardware.

C. EVENT-TRIGGERING RULE
The event-trigger rule must be designed by using condi-
tion (15) to ensure the system stability. To guarantee the
condition (15) is always true for all times t ≥ 0, the triggering
mechanism is formulated as

ti+1 = inf (t > ti : L ‖c‖ ‖e (t)‖ ≥ σµ) (21)

where σ ∈ (0, 1).
Theorem 3: Consider the nonlinear system in (1) and the

control law in (14). Let {ti}∞i=0 be a triggering sequence
generated by the triggering rule (21). Then, the inter-event
time Ti = ti+1 − ti is lower-bounded by a positive value and
given as

Ti ≥
1
L
ln
(
1+ σ

µ

‖c‖ (ρ (‖x̃ (ti)‖)+ Ks)

)
(22)

where,

ρ (‖x̃ (ti)‖) = (1+ ‖c‖)L ‖x̃ (ti)‖

Proof: The time required for event-trigger error ‖e‖ to
rise from zero to σµ

L‖c‖ should be lower bounded. From (6),
the event-driven system is represented as

˙̃x = f (x̃)+ g1u−
K
M
h−ẍd −

K
M
xd −

B
M
ẋd (23)

Consider e (t) on interval [titi+1), we have

d
dt
‖e(t)‖ ≤

∥∥∥∥ ddt e (t)
∥∥∥∥ = ∥∥∥∥ ddt x̃ (t)

∥∥∥∥
=

∥∥∥∥f (x̃)+ g1u− K
M
h−ẍd−

K
M
xd −

B
M
ẋ
d

∥∥∥∥
=

∥∥∥∥f (x̃)− (cT f (x̃(ti))+ Kssigns(ti)−
K
M
h− ẍd
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TABLE 1. Identified PZS001 model paramerers.

−
K
M
xd −

B
M
ẋd )−

K
M
h−ẍd−

K
M
xd−

B
M
ẋ
d

∥∥∥∥
=

∥∥∥f (x̃)− cT f (x̃ (ti))− Kssigns(ti)∥∥∥ (24)

Substituting e (t) = x̃ (ti)− x̃ (t) into (24), we have

d
dt
‖e(t)‖ ≤ L ‖x̃ (t)‖ +

∥∥∥cT f (x̃ (ti))∥∥∥+ Ks
≤ L(‖x̃ (ti)‖ + ‖e(t)‖)+ L ‖c‖ ‖x̃ (ti)‖ + Ks
= L ‖e(t)‖ + (1+ ‖c‖)L ‖x̃ (ti)‖ + Ks
= L ‖e(t)‖ + ρ (‖x̃ (ti)‖)+ Ks (25)

Solving the differential inequality (25) with the initial con-
dition ‖e(ti)‖ = 0, we have

‖e(t)‖ ≤
ρ (‖x̃ (ti)‖)+ Ks

L
(eL(t−ti) − 1) (26)

At the instant of triggering ti+1, L ‖c‖ ‖e (ti+1)‖ = σµ,
so we write (26) as

σµ

L ‖c‖
= ‖e (ti+1)‖ ≤

ρ (‖x̃ (ti)‖)+ Ks
L

(eLTi − 1) (27)

Rearranging (27) gives the expression (22) for inter-
execution time. This shows that the inter-execution time will
be lower bounded by some finite-positive quantity.
Remark 2:Theorem 3 ensures that Ti > 0 andwill be lower

bounded in domain �. So, the boundedness on Ti ensures
robust trajectory tracking.

IV. RESULTS AND DISCUSSION
In this paper, the piezoelectric actuator PZS001 (PEA) of
THORLABS is used to validate the proposed controller
(thorlabs.com/thorproduct.cfm?partnumber=PZS001). The
dynamic model of the PZS001 actuator is expressed as (1).
The dynamic parameters (M, B, K, P, α, β, and γ ) were
identified by using aDE-Jaya algorithms [10] based on the
input and output experimental PZS001 system, as shown in
Table 1.

Design a sliding surface as s = cT x̃ = [0.5 1]′x̃. The
ETSMC parameters are chosen as Ks = 8, σ = 0.1, µ =
0.1, L = 10. To validate the performance of the ETSMC,
the trajectory references are used including a case 1 – step
response, and case 2 – sinusoidal signal.

The simulation results of case 1 are shown in Fig.1-2.
Fig.1 shows the trajectory tracking and the control input.

FIGURE 1. Time responses of state trajectory, error x̃1(t) and control
input of ETSMC in case 1.

FIGURE 2. Time responses of sliding surface s(t) and inter-event period
of ETSMC in case 1.

We can see from Fig.1 that the PEA can track the desired
trajectory in 9 (sec) and the tracking steady-state error are
|x̃1| ≤ 3× 10−3. Fig.1 also shows that the control input
remains constant until the event is triggered. Fig.2 shows
the sliding variable state s(t) and the inter-event time. After
a finite time, the trajectory reaches the sliding manifold
and remains bounded around the region near zero. Fig.2
also shows that the lower bound of the inter-event time is
0.005 and the maximum is 0.02.

The simulation results for case 2 are shown in Fig.3-4.
Fig.3 shows that PEA can track the desired trajectory in terms
of the setting time of 7 (sec), tracking error of |x̃1| ≤ 0.005.
Fig.4 shows the trajectory reaches the sliding manifold and
remains bounded around the region near zero. Fig.4 also
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FIGURE 3. Time responses of state trajectory, error x̃1(t) and control
input of ETSMC in case 2.

FIGURE 4. Time responses of sliding surface s(t) and inter-event period
of ETSMC in case 2.

shows the lower bound of the inter-event time is 0.005 and
the maximum is 0.0015.

Based on the above results, we can see that all signals are
bounded and the event-triggered sliding mode control can
obtain tracking control accuracy.

V. CONCLUSION
This paper presents the event-triggered sliding mode con-
trol (ETSMC) with hysteresis for motion tracking of the
piezoelectric actuated stage. The event-triggering strategy
was discussed and proven to guarantee asymptotic stability.
The simulation results show that motion tracking can achieve
accuracy, and all closed-loop signals are bounded. However,
the ETSMC controller still has some drawbacks. such as
a large setting time, not yet self-adapting, and the existing

chattering phenomenon. Future work will focus on a hybrid
adaptive event-triggered sliding mode control-based neural
networks and hysteresis compensation to further improve the
tracking accuracy.
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