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ABSTRACT High-powered electric vehicle (EV) charging can significantly increase charging costs due to
peak-demand charges. This paper proposes a novel charging algorithm which exploits typically long plugin
sessions for domestic chargers and reduces the overall charging power by boost charging the EV for a short
duration, followed by low-power charging for the rest of the plugin session. The optimal parameters for boost
and low-power charging phases are obtained using reinforcement learning by training on EV’s past charging
sessions. Compared to some prior work, the proposed algorithm does not attempt to predict the plugin session
duration, which can be difficult to accurately predict in practice due to the nature of human behavior, as shown
in the analysis. Instead, the charging parameters are controlled directly and are adapted transparently to the
user’s charging behavior over time. The performance evaluation on a UK dataset of 3.1 million charging
sessions from 22,731 domestic charge stations, demonstrates that the proposed algorithm results in 31% of
aggregate peak reduction. The experiments also demonstrate the impact of history size on learning behavior
and conclude with a case study by applying the algorithm to a specific charge point.

INDEX TERMS Electric vehicle, smart charging, reinforcement learning, prediction, big data.

I. INTRODUCTION
As electric vehicles become more popular due to higher
energy efficiency and lower running costs, additional power
demand required for charging becomes a key challenge.
In the UK, electric vehicles could add 24Gwatt of additional
peak electricity demand by 2050, an extra 30% of current
capacity [1]. Managing the peak power demand, therefore,
becomes critically important to protect the grid from overload
while supporting the uptake of electric vehicles [2].

Smart charging is critical to reducing peak demand and
operates by time-shifting charging to whenever the grid has
spare capacity and may incentivize users to change their
charging patterns through dynamic pricing. The concept has
been explored for charging individual vehicles and entire
fleets [3]. For example, Tomic and Kempton [4] study the
impact of time-based charging, which schedules charging
to off-peak hours. Lacey et al. [5] compare the impact of
uncontrolled and smart charging strategies on local grid load.

However, smart charging often requires cooperation from
the driver, e.g. a willingness to postpone charging to off-peak
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hours. On the other hand, the adoption of dynamic pricing
depends on whether users en masse are willing to change
their habits in exchange for lower energy prices [2]. At the
moment, there is evidence that many users choose to charge
at standard rates whenever they require to charge their EVs,
which could be related to range anxiety as drivers want to
make sure their EVs are fully charged whenever possible.
In addition, in home-based scenarios, the dynamic pricing is
too complex for an individual to process to make an informed
decision [6].

This paper explores a novel charging algorithm that learns
the users’ personal charging history and optimizes the charg-
ing current to satisfy the energy demand without cooperation
from the driver. The study first analyzes the predictability
of the plugin session durations and demonstrates that in the
absence of additional contextual information, the duration
of the plugin session cannot be accurately predicted, and
therefore cannot be relied upon to spread the charging power
evenly through the charging session. Then a reinforcement
learning-based approach is developed, which analyzes the
past charging history to directly regulate the charging cur-
rent and reduce the peak demand. The proposed approach
operates by boost-charging the EV at full speed for a limited
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duration of time and then slow charging at a fraction of a full
speed until the EV charge is complete. The evaluation using a
UK dataset of 3.2 million domestic EV charge sessions from
22,731 domestic charge points shows 31% of aggregate peak
reduction. The performance is also compared with uncon-
trolled charging, where a vehicle is charged at maximum
rated power until charged, and with hypothetical oracle-based
charging, where power is spread evenly throughout a plugin
session.

The paper is structured as follows: Section II describes
related work. A prediction model based on linear regression
is described in Section III. Section IV describes reinforce-
ment learning-based approach. The details on the dataset and
statistical analysis are presented in Section V-A. Section V-B
contains experimental results and discussion followed by
Conclusion in Section VI.

II. RELATED WORK
It is well known that uncontrolled charging of EVs can
lead to power outages, reduce power quality and increase
power losses and operating costs. From the user’s perspective,
however, uncontrolled charging is the most natural, as he
or she can charge the EV wherever and whenever needed.
Smart charging attempts to match grid capability with EV
energy demand by actively controlling EV charging parame-
ters such as output power, charging time, duration, and time
pattern. As charging parameters change, the user must adapt
its behavior or face higher charging costs.

Centralized strategies compute a globally optimal solution
based on information collected from individual EV vehicles,
grid conditions, market information, and statistical forecast-
ing models. The central controller, also known as an aggre-
gator, collects data from EVs such as state of charge and
user preferences and then based on the selective objective
applies an algorithm to compute setpoints for individual EVs.
Depending on the objective, smart charging can maximize
operator’s profit [7], minimize energy costs [3], [8], maxi-
mize EV utility, or ensure fairness. This strategy, however,
requires expensive communication infrastructure including
standardized architecture and protocols, which are still under
development. Centralized charging is suitable for charging
fleets of vehicles such as buses or utility vehicles, which tend
to have more predictable energy consumption patterns.

In decentralized strategies, the decision making is done
locally using price signals and driver preferences and can
be done autonomously or in cooperation with other users or
energy controllers in the area. The decisions range from post-
poning charging to off-peak hours [5] to adjusting the charg-
ing rate adaptively depending on the dynamic pricing. The
former strategies are simpler but may result in an avalanche
effect, whenmany EVs simultaneously select a similar action,
e.g., postpone charging to off-peak hours, which may create
an unwanted power consumption spike.Whereas the dynamic
pricing-based strategies would rely on the users changing
their charging behavior and pattern to minimize their energy
costs.

The early works on EV charging used simulations to
model the charging load, and relied on various assumptions
to produce tractable models. Kelly et al. [9] develop a prob-
abilistic model based on Monte Carlo simulations to pro-
duce load profiles (including uncontrolled EV charging) for
residences, offices, and retail stores. For office and retail
locations, the model assumes a fixed charging rate, an EV
arrival within a certain time interval, and charging from a
random battery state until the battery is full. The simulations
for retail locations use traffic volume data to compute the
probability of vehicle arrival during each 30-min slot through-
out a day. For residential PEVs, the model assumes that
vehicle owners commute every day and uses statistical data
from US National Personal Transportation Survey. Proba-
bilistic approaches often rely on assumptions to producemore
tractable models. For example, Soares et al. [10] assume that
all parked vehicles are connected for charging, which may
not be realistic. Steen et al. [11] use demographic data such
as EV locations, number of workspaces and employees, and
usage patterns from national travel surveys to estimate charg-
ing behavior and control charging. Shahidinejad et al. [12]
introduce a subjective decision making process of whether
a driver plugs in a parked vehicle for charging, to compute
aggregate charging load more accurately, whereas [13]–[15]
use the Poisson arrival process to model the number of vehi-
cles arriving at a certain location to compute an aggregate
charging load from multiple vehicles.

More recently, Lacey et al. [5] evaluated smart charging
strategies using realistic non-charging electricity load pro-
files, which are used in the design of electricity networks and
show the aggregated demand over a large number of users
over time [16], and overlaying them with an EV charger load.
It should be noted that the electricity load profiles typically
have seasonal variation and are different for domestic and
industrial users. [17] developed an algorithm to reduce the
cost of EV battery degradation and the peak power load but
evaluated it in simulation using synthetic datasets without
using any real datasets. [18] proposed a distributed smart
charging algorithm to reduce peak power at a charging site
while satisfying each EV energy demand but evaluated it
using a generated mobility dataset that contains daily dis-
tances, home arrival, and departure times using predefined
Gaussian characteristics.

A. DATA-DRIVEN APPROACHES
The emergence of massive datasets has enabled data-driven
approaches, which allow evaluating the system design
directly on actual usage data [19]–[23]. A large propor-
tion of works using real datasets focused on characterisation
of demand [21], studying charging behavior [24], predic-
tion [25] and other [26], [27] aspects.

1) SMART CHARGING
The availability of real charging session data has stimu-
lated the development of novel smart charging approaches.
Zhang et al. [19] designed a real-time algorithm for peak

64096 VOLUME 10, 2022



V. Dyo: Behavior-Neutral Smart Charging of Plugin Electric Vehicles: Reinforcement Learning Approach

demand reductions at non-residential charging sites. The
approach achieves up to 80% demand reduction, however,
does not attempt to avoid a reduction in the quality of charg-
ing service. Fenner et al. [20] investigated the maximum pos-
sible peak demand reduction capacity and conducted a case
study in Finland by applying various optimization strategies
to real data from 25,000 charging sessions collected over
2 years from 8 charging sites, and show that the peak loads at
charging sites can be reduced by up to 55%. However, the
optimization strategy used in the study computes the peak
load as a ratio of dispensed energy to plugin duration, which
requires the knowledge of the latter and corresponds to the
hypothetical scenario in the presented study.

2) CHARGING BEHAVIOUR ANALYSIS
Xydas et al. [21] develop a fuzzy-logic-based model to char-
acterize EV charging demand depending on weather and
trend. The approach estimates the monthly growth rate of
EV charging demand using linear regression and measures
the correlation between weather attributes and the daily peak
power of EVs charging in a geographical area. The output
is then used by fuzzy-logic-based module to establish the
level of risk to grid operation using a dataset containing
21,918 EV charging events from 255 charging stations in the
UK for evaluation. Although the authors classify households
with EVs based on their energy usage patterns, there is no
attempt to predict the EV energy demand or availability at
the individual charger level.

Wolbertus et al. [24] study the charging infrastructure uti-
lization in 5 cities in the Netherlands based on 1.6 million
charge sessions from 5,600 charge points over two years. The
authors aim to identify different charge patterns and charge
behavior depending on the area. Hence the analysis is done on
an aggregate rather than individual charger level. Similarly,
Buzna et al. [23] analyze the aggregate load from EV charge
stations using machine learning and time-series analysis and
evaluate the approach on EVnetNL dataset from the Nether-
lands, which contains over 32 million sessions from over
1,700 charge points. Straka et al. [28] developed a method
for predicting the popularity of EV charging infrastructure
using EVnetNL dataset in combination with GIS data. The
approach predicts whether a given charge spot belongs to a
top tier using binary classification and logistic regression.
Finally, Pevec et al. [25] propose a methodology to combine
multiple data sources, including places of interest near charg-
ers, the driving distance between the chargers, and historical
data about charging transactions to predict charging station
utilization when the contextual data change or when there is
a change in charging infrastructure.

III. SESSION PREDICTABILITY
This section analyses the predictability of plugin session
duration based on the history of past plugin sessions and
shows the overall prediction accuracy together with the
impact of each feature on the overall prediction accuracy. The
motivation for predicting the plugin session duration is that it

TABLE 1. Predicting session duration.

can be used by the EV charger to evenly spread the required
energy to reduce the peak demand.

The following features were extracted from the dataset to
predict the current charging session duration: session start
hour, day of the week, time duration since the last charging
session, and the amount of dispensed energy. Although the
dataset shows the amount of dispensed energy for each ses-
sion, it does not indicate whether the EV was fully charged or
whether it was just a top-up. In the former case, the amount
of dispensed energy can be assumed to be known at the start
of the charging session. In the latter, i.e. a top-up session, the
amount of dispensed energy becomes known at the end of the
charging session for which the duration needs to be predicted.
To account for both cases, the regression performance was
conducted with and without this feature.

A. LINEAR REGRESSION
Linear regression models a continuous variable yj as a linear
combination of independent variables X . The advantage of
regression analysis methods is that they are computationally
efficient and are simple to understand.

yj = β0 +
t∑
i=1

βixi + εj (1)

where β0 is an intercept, βi is a slope, t is the number of
observations, εj is an error term, the part of the model that
cannot explain the linear relationship. The regressor weights
are obtained during the training phase as the ratio of covari-
ance between xi and xj and the variance of xi:

βi =
cov(xi, xj)
var(xi)

(2)

B. PERFORMANCE METRICS
The regression performance has been evaluated with
mean absolute error (MAE), mean absolute percentage
error (MAPE) and mean square error (MSE) metrics defined
as shown below for reference.

MAE =
N∑
n=1

|predicted−actual|
N

(3)

MAPE =
N∑
n=1

|predicted−actual|
actual

×
100%
N

(4)

MSE =
N∑
n=1

(predicted − actual)2

N
(5)

C. PREDICTION ACCURACY
The prediction accuracy was evaluated on each charge point
using 4-fold cross-validation, separately for each charge point
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FIGURE 1. Reinforcement learning approach. The agent interacts with the
environment by selecting an action A and receives a reward R. The goal of
the agent is to select a policy that maximizes the reward.

with the total prediction accuracy computed as an average for
all charge points. The data analysis has been performed using
R statistical package [29]. The overall prediction accuracy is
14.04 MAE and 413.93 MAPE. Upon close inspection, the
high MAPE values are contributed by a number of sessions,
where the session duration was significantly overestimated.
While underestimating session duration is not critical and
may result in supplying the target energy while reducing the
load, overestimating the session duration is obviously detri-
mental to any predictive charging strategy. This is because
attempting to spread energy for a longer time than the actual
session duration will result in missing the energy target.

The reason for low predictability is not in the limitations
of the selected method, as similar results have been obtained
using a variety of other techniques including deep neural
network algorithms. The latter required an immensely higher
amount of computational power but resulted in only a modest
improvement in accuracy. The key reason is that the session
duration is tightly related to human behavior, which is inher-
ently hard to predict. A weather condition, a traffic jam, or a
road accident, personal plans are as likely to affect a session
duration as the past history of charging sessions. Possibly,
enriching the data set with additional sensor data, such as
weather, traffic conditions, or home occupancy sensors may
improve the prediction accuracy. However, the conclusion
from the experiments in this study is that given the history
of plugin sessions alone, prediction accuracy is too low for
adaptive charging purpose.

IV. REINFORCEMENT LEARNING BASED ADAPTIVE
CHARGING
The reinforcement learning concept is based on the idea of
an agent interacting with an environment and receiving the
reward depending on the selected actions, Fig. 1. The agent
learns the policy that maximizes the reward through trial and
error, by selecting various actions and observing the corre-
sponding reward from the environment. The advantage of the
reinforcement learning approach is that it directly controls the
process in an uncertain environment without having to make
any predictions about the environment itself.

In the proposed approach, the reward is a function that
is inversely proportional to the effective charging rate Peff
and the energy loss as a result of applying a policy. The
reinforcement learning algorithm maximizes the reward by
learning the optimal charging parameters that minimize the

FIGURE 2. Charging function. The charging function consists of a boost
charging and low-power (slow) charging phases and is characterized by
parameters TboostDur and Pslow .

effective charging rate while satisfying the energy demand.
The agent is trained using the history of past charging events
and applies the optimal parameters toward the next charging
session, after which the session becomes a part of the training
dataset.

A. CHARGING FUNCTION
A charging function F(t) is defined here as the target power
profile for a given charging session over its entire duration,
such that the total area under the curve is equal to a target
amount of dispensed energy

∫
F(t) = Ei. In the simplest

case, a charging function F(t) will have a constant value to
represent charging at a certain power rate, and the learning
algorithm would try to find an optimal value of the rate.

In this study, a more complex charging strategy is consid-
ered, where a charging session consists of a boost charging
phase at a maximum rate Pmax for a duration of TboostDur
followed by low-power charging at a low power rate Pslow
for the rest of the session. The strategy can also be useful
in energy management in battery-assisted charging systems,
which accumulate energy in between charging sessions and
then use it to boost-charge the EV.

The selected charging function is defined by 2 parameters,
TboostDur and a low power charge rate Pslow = PoptimalPmax .
The parameters of TBoostDur and the coefficient Poptimal ≤ 1
are learned by an algorithm based on historical usage data
and are updated dynamically after each charging event as
described in the following subsection. It should be noted
that throughout the paper the terms ‘low power’ and ‘slow’
charging will be used interchangeably.

B. REWARD FUNCTION
The agent’s reward is designed to decrease with either an
energy loss Eloss or the aggregate charging rate Paggr over
previous sessions:

R =

{
−k1Eloss + k2/Paggr , ifEloss < EmaxLoss
−∞, ifEloss ≥ EmaxLoss

(6)

To define a maximum acceptable energy loss, the reward
function is set to negative infinity, if the energy loss exceeds
a certain threshold, which in this study was selected as
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EmaxLoss = 10 kWh. The parameters k1 and k2 are constants
that define the relative weights of energy loss and charging
rate respectively. The optimal policy is such that minimizes
the aggregate charging rate across all charging sessions in
the past while ensuring that the energy loss is kept below a
threshold.

An energy loss Eloss is computed as a total sum of dif-
ferences between the target Etarget,i and actually delivered
energy amounts Etotal,i across all past sessions: Eloss =∑N

i (Etarget,i − Etotal,i), where Etarget,i represents the target
amount of energy required to charge the vehicle in session
i and and is taken from the dataset. The actual dispensed
energy Etotal,i is always less than or equal than the target
amount of energy, Etotal,i ≤ Etarget,i due to lower effective
charging speed in adaptive mode. The analysis shows that
in the vast majority of domestic charging sessions the ratio
of dispensed energy to plugin duration is lower than the
maximum charging speed.

The second component of the reward function, the aggre-
gate power rate Paggr for each charge station, is computed
as a sum of effective charging session rates weighted by the
corresponding amount of dispensed energy:

Paggr =
∑

(PeffiEtotal,i)/
∑

Etotal,i (7)

The session effective charging rate Peffi is computed as the
charging speed weighted by the amount of energy dispensed
at that speed:

Peff ,i =
(EBoost,i + Prate(EAdap,i − EBoost,i))

Etarget,i
Pmax (8)

where EBoost,i and (EAdap,i − EBoost,i) are the amounts of
energy dispensed in boost and low-power (slow) charge
modes respectively. Prate ≤ 1 is a candidate value of the slow
charge rate coefficient, which is defined as the proportion of
the maximum power rate, Pmax . Finally, EAdap,i ≤ Etarget
is the actual amount of energy delivered in adaptive mode
respectively. The session effective charging rate reduces with
lower boost energy EBoost,i and lower low-power charge rate
Prate, so the learning algorithm seeks to reduce those param-
eters as discussed in the next subsection.

C. TRAINING
Algorithm IV-C shows the steps to learn the optimal charging
parameters TBoostDur and Poptimal . At each iteration, Learn-
RLModel() function generates candidate values for charge
session duration Tmaxboost and low-power charge rate coef-
ficient Prate, applies them retrospectively on past historical
data using EvaluateRLModel() (Algorithm 2) to compute
the reward R which depends on total energy loss Eloss and
the aggregate charging rate Paggr . The candidate values that
correspond to the highest value of the reward function are
selected as optimal and are applied towards the next charging
session. Thus, the agent learns the parameters retrospectively,
through trial and error using historical data.

The optimal policy search is accomplished using gradient
descent with variable step size [30]. The experiments showed

Algorithm 1 Adaptive Charging Algorithm Pseudocode
LearnRLModel()
// init the optimal boost duration
TBoostDur = Tmean
// init optimal slow charge rate
Poptimal = 0.5
// init reward value
Roptimal = 0
for (i in 1..ntries) do

// compute random step in boost phase duration
1Xi = Tmean × rand(1Xmin,1Xmax )
// compute new candidate value of boost phase duration
Tmaxboost = min(TBoostDur ±1Xi,Tplugin)
Tmaxboost = max(0,Tmaxboost )
// compute random step in slow charge rate coefficient
1Yi = rand(1Ymin,1Ymax )
// compute new slow charge rate
Prate = min(Poptimal ±1Yi, 1.0)
Prate = max(0,Prate)
// evaluate new candidate values
(Eloss,Paggr ) = evaluateRLModel(data,Tmaxboost ,Prate)
// compute the reward
if Eloss > EmaxLoss then

R = −∞;
end
else

R = −k1Eloss + k2/Paggr
end
if R > Roptimal then

TBoostDur = Tmaxboost ;
Poptimal = Prate;
Roptimal = R;

end
end
return(TBoostDur ,Poptimal )

Algorithm 2 Evaluate RL Model Pseudocode
EvaluateRLModel(data, Tmaxboost , Prate)
Peffective = 0
for (i in 1:ntries) do

//the actual amount of time in boost mode:
Tboost,i = min(Etarget/Pmax ,Tmaxboost )
//the amount energy dispensed in boost phase mode:
Eboost,i = min(Tboost,iPmax ,Ei)
//the total amount of energy dispensed in adaptive mode:
Etotal,i = Pmax (Tboost,i + (Tplugin − Tboost )Prate)
Etotal,i = min(Etarget ,Etotal,i)
//the amount of energy dispensed in slow charge mode:
Eslow,i = Etotal,i − Eboost,i
//the duration of slow charge mode:
Tslow,i = Eslow/(PmaxPrate)
//the effective charge rate:
Peff ,i = (EBoost,i + Prate(EAdap,i − EBoost,i))

Pmax
Ei

end
//the total energy deficit:
Eloss =

∑
(Etarget,i − Etotal,i)

//the aggregate historical charge rate under given policy:
Paggr =

∑
(Peff ,iEtotal,i)/

∑
Etotal,i

return(Eloss,Paggr )

that the reward function is not concave, therefore variable step
size allows to avoid getting stuck in a local minimum. The
number of steps ntries was selected as 200 and the initial value
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TABLE 2. Domestic chargepoint dataset format and sample records.

of parameter boost duration TBoostDur,i was initialized to an
average session duration, which seemed to perform well in
the experiments.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. EV CHARGEPOINT DATASET
The experimental evaluation is based on chargepoint usage
datasets in the UK, provided by the Department of Transport
Energy and Environment [31]. The dataset contains raw data
on the amount of energy supplied and plugin duration per
charging event. The dataset contains 3.17 million charging
sessions from 25,126 domestic chargers collected in 2017 in
the format described in Table 2. The charge points were
funded by the UK government with the condition that the
participants had to share their data for one year.

The charging event duration captures the duration of time
the vehicle remains connected to the charge point and can be
longer than the actual charging duration. The session charging
speed, computed separately by dividing the dispensed energy
by the plugin duration, varies within the same charge point
as plugin duration can be longer than the actual charging
duration. To eliminate this factor from the analysis a novel
effective charging durationmetric was introduced, defined as
the ratio of dispensed energy to the maximum charging speed
within the given EV charge point.

As domestic chargers can typically charge only one EV at
a time, the overlapping sessions within the same charge point,
which represented 1.7% of all charging events have been
removed from the analysis. Similarly, the charging events
that are longer than 48 hours, representing approximately
1.8% of the records, have been removed from the analysis
as anomalous. Such events may appear due to a driver not
closing the charging connector properly after the charging,
which results in the session to continue to be recorded until
a new charging event starts. More details about the dataset
including information about data collection protocol, statis-
tics and limitations are available at [31].

Figure 3 shows that the charging session activity exhibits a
strong temporal pattern. The charging sessions are typically
initiated between 1 pm and 9 pm with vehicles remaining
connected until early in the morning. As most sessions are
relatively long in duration (the mean and median plugin dura-
tions are 12.44 and 10.72 hours respectively), the distribu-
tion EV charger occupancy is more spread throughout a day
compared to the distribution of session start times. There are
two major patterns in charging behavior. The first category
of users plugin their vehicles in the evening and leave them
connected in the morning. The second category of usage pat-
tern involves relatively shorter charging sessions throughout

FIGURE 3. Domestic chargers temporal activity distribution. The sessions
are typically initiated between 1 pm and 9 pm (dotted line). The
distribution of time the EV remains connected (solid line) is different due
to the fact that most sessions are relatively long in duration. The mean
and median plugin durations are 12.44 and 10.72 hours respectively.

the day. The dataset has been used in a prior study to show
how the peak demand can be reduced using battery-assisted
charging systems that accumulate energy during relatively
quiet periods and release it during the peak hours to shorten
the charge duration or reduce the peak load on the grid [22].
In contrast, this work focuses on how to reduce peak demand
by adaptively changing the charging rate without relying on
a battery-assisted system.

B. RESULTS
The main purpose of the experiments is to evaluate the per-
formance of the adaptive charging and its impact on the
individual and aggregate reduction of peak power usage. One
of the goals is to understand the impact of history size on the
algorithm performance, and whether storing an entire history
is required.

The performance is measured in terms of the impact on
the aggregate daily energy usage profile and the total energy
deficit. The overall aggregate daily charging profiles were
obtained by computing the amount of dispensed energy in
each daily timeslot across all sessions for all charge points.
The timeslot duration was set to 1-second to prevent the error
accumulation due to energy quantization in each timeslot. For
comparison, 60-second timeslot results in a significant dis-
crepancy in total dispensed energy computation even between
raw and hypothetical strategies. The energy deficit is defined
as the difference between the target and the actual amount of
dispensed energy and is always zero by definition for raw and
hypothetical strategies.

The evaluation has been conducted for all charge points in
the dataset with at least 10 charging sessions, which represent
22,731 charge stations. The training of the adaptive strategy
was done on the first 80% of sessions and testing on the last
20% of the sessions, separately for each charge point and the
results have been aggregated across all charge points. The
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FIGURE 4. Adaptive learning performance aggregated across all charge
stations. The RL-based strategy with the history size of 30 results in 31%
peak reduction.

gradient descent included 200 steps. The data analysis has
been implemented and evaluated in R package [29].
Finally, the raw and hypothetical (ideal) charging strate-

gies have been used as baselines for comparison. The raw
charging strategy assumes charging at the maximum possible
rate until the target energy is met and then staying connected
in idle mode. The ideal charging strategy uses a hypothetical
scenario, where a perfect knowledge of each charging session
duration is available, and the target energy is spread evenly
throughout each session.

C. THE IMPACT OF HISTORY SIZE
Figure 4 shows the aggregate energy profiles for different
history sizes, as well as a comparison with those of raw and
hypothetical charging. As can be seen, the RL-based strategy
reduces the peak by flattening the load and increasing the
consumption during the nighttime. The performance of the
reinforcement-learning based strategy depends significantly
on the history size. Shorter history sizes reduce the peak
power usage more aggressively but also result in higher
energy deficits. For a history size of 30, the peak power usage
reduces by as much as 31% in the evening period compared to
raw charging. As a comparison, a recent case study in Finland
based on real data from 25,000 charging sessions collected
over 2 years from 8 charging sites shows that the peak loads
at charging sites can be reduced by up to 55% [20]. However,
the optimization strategy used in the study computes the peak
load as a ratio of dispensed energy to plugin duration, which
requires the knowledge of the latter and corresponds to the
hypothetical scenario in the presented study. [19] shows up
to 80% of peak reductions, however, it does not attempt to
reduce the quality of charging service.

The adaptive strategy may result in some energy deficit
due to lower charging speeds in the slow charging phase. The
total energy deficit was 276,227 kWh or just 5.0% of total
dispensed energy. Further analysis shows that 16% of charge

FIGURE 5. a) The distribution of target dispensed energy. b) The
distribution of charge station max rates. c) The distribution of energy loss.
d) The distribution of boost phase duration relative to raw charge
duration.

points have an energy deficit above 10%of the total dispensed
energy in that charge station. As history gets longer, the algo-
rithm becomes more conservative as it evaluates the charging
parameters over a wider range of drivers’ behavior. For a
history size of 60, the aggregate peak power reduces to 21%
with the total energy deficit reduced to 2.8% or 159,934 kWh.
The percentage of charge points with an energy deficit above
10% is 8.9%. Finally, for unlimited history size, the aggregate
peak power reduced by 12.3% with a total energy deficit of
only 1.4% or 78,882 kW. The percentage of charge points
with an energy deficit above 10% reduces to 7.2%.

Figures 5a-b show the distributions of total dispensed
energy and maximum power rates for each charge station.
Figure 5c shows that a vast majority of sessions result in a
very small energy loss relative to the total energy dispensed
by the relative charge station. It can also be seen that a
significant proportion of sessions charge at a rate much lower
than the maximum power rate with a peak at 80%, Figure 5d.

Figure 6 compares charging speeds for raw and RL-based
charging. It can be seen that the adaptive charging strategy
results in significantly lower charging speeds.

The reduction in peak power usage in all reinforcement
learning algorithm configurations is lower than approxi-
mately 50% reduction provided by the hypothetical strategy,
Figure 4 (green line). However, it is important to note that
the adaptive algorithm does not require actual knowledge
of the session duration as it directly controls the charging
parameters that maximize the reward.

D. THE IMPACT ON CHARGING DURATION
The boost phase duration reduces the risk of undercharging as
it charges the vehicle at the maximum power rate. In the case
of battery-assisted charge stations, where a large capacity
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FIGURE 6. Comparison of charging speeds for raw and RL-based charging.
The latter charging strategy results in significantly lower charging speeds.

TABLE 3. Boost and slow charge phase durations.

battery is used to accumulate energy in between charging
sessions to boost charge the EV, the knowledge of boost
charge duration can also be useful to estimate the required
charge point battery capacity or required charge level.

Table 3 compares the boost and slow charge phase dura-
tions for all three strategies. In all cases, the boost phase
duration is much shorter than an average effective charging
rate of 1.82 under raw charging. The latter is computed as
the ratio of dispensed energy by the point power rate event
and averaged across all sessions in all charge stations. It can
be seen that as the history sizes increases, the algorithm
gets more conservative and allocates more time for boost
charging.

E. ONLINE LEARNING CASE STUDY
This section describes an evaluation of the approach in an
online learning mode, where the agent optimizes charging
parameters after each charging session, similar to how it
would operate in a real deployment. The performance is
illustrated on a charge point AN15123, selected because it
was the busiest charge point in the dataset with a charging
rate above 7 kW.

The charge point has a maximum charging rate of 54 kW,
and contained 1031 sessions. Figures 7, 8, 9 show the per-
formance of the adaptive approach on one specific charge
point selected arbitrarily. The learning starts after the first
100 sessions, which represents 10% of all charging sessions
for all sessions for this charge point.

Figure 7 shows the effective speed for the proposed strat-
egy. The median and mean effective speed ranges are only

FIGURE 7. Effective speed distribution for CP AN15123. The mean and
median session power rates are 37.8% and 28.3% of charge point
capacity respectively.

FIGURE 8. The distribution of boost phase and slow charge durations for
CP AN15123. The boost phase (left axis) is typically much shorter than a
slow phase duration (right axis). A large number of sessions have a boost
duration of 0.01 hours.

0.28 and 0.37 of the maximum charging speed respectively.
The total energy deficit for the adaptive strategy was just
54 kWh, which represents 1.3% of all the energy dispensed
by the charge point. The algorithm effectively tracks user
behavior and adapts the charging parameters accordingly.

Figure 8 compares the boost and slow phase durations for
all sessions. It can be seen that boost phase duration is typi-
cally small and below 0.12 hours, whereas slow charge dura-
tions can last up to 8.65 hours. The mean effective charging
speed, boost, and slow phases are 18.29 kW, 0.02 hours and
1.19 hours respectively. Figure 9 compares the overall energy
profiles for raw, adaptive, and ideal charging strategies. The
raw charging results in sharp peaks in power consumption
with the highest peak at around 6-9 pm. The adaptive charging
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FIGURE 9. Online learning performance for CP AN15123. History
size = 60. Reinforcement based strategy effectively shaves the peaks
spreading the load in time.

strategy visibly reduces the peaks spreading the load in time.
The hypothetical strategy results in the highest peak reduction
as it spreads the power evenly throughout each session. How-
ever, it should be noted that it requires a perfect knowledge
of plugin session duration, which is difficult to predict in
practice, as was shown in the previous section.

F. DISCUSSION
The study focuses on the maximum potential for reducing
peak charging demand for individual charging stations using
local historical information only. The algorithm requires stor-
ing the past charging session history in its memory. Since
each session requires the storage of 3 values (start timestamp,
end timestamp, dispensed energy). Assuming 4 bytes for the
first two and 2 bytes each for the latter, the annual data
requirement will be approximately 3,650 bytes if the charging
happens once a day. The busiest domestic charge point in
the dataset contained 1,381 sessions, which can be stored
in just 13,810 bytes. The algorithm should be suitable for
implementation in an embedded platform and does not have
significant computational overhead.

In this study, the proposed charging profile is similar to
a step function, consisting of discrete high and low-speed
phases. The learning algorithm searches for the parameters of
step height and step duration. However, it may be possible to
define a more general charging profile that takes into account
battery characteristics, health, and other factors. The more
general approach would need to optimize the parameters of
this function. Investigating these ideas is a potential future
work. This research focuses on domestic charging, where
there is a significant potential for energy coordination. Public
charge points as data indicates are characterized by frequent
and short sessions, which are likely made at high speed.

The algorithm requires the knowledge of the maximum
charging rate Pmax , which is limited by both EV and charge
point capabilities. In the experiments, the value of Pmax

was selected as the charger point’s maximum charging power
throughout the entire year. This assumes that each household
has a single electric vehicle, which should be a reasonable
assumption considering today’s price of EVs.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a novel approach for smart electric vehi-
cle charging that identifies optimal charging parameters by
training on a history of past charging sessions using rein-
forcement learning. Unlike other approaches, the proposed
reinforcement learning algorithm does not require predicting
users’ behavior and learns through trial and error through
analysis of past behavior. The proposed algorithm can be used
in situations, where a user needs to minimize peak current
without modifying his or her behavior while not using any
coordination with the grid. The optimal boost charge duration
learned by the algorithm can also be useful in household
energy scheduling to estimate a target storage battery level
for electric vehicle charging.

The evaluation shows the extent to which the approach
can reduce aggregate peak current if used collectively by
several thousand charge points across the UK. The approach
is not computationally intensive and can be implemented on
relatively low-cost hardware. In this work, the reinforcement
learning agent does not take into account such factors as the
day of the week, time of day, weather, or other contextual
information. It should be possible to extend the proposed
approach to take into account additional factors, which is a
potential future work.
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