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ABSTRACT Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an
intelligent grid technology predicting changes in line rating due to changing physical and environmental
conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods,
implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep
learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution
Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the
network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process
producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning
to predict features with minimal errors. This survey systematically implements Quantile Regression (QR),
RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness,
skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th
percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line
capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all
methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our
choice of DTR forecasting.

INDEX TERMS Dynamic thermal rating, smart grids, stochastic forecasts, deep learning forecasts, point

forecast errors, probabilistic forecast errors.

I. INTRODUCTION

Electric power transmission lines are rated using limited
assumptions of environmental conditions known as Static
Thermal Rating (STR) [1]. STR provides a pre-set maximum
allowable current-carrying capacity on the lines. On the con-
trary, Dynamic Thermal Rating (DTR) uses real-time weather
monitoring and communication devices and the deployment
of algorithms to forecast transmission line current capacity,
known as ampacity. DTR is a means of improving the line
capacity and comes into play in the planning and controlling
operations of the power system. Weather stations along the
transmission lines can measure and model the atmospheric
parameters to be used in the forecast. A study on the sig-
nificance of weather monitoring in energy-related systems
was done in [2]. The study was relevant to meteorological
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measurements, modelling, and forecasting. Another disad-
vantage of the STR is that it allows the emergence of new
transmission lines because the lines often reach their lim-
its due to increasing loads. To solve this problem, studies
in [3], [4] have proposed the DTR system to expand the
capacity of transmission lines. The actual line ratings due to
DTR are higher than the STR most of the time [5]. In [5],
DTR was presented to also benefit the lines by reducing
wind energy curtailment. Studies in [6]-[8] showed that DTR
allowed an increase in line ampacity than the traditional
STR. It reduces carbonisation and allows decentralisation
of the power grid. In [9], it was shown that DTR could
achieve savings on constructing new lines by benefitting
the existing lines with decongestion. DTR integration with
smart grid technologies was also studied [10], [11]. The
studies showed how beneficial DTR could be to the trans-
mission line capacities when integrated with other smart grid
technologies.
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Challenges foreseen in DTR implementation can be in line
monitoring, communication, and forecasting. Some recent
studies have proffered solutions to these challenges. The
reliability of the communication devices and control opera-
tions was studied in [11], [12]. The studies highlighted the
importance of the reliability of the wireless communication
links between the monitoring devices and the control stations.
In [13], the authors stated cyber security issues of smart
grid power system components. They surveyed the impact
of integrating ICT components in enhancing intelligent grid
operations. A study examined the reliability of the Opera-
tional Tripping Schemes (OTS) and System Integrity Protec-
tion Scheme (SIPS) on a system with STR and DTR [14].
The study analysed the relief of congestion created with
DTR when increasing the penetration of Renewable Energy
Sources (RES). The fuzzy-based OTS introduced showed
how network operators could prevent generators from trip-
ping due to the

fixed STR. Critical span identification studied in [15]
availed us with information that using a single span with
the worst thermal capability can provide the line rating.
Changing initial weather conditions and error level reduction
were considered in [16] to better the line rating. The study
employed the stochastic method to calculate a day-ahead
rating for system planning. Other DTR studies considered
the risks involved in DTR forecasts [17] and the prospects
and safety assessments of the thermal loading of lines with
DTR [18]-[20]. These studies clarified that the major envi-
ronmental factors which need accurate data monitoring for
better forecasting are the wind and temperature parameters.
These parameters need to be adequately monitored by sensors
or forecasted to determine line ampacity values. However,
these solutions have not addressed the need for an efficient,
reliable forecasting method mostly devoid of significant
errors.

Reliable DTR forecasting is crucial for efficient power
delivery using DTR systems, as depicted in a comprehensive
DTR review [21]. Ambitious forecasting rates the line more
than its actual ampacity; this results in thermal overload and
may be catastrophic to the power system component and
personnel. However, forecast values below the actual DTR
ampacity underutilise the line and will not allow demands for
power to be met [22]. This will lead to financial losses by the
electric utility companies and the consumers.

A meta-analysis of DTR forecasting methods is needed to
assess the performance of the DTR forecasting methods and
ascertain the most reliable, least error-prone method. This
study aims to attain this systematic survey with the following
structure: Section IT will review DTR forecasting methods,
state the findings and limitations of past studies on DTR fore-
casting, and end with a classification of the reviewed meth-
ods. Section IIT will emphasize the importance of forecasting
in DTR implementation and explain the point and proba-
bilistic error metrics to evaluate the methods. Section IV will
deploy probabilistic and point forecast error metrics to assess
the forecasting methods and determine the most reliable
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method devoid of errors. The concluding observations and
recommendations for further works will come in section V.

Il. DTR FORECASTING METHODS

DTR forecasting methods obtained from several studies are
described in this section and presented in Table 1. The table
described the forecasting methods, presented the findings of
the studies, and offered their limitations and/or recommenda-
tions to improve them. DTR forecasting studies in Table 1
use estimation [1], [23], [24], Affine Arithmetic [6], [18],
Regression [19], [20], [25], [26], Ensemble Learning [27],
ANN [28], Enhanced learning [29] and Dynamic Stochastic
General Equilibrium [30] to calculate, estimate and forecast
DTR. These are good algorithms, but the studies have limi-
tations in their data collection, algorithm training leading to
over-fitting, algorithm testing, computational cost, and prolif-
eration of errors in short forecast lead time. In addition, none
of the DTR studies presented has implemented stochastic and
deep learning methods on the same network for the same
forecast lead time and data to perform a comparison using
point and probabilistic error metrics. All forecasting meth-
ods reviewed will be classified, and a few promising ones
will be implemented, evaluated, and compared in subsequent
sections.

A. DLR FORECASTING METHODS CLASSIFICATION

DTR forecasting methods use stochastic (analytical statistics)
or deep learning to filter randomness from past data to attain
systematic patterns. The selection of any forecasting method
depends on the quantity and nature of available data, how
far ahead one is forecasting (the lead time), computational
burden, forecasters’ technical knowledge, and the acceptabil-
ity of the method to forecast users [28]. Figure 1 shows the
classification of DTR forecasting methods.

1) STOCHASTIC FORECASTING METHOD

Stochastic forecasting methods include regression, mov-
ing averages and exponential smoothing. A further division
of stochastic forecasting includes Linear and QR. Linear
regression estimates the mean of data and determines the
relationship between variables. Linear regression’s linearity,
normality and independence assumptions do not make it
suitable to forecast DTR [32]. The KDE of the DTR calcu-
lated values is shown in figure 2. The pattern and skewness
displayed, as shown, are of utmost importance in describing
the actual ampacity of the line. The KDE showed a positive
skewness in its distribution, with its mean greater than the
median. The KDE shows that linear regression assumptions
do not hold for this data and will not be explored in the
forecasting.

Forecasting DTR is more complicated than assessing line
conditions. Simple conditional means analysis does not detect
all relationships between variables. QR methods provide
a means to study the relationship between random vari-
ables [30]. QR describes estimates conditional percentiles
and expands modelling options for forecasting analysis.
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TABLE 1. DTR forecasting methods studies.

Citation Method Description Findings Limitations / Recommendations

[1] Weather data statistical analysis was used to forma  The method used increased the energy Environmental parameters used do not
data set to estimate typical line ratings and risk throughput when compared with the STR.  include extreme values. Data may have
associated. Standard ratings and associated risk been fitted to arrive at the results. The
levels were compared with the nominal and actual study recommended precautions should be
line ratings. taken to avoid thermal overload and line

ageing.

[4] This paper depicted the dependence of transmission ~DTR system reduced the load shedding ~ARMA assumes no differencing is involved
lines on wind power. The time-series data were required in a balanced system at high in the dependent variable. To be fair, the
modelled with the auto-regressive moving-average loading levels, thereby improving line authors recommended integrating other
(ARMA) model. This paved the way for a capacity intelligent power grid technologies.
Sequential Monte Carlo (SMC) simulation.

[6] This  study compared Affine Arithmetic The Affine Arithmetic approximation Approximations do not accurately represent
Approximation with the Monte-Carlo simulation technique appeared to be more data but may only reflect the pattern. The
method for a specific ambient temperature, heat conservative than the Monte-Carlo demerits are the scarcity of experimental
flux, wind speed and wind direction. simulation. data and theoretical studies for the analysis

and computation requirements in the
presence of uncertainties.

[18] Affine  Arithmetic was wused to forecast The study gave control actions calculated Only point forecast was considered.
meteorological conditions in a robust corrective centrally and deployed affine arithmetic =~ Forecast uncertainties for intermittent
control mechanism for dispatch, procurement, and  with procedures to ensure a reduction in  energy sources were not considered. High
operational cost reduction. total cost. computational cost and approximations are

inherent.

[20] Linear Models and Multivariate Adaptive The feasibility of using computed line As much as the forest forecasting method
Regressions with Numerical Weather Prediction rating forecasts in power system planning  deployed does not overfit, it has a constraint
models forecast the DTR. A probabilistic forecast —and operation was established. The method  of slow training and is unsuitable for linear
was developed from a point forecast afterwards. methods with many sparse features. Two

may be used to calculate the actual values  conductor lines were used, and a static set of

of DTRs. independent variables were the model’s
inputs. The choice of the independent
variables not being dynamic tends to affect
the accuracy of forecasts.

[27] Ensemble Learning Algorithms were used in the Ensemble learning algorithms simulations  Error metrics for the models are point
DTR forecasting models concerning historical could be successfully used in forecasting forecast errors and do not specify the
meteorological data as a viable alternative. Cases DTR. The simulation yielded a 30% reliability and confidence levels of all
designed to explore the strength and precision of the  increase in line capacities. outcomes to make the forecasts probabilistic
technique were made. Simple boost, bagging and
gradient boost models were compared with STR.

[25] Quantile regression (QR) methods were proposedto ~ When the model was reformulated with  Parameters are more complicated to
predict line ampacity. The proposed methods risk-based constraints, results confirmed estimate than in Gaussian or generalised
considered the conductor thermal inertia in its their efficiency and better utilisation of regression. Weather data from weather
modelling conductor capacity. Energy transfer was stations were used to implement and

also increased at reduced risk levels validate each tested model's efficacy.

[31] The novel methodology in this research focused on  Line capacity utilisation is related to  The proliferation of errors for short horizons
the safest reliability levels, and this was weather forecasts' error level and the was the demerit of the algorithm used in this
benchmarked on the maximum permissible probabilistic forecasts' sharpness. A  study.
conductor temperature on a distribution network technique that reduces the error level can
traversing different terrain. improve the line ampacity.

[24] This study compared the implementation of SLR  Real-time weather, clearance, tension, and ~ The temperature difference between worst
with Real-time Monitoring (DLR-RTM) and sag can be monitored to gain line thermal spans and  maximum  permissible
Ambient Adjusted Dynamic Line Ratings (DLR- capacity to calculate DLR. The temperature should not exceed ten degrees
AA) measurement interval can be days or hours ~ Celsius. Hours or days temperature

for DLR-AA and 5 to 15 minutes for DLR-  measuring interval may be too long where
RTM methods. the surface temperature rise against ambient
temperature is low.

[19] A multivariate regression between the DTR and  The method results in an efficient model to  An outlier in the data plot can seriously

weather conditions was proposed to reduce the
significant change in the DTR.

reduce the significant change in DTR, not
undermining the improvement of capacity
done by DTR.

disrupt polynomial regression results. Its
models are prone to overfitting, and the
model proposed may not perform well in
other cases if direct monitoring of the line
parameters is done.
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TABLE 1. (Continued.) DTR forecasting methods studies.

[26] Weather factors were selected for a regression
model. Random variables were used to model the
line ratings of chosen spans, and the minimum was

selected

[23] The study here considered conductor temperature
and weather models to estimate line ampacity. The
study divided line ratings into typical, short-term
emergency and long-term emergency periods
allocating conductor temperatures and allowable
duration to each of the ratings.

[30] Dynamic stochastic general equilibrium (DSGE)
was deployed as a probabilistic forecasting method.

[28] An ANN-based method was used to evaluate
the conductor temperature and DTR of a
transmission line and was compared with a
physical temperature estimation method using
the Council of Large Electric Systems (CIGRE)
[29] Enhanced Learning Method (ELM) was
deployed to calculate DTR, which was
compared with the actual ampacity of the line

Corresponding percentiles and distribution
of the DTR were obtained. Line segment
ratings, when tested, showed that the
technique provides a secure and high
rating.

An algorithm proposed for calculating
DTR produced 4-hr output 12% lower on
average than DTR. Ampacity increment
from 20 to 70% on average over existing
STR was noticed

DSGE, the proposed density forecast
method, outperformed reference models of
regression and machine learning.

The ANN deployed performed better in
terms of the absolute error than the physical
method compared

The predicted DTR performed better than
the STR, closely to the actual ampacity of
the line.

A strong correlation in regression analysis
does not depict a cause-effect relationship,
and a single span chosen is usually not a true
reflection of the whole transmission line.
The current work showed a promising
probabilistic grid network approach with a
low computational requirement in the
future.

The uncertainties that may have occurred in
measuring parameters in the two models
called for the weighted average, which may
be another source of error in the ampacity
estimation

DSGE is costly in computational terms. A
Pareto-efficient solution deployment to
balance the trade-off between a conservative
solution and optimising the objective
function to increase accuracy against
confidence level is not easy

Hourly samples with a wind speed lower
than two m/s were used to compare the two
estimation methods. Performance beyond
this limit was, however, not tested.

Over 90% of the data collected were used
for training, while the remaining were used
for validation. This account for the over-

and the STR.

fitting of the output.

QR usually seeks the median known as the 50th percentile
instead of the variable’s mean to be predicted. It can also seek
any other percentile below or above it. The 75th percentile, for
instance, is the value below which 75% of all observations
may be found. The application of QR to computer perfor-
mance experiments was studied in [33]. The study allowed
for the understanding that variables usually have relationships
outside of the mean of the data. Moving averages have a
characteristic of not responding to slight, transient changes in
data; this makes them slow to react to rapid changes. ARMA
and Autoregressive Integrated Moving Average (ARIMA) are
instances of moving averages. ARIMA is an improvement
over ARMA.

A comparison of neural network and ARIMA models has
been studied in [34]-[38]. The studies compared the per-
formance of ANN models and ARIMA. Results obtained
from analyses revealed the superiority of the neural network
models. Exponential smoothing considers weighted averages
of observations. The weights of these observations decay
exponentially over time.

The constraints of the stochastic methods above affect
forecasts with moving averages and exponential smoothing.
Examples of exponential smoothing are Single Exponential
Smoothing (SES), which uses a smoothing parameter known
as weight, and Double Exponential Smoothing (DES), which
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uses two weights. Holt-Winters method combines weighted
average, trend, and seasonality in its forecasts. Studies in
[39]-[41] compared exponential smoothing with neural net-
works for forecasting and found out neural networks outper-
formed exponential methods. However, forecast data possess
non-linear forms often not modelled effectively with other
stochastic methods.

2) DEEP LEARNING FORECASTING METHOD

Deep learning in [42] presents an approach combining sim-
ple but non-linear modules in a multi-level input represen-
tation. The transformation of one level of representation
to an abstract level allows deep learning to understand the
features of the input [43]. Unlike traditional statistical fore-
casting models, deep learning methods can approximate non-
linearity; examples include Neural Networks such as the
Convolution Neural Network (CNN), Recurrent Neural Net-
work (RNN) and Ensemble forecasting. The non-linearity
often results in inaccurate forecasting accuracy, as shown
in [44]. The study presented a novel time-series model
designed to learn the features of time-series data thoroughly,
but the outcomes were inaccurate. Ensemble means forecast-
ing, CNN, and RNN forecasting will be explored because
they have been proposed to be efficient methods of forecast-
ing in [16], [42]-[45].
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FIGURE 1. Forecasting classification.!
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FIGURE 2. Kernel density estimation of line ampacity.

a: ENSEMBLE FORECASTING METHOD

Ensemble forecasting foresees forecast errors during each
Numerical Weather Prediction system. Studies in [46], [47]
suggested that errors could independently proliferate, but
ensemble forecasting is an efficient solution to reduce the
proliferation of errors. An ensemble forecast outputs a set of
randomly equally viable solutions instead of a single defi-
nite forecast outcome. It is a form of Monte-Carlo simula-
tion [48], [49]; it produces a set of solutions for the future
and finds the average of these solutions. DTR was forecasted
for a transmission line in Alberta, Canada [16]. The study
recommended ensemble forecasting for better results. The
expected value of a forecast using ensemble means is given
by equation (1). As shown in figure 3, an ensemble forecast
is produced from Ensemble mean considering varying ini-
tial conditions. It is likely to have more skill than a single

TBoxes highlighted in blue are the forecasting methods to be implemented
and evaluated
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Varying Initial Conditions

Ensemble Mean Forecast

A 4

Ensemble Members >
Model

FIGURE 3. Schematic diagram of Ensemble Forecasting.

definite solution.

1
ECO = (ZLI (xn>) (M

E (X): Expected value of the simulation
N: Sample size
Xy nth random variable.

b: NEURAL NETWORKS

CNN and RNN have been successfully deployed in forecast-
ing complex spatial-temporal dynamics [50]-[53]. RNN is a
neural network used when data is treated as a sequence, con-
sidering the order of the data points. It learns functions that
can be one-to-many, many-to-one, and many-to-many [54].
As shown in figure 4(a), it takes input sequences from a stored
initial state of i (r — 1), present state & (¢) to run the model
and gives an output & (¢ + 1). This sequence continues in
that manner to better the subsequent output. So, when much
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Initial state h(t-1) Feedback
eedbac

Output

Present state h(t) .

RNN MODEL

v

(a)

Ensemble Input  CNN Kernel CNN Output

v

CNN Model

(b)

FIGURE 4. (a) Schematic diagram of RNN forecasting. (b) Schematic diagram of CNN forecasting.

information is conveyed sequentially, the recurrent neural
network thrives in the temporal change of the data.

h(t): present cell state,
h(t —1): initial cell state
w: state weight parameter

An updated RNN hidden state is given by equation (2),
h(t) = tanh(W,},h,—1 + W] x,) )
h(t+ 1) = tanh (WhThh, n W)Z,;x,) 3)

CNN allows learning in a computationally efficient way,
just like RNN. It is, however, composed of a feed-forward
network, unlike RNN. It involves the formation of a feature
map to indicate the positions and intensity of identified fea-
tures of an input. CNNs are primarily used with images with
local spatial patterns, but it works well when other forms of
data have closer related values than those far away. It is appli-
cable here because weather conditions within a few hours are
closely related. A typical convolutional layer takes a three-
dimensional data block as input (X), i.e., the input depth,
d is 3. These layers have trainable kernel (k) parameters that
extend to the input depth. The depth of the output Y is always
the same as the number of kernels we have.

The output (Y) of a CNN is given by equation (4)

Y=B,-Z;=1Xj*K,--, fori=1...d )

As shown in figure 4(b), the ensemble means of forecasting
serve as input to the CNN model; the kernels are the layers of
Neural Network (NN) Multilayer Perceptron architecture and
have their biases (B) for parameter training and testing. These
are used to produce the output of the CNN model. Combining
forecasts from different methods leads to greater accuracy
than any individual method. A consistent finding in empirical
studies [55], [56] showed that combined forecasting methods
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have higher accuracy than single methods. Selecting an excel-
lent model for each series is a difficult task due to filtering
noise from a pattern, which may lead to over-fitting. Com-
bining several techniques allows the cancellation of random
errors [57]; this is the rationale behind CNN forecasting. It is
to be deployed here as a convolution of Ensemble forecasting
with a kernel of CNN.

B. CHOSEN METHODS’ RATIONALE

Linearity, homoscedasticity, normality, and independence
assumptions of linear regression do not hold in forecasting
the DTR of transmission lines. A regression method that will
put this consideration in place is reasonable. Percentiles of the
dependent variables can be forecasted to describe the depen-
dence of DTR on environmental covariates. 25th, 50th and
75th percentile of the dependent variable will be predicted
and evaluated using the point and probabilistic forecast error
metrics.

Ensemble means forecast tends to provide seemingly accu-
rate forecasts. On the other hand, varying weather conditions
are catered for in ensemble forecasting. A set of random
equally viable expected outputs are averaged over time to
determine the ensemble forecast. Patterns can be learnt by
Neural Networks in feedback or feed-forward loop. The loca-
tion and strength of these patterns can be learnt and used in
their reproduction. Pattern learning informs the use of RNN
and CNN to forecast the DTR of transmission lines.

Ill. DTR IMPLEMENTATION

The stated benefits of DTR cannot be harnessed without an
excellent DTR forecasting method. Forecasting is pivotal to
DTR deployment, as shown in stage 3 of figure 5. As perti-
nent as DTR forecasting is to DTR deployment in intelligent
grids, input parameters to the forecasting algorithms are very
important. Environmental and physical parameters must be
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2. DATA CENTRE

This stage takes the real-time data from
line monitoring sensors. The data are

usually sorted, analysed updated and fed

1. LINE MONITORING o appropriate forecasting algorithm

At stage 1, the DTR sensors G,

while measuring the weather

parameters such as P
temperature, sag and tension, J11TH

wind speed and angle, relay 4 SYSTm PLANNING

the data via communication k
channels to the utility data The utility company sets in
real-time, protective relays

tre. B 4
centre , and other switches used in
load dispatch and efficient

3. DTR AMPACITY FORECASTING power flow based on the
Here, physical and environmental prevailing  data fm"‘“
data gathered by the sensors and forecast models. This will
stored are used to forecast ampacity. later be compared with the
The output is sent to the system ampacity
planning unit of the utility for
planning and control purposes.

FIGURE 5. DTR implementation.

monitored in real-time in the first stage by sensors or weather
stations along the transmission lines, as shown in figure 5 [4].
These monitored data are sent to the forecasting algorithms
for weather inputs and DTR calculations. The algorithms and
calculations are used in utility companies’ data centres and
system planning units to set protective relays and DTR of the
lines [58].

A. LINE MONITORING

Methods of monitoring the physical and environmental
parameters of the line may be direct or indirect. DTR is
calculated using weather data used for model prediction.
This method is known as weather dependent line rating [59].
Direct and indirect means of monitoring to validate prob-
abilistic forecasts were presented in [60]-[64]. The studies
laid bare how best data for forecasting can be obtained from
the lines. Indirect monitoring uses weather stations along a
transmission line to record weather data used in forecasting
ampacity [65]. This study will employ this type of monitoring
for the data collection, and it will be used for DTR calculation
and forecasting.

B. DTR AMPACITY FORECASTING

The weather parameters used in the IEEE 738 DTR model
for calculating relationships between conductor temperature
and its current capacity were stated in [67]. Weather stations
were used to obtain the same weather parameters hourly for
30 days along a transmission line in the United Kingdom. The
parameters were used to obtain the line ampacity every lhr for
30days. The calculated current capacity alongside the multi-
variate of ambient temperature, wind angle and wind speed
forming convective cooling, radiative cooling and solar heat-
ing will forecast the ampacity for the next 24hrs. The forecast
values for the next 24hrs will then be compared with the
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FIGURE 6. (a) Error metrics of point forecasting. (b) Error metrics of
probabilistic forecasting.

calculated values for the same period, and the errors will be
deduced. Methods to be evaluated are QR from the stochastic
process because of the non-normality of the ampacity data
as estimated by the KDE. Ensemble means on account of
the intermittency of the environmental parameters used in the
forecasting and RNN and CNN from the deep learning tech-
niques. Three deep learning methods will be evaluated here
because they have been proposed in studies [44], [66] to be
more accurate than most stochastic methods. This assertion
must be validated, considering the error metrics described in
figures 6(a) and 6(b). DTR forecasting algorithm with the
least values of these errors will be determined.

Ampacity forecasts using Stochastic and Deep learning
algorithms will be evaluated. Inputs to these algorithms are
weather and environmental parameters monitored along the
100km transmission line having weather stations at 50km
intervals. These monitored data were used to calculate the
DTR of the line every top of the hour for 30 days using the
IEEE 738 model. The STR of the line was estimated to be
3305A, and other DTR ampacities for a 720hr period were
also calculated. These calculated values of DTR, alongside
the independent weather variables of wind speed, wind angle,
ambient temperature, convective cooling, radiative cooling,
and solar radiation, will be used to forecast the DTR of the
line for the next 24 hrs. The forecast ampacity values for each
method at lhr interval will be compared with the calculated
values for the same period using the variables measured for
the period, and the errors will be determined. The method
with the least values of errors would have performed better
than the method with higher values of the point forecast
errors. Line graphs of methods compared will also be dis-
played to appreciate how dynamic the line ratings could be.
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24hr Quantile Regression Forecasting
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FIGURE 7. (a) QR forecasting plots. (b) Deep learning forecasting plot.

C. ERRORS IN FORECASTS

Forecast simulations performed are error-prone due to
incomplete and inaccurate line monitoring, poor data com-
munication, significant variations in data, and poor forecast
algorithms and methods. As shown in figure 6(a), errors in
point forecasts may be direct, percentage errors or relative
measures of error [67].

Direct error metrics are the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) while MAPE is an
example of a percentage error. Figure 6(b) shows that Skill,
Sharpness, and Positive Bias Probability (PBP) are error
metrics that describe probabilistic forecasting. In contrast,
relative Mean Absolute Error (rMAE), Relative Absolute
Error (RAE), and relative Root Mean Square Error (rRMSE)
are relative error metrics [68]. They are benchmarked against
a typical reference. Forecast skills can be gauged with a refer-
ence [69]; in some other form, the Continuous Ranked Prob-
ability Score (CRPS) compares a forecast with an observed
outcome, thereby depicting how good forecast values are in
matching observed outcomes [70]. The lower the CRPS, the

65200

Quantile Regression Residual Plot
I I I =@ Zero point
—6—25% QR
—6—50% QR
1000 75% QR[]

1500

500 [

Residual (A)
o

-500

-1000

-1500 !
0 5 10 15 20 25
Time (hrs)
(a)
Deep Learning Residual Plot
1400 T T T T
—6—CNN
1200 Ensemble
—6—RNN
1000 - ==@== Zero point | |
800 [ N B
\
< 600 1
E S
3 400 - o !
[
o}
o 200 - = = )
or 4
-200 | = 1
-400 q
600 . . . .
0 5 10 15 20 25
Time (hrs)
(b)

FIGURE 8. (a) QR residual plot. (b) Deep learning residual plot.

better the forecast. Three sharpness metrics, Prediction Inter-
val Coverage Probability (PICP), Brier score and Prediction
Interval Average Width (PIAW) and Positive Bias Probability,
are novel metrics to be used to assess DTR forecasts as they
have been used in [71], [72].

Point forecasting and probabilistic forecasting techniques
try to predict the outcome of events. Information on the
uncertainty of each expected outcome is only present in the
probabilistic forecast [67]. All forecast error metrics have
their prospects and constraints in evaluating the error in any
forecasting method. It means a forecasting method perform-
ing skilfully well may have a minor error in RMSE and
perform woefully in other point forecast error metrics.

PBP is important in DTR forecasting to determine the
probability that the forecast value will always be less than
the actual DTR value. The higher the PBP, the better the fore-
casting method. The Brier score is a vital probabilistic fore-
cast error metric in that it measures calibration, purity, and
noise. The calibration, purity and noise are determined by the
forecast reliability, resolution, and uncertainty, respectively.
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TABLE 2. Forecasting error metrics formulae and characteristics.2

Citation Error Metrics Formulae Characteristics
POINT FORECAST ERRORS
[67] RMSE C_F RMSE measures the spread of data and its biases along the line of best
[ ICi — Fil ] fit. It gives a high weight to significant errors. It is an absolute measure
N of fit
[73] MAE 1 N MAE as a direct method has the advantage of being easily interpreted.
- C;—F Considerable MAE value, however, does not depict a bad method.
N
I=1
[73] MAPE Y |C; —F| When minor outcomes, percentage errors like APE and MAPE
> C exaggerate errors and accuracies, but they are reasonable measures
with large values.
[67] RAE »1|C —F RAE greater than 1 indicates that the method is less accurate than a
S|C —TFi| reference, e.g. (naive) method.
[68] rMAE 1 N IC; — Fi| rMAE is a reasonable error metric, and values less than 1 are good.
L l
N Z C;
i=1
[68] rRMSE 1 N C—F2 rRMSE covers up the inadequacies of some methods, but the less they
_Z u are than 1, the better the method.
N £ C;
=1
PROBABILISTIC FORECAST
ERRORS
[731, [74]1[75] SKILL, CRPS MSEforecast CRPS compares the forecasts' Cumulative Distribution Function
f
- MSEgeerence (CDF) with the observed values. The closer the CRPS is to zero, the
X 2 better the forecast accuracy. A skill value less than 1 indicates the
CRPS = [*_(F (3; ) dY  forecast method is more skilful than a reference method.
+[JFO») -1 dy
[71], [76] SHARPNESS (PICP) F; + co Prediction Interval Coverage Probability (PICP) clarifies the
confidence in the accurate prediction of each data. It predicts the
next forecast value using the standard deviation of errors biases and
multipliers of confidence intervals
[72] SHARPNESS (BRIER SCORE) B.S=(x —p)% This error metric depends on three factors: reliability, which depicts the
p= [COUNT IFFi>C (STR)] forecast calibration; resolution, which measures purity; and uncertainty,
N which measures noise. Lower values of the brier score represent
accurate forecast measures.
[71] SHARPNESS (PIAW) 1 N PIAW is a measure of sharpness through calibration. The narrower this
NZ[Ut — L] prediction width, the better.
t=1
[77] PBP COUNT IF (C; — F;) > 0 The Positive Bias Probability is useful to determine the probability that

N

the forecast value will always be less than the calculated value. A value
close to 1 shows the method is suitable.

The Brier score is 0 if the probability of an event is one and the
event occurs. The Brier score is one if the event’s probability
is 0 and occurred [67]. The smaller the Brier score, the better
the forecast.

rRMSE and rMAE assess the gain in performance of
forecasting methods [68]. They penalize significant fore-
cast errors, while MAE does not. RMSE measures how

2Where F, i and C; are forecasted, and calculated values of ampacity and
N is the time lead, i.e. the maximum number of hours we are forecasting;
this is 24hrs in the case of this study. P = probability that the forecast will be
greater than STR. Uy and L; are Upper bound and Lower bound, respectively.
¢ = confidence interval multiplier, ¢ = standard deviation of biases, r =
forecast reference such as naive.
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spread-out biases are and is commonly used in forecasting
analysis [68]. The performance of forecasting methods may
be assessed with many metrics [73]. In this study, which aims
to review different forecast methods, error metrics shown in
figures 6(a) and 6(b) will evaluate stochastic and deep learn-
ing methods. Table 2 shows the formulae and characteris-
tics of point and probabilistic forecast error metrics used to
evaluate the tested methods. The evaluation results will be
presented and discussed in the next section.

IV. RESULTS AND DISCUSSION
The discussion of the forecasting evaluation and forecast
plots will be done here. This is to appreciate the similarities
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TABLE 3. Methods’ error metrics.

Forecasting models  25% QR 50% QR 75% QR Ensemble RNN CNN
Means
Metrics
POINT FORECAST ERROR METRICS
MAE (A) 412.0 309.7 461.5 3335 330.0 3353
MAPE(%) 9.240 6.950 10.35 7.52 7.40 7.51
RMSE 486.0 421.6. 603.4 4553 448.9 456.3
RAE 1.186 0.891 1.328 0.960 0.950 0.964
rMAE 0.090 0.076 0.114 0.082 0.134 0.083
rRMSE 0.104 0.110 0.157 0.121 0.081 0.121
PROBABILISTIC FORECAST ERROR METRICS
SKILL(%) 77.54 83.10 65.39 80.29 80.84 80.08
CRPS 0.057 0.052 0.088 0.059 0.058 0.059
PICP (90%) (A) 42444432 45314479 48934651 47694519 46814510 47794522
BRIER SCORE 0.000 0.000 0.000 0.000 0.000 0.000
PIAW (%) 11.61 7.75 3.21 17.84 17.33 17.723
PBP (%) 16.67 33.33 91.70 79.17 79.17 79.17
EXTREME VALUES OF AMPACITY FORECAST (A)
UPPER LIMIT 4264 4656 4908 4877 4865 4881
LOWER LIMIT 3985 4470 4831 4449 4449 4455
RANGE 279 186 77 428 416 436

and differences between tested methods and allow conclu-
sions to be drawn quickly.

A. METHODS’ ERROR METRICS COMPARISON

A comparison of all methods using the point and probabilistic
error metrics is presented in Table 3. The deep learning
methods performed averagely well with a high PBP, excellent
brier score and a wide range of PICP. The 50th percentile
quantile regression was the best among the deep learning and
the stochastic methods tested, judging by the point and prob-
abilistic forecast errors. It had the best forecast skill of 83%
followed by RNN with 80.84%, it performed better than all
the tested methods with lowest MAE (415A), MAPE(6.95%),
RMSE (421.6), RAE (0.891), rRMAE (0.076) and CRPS
(0.052). RNN on the other hand had the lowest rRMSE
of 0.081. The range of ampacity specifies how wide the
ampacities can vary. However, the DTR forecast value should
not exceed the maximum line ampacity. This is achievable
if the maximum allowable conductor temperature has been
exceeded. The QR forecasts appeared more conservative,
with a good range and lower ampacity values than the cal-
culated DTR. Any of them can be picked where conserva-
tiveness to achieve transmission line security and avoidance
of the likelihood of failure is of utmost importance.

The line plot shows that the outcomes of QR in figure 7(a)
are below the calculated ampacities. On the contrary,
in figure 7(b), deep learning methods have most of their
values above the calculated ampacities. The methods have
modelled the relationship between independent variables, i.e.,
wind and solar and dependent variable (the line ampacity).

Quantile Regression, and the deep learning techniques
deployed, showed values higher than the nominal STR of
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3305A throughout the forecast lead time. This shows the line
rating can be increased with the forecasted values. All the
deep learning regression models possess about 80% PBP and
a wider ampacity range; this makes them a better choice
where high transmission capability is a top priority.

B. FORECASTING METHODS PLOTS

Quantile regressions plots in figure 7(a) represent the 25th,
50th and 75th percentile regressions, respectively. They are
the 24hrs forecast of ampacity from QR. The ensemble
means, RNN and CNN plots are shown in figure 7(b).

The figure showed that current-carrying capacity val-
ues were slightly lower than the actual ampacity values.
In Figures 7(a) and 7(b), a sudden change in ampacity was
noticed between 16:00 and 17:00 hrs due to a sharp variation
in wind direction from the perpendicular axis to the parallel
axis. The 75th percentile QR depicts the narrowest PIAW and
a PICP within the upper and lower limit values. Assuming a
90% prediction confidence interval, the PICP shows that the
next predicted value is within the maximum and minimum
forecast values. It also showed that the higher the forecasting
percentile, the more ambitious the QR forecast is and the
more the likelihood to have outliers in the forecast. Similarly,
the ensemble means forecasting has a conservative range
among the deep learning methods. The point and probabilistic
error metrics for all methods are close in value; this makes all
methods evaluated reliable.

A setback to most of the methods used was depicted in the
RAE. RAE values more than 1 prove that the method used is
not better than the reference (naive) method.

The residuals depicted in figure 8(a) show that most of the
QR forecasted ampacities are not smooth. They are below
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the actual ampacity of the line, while figure 8(b) has most
values above the zero mark to depict that the deep learning
forecasts are ambitious. Nonetheless, the residuals of deep
learning methods have a lower dispersion around the zero-
point mark.

Throughout the forecast lead time, the QR method
increased the ampacities of the line over the STR between
20% and 48%, while the deep learning methods had between
35% and 48% increase over the STR.

V. CONCLUSION

DTR is a smart grid technology that has forecasting crit-
ical to its deployment. Forecasting methods presented in
this study were classified broadly into stochastic and deep
learning techniques. These allowed the implementation of
viable DTR forecasting methods such as ensemble fore-
casting, RNN, CNN, and QR. Point and probabilistic error
metrics were used to evaluate the forecasting methods. The
methods deployed were compared based on the point and
probabilistic error metrics described. As they all gave an
efficient method for assessing DTR forecasts, the 50th per-
centile QR performed best with most of the error metrics.
All QR and neural network methods tested have the proba-
bility of being higher than the STR at all times of the forecast
lead time.

In future works, an improved DTR forecasting will be
achieved with classification algorithms developed consid-
ering the close relationship of weather data of immediate
past and subsequent hours. This algorithm should also be
able to respond quickly to sharp variations in environmen-
tal parameters and reduce the point and probabilistic error
more. Accuracy may also be improved with a lower forecast
lead time.
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