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ABSTRACT The detection of biosignals by using a comfortable material is important to improve human
health. This paper presents a complete wearable system with smart clothing for the long-term monitoring
of lead-I ECG and respiratory signals. The proposed system is divided into three parts, including biosignal-
monitoring clothing, a biosignal acquisition device, and a software platform. The smart clothing integrates
fabric-based ECG dry electrodes, conductive fiber traces, and a high-sensitivity capacitive respiration
transducer to sense the biosignals. The challenge including the integration of ECG electrodes and the
respiration transducer in the clothing system to provide the high-quality ECG and respiration signals for
clinical use has been overcome in the proposed biosignal-monitoring clothing. The sensed signals on the
smart clothing are collected in the biosignal-acquisition device through fabric-based traces and a specially
designed clothing structure. Furthermore, the biosignals are processed using the biosignal-acquisition device
and sent to the remote smart device through the Bluetooth module. The device according to the requirement
of the front-end clothing system and the actual measurement accuracy is implemented and contributed
onto the reduction in the effect of motion artifact. The software platform on the smart device provides
real-time biosignal monitoring and health-information analysis. A highly efficient ECG QRS complex
detection algorithm and respiratory-rate detection algorithm are also proposed. The ECG QRS complex
detection algorithm is verified using the MIT/BIH Arrhythmia Database to demonstrate the achievement
of high performance. The overall measured sensitivity, positive prediction, and error rate of the proposed
algorithm are 99.86%, 99.93%, and 0.19%, respectively. The measured ECG signal of the clothing system
is compared with the commercial silver/silver-chloride electrode by using the BIOPAC MP36 acquisition
system. The result confirms the high quality of the signal, so the measured ECG signal can be used for
medical applications. The function of the respiration transducer is verified by the BIOPAC SS11LA airflow
transducer, and the overall accuracy of 19 test subjects is 98.74%. Using the proposed system, long-term
health care in daily life can be achieved.

INDEX TERMS Biosignal acquisition, smart clothing, respiratory signal, electrocardiogram, QRS complex
detection, wearable device.

I. INTRODUCTION
Population aging is a worldwide trend. World Health Organi-
zation has reported that world’s population aged 60 years is
up to 900 million in 2015, which is expected to reach 2 billion
by 2050 [1]. The changing age profile of the population
has increased the importance of health care, and biosignal
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monitoring technology plays an important role in the
development of the health care system. Biosignal monitoring
technology is used to detect body signals. By analyzing the
collected signals, relevant health information of the object can
be obtained, and appropriate disposition ormedical action can
be taken.

Using a wearable system is a convenient way to achieve
such a technology. The combination of wearable devices
and biosignal monitoring technology may provide long-term,
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FIGURE 1. Block diagram of the proposed smart clothing system.

location-independent measurement of biosignals. Among all
applications of wearable systems, smart clothing is the most
important. Smart clothing is a biosignal monitoring system
based on clothing, and it has some advantages among the
other wearable systems. First, unlike most wearable devices,
such as watch devices and belt, clothing is necessary for
everyone in daily life; therefore, related wearable devices
can be easily accepted by users. In addition, smart clothing
can provide a large variety of biosignal monitoring compared
with other wearable systems because it has a large area
contacting to the body surface of the user. For instance, vital
signs such as electrocardiogram (ECG) signal and respiration
rate can be measured by wearing smart clothing on the chest
and abdomen, respectively. ECG signal is the tiny electrical
activity caused by the diastole and systole of cardiac muscle.
The acquisition of ECG signal can provide health information
such as heart rate. Moreover, using the morphology of ECG
signal is a common way to diagnose heart diseases such
as arrhythmia [2]. The respiratory rate is the frequency of
respiration behavior, which consists of an inhalation cycle
and exhalation cycle. The normal respiration rate for an adult
at rest is 12 to 20 breaths per minute, and sickness, fever, and
other serious clinical diseases can be detected by monitoring
the abnormal respiratory rate [3], [4].

The ECG signal and respiratory rate can be observed in
several ways. In measuring the ECG signal, electrodes are
placed on patient’s limbs and on the surface of the chest [5],
[6] to collect the tiny electrical signals generated by heart con-
traction and based on different angles. Silver/silver-chloride
(Ag/AgCl) electrode (wet electrode) is commonly used in
ECG signal detection. The wet gel of the electrode is highly
compatible with the human surface; therefore, it provides
high-quality signal in the biosignal acquisition system. How-
ever, the characteristics of the electrolytic conductive gel may
cause allergy or discomfort under prolonged contact. In addi-
tion, the gelatinous material will dry out under long-term
biosignal measurement, which limits the use of long-term
health care. Thus, a dry electrode is an alternative approach.
Dry electrodes, such as non-contact [7], [8] or conductive
[9] fabric-based electrodes, can provide long-term biosignal

FIGURE 2. Appearance of the biosignal monitoring clothing. (a) External
appearance. (b) Internal appearance.

measurement. Rachim et al. [8] integrated a fabric-based dry
electrode into an armband to monitor the ECG signal and
obtained the information of heart rate. Myers et al. [9] pre-
sented a silver nanowire-based dry electrode and combined
the electrodes into a hand ring to measure electromyogra-
phy and ECG signals. Baek et al. [10] tested a polymeric
dry electrode for long-time wear and demonstrated the good
fidelity of the dry electrode in a 7-day experiment. All these
previous works [7]–[10] have demonstrated the validity of
dry electrodes for ECG signal monitoring. For respiratory
rate detection, the method can be primarily categorized into
two groups. The first group of methods are observing the
airflow during breathing. This group of methods have high
accuracy for monitoring the respiratory rate. However, they
are inconvenient for long-term monitoring and difficult to be
integrated into thewearable devices. The other group ofmeth-
ods are estimating the respiration rate based on the movement
of the body surface. For example, Kundu et al. proposed a
capacitive detectionmethod to detect the respiratory rate [11].
Two electrodes are fixed on the inner anterior and posterior
sides of the clothing, and the human body is embedded in the
middle serving as a dielectric to form a capacitance structure
transducer. The respiration rate can be conveniently obtained
by this method, and the structure is suitable to achieve smart
clothing.

Numerous clothing systems with biosignal monitoring
have been reported in recent years. Boehm et al. [12], [13]
developed a 12-lead ECG T-shirt. The conductive electrodes
are sewn in specific positions to acquire multichannel ECG
signals. Rienzo et al. [14] showed the single-lead ECG sig-
nal, seismocardiogram (SCG), and other vital signs with a
clothing system to assess cardiac mechanical performance
during sleep in microgravity. Koyama et al. [15] designed
a clothing system with a novel smart textile incorporating
stable single-mode transmission heterocore optical-fiber sen-
sor. The clothing system detects the vibration generated by
heartbeat and respiration behavior. Bu et al. [16] proposed a
single-lead ECGmonitoring garment and inferred respiratory
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TABLE 1. Literature review with recent biosignal-monitoring clothing systems.

rate from the measured ECG signal. The clothing system
provides some validation such as washing durability test of
the dry electrodes for practical use in daily life. The features,
advantages, and disadvantages of this clothing system are
listed in Table 1.

This study proposes a complete smart clothing system
containing a biosignal-monitoring clothing, a biosignal-
acquisition device, and a software platform to provide long-
term wireless monitoring and analysis of lead-I ECG and
respiratory signals. Compared with [12], the proposed ECG
electrodes, respiration transducer, and conductive traces are
all fabric based, and the high integration is beneficial for
wearable contact with comfortable condition. The lead-I ECG
position provides more information for rhythm reading than
that of the nonstandard position, such as the monitoring
systems proposed in [8], [14], and [16]. The high-quality
ECG signals measured in our proposed clothing system
have been approved compared with the measured system by
usingAg/AgCl electrodes.Moreover, the proposed capacitive
structure of the respiration transducer allows the use of the
smaller area than a previous work [11] and can be easily
integrated into the clothing along with the conductive textile
traces and ECG-sensing electrodes. The high sensitivity of
the transducer can provide a more accurate respiratory rate
than that in [16]. A highly efficient real-time ECG QRS
complex detection method and a respiratory-rate detection
algorithm are also achieved on the software platform of a
remote smart device to calculate the heart rate and respira-
tion rate, respectively. Therefore, health information such as
energy expenditure (EE) and heart-rate variability (HRV) can
be acquired.

II. MATERIALS AND METHODS
Figure 1 shows the proposed biological signal monitoring
clothing system for the monitoring of lead-I ECG and res-
piratory signals. The system primarily contains three com-
ponents, including biosignal monitoring clothing, a biosignal
acquisition device, and a software platform on the remote
smart device. The biosignal monitoring clothing acquires the
ECG and respiratory signals using the ECG electrodes and
respiration transducer, respectively. The biosignal acquisition

FIGURE 3. Fabric structure of the respiration transducer.

device processes the sensed signal and converts the sig-
nal into digital data, which are wirelessly transmitted to a
remote smart device by a Bluetooth 5.2 module. The soft-
ware platform on the remote smart device then displays the
real-time biosignal data waveform after receiving data and
further analyzes the data based on the proposed algorithms.
A highly efficient QRS peak detection algorithm is proposed
and applied to ECG data analysis to acquire the desired health
information. Moreover, a proposed peak detection algorithm
is used in respiration data processing to calculate the respira-
tion rate.

A. BIOSIGNAL MONITORING CLOTHING
An overview of the biosignal monitoring clothing is shown
in Fig. 2. The ECG electrodes on the clothing are used
to detect the small voltage change on the body surface
caused by cardiac muscle depolarization. The design of
the ECG electrodes is a protruding structure with the size
of 6.2 cm × 5.6 cm × 0.5 cm, which is filled with a soft
elastomeric material and covered with a conductive fabric.
Therefore, the ECG electrodes can touch the body surface
tightly during the activity of the user to avoid motion arti-
fact (MA) on the ECG signal. The position of the ECG
electrodes is designed on the basis of the lead-I placement of
the Mason–Likar modification of standard 12 lead [17]. The
Mason–Likar monitoring position is widely used in modified
electrode placement [18]. The placement provides good sta-
bility of the ECG recording [19]. Furthermore, the tightening
strap is stitched on the external front side of the clothing,
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FIGURE 4. Package of the biosignal acquisition device. (a) Front view of
the device. (b) Back view of the device. (c) Interior view of the device and
PCB of the biosignal acquisition device.

pressing the ECG electrodes on the body surface to improve
the ECG signal quality.

The respiration transducer is placed on the inner anterior
side of the clothing and implemented using a multi-layered
architecture (Fig. 3). The transducer primarily contains two
conductive fabric layers and an intermediate dielectric mate-
rial layer to form a capacitive structure, and the respiration
behavior can be detected on the basis of the change in the
capacitance value. The proposed work adopts a 0.05 mm
thermoplastic polyurethane (TPU) as the dielectric material,
which provides several advantages. First, the high elasticity
of TPU enables the transducer to provide a more significant
rate of change in capacitance to the pressure applied by the
body surface; therefore, the difficulty of detecting the respira-
tion behavior is reduced. Second, TPU has sufficient relative
permittivity, and it can be implemented in a thin dielec-
tric layer. Hence, the transducer can provide a large initial
capacitance value with a small area, and it can be integrated
with ECG electrodes and associated traces in the limited
available area of the smart clothing system. Furthermore, the
thin dielectric layer reduces the thickness of the transducer,
thereby increasing the wearing comfort of the clothing. The
size of the respiration transducer in its current design is
13.5 cm × 4.2 cm × 0.05 cm, and the capacitance value
is approximately several nanofarads (nF). In the inhalation
cycle of the respiration behavior, the lung expands and causes
the peritoneal cavity to press the respiration transducer. The
thickness of the intermediate dielectric material layer will be
decreased to increase the capacitance value of the transducer.

FIGURE 5. Schematic of two channels for measuring ECG and respiratory
signals.

By contrast, in the exhalation cycle, the lung contracts, and
the pressure to the transducer will decrease. Thus, the thick-
ness of the intermediate dielectric material layer is increased,
and the capacitance value of the transducer is decreased.With
the observation of the capacitance value, the complete cycles
of respiration, including the inhalation and exhalation cycles,
can be detected.

Based on the above-mentioned signal acquisition methods
from ECG electrodes and respiration transducer, the signals
are delivered out from the ECG electrodes and respiration
transducer via conductive traces, and the nickel-plated brass
buttons on the end of the traces is used to link signal trans-
mission between the internal and external side of the clothing.
In addition, these buttons are used together with biosignal
acquisition device in the pocket to gather the delivered signals
and fasten the device on the external side of the clothing.

B. BIOSIGNAL ACQUISITION DEVICE
The biosignal acquisition device shown in Fig. 4 primar-
ily integrates an ECG signal acquisition circuit, a respira-
tory signal acquisition circuit, and a microcontroller using a
Bluetooth 5.2 module (nRF52840). A Bluetooth 5.2 module
is acceptable for most mobile devices, providing sufficient
transmission speed and consuming less power than WI-FI.
Moreover, the security of Bluetooth is high. Hence, a Blue-
tooth 5.2 module is selected in our system to achieve wireless
transmission.

In this work, the ECG signal is measured using two dry
electrodes, which serve as signal electrodes. The reference
electrode and drive-right-leg electrode are not used to maxi-
mize the wearing comfort. Moreover, the effect of half-cell
potential of the electrode–tissue interface should be noted.
With these considerations, an AC-coupled front-end com-
posed of a high-pass filter and low-pass filter is adopted in
the ECG channel, as shown in the upper part of Fig. 5. The
ECG signal is initially filtered with a high-pass filter, and
an instrumentation amplifier (AD8237) is utilized to provide
gain and convert the differential signal to single-ended signal.
Moreover, a second-order low-pass filter is designed using an
amplifier (AD8607) to attenuate the high-frequency noise and
serve as a post-amplifier.
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FIGURE 6. Block diagram of the processing steps using the QRS complex
detection algorithm.

FIGURE 7. Frequency response of the QRS complex enhancement filter.

The frequency band of the ECG signal in clinical prac-
tice is between 0.05 and 100 Hz [20]. Therefore, the corner
frequency of the high-pass filter and low-pass filter in this
study is designed to be 0.03 and 155 Hz, respectively. In addi-
tion, considering that the amplitude of ECG is in the range
of approximately 0.5–4 mV [21], [22], the measured gain in
the ECG channel is set to approximately 55 dB to overcome
MA and match with the requirement of ADC [22] behind the
amplifier. In the proposed system with power of 3.3 V, the
voltage range is kept at the above-mentioned gain because the
ECG signals measured using dry electrodes can be affected
by MA. The output of the ECG channel is digitized by a
12-bit ADC built in the nRF52840 with sampling frequency
of 400 Hz, and the processed data are wirelessly transmitted
to a remote smart device for further analysis.

An oscillator (MIC1557) and the feedback resistance are
adopted to convert the capacitance variation into frequency
change and record the status of the respiration transducer,
as shown in the lower part of Fig. 5. When the user first
puts on the proposed clothing, the initial capacitance of the
transducer is recorded as Cb. The pressure applied to the
transducer may vary depending on user’s body type; there-
fore, Cb is not a fixed value. The movement of the body
surface during respiration may cause the capacitance of the
transducer to vary from Cb to Cb +1Cb, and the oscillation
frequency will change from f to f + 1f . The relationship

FIGURE 8. Processing results of ECG QRS complex feature generation and
peak detection results from MIT-BIH database record 109. (a) ECG raw
data, x[n]. (b) Filtered ECG output, y0[n]. (c) Coefficient data, coef[n], for
energy elimination. (d) Energy elimination data, y1[n] = y0[n] x coef[n].
(e) Energy enhancement data, y2[n]. (f) Absolute value, y3[n]. (g) Blue
line: Integrated Data y[n]. Black dashed line: Golden location of the QRS
complex peak. Red cross point: Detection peak of the ECG QRS complex.

between 1f and 1Cb is derived in (1).

1f =
−1Cb

k1Rb(Cb + Cp)(Cb +1Cb + Cp)
. (1)

In this equation, k1 is a constant regarding the performance of
the oscillator. Rb represents the feedback resistance, and Cp
denotes the parasitic capacitance of the transducer. Consider-
ing that the variation 1Cb and Cp are smaller than Cb in the
proposed transducer, the corresponding change in frequency
1f can be simplified as follows (2):

1f =
−1Cb
k1RbC2

b

. (2)

Given the high elasticity of TPU, the variation 1Cb is sen-
sitive to the movement of the body surface. Hence, the res-
piration behavior can be simply observed by 1f . A counter
is programed in the nRF52840 to record the oscillation fre-
quency. Every rising edge of the oscillator output triggers
the counter to increase based on the interruption command.
After counting for a specific period of time, the count is
wirelessly transmitted to the remote smart device, and the
counter is reset for the next cycle. Therefore, the value
of the counter is proportional to the oscillation frequency.
In addition, the longer the calculation period for the counter,
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the higher the resolution of the oscillation frequency varia-
tion. However, the increased Bluetooth data transfer rate may
increase the power consumption and difficulty of Bluetooth
transmission. Consequently, the measured sampling period in
the respiration channel is selected to be 12.5 ms, which is five
times higher than that of the ECG channel. In this study, the
resolution of the oscillation frequency variation is 80 Hz, and
the size of the counter is 12 bits.

C. SOFTWARE PLATFORM
The software platform on the remote smart device provides
biosignal analysis, including ECG QRS complex detection,
respiratory rate detection, HRV calculation, and EE esti-
mation after receiving the data. The procedure of the QRS
complex detection algorithm is divided into the preprocessing
stage and R peak detection stage (Fig. 6). The preprocessing
stage is primarily divided into five steps, as shown on the left
side of Fig. 6. The ECG signal often suffers from MA and
high-frequency noise [23], and the main frequency compo-
nent of the QRS complex is 5 Hz to 22 Hz [24]. Thus, the
raw ECG signal x[n] is first filtered by a third-order elliptic
band-pass filter with a frequency range of 5–50 Hz to remove
the MA and high-frequency noise, and the filtered ECG
signal is denoted as y0[n]. Furthermore, the in-band noise is
removed using energy elimination [25]. The coefficient data
are created using a long sliding window and a short sliding
window, as shown in equation (3).

Coef (n) =

∑k=n+w_s
k=n−w_s y0 [k]

2∑k=n+w_l
k=n−w_l y0 [k]

2
, (3)

where y0 [k] represents the filtered ECG data, and w_s and
w_l denote the half of the short sliding window size and long
sliding window size, respectively. The short sliding window
is used to capture the energy of the ECG QRS complex;
therefore, the width of the short sliding window is set to be
slightly larger than the width of the common QRS complex
width, which is 150 ms [26]. In addition, the duration of the
long sliding window is set to 1 s to calculate the energy of the
desired region. In this work, the filtered ECG data is selected
rather than the ECG raw data for calculation to prevent the
large variation of the magnitude of the coefficient data caused
by the ECG baseline drift. The denoised ECG signal y1[n] is
obtained by multiplying the coefficient data by the filtered
ECG signal y0[n]. Next, the wavelet function is utilized
to emphasize the location of the ECG QRS complex. The
decomposition high-pass filter of Daubechies wavelets [27] is
selected because of its similarity to the shape of the ECGQRS
complex. Eight zeros are interpolated into the coefficients
of the filter to form a QRS complex enhancement filter.
Adding zeros can emphasize the location of the QRS complex
without reinforcing the location of the noise. The wavelet
order is decided according to the signal-to-noise ratio (SNR)
comparison in Table 2. An impulse is passed through the QRS
complex enhancement filter designed with a different wavelet
to determine the different SNR values of the filtered signal.

TABLE 2. Performance comparison between different mother wavelet for
the QRS complex enhancement filter.

The frequency band of the QRS wave between 5 Hz to 22 Hz
[24] is defined as the signal band. This SNR value helps us
observe the enhancement ability of the QRS complex and
the degree of decay for the remaining frequency component
that may cause false-positive detection. Most Daubechies
wavelets have a good SNR value and is suitable to design the
enhancement filter. The difference in the SNR value between
Daubechies 3, Daubechies 4, Daubechies 5, and Daubechies
6 is tiny because they are similar in morphology. However,
with increased order of wavelets, the computational load is
also raised. Therefore, Daubechies 4 is appropriately used
to design the QRS enhanced filter in this work, and the
frequency response of the QRS complex enhancement filter is
shown in Fig. 7. The signal is amplified in the 12 Hz to 28 Hz
band, which overlaps with the main frequency component
of the ECG QRS complex. Based on the convolution of
the denoised ECG signal y1[n] with the coefficient of the
enhancement filter, the location of the QRS complex can be
emphasized, and the output signal is denoted as y2[n]. The
energy of y2[n] is simply evaluated by taking the absolute
value (4). Then, an integration moving window, which is
150 ms long, is applied point by point to y3[n] to capture
the energy of the QRS complex and generate the data y[n]
for the next R peak detection stage. The calculation of y[n]
is shown in equation (5), where w indicates the half length of
the integration moving window.

y3 [n] = abs(y2 [n]) (4)

y [n] =
∑k=n+w

k=n−w
y3 [k]. (5)

The right side of Fig. 6 shows the flow of the peak detection
stage. Two amplitude thresholds, Th_H and Th_L, are used to
locate the R peak position. The R peak candidates, R′ [n], are
first determined from the peaks of the integration waveform
y[n] with a low amplitude threshold Th_L and the minimum
distance limitation between each R peak candidate. Th_L
is set to 8.5, and the minimum distance limitation is set
to 250 ms on the basis of the maximum heart rate for a
normal person [28]. Once the R peak candidates are decided,
the average of the eight continuous intervals of the R peak
candidate is calculated using equations (6) and (7).

RR′ [n] = R′ [n]− R′[n− 1]. (6)

RR′mean[n] =
RR′ [n− 7]+ RR′ [n− 6]+ · · ·RR′[n]

8
. (7)
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FIGURE 9. Schematic waveform diagram of the respiratory signal
generated from the frequency variation of the oscillator.

FIGURE 10. Processing steps of the respiratory rate detection algorithm.

If the latest interval of the continuous interval RR′[n] is
less than 1.1 times of RR′mean[n], then the high amplitude
threshold Th_H is applied to the latest R peak candidate
R′ [n]. If the amplitude of R′ [n] is smaller than Th_H, which
is set to 1, then the R peak candidate R′ [n] is removed. Based
on the proposed method, the location of the remaining R
peak candidates can be regarded as the location of the R
peaks. Fig. 8 uses the ECG segment of the MIT-BIH database
[29] record 109 to illustrate the step-by-step output results
of the preprocessing stage and the detection results of the
proposed QRS complex detection algorithm. Using the time
interval among the R peaks, the heart rate can be calculated.
Moreover, HRV can be acquired using the variation in the
continuous time interval of more than 5 min [30]. Further-
more, EE during submaximal exercise can be predicted by
the calculated heart rate using the additional information,
including age, gender, and weight [31].

The schematic waveform diagram of the respiratory signal
generated from the frequency variation of the oscillator is
illustrated in Fig. 9. The rising stage of the waveform repre-
sents the exhalation behavior, whereas the falling stage indi-
cates the inhalation behavior. Finding the positive peaks of the
waveform,which indicates the time point when the exhalation

phase changes to the inhalation phase, is one method of
detecting the respiratory rate. On the basis of this method,
the respiratory rate detection algorithm is proposed (Fig. 10).
The raw respiration data are first processed by a 300-order
window-based low-pass finite impulse response (FIR) filter
with a cutoff frequency of 10 Hz to eliminate the high-
frequency noise. The cutoff frequency of the FIR filter is
selected on the basis of the normal respiration rate of less than
30 times per minute. Moreover, a 300-point moving average
is applied to the signal to smooth the waveform, and the
waveform output is denoted as r[n]. After the pre-processing
steps, r[n] is used in a peak detection method to find the
positive peak. However, the baseline of r[n] may be affected
by the body type of the user and the size of the smart clothing.
Moreover, the tight contact surface between the respiration
transducer and body surface leads to a high baseline value of
the respiratory signal. Therefore, the prominence of the peak
is used instead of the value to distinguish noise peak from the
desired positive peak. The value of the prominence threshold
is decided on the basis of individual data. Themaximumvalue
and minimum value of the first 10 s from the starting point of
the data will be recorded, and the prominence threshold is
calculated by equation (8).

MinPeakProminence =
Data_Max − Data_Min

8
(8)

In addition, theminimum distance limitation for each positive
peak is added for peak detection. Consequently, the peak
of r[n], which falls more than the value of the prominence
threshold and more than 0.4 s from the previous positive
peak, will be considered as the desired positive peak. The
respiratory rate can be calculated using the interval between
each positive peak position.

III. EXPERIMENT RESULTS
A. VALIDATION OF DRY ELECTRODES AND CONDUCTIVE
FIBER TRACE PERFORMANCE FOR ECG
The effect of the impedance of the dry electrodes and con-
ductive fiber traces on the ECG signal quality was first
investigated. In this experiment, a CONTEC MS400 multi-
parameter simulator was used as the ideal ECG source
to eliminate the surface effect on the human body [32].
The BIOPAC MP36 four-channel data acquisition sys-
tem [33] provided high-quality ECG signal monitoring, and
the BIOPAC SS2LB lead set [34] was used as the connection
wire. The direct-contact ECG waveform was measured by
connecting the output of theMS400 simulator to the BIOPAC
MP36 acquisition system. The measured waveform is shown
in the orange line in Fig. 11(a). In addition, the dry electrodes
were connected to the output of the MS400 simulator to
receive the ECG signal and measure the ECG signal affected
by the impedance of the dry electrodes and conductive fiber
traces. Then, the nickel-plated brass buttons on the smart
clothing were connected to the BIOPAC MP36 acquisition
system through BIOPAC SS2LB wire. Therefore, the ECG
signal transmission path contained the dry electrodes and
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FIGURE 11. Performance verification of dry electrodes and conductive
fiber traces. (a) Direct contact to ideal ECG signal source. (b) Actual
measurement from the human body.

FIGURE 12. Lead-I electrode placement suggested by Holter monitor [6]
(white circle and black circle) and the electrode placement in the
proposed system (blue circle and yellow circle).

total conductive fiber traces of ECG signal on the smart cloth-
ing. The measured waveform is illustrated in blue asterisk
line in Fig. 11(a). The experiment showed that two waves
were similar, and the tiny non-ideal effects caused by the
impedance of the dry electrodes and conductive fiber traces
were the same as the SS2LB lead set. Moreover, the result
showed high efficiency of ECG transmission architecture on
the smart clothing.

The compatibility of the electrode material with the bio-
logical surface may affect the quality of the ECG signal.
Hence, the effect of the ECG signal quality caused by the
skin-electrode impedance of the dry electrodes was also
studied. The test subject wore the smart clothing to monitor
the lead-I ECG signal using the first sensing channel of the

FIGURE 13. Shape comparison between the clinical standard lead-I ECG
and the signal measured by the proposed system.

BIOPAC MP36 acquisition system. The measured signal is
shown in blue asterisk line in Fig. 11(b). The two locations,
where the dry electrodes on the smart clothing contacted with
the skin, were recorded as A and B, which were denoted
as 2− and 2+ in Fig. 12, respectively. In addition, two
commercial silver/silver-chloride electrodes (wet electrodes)
were placed as close to A and B as possible to measure
the same ECG signal as the second sensing channel of the
BIOPAC MP36 acquisition system. The measured signal is
shown in the orange line in Fig. 11(b). The result showed that
the ECG signal measured by the dry electrodes is similar to
that detected by the wet electrodes, and the non-ideal effect
caused by the dry electrodes in the proposed system can be
neglected.

B. COMPARISON OF ECG SIGNAL MEASURED BY THE
PROPOSED SYSTEM AND STANDARD LEAD-I ECG
MEASURED SYSTEM
Considering the signal quality and clothing production, the
position of electrodes in the proposed system differs from
the standard electrode position used by a Holter monitor [6],
and the difference in the placement of electrodes will affect
the shape of the ECG signal. Moreover, the difference in
characteristics between dry and wet electrodes affects the
quality of the ECG signal. Therefore, in this section, the
ECG signal measured in the smart clothing is compared to
the standard lead-I ECG measured system in clinical trial.
Two commercial wet electrodes were placed on the left-mid-
clavicular and right-mid-clavicular of the test subject to mea-
sure the standard lead-I ECG signal at the position suggested
by the Holter monitor, and the measured ECG signal was
collected by the first sensing channel of the BIOPAC MP36
acquisition system. In addition, the test subject wore the
smart clothing to monitor the ECG signal using the second
sensing channel of the BIOPAC MP36 acquisition system.
The detailed placement of the electrodes in this experiment
is shown in Fig. 12, and the measured result is shown in
Fig. 13. The polarity of the P wave, QRS complex, and T
wave of the ECG signal measured by the proposed system are
similar to those of the ECG signal measured at standard lead-I
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FIGURE 14. Comparison of measured waveform of respiratory signals using the BIOPAC system and respiration transducer of smart clothing.

FIGURE 15. ECG signal measurement of proposed clothing during
different activities.

position with wet electrodes, and the correlation in time inter-
val among them remains unchanged. Consequently, common
arrhythmias such as premature ventricular contraction can be
further identified behind the proposed system.

C. RESPIRATION TRANSDUCER FUNCTION VALIDATION
The function of the respiration transducer was validated by
the BIOPAC SS11LA airflow transducer [35]. The SS11LA
airflow transducer provided airflow and lung volume moni-
toring for human, which could directly observe the respira-
tion behavior. Nineteen test subjects, including 12 males and
seven females, were approached to test the performance. Each
test subject wore the smart clothing and held the SS11LA air-
flow transducer in themouth. Using the respiration transducer
integrated into the smart clothing and airflow transducer, the

FIGURE 16. Respiratory signal measurement of proposed clothing during
different activities.

movement of the body surface of the subjects and the respi-
ratory airflow caused by the respiration behavior were moni-
tored simultaneously. The breathing of subjects was restricted
by a nose clip to breathe through themouth and ensure airflow
in and out through the mouth, and the subjects stayed motion-
less during the whole experimental procedure. In addition, the
subjects were asked to perform specific breathing behavior
to align the timing of the two different monitoring systems,
including the BIOPAC system and the proposed biosignal
acquisition device. First, the subjects were asked to hold their
breath for a while. Then, the subjects began to breathe freely,
and the time point between stop breathing and free breathing
of each subject was marked as the benchmark of the common
start point of the breathing. After breathing for a specified
period, the subjects stopped breathing, and the time point
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between free breathing and stop breathing of each subject
was noted as the benchmark of the common end point of
the breathing. The whole experiment was fixed for 10 min.
The partial measurement waveforms of one of the subjects
are shown in Fig. 14. The measurement waveform on the top
was obtained by the proposed biosignal acquisition system,
and the waveform in the bottomwas achieved by the BIOPAC
system. The correlation between the two different monitoring
systems was evaluated by comparing the number of breaths
between the starting and ending points of the two waveforms
for each subject. The respiration time of the waveform of
the BIOPAC system was denoted as the compared golden
reference. The less respiration time of the proposed biosignal
acquisition system was regarded as the miss detection, and
the number of times missing was recorded as the number of
false-negative (FN) detection. The extra respiration time of
the proposed biosignal acquisition system was regarded as
the error detection, and the number of extra detections was
denoted as the false-positive detection (FP). According to
equation (9), the average accuracy of the proposed respiration
system was 98.74%.

Accuracy (%) =
TP

TP+ FP+ FN
× 100%. (9)

D. BIOSIGNAL MONITORING OF THE PROPOSED
CLOTHING FOR DIFFERENT ACTIVITIES
The signal quality of the biosignal monitoring clothing has
been tested in different activities. The ECG and respiratory
signal measurement results are shown in Figs. 15 and 16,
respectively. The same subject performed the activities of
standing, continuous back and forth rotation of the upper
body (turn round), continuous hand-ups and hand-downs
(raise hand) and walking, and the subject also wore the
proposed clothing to monitor the biosignals. The ECG sig-
nals (Fig. 15) measured in standing and continuous back
and forth rotation of the upper body showed good quality
with little baseline shift. The ECG signals measured in con-
tinuous hand-ups and hand-downs and walking suffer from
slight baseline drift. However, most of the P waves, QRS
complexes, and T waves of the ECG signal can be clearly
identified. For the respiration measurement (Fig. 16), the
respiration waveforms in all activities except for continuous
back and forth rotation of the upper body were clear. The
waveform in the activity of the rotation of the upper body
suffers from slight signal interference because of the friction
between the respiration transducer and the body surface dur-
ing the movement but without affecting the identification of
the respiration rate.

E. BENCHMARKING STUDY OF THE QRS COMPLEX
DETECTION ALGORITHM USING THE MIT-BIH
ARRHYTHMIA DATABASE
The performance of the algorithm was evaluated by the
MIT-BIH arrhythmia database [29]. The MIT-BIH arrhyth-
mia database contains 48 excerpts of ambulatory ECG, which
are sampled at 360 Hz. In addition, it contains part of

arrhythmias, which are also disturbed by noise during record.
Consequently, it is a benchmark database to test the strength
of our proposed algorithms. The total database, except for part
of the record 207, which is unannotated [39], was analyzed
using the proposed QRS complex detection algorithm. The
performances, including sensitivity (Se), positive prediction
(P+), and error rate (ERR), were calculated using the follow-
ing equations:

Se (%) =
TP

TP+ FN
× 100%, (10)

P+ (%) =
TP

TP+ FP
× 100%, (11)

ERR (%) =
FP+ FN

TP+ FP+ FN
× 100%. (12)

where TP indicates true-positive detection; FP indicates false-
positive detection, and FN indicates false-negative detection.
The analysis result of each record is illustrated in Table 3, and
the total Se, P+, and ERR are 99.86%, 99.93%, and 0.19%,
respectively. Performance comparison among the proposed
methods, the well-known Pan–Tompkins algorithm [36],
and other recent QRS complex detection algorithms [25],
[37]–[42] is presented in Table 4. The proposed algorithm
revealed similar or slightly better performance than most of
the state-of-the-art algorithms. In particular, it performedwell
in P+. The convolutional recurrent neural network (CRNN)
model proposed by Cai et al. [41] had the best performance.
However, the high computation of the proposed algorithm
hindered its implementation on mobile device. By contrast,
the proposedQRS complex detection algorithm had low com-
plexity, and it can be easily implemented onmobile device for
real-time analysis.

F. REAL-TIME MONITORING SOFTWARE INTERFACE
The software interface was implemented on mobile device
with an iOS platform, and the measured results, includ-
ing ECG and respiratory signals, are shown in Fig. 17(a).
The application was uploaded on a public platform
(named:YuCloth). The first channel presets the display of
lead-I ECG waveform, and the second channel is default to
show the filtered respiration passed by the low-pass filter with
cutoff frequency of 3 Hz. The display content of each channel
can be adjusted. The ECG and respiratory signals were
immediately analyzed by the previously proposed algorithms
to calculate the heart rate and respiration rate, respectively,
and display in the list at the bottom of the software inter-
face. Health information, such as EE and HRV, is shown
in Fig. 17(b).

IV. DISCUSSION
In this work, a complete smart clothing system, which pro-
vides the monitoring of lead-I ECG and respiratory signals,
is proposed. The ECG electrodes and respiration transducer
are integrated into the clothing tomonitor the target biosignal.
The conductive fabric-based ECG electrodes have a protrud-
ing structure with the size of 17.36 cm3. The respiration
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FIGURE 17. Real-time monitoring software interface on iOS device.
(a) Main display interface. (b) Health information interface.

transducer is primarily composed of two conductive fabric
layers and a highly elastic TPU with a 0.05 mm intermediate
dielectric material layer to form a capacitive structure under a
smaller sensing area. In this work, the issue of long-term use
of smart clothing is considered. For example, the hot-melt
adhesive layer improves the durability and stability of the
respiration transducer in daily use. However, it may reduce
sensitivity. According to the sample test, for the capacitance
value change when applying pressure to the transducer, the
change rate of the transducer with a hot-melt adhesive layer
is about 1/3 times that of the transducer without a hot-melt
adhesive layer. Although the change of capacitance is reduced
by the hot-melt adhesive layer, the result is still sufficient
for the respiratory rate detection. Thus, the hot-melt adhesive
layer is embedded in the structure of the proposed respiration
transducer in the smart clothing.

The effect of MA should also be overcome when
implementing the biosignal monitoring clothing. Loose ECG
electrode contact will cause the skin-electrode impedance
to drastically change during the object movement, and the

TABLE 3. Result of the proposed ECG QRS complex detection algorithm
using the MIT-BIH arrhythmia database.

variation may cause the baseline drift or saturation of the
ECG signal. Strengthening the tightness of clothing to pre-
vent electrode slippage can solve this problem. Nevertheless,
excessively tight clothing might cause the dielectric material
of the respiration transducer close to the compression limit,
which may reduce detection sensitivity. Moreover, it will
cause measurement discomfort for the user. Therefore, the
tightness of the clothing should be carefully designed to meet
the above-mentioned requirements.

The biosignal acquisition device with a supply voltage of
3.3 V primarily includes an ECG signal acquisition circuit,
respiratory signal acquisition circuit, and microcontroller
with a Bluetooth 5.2 module. The ECG signal acquisition
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TABLE 4. Performance comparison between recent QRS complex
detection systems and methods.

FIGURE 18. ECG signal measurement environment.

circuit has an AC-coupled front-end composed of a high-pass
filter and low-pass filter with a frequency range between
0.03 Hz and 155 Hz, and the gain is approximately 55 dB.
The measured output of the ECG channel is digitized by a
12-bit ADC built in the nRF52840 with a sampling frequency
of 400 Hz. An oscillator (MIC1557) is adopted to convert
the capacitance variation of the respiration transducer into
frequency change. The counter of the nRF52840 is used to
sample the output of theMIC1557 for 12.5ms. The resolution
of the frequency change is 80 Hz. The digitized biosignals are
transmitted to the remote smart device through a Bluetooth
5.2 module and analyzed using the proposed algorithms.

The software platform is implemented on mobile device
with an iOS platform to receive the data and provide real-time
biosignal display, heart rate, respiration rate, and health infor-
mation, such as EE and HRV. The heart rate and respiration
rate are calculated using the proposed algorithms. The pro-
posed QRS complex detection algorithm for heart rate acqui-
sition is verified by the MIT-BIH database, and the number
of total failed detection beats for the MIT-BIH arrhythmia
database is 209. The total sample points of the ECG database
are denoted as n points, and the sampling rate is 360 Hz. The
total computational load for n-point ECG signal is approxi-
mately 491n additions, 436n multiplications, n divisions, and
5n comparisons, and the time complexity is O(n). Part of
the coefficient data calculation in equation (3) accounts for
the majority of all operations. With regard to the space com-
plexity of the proposed real-time QRS detection algorithm,
the storage of processed ECG data and the filter coefficients
account for the most use of space. The coefficient number

of the IIR filter and proposed QRS complex enhancement
filter is quite low. The size of the storage data should be
at least 1 s larger than the size of the long sliding window.
Therefore, the size of the storage can be several seconds
long. The proposed QRS complex detection algorithm was
implemented on Matlab R2019, and the related software
program has been released in GitHub [43]. The performance
testing was executed in the environment capable of hardware
configuration of 2.8GHz Intel core i5 CPUwith 16GBRAM.
The average execution time for the half-hour single record in
the MIT-BIH arrhythmia database is 0.157 s. For the well-
known Pan–Tompkins algorithm [36], the number of total
failed detection beats for the MIT-BIH arrhythmia database
is 784. The average execution time was calculated using the
open public code [44] and tested under the same environ-
ment. Analysis of the half-hour single record in the MIT-BIH
arrhythmia database is completed within 0.224 s. The pro-
posed QRS complex detection algorithm and Pan–Tompkins
algorithm have the same complexity. However, the number
of total failed detection beats of the proposed QRS detection
complex algorithm is only about one-third of that of the Pan–
Tompkins algorithm. In addition, although the accuracy of
CRNN QRS detection algorithm [41] is slightly better than
that of the proposed QRS complex detection algorithm, the
execution time is also about several hundred times longer.
Hence, the proposed QRS complex detection algorithm is
capable of higher efficiency. Moreover, the ECG QRS detec-
tion algorithm can be the foundation of heart disease classi-
fication. The widely used strategy to classify heart diseases
is beat-by-beat analysis [45]. ECG signals are often divided
into the input segments of the convolutional neural network
based on the location of R peak and heart rate [46], [47].
Moreover, RR interval is often selected to be the features
for other classifier such as support vector machine [48], [49]
because the rhythm information of the heartbeat is often used
clinically as a basis for diagnosis of arrhythmias.

The proposed respiration rate detection algorithm
primarily uses 306n additions, 302n multiplications, and 4n
comparisons for the n points respiration data, and the time
complexity is O(n). The 300-order FIR filter in the algorithm
accounts for most of the computation. For themoving average
method in the algorithm, the computation can be simplified.
By recording the first moving average result, subsequent
moving average calculations only need to add the latest data
and deduct the oldest data. In addition, the concept of the
circular queue can reduce the computation load for moving
average. For the part of space complexity, the 300-order FIR
filter can be designed to be coefficient symmetric; therefore,
the storage of the coefficient can be reduced to 151 floating-
point data. The remaining part is primarily the 300 points for
storage of respiration raw data and 300 points circular queue
for calculating the moving average operation. Therefore,
approximately 751 points of floating-point data storage space
will be used for the computation of real-time respiration rate.

The performance of the smart clothing system for ECG
signal acquisition is tested in several ways in this paper. The
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effect of the impedance of the dry electrodes and conductive
fiber traces on the signal quality was first tested, and the result
is shown in Fig. 11(a), showing the high efficiency of ECG
transmission architecture on the smart clothing. Afterward,
the performance of the dry electrode is compared with that
of the commercial silver/silver chloride electrode. The result
in Fig. 11(b) shows that the shape of ECG signals between
the monitoring system with proposed dry electrodes and
that with wet electrodes is similar. Therefore, high-quality
ECG signal can be provided using the proposed dry elec-
trodes. The impact of the skin-electrode interface on ECG
signal [50] can be investigated to improve the signal qual-
ity of ECG signal with dry electrodes. The large impedance
of the skin-electrode interface can lead to the degradation of
measured ECG signal. The ECG signal measurement envi-
ronment is shown in Fig. 18. Part A is the body. V1 and V2
are the voltages of the positive and negative terminals of the
source ECG signal, respectively, and the source ECG signal
in equation (13) is the real ECG signal that has not been
affected by the impedance of the transmission path. Part B is
the complete path of the signal transmission. In the proposed
system, the source ECG signal is initially sensed by electrode,
and it is transmitted to the ECG signal acquisition circuit
through the conductive path on the clothing. Ze1 and Ze2 are
the impedance on the transmission path. Part C is the ECG
signal acquisition circuit. Za1 and Za2 are the input impedance
of the amplifier. V∼1 and V∼2 are the actual voltages at the
input of the amplifier, and the actual measured ECG signal
is shown in equation (14). If Ze1 is equal to Ze2, and Za1 is
equal to Za2, then the relationship between the source ECG
signal and the actual measured ECG signal can be derived
using equation (15).

ECGsrc = V1 − V2, (13)

ECGmeas = V∼1 − V
∼

2 , (14)

If Za1 = Za2 = Za2, Ze1 = Ze2 = Ze,

ECGmeas = ECGsrc ×
Za

(Za+ Ze)
. (15)

The input impedance of the amplifier Za1(2) should be
large, and the impedance on the transmission path Ze1(2)
should be as small as possible to reduce the difference
between the source ECG signal and the actual measured ECG
signal. In this work, Ze1(2) contains the impedance of the con-
ductive fiber trace and the impedance of the skin-electrode
interface, and usually the skin-electrode impedance accounts
for themajority of Ze1(2). In addition to the impedance charac-
teristic of the conductive material, the impedance of the skin
electrode interface can be influenced by the applied pressure
and contact area. Therefore, by increasing the contact area of
the ECG electrodes or making the ECG electrodes fit more
closely to the body surface, the ECG signal with dry elec-
trodes can be further improved. The ECG signal measured
by the proposed system is also compared with that measured
by the clinical standard lead-I ECG, and the result is shown
in Fig. 13, showing the potential of the proposed system in

medical applications. With regard to respiration, the function
of the respiration transducer is validated by BIOPAC. The
experimental verification shows good result with 98.74%
accuracy in a test of 19 people.

Another emerging issue on the development of biosignal
monitoring clothing is washing. In the current stage, the
samples of the biosignal monitoring clothing were tested in
10 consecutive cycles of washing and drying. Washing was
conducted in a washing machine, and the washing water
temperature was approximately 40 ◦C. The washing time
was 40 min per wash. A laundry bag was also used, but
no detergent was used during washing. During drying, the
clothing was lined dry in shade. In this experiment, a total
of three samples of clothing were tested. After the complete
washing test, the function of the samples was verified by com-
paring the measured result with that of the BIOPAC MP36
acquisition system. The result showed that the correctness of
the ECG and respiratory signals measured using the washed
samples was 99.94% and 98.90%, respectively. Therefore, the
function of the washed samples was confirmed.

V. CONCLUSION
A complete smart clothing system, which provides the mon-
itoring of lead-I ECG and respiratory signals, is proposed in
this paper. The system primarily contains three main blocks,
including biosignal monitoring clothing, a biosignal acqui-
sition device, and a software platform on a remote smart
device. The biosignal acquisition device with a supply volt-
age of 3.3 V primarily includes an ECG signal acquisition
circuit, respiratory signal acquisition circuit, and microcon-
troller with a Bluetooth 5.2 module. The software platform
is implemented on mobile device with an iOS platform to
receive the data and provide real-time biosignal display, heart
rate, respiration rate, and health information. The proposed
QRS complex detection algorithm for heart rate acquisition
is verified by the MIT-BIH database, and the performances,
including Se, P+, and ERR, are 99.86%, 99.93%, and 0.19%,
respectively. The function of the respiration transducer is vali-
dated by BIOPAC SS11LA airflow transducer, and the exper-
imental verification shows good result with 98.74% accuracy
in a test of 19 people. Using the proposed smart clothing
system, the long-term biosignal monitoring for health care
can be achieved.
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