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ABSTRACT The problem of initial orbit determination (IOD) for Low Earth Orbit (LEO) objects using
bistatic radar too-short arc (TSA) observations is addressed. For TSA observations, the traditional IOD
methods suffer low accuracy. For LEO objects with stable attitude, the high order kinematic parameters
can be obtained from the time derivatives of the radar echo phase. In this paper, an analytical IOD method
is presented using bistatic radar TSA observations, which contain the position measurements (bistatic
range, azimuth angle, and elevation angle) and the high order kinematic measurements (bistatic velocity,
acceleration, and jerk). As the undetermined target state variables constitute a complex system of equations
that can only be solved iteratively, an auxiliary coordinate system based on the bistatic geometry is defined
to help reduce the equations to one unary quartic equation. Further, the closed-form expressions of the orbital
state are derived. The performance of the proposed method is evaluated using linearization approximations.
Numerical simulations are carried out for several typical LEO observation scenarios to demonstrate the
performance of the proposed method.

INDEX TERMS Initial orbit determination, too-short arc, bistatic radar, root-mean-square error.

I. INTRODUCTION
With the development of space activities, the number of Low
Earth Orbit (LEO) objects is increasing rapidly [1]. To main-
tain a catalogue of these LEO objects and detect new objects,
the radar systems are widely used in space surveillance tasks.
Because of the large number of objects and relatively lim-
ited sensors resources, a radar surveillance mode has been
developed to improve the observing efficiency. Unlike in
the traditional tracking mode, radar systems operating in
the surveillance mode can produce a large number of too-
short arc (TSA) observations, where the arc is usually several
seconds [2]. When the detected object is new, the initial orbit
determination (IOD) needs to be done to provide the basis
for further data association and cataloguing [3], [4]. Using
TSA observations, the classical IOD methods, such as the
Laplace’s, Gauss’, or Double-r iteration, are unreliable and
give poor results [5]. Therefore, it is highly important to
develop a more accurate IOD method using TSAs.
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The IOD problem has been studied extensively using TSA.
The TSA measurements usually contain limited information
to obtain a full orbit with valid accuracy, which is the intrinsic
weakness of IOD problem [2]. Milani et al. developed a
method using TSA angle and angle-rate measurements, and
then the range and range rate were constrained to the admissi-
ble region [6]. The true orbit is obtained by searching param-
eters in the region. After identifying two TSAs from the same
object, the orbit can be determined [7]. Based on the work of
Milani, DeMars et al. proposed an IOD method using a dis-
cretization of the admissible region [8], and then developed a
solution of IODusingGaussianmixturemodels [9]. Ansalone
and Hinagawa developed the method from optical data by
exploiting genetic algorithms [10], [11]. They determined
the optimal IOD solution by minimizing the observation
errors. These methods apply to the angle-only measurements.
As radars provide range information, the IOD method using
two positions and the times, which is referred to as the
Lambert problem, has been widely developed [12]–[14].
These methods are not applicable for TSAs. Tommei et al.
developed the admissible region for radar data [15].
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Considering the admissible region using radar observations,
DeMars et al. applied it to the IOD from data associa-
tion [16]. The methods solve the problem iteratively. The
analytical method using three stations was proposed in [17].
However, the combination for three stations would increase
the complexity of IOD process. The Herrick-Gibbs method
used three position vectors and epochs to obtain the middle
velocity vector. The method used the Taylor-series expan-
sion to approximate the velocity [5]. Since the high accu-
racy doppler measurements can be obtained by the phase
of radar echoes [18], IOD methods using doppler measure-
ments were studied. Shang et al. proposed an IOD method
using measurements from two stations in [19]. The method
derived an analytical solution of IOD using the ranges, veloc-
ities, and accelerations from two stations simultaneously.
Zhang et al. proposed a method using single-site higher order
doppler measurements, where the radial acceleration and jerk
are utilized [20]. Bistatic radars offer several advantages
over monostatic radars, such as the configuration flexibility
[21], [22]. Thus, developing an IOD method using bistatic
radar is considered, and the crux of the problem is the
complex relationship between the target state and doppler
measurements.

In this paper, we propose a new IOD method based on
bistatic radar TSA measurements. The method uses six mea-
surements from a single arc observation to analytically deter-
mine the target state, where the bistatic range, azimuth and
elevation angles are used for position determination, and the
bistatic velocity, acceleration, and jerk are used for velocity
determination. To solve the problem that the estimated param-
eters are coupling in a high order algebraic system, a new
coordinate system is defined for decoupling, and finally the
analytical expression is derived by coordinate transformation.
The RMSE (root-mean-square error) is used to evaluate the
IOD performance, and singular cases with low accuracy of
velocity determination are considered.

This paper is organized as follows. Section II introduces
the bistatic observation model and the relationship between
observations and the object state, then the IOD method is
presented by solving the equations formed by the measure-
ments and state, including position determination and veloc-
ity determination. Section III presents the linearized error
analysis using the RMSE to evaluate the performance of
IOD. Section IV presents Monte Carlo simulations and the
comparison between the theoretical result and the simulation
result. Observation scenarios of typical LEO objects are con-
sidered. Some singular cases are discussed to avoid bad IOD
performance. Finally, Section V concludes the paper.

II. IOD METHOD
A. OBSERVATION MODEL
The orbital state is described in the Earth-centered Iner-
tial (ECI) system. Let the position vector be Er and the velocity
vector be Ev. Let EX =

[
ErT , EvT

]T denote the state vector.
As shown in Figure 1, the two stations are located at St and

FIGURE 1. Bistatic radar geometry.

Sr , and the station position vectors are ESt and ESr , respectively.
The target is located at P, and StSrP forms the bistatic plane.
To simplify the analysis, the Earth is regarded as an ideal
sphere. In the absence of perturbations, the target motion
is regarded as the two-body problem. For a single short arc
observation, the station is assumed to be fixed, while the
station velocity, acceleration, and jerk caused by the Earth’s
rotation are included.

For a single short arc, the bistatic radar produces six mea-
surements, which are designated the observation vector EY =[
ρ, az, el, ρ̇, ρ̈,

...
ρ
]T , where ρ is the bistatic range. Based on

the receiving station, the topocentric coordinate system (SEZ)
can be established. Then, the angle measurements az and el
are defined in the SEZ system. ρ̇, ρ̈, and

...
ρ are the bistatic

velocity, acceleration, and jerk, respectively.
The bistatic range ρ is the sum of the bistatic transmitter-

to-target range ρt and the bistatic receiver-to-target range ρr :

ρ = ρt + ρr =

√(
Er− ESt

)2
+

√(
Er− ESr

)2
(1)

The SEZ system is defined in [23] and shown in Figure 2,
where the origin is located at the receiving station, the S-axis
points the South, the E-axis points the East, and SEZ com-
poses a right-hand coordinate system. The azimuth (az) is
the angle measured from north, clockwise to the location
beneath the object, and the elevation (el) is measured from
the local horizon positive up to the object. Hence, the angle
measurements are:

az = arctan
(
−
ρE

ρS

)

el = arctan

 ρZ√
ρ2S + ρ

2
E

 (2)
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FIGURE 2. Topocentric-horizon coordinate system (SEZ).

The azimuth angle is usually reconciled to range from 0 to
360◦, and the value of elevation angle usually ranges
from 0 to 90◦.
The bistatic velocity ρ̇ is defined as the sum of the two

velocities of the target relative to the two stations, and the
acceleration and jerk are obtained by differentiating kine-
matic measurements with respect to time:

ρ̇ =
dρ
dt
= ρ̇r + ρ̇t

ρ̈ =
d ρ̇
dt
= ρ̈r+ρ̈t

...
ρ =

d ρ̈
dt
=

...
ρ r +

...
ρ t (3)

To establish the observation equations of the high order
kinematic measurements, the method of obtaining the mea-
surements is considered. The bistatic velocity, acceleration,
and jerk can be estimated from the phase of radar echoes.
Assuming that the radar system uses the single carrier fre-
quency coherent pulse train, the transmitted coherent pulse
train can be expressed as

st (t) =
N∑
n=1

pt
(
t − nTp

)
exp (j2π fct) (4)

where N is the number of the pulses, Tp is the pulse repetition
period, fc is the carrier frequency, and pt is the waveform
function of the pulse. The received baseband signal is:

sr (t) =
N∑
n=1

pt
(
t − nTp − τn

)
exp (j2π fcτn)+ w (t) (5)

where w (t) is the additive white Gaussian noise, and τn is the
time delay. τn is related to the bistatic range:

τn=
ρr
(
nTp

)
+ ρt

(
nTp

)
c

(6)

where c is the speed of light. The relative ranges are mod-
elled as a polynomial. Let t0 denote the reference time and
1t = t − t0 denote the relative time. The relative range can
be described as:

ρr (t) = ρr0 + ρ̇r1t +
1
2
ρ̈r1t2 +

1
6
...
ρ r1t3 + · · · (7a)

ρt (t) = ρt0 + ρ̇t1t +
1
2
ρ̈t1t2 +

1
6
...
ρ t1t3 + · · · (7b)

In the case of short arc observations, the target motion is
approximately a third-order polynomial. Then, the bistatic
doppler measurements can be derived as:

ρ (t) ≈ ρ0 + ρ̇1t +
1
2
ρ̈1t2 +

1
6
...
ρ1t3 (8)

The maximum likelihood (ML) estimation is used to
extract the coefficients in the equation. As the range is usually
derived from the time delay, only the three high order kine-
matic measurements are obtained by the ML estimation. Let
θ denote the estimated parameter vector. The ML estimator
can be obtained as:

θ̂= argmax
θ

pdf (sr , θ) (9)

where sr is the discrete-time signal sampled from the base-
band received signal. The three high order kinematic mea-
surements can be estimated from the estimation process.
In practice, most of radars use the linear frequency modu-
lated (LFM) pulse train for space surveillance. The errors
of measurements are analyzed based on the results of ref-
erences [18]. When the reference time t0 is the middle time
of the integration time interval, the CRLB of the high order
kinematic measurements are derived in [24].

In fact, the measurement vector EY can be considered to
be obtained from the instantaneous state

[
ErT0 , Ev

T
0

]T at the
reference time t0. For simplicity, the subscripts are omitted.
As the bistatic high order kinematic measurements are the
sum of those relative to both stations, without loss of gener-
ality, the terms of the target relative to the receiving station
are considered. The velocity can be formulated in the ECI
system:

ρ̇r=
Eρr ·

(
Ev− ĖSr

)
ρr

(10)

where Eρr is the relative vector from the station to the target,
and ĖSr is the velocity vector of receiving station caused by
the Earth’s rotation. The acceleration ρ̈r can be generated by
differentiating ρ̇r with respect to time:

ρ̈r=
1
ρr

((
Ev− ĖSr

)2
− ρ̇2r

)
+

(
Ër− ËSr

)
· Eρr

ρr
(11)

where v is the norm of Ev, and Ër is the acceleration vector of the
target in the two-body model. ËSr is the acceleration vector of

76768 VOLUME 10, 2022



J. Qu et al.: IOD Method for LEO Objects Using TSA Based on Bistatic Radar

receiving station caused by the Earth’s rotation. The motion
vectors Ër and

...
Er can be derived from the target state:

Ër = −
µ

r3
Er

...
Er = −

µ

r3
Ev+ 3µ

Er · Ev
r5
Er (12)

where r is the norm of Er and µ is the gravitational parameter
of the Earth. Since the jerk vector of the target can be repre-
sented by the position vector Er and the velocity vector Ev, the
jerk

...
ρ r can be expressed as follows:

...
ρ r=−

3ρ̇r ρ̈r
ρr
+

3
(
Ev− ĖSr

)
·

(
Ër− ËSr

)
ρr

+

(...
Er −

...
ES r
)
· Eρr

ρr
(13)

where
...
ES r the jerk vector of receiving station caused by the

Earth’s rotation. Similarly, the terms relative to the transmit-
ting station can also be formulated.

B. IOD PROCESS
The target position vector can be obtained using three posi-
tion measurements, [ρ, az, el]. According to the relationship
between the SEZ system and the measurements, a transfor-
mation is performed to yield

EρSEZ =

−ρrcos (el) cos (az)ρrcos (el) sin (az)
ρrsin (el)

 (14)

The bistatic receiver-to-target range ρr, according to the
geometry of bistatic stations and the target, can be written as:

ρr =
ρ2 − L2

2 (ρ − Lcos (θ))
(15)

where L is the baseline range, and θ is the angle between the
vectors

−→
SrP and

−−→
SrSt. Let EeLOS represent the unit vector of the

line-of-sight (LOS) direction, which is written as:

EeLOS =

−cos (el) cos (az)cos (el) sin (az)
sin (el)

 (16)

Finally, the position state of the target in ECI can be
expressed by:

Er =MECI←ECF ·MECF←SEZ · EρSEZ +
ESr (17)

where the transformation matrices are provided in [23]. Note
thatMECF←SEZ depends only on the latitude and longitude of
the receiving station.

To get the velocity vector, the three high order kine-
matic measurements are required. The three equations in
Equation (3) are used to solve the three velocity components
in the ECI system. Compared with the monostatic radar,
the bistatic radar produces a measured velocity ρ̇ that is
combined by the velocities relative to both stations, and the
velocity of the target relative to a single station is unknown.
Therefore, the three velocity components in the ECI system

FIGURE 3. Coordinate system for velocity determination.

are coupled in three equations of Equation (3), which is not
feasible to directly calculate an analytical solution. Thus,
an auxiliary coordinate system X̂ Ŷ Ẑ is considered as shown
in Figure 3, where the origin coincides with the target and
the axes X̂ and Ŷ lie in the bistatic plane. Axis Ŷ is collinear
with the bisector of the bistatic angle, axis Ẑ is vertical to the
bistatic plane, and X̂ Ŷ Ẑ composes a right-hand coordinate
system. The unit vectors of this system are obtained:

EeŶ = −
Eρr
ρr
+
Eρt
ρt∣∣∣ Eρr

ρr
+
Eρt
ρt

∣∣∣ , EeẐ = Eρr × Eρt∣∣Eρr × Eρt
∣∣ , EeX̂ = EeŶ × EeẐ (18)

The transformation matrices between the ECI system and
X̂ Ŷ Ẑ system are:

MECI←X̂ Ŷ Ẑ =
[
EeX̂ , EeŶ , EeẐ

]
MX̂ Ŷ Ẑ←ECI =MT

ECI←X̂ Ŷ Ẑ
(19)

The stations lie in the bistatic plane, which means that
the position vectors between stations and the target can be
described in this system:

Êρr =MX̂ Ŷ Ẑ←ECI · Êρr = x̂rEeX̂ + ŷrEeŶ
Êρt =MX̂ Ŷ Ẑ←ECI · Êρt = x̂tEeX̂ + ŷtEeŶ (20)

Based on the fact that EeŶ is collinear with the bisector,
according to the angular bisector properties, the coefficients
of (20) have the following relationship:∣∣∣∣ x̂rŷr

∣∣∣∣ = ∣∣∣∣ x̂tŷt
∣∣∣∣ (21)

Because the position vector has been determined, the com-
ponents in Equation (20) can be calculated. The velocity
vector is described in X̂ Ŷ Ẑ system as

Êv =
(
vx̂ , vŷ, vẑ

)T
=MX̂ Ŷ Ẑ←ECI · Ev (22)

Combining the definitions of the X̂ Ŷ Ẑ system and the
expression of ρ̇ in Equations (3) and (10), vŷ can be
derived as:

vŷ =
ρ̇ +

(
Eρr ·
ĖSr
)
/ρr +

(
Eρt ·
ĖSt
)
/ρt∣∣∣ Eρr

ρr
+
Eρt
ρt

∣∣∣ (23)

Therefore, the components vx̂ and vẑ are solutions to the
second and third equations of (3). To solve this problem,
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the high order doppler measurements are described in the

X̂ Ŷ Ẑ system. Let
˙̂
ESr =

[
vrx, vry, vrz

]T and
˙̂
ESt =

[
vtx, vty, vtz

]T
denote the coordinates of station velocities in the X̂ Ŷ Ẑ sys-
tem. The bistatic velocity ρ̇ equals ρ̇r + ρ̇t, where

ρ̇r = Êv ·
Êρr

ρr
−
Êρr ·
˙̂
ESr

ρr
=

xr
ρr
vx̂ +

yr
ρr
vŷ −

Êρr ·
˙̂
ESr

ρr
(24a)

ρ̇t = Êv ·
Êρt

ρt
−
Êρt ·
˙̂
ESt

ρt
=

xt
ρt
vx̂ +

yt
ρt
vŷ −

Êρt ·
˙̂
ESt

ρt
(24b)

After substituting Equation (24) into Equation (3), the
acceleration can be obtained:

ρ̈r =
1
ρr

(
(vx̂ − vrx)

2
+ (vŷ − vry)

2
+ (vẑ − vrz)

2
)

−
1
ρr

 xr
ρr
vx̂ +

yr
ρr
vŷ −

Êρr ·
˙̂
ESr

ρr

2

+

(
Ër− ËSr

)
· Eρr

ρr

ρ̈t =
1
ρt

(
(vx̂ − vtx)

2
+ (vŷ − vty)

2
+ (vẑ − vtz)

2
)

−
1
ρt

 xt
ρt
vx̂ +

yt
ρt
vŷ −

Êρt ·
˙̂
ESt

ρt

2

+

(
Ër− ËSt

)
· Eρt

ρt

(25)

To simplify the form, a substitution for the coefficients in
former equations is done. The specific substitution is pro-
vided in Appendix A. Then the single velocity expressed in
Equation (25) is simplified as:

ρ̈r = kr1v2x̂ + kr2vx̂ + lr1v
2
ẑ + lr2vẑ + mr

ρ̈t = kt1v2x̂ + kt2vx̂ + lt1v
2
ẑ + lt2vẑ + mt (26)

Considering that the bistatic acceleration ρ̈ equals ρ̈r + ρ̈t,
a further substitution is formed:

k1 = kt1 + kr1, k2 = kt2 + kr2
l1 = lt1 + lr1, l2 = lt1 + lr1
m1 = mt + mr (27)

Then ρ̈ can be expressed as:

ρ̈ = k1v2x̂ + k2vx̂ + l1v
2
ẑ + l2vẑ + m1 (28)

To separate the two unknowns, a further variable substitu-
tion is made:

v′ ẑ = vẑ +
l2
2l1

(29a)

m′1 = m1 −
l22
4l1

(29b)

Then (28) can be expressed as:

ρ̈ = k1v2x̂ + k2vx̂ + l1v
′2
ẑ + m

′

1 (30)

The two unknowns can be separated, and v′ ẑ can be written
by vx̂ :

v′ ẑ = ±

√
−
k1v2x̂ + k2vx̂ + m

′1 − ρ̈

l1
(31)

Similarly, substituting Equations (24) and (25) into Equa-
tion (3), the bistatic jerk

...
ρ can be simplified and expressed

as a binary cubic equation of vx̂ and vẑ:
...
ρ = c1v3x̂ + c2v

2
x̂ + c3vx̂ + c4vx̂v

2
ẑ

+c5v2ẑ + c6vẑ + c7 + c8vx̂vẑ (32)

Then v′ ẑ is used to replace vẑ and (32) is updated as:
...
ρ = c1v3x̂ + c2v

2
x̂ + c

′
3vx̂ + c4vx̂v

′2
ẑ

+c5v′2ẑ + c
′
6v′ ẑ + c

′
7 + c′8vx̂v

′
ẑ (33)

The specific substitution is provided in Appendix V. Let
m2 equal m′1 − ρ̈. Combining with (30), an equation of vx̂ is
obtained:

...
ρ = c1v3x̂ + c2v

2
x̂ + c

′
3vx̂ + c

′
7

−(c4vx̂ + c5)

(
k1v2x̂ + k2vx̂ + m2

l1

)

±(c′6 + c′8vx̂)

√
−
k1v2x̂ + k2vx̂ + m2

l1
(34)

According to the angular bisector properties shown in
Equation (21), the coefficient of the highest term v3x̂ in
Equation (34), which is c1 −

c4k1
l1

, equals 0. Therefore,
Equation (34) can be simplified into a quartic equation of vx̂ :

f1v4x̂ + f2v
3
x̂ + f3v

2
x̂ + f4vx̂ + f5 = 0 (35)

Additionally, the specific substitution is provided in
Appendix V. To solve Equation (35), the method for finding
roots for quartic equations, which is provided in Appendix V.
After finding vx̂ , vẑ can be derived using (31). Noticing that
there exist two ambiguity solutions, the unique solution can
be determined by combining with (32). Once the velocity in
the X̂ Ŷ Ẑ system is expressed, the velocity vector Ev can be
calculated by using the transformation matrix shown in (19).

Regardless of the measured error, the system of equations
could produce four complex values of vx̂ , which lead to four
sets of Êv, and there is at least one real set that matches the
true value of target state. All these sets of solutions meet the
existing conditions, and some additional information could
be used to solve this problem. The measured rate of angle
can be used, but in order to pursue better orbit determination
accuracy, it is not used for deriving the analytical expression.
In actual observation scenarios, due to the disturbance of the
measured error, the equation (35) will produce at most four
complex solutions, which means that the unique true value
solution may have an non-zero imaginary part. In this case,
the imaginary part of the unique root is discarded and the error
between the real part and the true value are considered.
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In summary, by using six measurements acquired from a
single TSA bistatic radar observation, an analytical expres-
sion of the target state is obtained.

III. ERROR ANALYSIS
To analyze the performance of the proposed IOD method,
the covariance matrix of the target state is required. As the
transition from the target state to radar observation is nonlin-
ear, the state estimate covariance does not have a compact
analytical expression. The linearization method is used to
approximately generate the covariance. Let CX denote the
state covariancematrix andCY denote the observation covari-
ance matrix. According to the principle of the linearization
method, CX can be derived as:

CX =
∂ EX

∂ EYT
· CY ·

∂ EXT

∂ EY
(36)

The root-mean-square error is frequently used to express
the differences between the observed values and the estimated
values. The initial orbit can be regarded as the estimated state
derived from the radar observations. Hence, we define the
position root-mean-square error (PRMSE) and the velocity
root-mean-square error (VRMSE) to represent the position
accuracy and the velocity accuracy [25]. They can be gener-
ated as:

PRMSE =
√
CX (1, 1)+ CX (2, 2)+ CX (3, 3)

VRMSE =
√
CX (4, 4)+ CX (5, 5)+ CX (6, 6) (37)

To simplify the analysis, the covariance matrix is derived
under the assumption of the two-body motion model, where
the oblateness is neglected. Suppose that the measurements
from the receiving station are disturbed only by random noise,
which means that the system errors caused by sensors are
removed. Let

[
σρ, σaz, σel, σρ̇, σρ̈, σ

...
ρ

]
represent the stan-

dard deviations of the six measurements.
Considering the observation covariance matrix, some stud-

ies for LFM signal radar measurements have been done
in [18] and [24]. According to the IOD process shown in
Sec. II, the six measurements can be regarded as two mea-
surement groups: the position measurements [ρ, az, el], and
the kinematic measurements

[
ρ̇, ρ̈,

...
ρ
]
. The two groups are

assumed to be mutually independent. Then the covariance
matrix can be regarded as consisting of two submatrices: the
covariance matrix of position measurements Cposition, and
the covariance matrix of kinematic measurements Cdoppler .
The matrix can be written as:

CY =

[
Cposition 0

0 Cdoppler

]
(38)

where Cposition is a diagonal matrix of measurement vari-
ances. The high order kinematic measurements are estimated
by the maximum likelihood method using the high precision
phase characteristic from radar echoes. The covariancematrix
Cdoppler is the inverse of the Fisher information matrix.

A. POSITION ROOT-MEAN-SQUARE ERROR (PRMSE)
Let Cpos

ECI denote the covariance matrix of the position vector
in ECI system, and Cpos

SEZ denote that in the SEZ system.
As the transformation matrix is provided in [25], Cpos

ECI can
be obtained:

Cpos
ECI =MECI←SEZ · C

pos
SEZ ·M

T
ECI←SEZ (39)

SinceMECI←SEZ is related to the Local Sidereal Time (LST),
the station longitude, and the station latitude, it is orthogonal
with no relationship with measurements. The PRMSE is the
square root of the trace of Cpos

ECI, which equals the trace of
Cpos
SEZ. Let EYpos = [ρ, az, el]T denote the observation vector

that is used for position determination. Then Cpos
SEZ can be

derived using linearization approach:

Cpos
SEZ =

∂ EρSEZ

∂ EYT
pos

· Cposition ·
∂ EρTSEZ

∂ EYpos
(40)

Based on the chain rule, the partial derivatives can be
written as:
∂ EρSEZ

∂ρ
=
∂ρr

∂ρ
· EeLOS

∂ EρSEZ

∂az
= ρr ·

∂EeLOS
∂az

+
∂ρr

∂ (cos (θ))
·
∂ (cos (θ))
∂az

· EeLOS

∂ EρSEZ

∂el
= ρr ·

∂EeLOS
∂el

+
∂ρr

∂ (cos (θ))
·
∂ (cos (θ))

∂el
· EeLOS

(41)

where cos (θ) =
(
−−→
SrSt · EeLOS

)
/L. Let Cθ represent cos (θ)

for simplicity. Other terms can be derived using derivative
rules. After substituting Equation (41) into Equation (40) and
using Equation (37), the PRMSE can be obtained:

PRMSE =

√√√√√√√√√

(
∂ρr

∂ρ

)2

σ 2
ρ +

(
ρ2r +

(
∂ρr

∂Cθ

∂Cθ
∂el

)2
)
σ 2
el

+

(
ρ2r cos

2 (el)+
(
∂ρr

∂Cθ

∂Cθ
∂az

)2
)
σ 2
az


(42)

B. VELOCITY ROOT-MEAN-SQUARE ERROR (VRMSE)
Similarly, let Cvel

ECI denote the covariance matrix of the veloc-
ity vector in the ECI system. The VRMSE is the square root
of the trace of Cvel

ECI, which is derived by:

Cvel
ECI =

∂Ev

∂ EYT
· CY ·

∂Ev

∂ EYT
(43)

The velocity vector is determined using six measurements,
and the transformation relationship is:

Ev =MECI←X̂ Ŷ Ẑ · Êv (44)

Because the matrix is relative to position measurements, the
partial derivatives can be derived:

∂Ev

∂ EYT
=
∂MECI←X̂ Ŷ Ẑ

∂ EYT
· Êv+MECI←X̂ Ŷ Ẑ ·

∂ Êv

∂ EYT
(45)
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Note that the matrix is determined only by the position mea-
surements EYpos. The partial derivatives of the matrix to kine-
matic measurements are 0, and that to position measurements
is derived:

∂MECI←X̂ Ŷ Ẑ

∂ EYT
pos

=

[
∂EeX̂
∂ EYT

pos

∂EeŶ
∂ EYT

pos

∂EeẐ
∂ EYT

pos

]
(46)

As the unit vectors of the three axes in the X̂ Ŷ Ẑ coordinate
system are provided in Equation (18), let −→vec denote the vec-
tor Eρr

ρr
+
Eρt
ρt
, the specific partial derivatives can be obtained as:

∂EeẐ
∂ EYT
=

 I3×3∣∣Eρt× Eρr
∣∣ −

(
Eρt × Eρr

)
·

(
EEρt × Eρr

)T
∣∣Eρt × Eρr

∣∣3
· ∂ (Eρt × Eρr

)
∂ EYT

∂EeŶ
∂ EYT
=

(
I3×3∣∣−→vec∣∣−

(−→vec)· (−→vec)T∣∣−→vec∣∣3
)
·
∂
(−→vec)
∂ EYT

∂EeX̂
∂ EYT
=
∂
(
EeŶ× EeẐ

)
∂ EYT

(47)

Because the position vector is known, the terms can be cal-
culated by the derivation rule.

Consider the partial derivatives of the three velocity com-
ponents in the X̂ Ŷ Ẑ coordinate system. The derivative of vŷ
is simply calculated by Equation (23):

∂vŷ
∂ EYT

=

[
∂vŷ
∂ EYT

pos

,
∂vŷ
∂ρ̇

]
(48)

The expressions of vx̂ and vẑ are too complicated to directly
analyze the partial derivations of measurements. Thus the
binary system of equations composed of (30) and (32) is used.
Taking the partial derivative of the two equations, two linear
equations about ∂vx̂

∂ EYT
and ∂vẑ

∂ EYT
can be obtained:

q1
∂vx̂
∂obi
+ q2

∂vẑ
∂obi
+ q3 = 0

p1
∂vx̂
∂obi
+ p2

∂vẑ
∂obi
+ p3 = 0

(49)

where obi is the ith element of EY (i = 1, . . . , 6). To simplify
the expression, the coefficients of each term are substituted
as follows:

q1 = 2k1vx̂ + k2
q2 = 2l1vẑ + l2

q3 = v2x̂
∂k1
∂obi
+ vx̂

∂k2
∂obi
+ v2ẑ

∂l1
∂obi
+ vẑ

∂l2
∂obi
+
∂m1

∂obi
p1 = 3c1v2x̂ + 2c2vx̂ + c3 + c4v

2
ẑ + c8vẑ

p2 = 2c4vx̂vẑ + 2c5vẑ + c6 + c8vx̂

p3 = v3x̂
∂c1
∂obi
+ v2x̂

∂c2
∂obi
+ vx̂

∂c3
∂obi
+ vx̂v

2
ẑ
∂c4
∂obi

+v2ẑ
∂c5
∂obi
+ vẑ

∂c6
∂obi
+
∂c7
∂obi
+ vx̂vẑ

∂c8
∂obi

(50)

Since the intermediate variables in the process of velocity
determination are given, the coefficients can be obtained by

using the chain rule. Then by solving Equation (49), the
partial derivatives can be derived as:

∂vx̂
∂obi

=
p3q2 − p2q3
p2q1 − p1q2

∂vẑ
∂obi

=
p1q3 − p3q1
p2q1 − p1q2

(51)

It is observed through simulations that the denominator of
the partial derivative greatly affects the error of velocity deter-
mination. Define the singular discriminant delta = p2q1 −
p1q2. When delta equals 0, the performance of velocity deter-
mination is bad and this case is regarded as singular. Note
that when the orbit plane is coincident with the bistatic plane,
the variances rẑ and vẑ are equal to zero, which results in
the infinitesimal coefficients of q2 and p2. Thus, the coplanar
case is considered the known singular case. Now, by combin-
ing Equations (37) and (43), the VRMSE can be obtained.

In this section, the estimated orbital state dependence on
the mesurements erorr is assessed. The error of the position
determination is only related to the position measurements,
while the error of the velocity determination is related to all
the measurements including singular cases.

IV. SIMULATION RESULTS
To verify the performance of the proposed IODmethod, some
numerical simulations are provided in this section. Similar
to the derivation of the method described in the former text,
the J2 perturbations are neglected for simplification. The
simulation scenarios are based on Low Earth Orbit (LEO)
satellites. The orbital elements are shown in Table 1. Cases 1,
2, and 3 are used to simulate and verify the performance
of typical LEO objects and there are no singular scenarios
in these cases. Case 4 considers the orbit with a high Effi-
ciency of 0.7, which is usually regarded as a highly elliptical
orbit (HEO) object. Case 5 includes singular points in the
velocity determination.

For each case, the extrapolation from the time is performed
based on the two-body model. The extrapolation step length
is set as 20s. Therefore, several observations along the whole
passing arc are obtained. Each observation epoch is regarded
as the short arc reference time, and then the measurement
vector EY for each observation can be derived from the obser-
vation equation. At each observation epoch, the IOD process
is performed, and theoretical RMSEs are derived. The relative
time between the observation epoch and the initial epoch is
regarded as the reference in the figures. The locations of the
two stations are shown in Table 2. The target is visible to both
stations for all simulation scenarios.

In Section III, the RMSEs of the position and velocity
vectors are derived, which represents the effect of the mea-
surement error on the estimated state error. However, the
procedure is based on a linearization approximation approach
while the observation model is nonlinear. The model is
approximately described using the first-order partial deriva-
tive of the state with respect to the observation. Monte Carlo
experiments with 100,000 runs are performed to verify the
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TABLE 1. Orbit parameters.

TABLE 2. Coordinate of observation stations.

reliability of the linearization. Each experiment can produce
the deviations of position and velocity vectors, respectively,
and the mean square error of these deviations can be approxi-
mated as the estimate error under the real observation model,
as the number of experiments is large enough. In each figure,
the legend ‘MC’ means the Monte Carlo simulation result,
and the legend ‘THEO’ means the theoretical result.

TABLE 3. Parameters of observation stations.

The radar parameters are provided in Table 3 for simula-
tions. Then, the covariance matrices related to the parameters
can be derived [24]:

Cposition =

 1 0 0
0 1.44E - 2 0
0 0 1.44E - 2


Cdoppler =

 6.806E - 8 0 −2.5E - 7
0 6.533E - 9 0

−2.5E - 7 0 9.147E - 9

 (52)

where the units of range and angle are square meters and
square degrees. The units of velocity, acceleration, and jerk
are square of meter per second (m2/s2), square of meter
per second squared (m2/s4), and square of meter per second
cubed (m2/s6), respectively.

A. PRMSE
As described in Equation (42), the PRMSE corresponds to
the range error and two angle errors. Two observation cases
are considered, one is that the target orbit passes over the
receiving station right on the top, which means that the orbit
coincides with the SZ plane, and the other is that the target
passes over at a random angle. In cases 1 and 2, the posi-
tion measurements and the PRMSE results are provided in
Figures 4 and Figure 5, respectively.

FIGURE 4. Case 1: (a) range. (b) elevation angle. (c) azimuth angle.
(d) PRMSE.

FIGURE 5. Case 2: (a) range. (b) elevation angle. (c) azimuth angle.
(d) PRMSE.

The figures depict that the theoretical PRMSE is consistent
with the Monte Carlo results. Analyzing the magnitude of
each item of PRMSE in Equation (42) and comparing with
the simulation results, it can be found that the PRMSE is
mainly affected by ρr and el. For a single pass, when the
elevation reaches the maximum and the range ρr reaches
the minimum, the PRMSE is attained. We conclude that the
best performance of position determination appears when the
target passes over the receiving station.

B. VRMSE
Since the velocity determination does not have a simple
analytical expression and is derived from a quartic equa-
tion, the performance analysis is complicated. After simpli-
fying the covariance matrix in Equation (43), it is influenced
by many factors including position geometry and velocity
components. Simulations of different aspects are considered.
First, two non-singular observation cases are considered, and
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FIGURE 6. Case 2: (a) delta. (b) VRMSE. (c) errors of velocity components. (d) partial VRMSE.

FIGURE 7. Case 3: (a) delta. (b) VRMSE. (c) errors of velocity components. (d) partial VRMSE.

theoretical results with Monte Carlo results are compared.
Then, as mentioned before, the denominator of partial deriva-
tives in Equation (51) would cause singular cases when it

nearly equals 0. Simulations are carried out for this case.
Finally, by traversing the ascending node and changing the
orbit inclination, and in all visible arcs, a contour map of the
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FIGURE 8. Case 4: (a) delta. (b) VRMSE. (c) errors of velocity components. (d) partial VRMSE.

FIGURE 9. Case 5: (a) delta. (b) VRMSE.

velocity error is provided as a reference to choose the better
observation scenarios.

1) NONSINGULAR CASES
The two cases 2 and 3 have different inclinations of 90◦

and 75◦, and the ascending node is set at 55◦. Case 4 is
the orbit with high eccentricity. The results are shown in
Figures 6, 7, and 8, where the subfigures have the following
representations: (a) As the sign to judge singular cases, the
denominator in Equation (51) is given, which is denoted as
delta; (b) the comparison between theoretical VRMSE and
Monte Carlo VRMSE is done; (c) The errors of velocity
components in ECI system are provided; (d) the comparison
between theoretical total VRMSE and the partial VRMSE,

when the measurements are only perturbed by the jerk and
angle errors, is provided.

As depicted in Figs. (a), the arcs have no cases in which
delta equals 0. Obviously, the error is inversely proportional
to the absolute value of delta. Figs. (b) depict that the
theoretical VRMSE values are consistent with the Monte
Carlo results. Note that the minimum VRMSE appears when
the target nearly passes over the receiving station, and the
VRMSE can reach several meters per second when the eleva-
tion angle is larger than 25◦. Combined with the analysis in
PRMSE, it shows that the best performance of the proposed
IOD method appears when the elevation angle reaches the
largest value for a nonsingular pass. The results shown in
Figs. (c) demonstrate that the linearization approximation is
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reliable. The velocity error components in the three directions
of the ECI system are consistent with the simulations. Experi-
ments show that the total VRMSE is mainly influenced by the
partial derivative of the estimated velocity with respect to the
jerk and the angles. Therefore, the comparison is provided
in Figs. (d). It has been verified that for the whole arc, this
partial VRMSE value is almost the same as the total VRMSE
value, which means that the error of velocity determination is
determined by the three measurements: az, el, and jerk.

2) SINGULAR CASES
An arc with the singular observation scenario, regarded as
case 5, is used for simulation, where the discriminant delta
has zero points. The orbit inclination is 90◦ and the ascending
node is 62◦. As shown in Figure 9(a), delta has four zero
points. Since the denominator equal to zero makes no prac-
tical sense, the near-zero interval is observed. Figure 9(b)
depicts the results of VRMSE containing singular cases.
When delta is nearly 0 points, the nonlinear effects cannot
be ignored. Although the two results are not consistent, the
Monte Carlo results show that the proposed solution of veloc-
ity does have poor performance when delta equals 0, and the
lowest accuracy of velocity determination could reach kilo-
meters per second. This is intolerable for the absolute velocity
of LEO targets. Therefore, in actual scenarios, a larger abso-
lute magnitude discriminant delta is the premise for better
IOD accuracy.

3) SCENARIO TRAVERSAL
The discriminant delta has a great influence on the VRMSE
and is jointly determined by the target position and velocity.
Simulations for some common scenarios are carried out to
help avoid singular cases. By traversing the ascending node,
the target appears at the position in the entire visible range.
By changing the orbit inclination, the effect of different veloc-
ity directions on the VRMSE can also be represented.

FIGURE 10. VRMSE of scenario traversal with 90◦ orbital inclination.

The first cases have a constant orbit inclination of 90◦,
and the results are shown in Figure 10. The relation-
ship between the VRMSE and the ascending node Omega

FIGURE 11. VRMSE of scenario traversal with 75◦ orbital inclination.

is provided. The numbers indicated in the figure are VRMSE
contours, where the unit is meters per second. The outermost
line distinguishes the visibility. Because the station longi-
tudes are 60◦ and 70◦, the traversal range of Omega is from
40◦ to 70◦. The second cases have a constant orbit inclination
of 75◦ and are shown in Figure 11. The outermost line is at
an angle to the central axis, and the whole graph is symmetric
about the center point. The largest VRMSE, which reaches
kilometers per second, appears when the target is nearly
located in the plane, about which the two station positions
are symmetric. The best VRMSE appears when the target
passes over the top of one station and can reach several meters
per second. As a consequence, for a single pass, the optimal
observation scenario, in which the error of the IOD method
can satisfy the needs for the initial orbit, is when the target
passes over the top of stations, and the target is not located
near the central vertical plane of the two-station baseline.

V. CONCLUSION
In this paper, we present a new initial orbit determination
method using a single too-short-arc observation based on
bistatic radar. By using measurements including the bistatic
range, azimuth and elevation angles, the bistatic velocity,
acceleration, and jerk, a closed-form solution for the space
object state is derived, which contains the position and veloc-
ity vectors. As the relationship between the state and the
bistatic high order kinematic measurements is more complex
than that of a monostatic radar, the undetermined parameters
are coupling in the observation equations. By defining an
auxiliary coordinate system based on bistatic geometry, the
parameters are separated and the equations are transformed
into a binary system that the analytical solution can be
derived. Finally, we use coordinate transformations to obtain
the closed-form expressions of the orbital state. We eval-
uate the performance of the proposed method by RMSE,
and the position and velocity errors are represented by the
linearization approach. Simulations for theoretical andMonte
Carlo results are performed for verification. Additionally, the
singular cases with poor IOD performance are considered,
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where the errors are not acceptable for normal LEO objects.
To avoid singular cases, simulations of some LEO scenarios
are provided as a reference for better IOD performance.

The method uses the measurements obtained from a single
too-short arc observation to derive the complete orbital state
vector. No additional information ormultiple observations are
required. The process provides the setup for new detected tar-
gets that must be catalogued by the space surveillance system.
When more observations are gathered, the data association
or precise orbit determination can be performed based on the
derived initial orbit.

APPENDIX A
For simplifying the expression in Equation (26), the specifitic
substitutions are provided as follows:

kr1 =
y2r
ρ3r
, kr2 = −

2xryrvŷ
ρ3r

−
2vrx
ρr
+

2xr

(
Êρr ·
˙̂
ESr

)
ρ3r

(53)

lr1 =
1
ρr
, lr2 = −

2vrz
ρr

(54)

mr =
1
ρr

(
v2ŷ +

∣∣∣ĖSr∣∣∣2 − 2vryvŷ

)

−
1
ρ3r

(
yrvŷ −

(
Êρr ·
˙̂
ESr

))2

+

Eρr

(
Ër− ËSr

)
ρr

(55)

kt1 =
y2t
ρ3t
, kt2 = −

2xtytvŷ
ρ3t

−
2vtx
ρt
+

2xt

(
Êρt ·
˙̂
ESt

)
ρ3t

(56)

lt1 =
1
ρt
, lt2 = −

2vtz
ρt

(57)

mt =
1
ρt

(
v2ŷ +

∣∣∣ĖSt∣∣∣2 − 2vtyvŷ

)

−
1

ρ3t

(
ytvŷ −

(
Êρt ·
˙̂
ESt

))2

+

Eρt

(
Ër− ËSt

)
ρt

(58)

For simplifying the expression in Equation (32), the details
of the variable substitution are provided in the text:

c1 = −
3xrkr1
ρ2r
−

3xtkt1
ρ2t

(59)

c2 = −
3xrkr2 + 3yrkr1vŷ

ρ2r
−

3xtkt2 + 3ytkt1vŷ
ρ2t

+
3Eρr ·
ĖSr

ρ2r
kr1 +

3Eρt ·
ĖSt

ρ2t
kt1 (60)

c3 = −
3xrmr + 3yrkr2vŷ − 3kr2Eρr ·

ĖSr + 3ρrarx
ρ2r

−
3xtmt + 3ytkt2vŷ − 3kt2Eρt ·

ĖSt + 3ρtatx
ρ2t

+ nrx̂

(61)

where
¨̂
ESr =

[
arx, ary, arz

]T and
¨̂
ESt =

[
atx, aty, atz

]T are the
coordinates of station accelerations in the X̂ Ŷ Ẑ system.

c4 = −
3xr
ρ3r
−

3xt
ρ3t

(62)

c5 = −
3yrvŷ − 3Eρr ·

ĖSr
ρ3r

−
3ytvŷ − 3Eρt ·

ĖSt
ρ3t

(63)

c6 = −3lr2
yrvŷ − Eρr ·

ĖSr
ρ2r

− 3lt2
ytvŷ − Eρt ·

ĖSt
ρ2t

+nrẑ − 3
(
arz
ρr
+
atz
ρt

)
(64)

c7 = −3mr
yrvŷ − Eρr ·

ĖSr
ρ2r

− 3mt
ytvŷ − Eρt ·

ĖSt
ρ2t

−
µ

r3
ρ̇ + nrŷvŷ − 3

(
ary
ρr
+
aty
ρt

)
vŷ

−
µ

r3

(
Eρr ·
ĖSr

ρr
+
Eρt ·
ĖSt

ρt

)

+3
µ

r3

(
Er · ĖSr
ρr
+
Er · ĖSt
ρt

)
(65)

−

(
Eρr ·

...
ES r

ρr
+
Eρt ·

...
ES t

ρt

)
(66)

c8 = −3
(
xrlr2
ρr
+
xtlt2
ρt

)

n = −3

µ
(
Er · ESr

)
ρrr5

+

µ
(
Er · ESt

)
ρtr5

 (67)

And the further substitutions from (32) to (33) are:

c′3 = c3 −
l2
2l1

c8 +
l22
4l21

c4 (68a)

c′6 = c6 −
l2
l1
c5 (68b)

c′7 =
l22
4l21

c5 −
l2
2l1

c6 + c7 (68c)

c′8 = c8 −
l2
l1
c4 (68d)

Let m2 = m′1 − ρ̈, the substitution in (35) are provided:

f1 =
(
c2 −

c4k2
l1
−
c5k1
l1

)2

+
c′28k1
l1

(69)

f2 = 2
(
c2 −

c4k2
l1
−
c5k1
l1

)(
c′3 −

c4m2

l1
−
c5k2
l1

)
+
c′28k2
l1
+

2c′6c′8k1
l1

(70)

f3 =
(
c′3 −

c4m2

l1
−
c5k2
l1

)2

+2
(
c2 −

c4k2
l1
−
c5k1
l1

)(
c′7 −

c5m2

l1

)
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+
c′26k1 ++2c

′
6c′8k2 + c′

2
8m2

l1
(71)

f4 = 2
(
c′3 −

c4m2

l1
−
c5k2
l1

)(
c′7 −

c5m2

l1

)
+
c′26k2 + 2c′6c′8m2

l1
(72)

f5 =
(
c′7 −

c5m2

l1

)2

+ c′26
m2

l1
(73)

APPENDIX B
There are methods to solve the quartic equations, and we
provide the procedure of Ferrari’s solution for finding vx̂ in
Equation (35). Given a general form of a quartic equation as

ax4 + bx3 + cx2 + dx + e = 0 (74)

We can get the roots following this process:

P =
c2 + 12ae− 3bd

9

Q =
27ad2 + 2c3 + 27b2e− 72ace− 9bcd

54
D =

√
Q2 − P3

u =


3
√
Q+ D,

∣∣∣ 3
√
Q+ D

∣∣∣ ≥ ∣∣∣ 3
√
Q− D

∣∣∣
3
√
Q− D,

∣∣∣ 3
√
Q+ D

∣∣∣ < ∣∣∣ 3
√
Q− D

∣∣∣
v =

P
u

w = −
1
2
+

√
3
2
i

m =

√
b2 −

8
3
ac+ 4a

(
wk−1u+ w4−kv

)
, (k = 1, 2, 3)

=

√
b2 −

8
3
ac+ 4a (u+ v), (k = 1,when |m| 6= 0)

S = 2b2 −
16
3
ac− 4a

(
wk−1u+ w4−kv

)
, (k = 1, 2, 3)

= 2b2 −
16
3
ac− 4a (u+ v) , (k = 1)

T =
8abc− 16a2d − 2b3

m

xn =
−b+ (−1)dn/2em+ (−1)n+1

√
S + (−1)dn/2eT

4a
(75)

The subscript n represents the nth root of the equation, and
vx̂ can be obtained for further velocity determination.
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