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ABSTRACT The Sardinia deep space antenna (SDSA), managed by the Italian Space Agency (ASI) has
started its operations in 2017 aiming to provide tracking and communication services for deep space,
near earth, and lunar missions, and to support new and challenging radio science experiments. The SDSA
shares with the Sardinia Radio Telescope (SRT) a part of the system and infrastructure, but has its own
specific equipment and a dedicated control center. The current SDSA capabilities involve the X-band
(8.4 GHz–8.5 GHz) reception of telemetry from deep space probes within interplanetary missions. In this
work we describe the development and performance of the X-band receiving system. It was designed and
assembled with the cooperation of both the NASA-Jet Propulsion Laboratory (JPL) and the European Space
Agency (ESA). Specifically, NASA-JPL provided the X-band feed and the cryogenic receiver installed in
a suitable focus of the SRT devoted to space applications, and ESA provided the intermediate frequency
modem system (IFMS) for signal processing. The coupling of the X-band feed with the parabolic reflector
of the SRT and the radiating features of the SDSA have been evaluated with simulations performed using
CST Studio Suite andGRASP by Ticra. The telecommunication performance of the system has been assessed
by measurements and experiments showing a good agreement between estimates and simulations.

INDEX TERMS Antennas, deep space network, receivers, reflector antennas.

I. INTRODUCTION
The Sardinia Radio Telescope (SRT) (Fig. 1) is a general-
purpose fully steerable 64-meter diameter radio telescope
operating with high efficiency across the 0.3-116 GHz fre-
quency range [1], [2] and designed to be used for astron-
omy [2]–[5], geodesy, and space science [6], [7].

The SRT is managed by the Italian National Institute for
Astrophysics (INAF) for radio astronomy purposes and par-
tially funded by ASI, which employs it for deep space track-
ing and communications. The infrastructure, the equipment,
and the operations relevant to the deep space communica-
tion (DSC) and tracking activities, performed at SRT site
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underASI’s responsibility, constitute the Sardinia space asset,
also known as Sardinia Deep Space Antenna (SDSA).

In the following we will refer to SRT when describ-
ing the general antenna characteristics and to SDSA when
dealing with the antenna features within the ASI space
assets.

The telescope is located 35 km North of Cagliari (Italy) in
theMediterranean island of Sardinia at about 600m above the
sea level. The optical design is based on a quasi-Gregorian
configuration (Fig. 1) with a shaped 64-meter diameter pri-
mary reflector (M1) and a 7.9-meter diameter secondary
reflector (M2). The rotating mirror M3 and the fixed mirrors
M4 and M5 are part of the so-called beam waveguide (BWG)
system (see Fig. 2). Specifically, M3 and M5 are currently
devoted to the SDSA initial operational capabilities (IOC),
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FIGURE 1. The sardinia radio telescope.

FIGURE 2. Sketch of the sardinia radio telescope (a) and detail of the
BWG room (b).

i.e. the BWG optical configuration, enabling the downlink of
spacecraft signals at X-frequency band.

The SRT is equipped with an active remote controlled
optics, composed of an active surface mounted on the
M1 backup structure and six electro-mechanical actuators
installed behind M2. The M1 active surface consists of
1008 aluminum panels (with a panel manufacturing root-
mean-square error (RMSE) less than 70 µm) and 1116 elec-
tromechanical actuators, able to compensate the gravitational
deformation of the backup structure. The M2 actuators pro-
vide six degrees of freedom for an accurate monitoring and
control of the sub-reflector position. The primary reflec-
tor surface was aligned with an accuracy below 300 µm
RMS at 45◦ elevation by photogrammetry measurements [1].

Then, combined photogrammetric and laser tracker measure-
ments in the elevation range 15◦-90◦ provided the input to two
look-up tables for the M1 active surface actuators and for the
M2 actuators, respectively. These information are employed
to correct both the M1 surface deformations and the M1/M2
axes misalignment as a function of the antenna elevation
angle.

The SDSA facilities allow ASI to join the worldwide DSC
network dedicated to data acquisition from deep space mis-
sions. In the near future, the SDSA is expected to provide
a DSC service to the NASA deep space network (DSN) [8]
and to the ESA tracking station network (ESTRACK) [9], but
also to operate as a stand-alone infrastructure for other space
applications.

A feasibility study of a new optical configuration is ongo-
ing to equip the SDSA with a full operational capability
(FOC). This perspective would enhance the current SDSA
functionality with a new telemetry, tracking and command
(TT&C) asset for both deep space and near earth missions
at X- as well as K- and Ka- frequency bands allocated to the
space research. Also, the SDSAFOC could ensure emergency
operations or provide a strategic backup when redundancy is
required, as in the case of space missions with high scientific
relevance or subjected to potential critical issues.

Moreover, the cooperation between ASI and INAF will
enable the SDSA to cover several frequency bands otherwise
not available in other facilities of the DSN and ESTRACK,
such as, e.g., the P band [5], allowing the tracking of the
entry, descent and landing (EDL) phases of space rovers,
by processing the information given by the doppler shift of
the UHF carrier [10]. Indeed, the current SRT configuration
can host up to twenty receivers, which can be installed in four
different focal positions: the primary focus (F1) with focal
length to diameter ratio (F/D) equal to 0.33, the Gregorian
focus (F2) with F/D equal to 2.34, and the BWG foci F3
and F4 with F/D 1.38 and 2.81, respectively [11]. Thanks
to the possibility of exploiting the large number of operating
frequency bands of the SRT, the SDSA will also be able to
investigate new technological and operative solutions.

The SDSA activity has been started recently thanks to
a specific agreement of ASI with NASA, aiming to future
collaboration within forthcoming interplanetary missions.
Technical and operative support provided by the NASA-Jet
Propulsion Laboratory (JPL) helped to start the development
of the SDSA functionalities. Partnership with ESA enabled
the installation of the intermediate frequency modem sys-
tem (IFMS) backend into the shielded room of SRT, which
has allowed SDSA operators to acquire and record the signal
from spacecrafts.

The aim of this work is to describe the set up and the per-
formance of the new X-band Sardinia space communication
asset. In Section II, we describe the development, the optical
configuration, and the architecture of the current SDSA IOC,
i.e. the first step towards the full operational capability of the
Sardinia space communication asset. In Sections III and IV,
the radiating features and the downlink performance of the

64526 VOLUME 10, 2022



G. Valente et al.: Sardinia Space Communication Asset: Performance of the SDSA X-Band Downlink Capability

SDSA have been deeply investigated. Simulations have been
performed using the commercial software CST Studio Suite
and GRASP by Ticra, whereas the experimental validation
is provided by observation of known calibrator radio sources.
Then, in Section V, the antenna sensitivity has been validated
by processing the signal acquired during tracking sessions of
the NASA Juno Mission [12]. Finally, conclusion and future
perspective are discussed.

II. SDSA X-BAND CONFIGURATION
The present configuration of the SDSA operates in the fre-
quency range 8.4-8.5 GHz, which is the fraction of the
X-band allocated to the space research service by the Inter-
national Telecommunication Union (ITU) for the use in deep
space and near-earth communications. The near-earth band,
between 8.45 GHz and 8.50 GHz, is used for the reception
of signals from space probes at less than 2,000,000 km from
Earth [13], whereas the deep space band, between 8.40 GHz
and 8.45 GHz, is used for the downlink from space probes at
more than 2,000,000 km from Earth [13].

FIGURE 3. Optical configuration of the SDSA in the X-band (GRASP
model) (a), and detail of the mirrors in the BWG room (mirror M4 is not
shown) (b). F35 is the common focus of mirrors M3 and M5.

The optical configuration of the SDSA in the X-band is
shown in Fig. 3. It is composed of the primary mirror M1, the
axially symmetric sub-reflector M2, the rotating mirror M3,
and the fixed mirror M5. Mirrors M3 and M5 are portions
of ellipsoids with major axis a and minor axis b (see table 1).

The focus of themirrorM5 is the focal position F4 of the SRT,
where the feed horn devoted to space operations is housed.
In table 1 the geometrical parameters of the mirrors are listed.

The optimum theoretical value of the M5 aperture illumi-
nation taper is −12 dB at ±10◦ (see Fig. 3b).

TABLE 1. Size of the SRT mirrors employed for deep space
communication.

FIGURE 4. Block diagram of the X-band receiver (front end and down
conversion section) borrowed from JPL-NASA and IFMS borrowed
from ESA.

The whole receiving system is represented in Fig. 4, which
also depicts themeasurement setup, composed of the backend
total power and the IFMS backend.
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A X-band cryogenic receiver borrowed from JPL-NASA
was installed in F4 (see Fig. 4) with a RF bandwidth
of 700 MHz centered at 8.45 GHz. Basically, it consists
of a corrugated circular feed horn (see [14]) providing
the required illumination for M5, a waveguide polarizer
and an orthomode transducer providing right-hand circu-
lar polarization (RHCP) or left-hand circular polarization
(LHCP), and a cryostat hosting the cryogenic LNA that
operates at the physical temperature of 10 K. A down con-
version section amplifies, filters, and converts the RF band
(8.1 GHz–8.8 GHz) down to the intermediate frequency (IF)
band (70 MHz ± 14 MHz). Then, the 70 MHz right-hand
or left-hand circular polarized signal can be processed, after
an IF distributor (ASI-IF distributor in Fig. 4), either using a
total power backend or using a dedicated backend for space
applications, named Intermediate Frequency Modem System
(IFMS), borrowed from ESA [15]. The total power section is
used to calibrate the system, whereas the IFMS operates both
in close loop mode (mainly for demodulation and decoding)
and in open loop mode. The latter allows to acquire the
baseband in-phase and quadrature (IQ) data of the received
signal for post-processing. The baseband signal (which is
divided into 4 sub-bands/channels of equal size) is recorded
into binary files that contain all the available information
(i.e., sample rate, quantization, frequency, sample time tags,
gain configuration, and so on) aiming to reconstruct the
detected signal. Then, from the IFMS output, the IQ data can
be used for different types of signal processing, such as fast
Fourier transform (FFT) or Doppler shift calculation.

III. RADIATING FEATURES OF THE SYSTEM
A detailed description of the X-band feed horn is avail-
able in [14], whereas the coupling between this feed and
the SRT BWG optical configuration has been modeled and
evaluated using the commercial software GRASP by Ticra.
GRASP is a reliable tool for the analysis and design of
reflector antenna systems that employs a physical optics (PO)
algorithm as the baseline analysis method, supported by
Moment Method (MoM) and Geometrical Theory of Diffrac-
tion (GTD) solvers for advanced applications.

First, we have modeled and simulated the feed [14] using
CST Studio Suite: the simulated radiation pattern in the prin-
cipal planes at 8.45 GHz is reported in Fig. 5 and the main
results of the CST simulation are reported in Table 2. The
edge taper at ±10◦ is −12 dB as required.

Then, the CST-simulated far field pattern has been
imported as input of the GRASP project (see Fig. 3a) to
evaluate the SDSA radiation performance.

Let D the actual antenna directivity and DM the maximum
directivity of the aperture [16], defined as:

DM =
(
2πRA
λ

)2

(1)

wherein RA is the radius of the M1 reflector aperture and λ
is the free space wavelength. In our case DM = 75.07 dBi.
Then, the aperture efficiency ηA is defined asD = ηADM and

FIGURE 5. Simulated (CST Studio Suite) normalized far field pattern of
the X-band feed horn. X-pol in the E-and H-plane are not shown since
lower than −100 dB.

TABLE 2. Results of the CST simulations of the feed.

the antenna gain is:

G = ηA ηS ηB ηRMS ηAM ηO DM = ηDM (2)

wherein η is the overall efficiency and

i) ηS is the spillover efficiency;
ii) ηB is the blockage efficiency, including the effect of

both the sub-reflector M2 and the quadrupods (Fig. 1);
iii) ηRMS is the Ruze RMS efficiency due to the manufac-

turing RMSE of mirrors M1, M2, M3, and M5; and to
the alignment RMSE of M1 and M2 panels and active
surface (see Table 3).

iv) ηAM accounts for the misalignment of the optical path
in the BWG.

v) ηO represents the return loss efficiency, the ohmic effi-
ciency, and the cross-polarization efficiency.

Using the GRASP model in Fig. 3a we have computed the
aperture efficiency ηA, equal to 0.775.
The spillover efficiency has been computed enabling a

dedicated GRASP subroutine, providing ηS = 0.909.
Then, the GRASP project has been modified including

the quadrupods (not shown in Fig. 3a) and the blockage
of the sub-reflector M2 to compute the blockage efficiency.
The result of this simulation is ηB = 0.907.
The Ruze RMS efficiency is 0.97, computed using the

Ruze equation [17] considering a total RMS surface error
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TABLE 3. Estimated RMSE contributions to Ruze RMS efficiency.

equal to 463 µm (see Table 3) and a wavelength equal to
355 mm at 8.45 GHz.

The ηO has been estimated at about 0.99.
Finally, we estimated a ηAM equal to 0.92. This value

accounts for a residual misalignment of the BWG optics
(M3-M5 coupling) that we are currently investigating to opti-
mize the system performance.

As a result, the simulated overall efficiency η is 0.56 and
the gain G is 72.4 dBi at 8.45 GHz. This value can be con-
sidered the best SDSA performance as the angular elevation
changes.

In Table 4 we summarize the main radiating parameters
resulting from the simulation of the SDSA GRASP project.
In addition, in fig. 6 we compare the simulated and measured
beam pattern of the SDSA. In fig. 6 the E-plane, H-plane, and
45◦-cuts of the simulated far-field pattern virtually overlap
and have been obtained with all the mirrors aligned according
to the SRT optical design.

TABLE 4. Estimated radiation performance of the SDSA.

A dedicated experiment was carried out on March 23rd
2021 to measure two orthogonal cuts of the SDSA far-field
pattern at 8.45 GHz and compare them with the GRASP
simulation (see Fig. 6). Such experiment consisted in mov-
ing the antenna along two orthogonal scans (also known
as cross-scan mode) centered on the radio source calibrator
3C84, which is a strong variable flux radio source suitable
for beam pattern measures that allows to highlight the side-
lobe level (SLL) and their features [18]. Both scans were
performed around the elevation angle of 66◦ since, as we
will show in the next section (see Fig. 10), the optimal
performance in the X-band of the SDSA, with the cur-
rent optics configuration, is achieved between 60◦ and 80◦.

An integration time of 40 ms was set in the total power
backend (see Fig. 4) with a bandwidth of 28 MHz centered
at 8.45 GHz.

The measured SLL is below −19 dB and the difference
with simulation is likely due to the residual misalignment
of the BWG optics (M3 and M5). It is also worth to notice
that Fig. 6 shows a slight asymmetry among the measured
elevation and azimuth cuts due to a residual squint in the
M1-M2 axes alignment. These SRT residual optics aberra-
tions will be soon adjusted after a fine calibration of both the
M3 position and the M2 look-up table by dedicated metro-
logical measurements.

FIGURE 6. Normalized radiation pattern of the SDSA illuminated with the
X-band feed horn at 8.45 GHz.

The measured half power beamwidth (HPBW) is in good
agreement with the simulated one (θS = 0.039◦), as shown
in Fig. 7 that reports the measured beam deformation ε with
respect to the simulated HPBW at different elevation angles.
ε is defined as:

ε =

√
(θAZ − θS)

2
+ (θEL − θS)

2 (3)

where θAZ and θEL are, respectively, the HPBWs measured
along the azimuth and elevation axis using the calibrator
radio source 3C84. A quite stable beam deformation with
respect to the elevation angle, with an average value of 0.002
degrees, is achieved thanks to the active optics of the SRT (see
section 3.4.3 of [1]).

IV. DOWNLINK PERFORMANCE
The ratio antenna gain-to-system noise temperature (G/Tsys)
is the primary figure of merit in the characterization of the
downlink performance [19]. The antenna gain has been com-
puted in the previous section, therefore we are left to estimate
the system noise temperature that is defined as [20]:

Tsys = TSky + TSp + Trx (4)

with

TSky = TatmηS

(
1− exp

(
−τ

sinφ

))
+ TCMB (5)
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FIGURE 7. Measured beam deformation of the SDSA illuminated with the
X-band feed horn at 8.45 GHz. The red line is the linear fit of measured
data.

TSp = ηM2 ηM3 ηM5 (1− ηM1)Tgnd
+ ηM3ηM5 (1− ηM2)Tsky
+ ηM5 (1− ηM3)Tgnd + (1−ηM5)Tgnd (6)

where in
- TCMB is the contribution from the cosmic background
radiation (CMB), equal to 2.73 K.

- Tatm is the effective temperature of the atmosphere and
τ is the zenithal sky opacity, both measured at 8.45 GHz
using the taumeter available at the SRT site [21]: during
our observations τ = 0.0077 at elevation φ = 66◦ and
Tatm = 265 K. The contribution of the first term of (5)
is 2.61 K.

- TSp is the spillover temperature that includes the contri-
bution of mirrors M1, M2, M3, and M5, given by (6),
wherein ηMi is the spillover efficiency of the mirror
Mi computed using GRASP, and Tgnd = 290 K (ηM1,
ηM2, ηM3, and ηM5 are 0.998, 0.957, 0.996, and 0.953,
respectively). Then the second term of (4) is estimated
at TSp = 15.3 K.

- Trx is the noise temperature generated by the active
and passive microwave components of the receiver (see
Fig. 4). The noise temperature Trx added by this receiver
has been measured at the NASA-JPL by using the
Keysight PXA Spectrum Analyzer in noise figure anal-
ysis mode (see Fig. 8). The measured Trx is about 13 K
in the receiver frequency range.

In conclusion, the overall system noise temperature can
be estimated at about 33.6 K, and the ratio antenna gain-to-
system noise temperature at 57.1 dB/K.

The above estimates have been assessed by measurements
of ratioG/Tsys at different elevation angles of the SDSA using
the definition provided in [22] and, as a further validation,
by separate measurements of the system temperature Tsys
(see [23]).

Let Pn be the noise power at the backend total power
(see Fig. 4) corresponding to the system noise temperature,
i.e., in our case, the power from the cold sky in a 28 MHz
bandwidth centered at 8.45 GHz. Let Pst be the additional

FIGURE 8. Measured noise temperature Trx of the X-band receiver.

noise power when the antenna is pointed towards a known
radio source. Then, by measuring the following ratio

R =
Pn + Pst

Pn
(7)

the value ofG/Tsys can be determined using the formula [22]:

G
Tsys
=

8πk(R− 1)
λ28(f )

(8)

wherein k (m2 kg s−2 K−1) is the Boltzmann’s constant,
λ (m) is the wavelength, and8 (Wm−2 Hz−1) is the radiation
flux-density of the selected known radio source as a function
of the frequency f (Hz).

The ratio G/Tsys has been computed by selecting the cal-
ibrator radio source 3C147, whose flux value is stable at
long and short timescales and it is well known and tabu-
lated in the literature. Specifically, the flux value is eval-
uated to be 4.68±0.05 Jy at 8.45 GHz (1 Jy corresponds
to 10−26 Wm−2 Hz−1) [24]. We have tracked the calibrator
source from an elevation angle of 80◦ to the minimum ele-
vation available for the SRT (about 6◦), measuring both the
power from the cold sky Pn and the additional power Pst from
the calibrator. This allowed us to compute R using (7), and
then the G/Tsys using (8).

On the other hand, an independent measurement of the
system temperature Tsys has been provided relying on a cali-
brated noise source (or noise diode) that produces a known
power per unit bandwidth. The noise diode has a known
equivalent temperature, which is called calibration temper-
ature Tcal , and the Tsys can be determined by the following
expression [23]:

Tsys =
Pn

Pcal − Pn
Tcal (9)

wherein the Tcal has been computed using the Y-Factor
method [25] and Pcal is the noise power measured at the
receiver output when the antenna is pointed towards the cold
sky with the noise source switched on.

The measured Tsys is reported in Fig. 9, showing a good
agreement with the estimate resulting from (4), i.e. 36.4 K at
66◦ elevation against 33.6 K.
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FIGURE 9. Measured Tsys of the SDSA at 8.45 GHz.

FIGURE 10. Measured G/Tsys and gain of the SDSA at 8.45 GHz.

In Fig. 10 we show the G/Tsys ratio, measured according
to (7) and (8), for different elevation angles of the SRT.
The measured value at the 66◦ elevation angle is 56.5 dB,
0.6 dB lower than the simulated estimate, mainly due to Tsys
value underestimation of about 2.8 K (which contributes to
about 0.35 dB).

Combining the results obtained by (8) and (9) we can
derive an indirect measurement of the antenna Gain, which
is also reported in Fig. 10. The measured gain is 72.1 dBi
at 66◦ elevation angle, in good agreement with the estimates
reported in Section III.

An important parameter for the characterization of the
system performance is provided by the system equivalent
flux density (SEFD). It represents the flux density, measured
in W/(m2 Hz), that a point source must have to produce an
antenna temperature equal to the system temperature, and it
is defined as [23]:

SEFD =
2k
Aeff

Tsys (10)

wherein Aeff is the antenna effective area.
Using the definition (10), we can compute the sensitivity of

the system1S, i.e. the minimum flux density that the system

FIGURE 11. FFT spectrum of data received from the JUNO spacecraft.

TABLE 5. Estimated signal-to-noise ratio budget on JUNO.

can detect:

1S =
SEFD
√
BT

(11)

where B is the system frequency bandwidth and T is the
integration time [26].

If we consider the measurement setup for the observation
of the calibrator radio source 3C84 at 8.45 GHz, employed
to compute the antenna beam pattern (see Fig. 6), with a
bandwidth of 28 MHz and an integration time of 40 ms,
we obtain 1S = 0.0564 Jy. Despite the radio source shows a
variable flux density at long (months) timescales, we can infer
a possible value in the range 26± 6 Jy [27], [28]. Considering
this value, the signal-to-noise ratio is 26.5 dB ± 1 dB, which
is consistent with the measurement shown in Fig. 6.

V. TRACKING SESSION OF THE JUNO PROBE
Using the IFMS backend, on March 1st, 2021, at 11:35 UTC,
we have received data from the Juno spacecraft with an
antenna elevation of 30 degrees. The FFT spectrum shown
in Fig. 11 is obtained by processing one second of these data.
The open loop configuration was set in single channel mode
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with a sampling frequency of 15625 Samples/s and 16 bits of
quantization for both I and Q samples.

In Table 5, the downlink budget is reported and the esti-
mated signal-to-noise ratio (about 41 dB) is consistent with
the FFT spectrum reported in Fig. 11.

TABLE 6. Performance comparison of antennas for X-band deep space
communication.

VI. CONCLUSION AND FUTURE PERSPECTIVES
The successful deployment of the SDSAhas enabled the radio
telescope to operate in the framework of the international
deep space network. In this work we have presented the
architecture and the performance of the X-band receiving
system of the SDSA. Simulations, estimates, and measure-
ments show that the SDSA can play a competitive role in the
panorama of the X-band downlink systems for DSC, as appar-
ent from Table 6 where we report a performance comparison
of antennas for X-band DSC available in the world [29].
However, it should be noted that a direct comparison between
the G/Tsys values in Table 6 is not fully consistent since
they have been measured in different operating conditions,
as discussed in [29].

The downlink capability of the SDSA provides amaximum
value of the G/Tsys ratio equal to 56.5 dBi, which is achieved
with the best alignment of the SRT BWG optics allowed by
the current SRT optical configuration. Optimization of the
SRT optics will be reached in the next few months after a
fine calibration of both the BWG mirrors and the M2 look-
up table by dedicated metrological measurements, aiming to
reduce the SLL and increase the antenna gain.

TABLE 7. Possible downlink/uplink frequency plan of the SDSA program.

At present, the capabilities of the SDSA are devoted
to downlink communication. However, in the near future,
ASI will evaluate the development of a transmitting sys-
tem to enable uplink capabilities for deep space, near-earth,
and lunar communication. Possibly, the BWG foci of the
SRT devoted to space applications will be used to acti-
vate this functionality. In this context, the main future goal
is to implement concurrent uplink and downlink transmis-
sion in X and Ka bands endowing the SDSA with a triple
link X(uplink)/X(downlink), X(uplink)/Ka(downlink), and
Ka(uplink)/Ka(downlink), according to the requirements of
challenging radio science experiments. Simultaneous opera-
tion in the X andK band is also planned, mainly for near-earth
and lunar communications. In Table 7 the possible operating
frequency band for the above applications are reported.
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