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ABSTRACT Slime Mould Algorithm (SMA) is a new meta-heuristics algorithm that is inspired by the
behaviors of slime mould from nature. Due to its effective performance, SMA has shown its competitive
performance among other meta-heuristics algorithms and has been used in many mathematical optimization
and real-world problems. However, SMA tends to sink into local optimality and lacks the diversity of the
population. Therefore, to cope with the drawbacks of the classical SMA, this paper proposes an improved
SMA algorithm named CHDESMA. First of all, the chaotic maps methods have the characteristics of
ergodicity and randomness, and we used chaotic maps methods to replace the original random initialization
to improve the diversity of the algorithm, which is more suitable for exploring the potential areas in the early
stage. Then, based on the superior searching ability of the differential evolution algorithm (DE), the crossover
and selection operations of DE are applied to CHDESMA, and the position is updated by the combination
of the original SMA operator and the mutation strategy of DE, which effectively avoids the algorithm falling
into local optimum. CHDESMA was evaluated using CEC2014 and CEC2017 test suits and four real-
world engineering problems. CHDESMA was compared with advanced algorithms and DE variants. The
experimental results and statistical analysis indicate that CHDESMAhas competitive performance compared
with the state-of-the-art algorithms.

INDEX TERMS Slime mould algorithm, differential evolution, chaotic maps, function optimization,
engineering design problem.

I. INTRODUCTION
The swarm intelligence algorithms are mainly inspired by the
hunting, foraging, and survival processes based on evolution
and population in the natural environment [1]. In recent years,
these meta-heuristics algorithms have been widely developed
in various fields because of their outstanding advantages in
many large-scale and real-life problems, such as engineering
problems [2], feature selection [3], biological information
processing [4], and cost-effective scheduling problems [5].
The most popular optimizers include Evolution Strategies
(ES) [6], Grey Wolf Optimizer (GWO) [7], Bat Algorithm
(BA) [8], Differential Evolution (DE) [9], Genetic Algo-
rithms (GA) [10] and Salp Swarm Algorithm (SSA) [11], etc.

Li et al. [12] introduced a new optimizer which is a ran-
dom method based on viscous oscillation mode called Slime
Mould Algorithm. Many experiments have proved that the
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algorithm is effective in solving global optimization prob-
lems. For example, Djekidel et al. [13] employed SMA to
affect the magnetic coupling between high-voltage lines and
metal pipes. Mostafa et al. [14] applied SMA to extract
photovoltaic panel model parameters. Gush et al. [15] utilized
SMA to enhance the photovoltaic capacity on the issue of
distribution networks. Tiacht et al. [16] applied SMA for
damage detection, location, and quantification. Deb et al. [17]
adopted SMA to alleviate the transmission congestion of
generators. Chen et al. [18] proposed a chaotic mud model
algorithm (CSMA) to predict accuracy and computational
complexity. Kumar et al. [19] applied SMA to estimate pho-
tovoltaic cell parameters. Kadry et al. [20] designed a multi-
scale matched filter using SMA. Agarwal et al. [21] improved
SMA to generate the best collision-free path for a mobile
robot.

There have been many improvement mechanisms to
be proposed to boost the performance of SMA. For
instance, Houssein et al. [22] proposed to combine

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 66811

https://orcid.org/0000-0003-2302-2416
https://orcid.org/0000-0003-0607-5567
https://orcid.org/0000-0002-2072-3148
https://orcid.org/0000-0002-7649-1788
https://orcid.org/0000-0001-6597-0874


H. Chen et al.: Improved Slime Mould Algorithm Hybridizing Chaotic Maps and Differential Evolution Strategy for Global Optimization

SMA with an adaptive guided differential evolution algo-
rithm [23]. In [24], the author Yousri proposed a hybrid
of SMA and Marine Predator Algorithm (MPA) [25]
to simulate photovoltaic systems. Premkumar et al. [26] pro-
posed a multi-objective slime mould algorithm (MOSMA).
Abdel-Basset et al. [27] mixed SMA with Whale Optimiza-
tion Algorithm (WOA) [28] to resolve the image segmenta-
tion issue of COVID-19 [29].

Although the performance of SMA has been improved
in some areas, it still has certain limitations when dealing
with complex problems. Table 1 summarizes the SMA vari-
ants in recent years and illustrates their features, merits,
and limitations. For this reason, an enhanced SMA algo-
rithm called CHDESMA has been proposed in this paper,
which presents Chaotic Maps [30] and DE strategy into
SMA simultaneously. First, Logistic Map [31] is used to
initialize the population, which is beneficial to accelerate
the convergency at the initial stage of the iteration. Then
use the Differential Evolution strategy to improve the local
search ability of the group agent, increase the diversity of
slime mold populations, and prevent the premature maturity
of the entire iterative process. The chaotic maps strategy
and DE operator have been successfully applied to deal with
various algorithm optimization problems. These successful
literature are presented in Table 2 and Table 3, respectively.
Chaotic initialization has been shown to improve the quality
of the solution. However, the drawbacks are that it lacks
robustness in dealing with various problems and the per-
formance of the algorithm combined with the chaotic maps
approach is not competitive when dealing with discrete prob-
lems. The DE algorithm shows good exploration capabili-
ties, but individuals can easily fall into local optimization as
the iterations proceed. The proposed CHDESMA was com-
pared with seven advanced algorithms and seven well-known
DE variants. The performance test was carried out on
CEC2014 [32] and CEC2017 [33] benchmark functions.
CHDESMA was then used to solve four engineering design
problems, such as tension/compression spring design prob-
lem (TCSD), welded beam design problem (WBD), pressure
vessel design problem (PVD), and three-bar truss design
problem (TBTD). The experimental results and statistical
analysis show that CHDESMA can achieve satisfactory
results in the population iteration’s convergence speed and
quality of optimization problems.

The following shows the main contributions of this
research:
a) In the early stage, CHDESMA applies Logistic Map ini-

tialization to improve the diversity of the population and
find a promising area.

b) The DE algorithm is used to enhance the searching ability
and prevent the algorithm from stagnation.

c) The proposed CHDESMA was evaluated by CEC2014
and CEC2017 test suits and four real-world engineering
problems. Experimental results and statistical analysis
indicate that CHDESMA is more effective than other
state-of-the-art algorithms.

d) This study is promising for the study, analysis,
improvement, and expansion of SMA, and the study of
the evolutionary optimizer is of great significance.
The main components of the paper are distributed as fol-

lows: the basic versions of SMA, Differential Evolution, and
Chaotic Maps are explained in Section 2. Section 3 describes
in detail the proposed variant CHDESMA. In Section 4, the
experimental simulation results are studied and discussed.
In the end, Section 5 summarizes the article and analyzes
possible future work.

II. BACKGROUND
A. THE BASIC VERSION OF SMA
SMA is a new optimizer based on the natural slime moulds
oscillation mode. SMA uses weights as the positive and neg-
ative feedback generated by simulating the foraging process
of slime moulds, composed of the following three different
forms: approaching food, wrapping food, and oscillating.

1) APPROACH FOOD
Slime moulds rely on the smell of the air to get close to the
desired food. Its approach to food is simulated as follows:

x (t + 1)=

{
xb (t)+vb× (W × xA (t)−xB (t)) r < p
vc× x (t) r ≥ p

(1)

where W is the weight of slime moulds. xb(t) is the global
optimal position, and x(t) is the position of each slime mould.
vb oscillates between [−a, a]. xA(t) and xB(t) are random
positions. The formulation of vb, vc, and W are shown
in Eq. (3), Eq. (4), and Eq. (5).

Where p is shown as follows:

p = tanh |Fit (i)− BF | (2)

where Fit(i) is the fitness of each slime mould, BF is the best
fitness of slime mould in the current iteration.

The value of vb and vc are shown as follows:

vb = [−a, a] , a = arctanh
(
−

t
maxiter

)
(3)

vc = [−b, b] , b = 1−
t

maxiter
(4)

Among them, t indicates the current iteration number, and
maxiter is the maximum iterations.
TheW is expressed as follows:

W (SmellIndex (i)) =



1+r × log
(
BF−Fit (i)
BF−WF

+1
)

condition

1−r × log
(
BF−Fit (i)
BF−WF

+1
)

others

(5)

SmellIndex = sort (Fit) (6)

SmellIndex is the sequence of fitness values after sorting.
r is a random number in the range of [0, 1], condition indi-
cates that Fit(i) is ranked in the first half.
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TABLE 1. Summary of the research papers on SMA algorithm variants.

TABLE 2. Summary of the research papers on chaotic maps.

TABLE 3. Summary of the research papers on DE variants.

2) WRAP FOOD
This part uses amathematical model to simulate the shrinkage
of slime mold mathematically. The positive and negative
feedback between food concentration is simulated by Eq. (5).
When the food concentration of the area is high, the weight
nearby is greater, and when food concentration near the area
is low, the weight nearby decreases to explore other areas.

The formula of each slime mould is calculated as
follows:

x (t + 1)=


rand × (UB− LB)+LB rand<z
xb (t)+ vb× (W × xA (t)−xB (t)) r < p
vc× x (t) r ≥ p

(7)

where UB and LB represent the upper and lower bounds of
the total space. z is usually taken as a tiny number, such
as 0.03 [12]. The definitions of vb, vc, W , p, xb, xA, and xB
are shown in Eq. (1).

3) OSCILLATION
The slime moulds for the most part change the flow of cyto-
plasm in the vein by the propagation wave generated by the
biological vibrator so that it can be placed in a better food
concentration position. In order to simulate the changes in
the pulse width of slime bacteria, W , vb, and vc are used by
us to achieve these changes.

Mathematical methods are used to simulate the vibrational
frequencies of different food concentrations. vb is generated
in the range of [−a, a] randomly and approaches zero by
degrees with the increase of the number of iterations. vc is
in the range of [-1, 1] and finally reaches zero.

Algorithm 1 is the pseudo-code of SMA.

B. THE BASIC VERSION OF DE
DE based on genetic algorithms and other evolutionary
thoughts was proposed by Storn et al. [43] in 1997. The
primary process of DE consists of three steps, mutation,
crossover, and selection.
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Algorithm 1 Pseudo-Code of SMA
Initialization:maxiter,Dim, slimemould populationN, and each
slime mould position xi
While (t ≤ maxiter )

Calculate the fitness value of each slime mould.
Calculate and update BF and WF.
Update the global optimal position xbest .
Use Eq. (5) to update the value of weight W.
For each individual

Use Eq. (2) to update parameter p.
Use Eq. (3) to update parameter vb.
Use Eq. (4) to update parameter vc.
Use Eq. (7) to update the positions of the slime

mould.
End for
t + = 1

End while
Return BF, xbest

1) INITIALIZATION
We initialize the main population randomly in the search
space. For example, the jth individual in the ith dimension
is generated at first-generation (G = 0) and is obtained as
follows:

x0j,i = LBj + rand (0, 1)×
(
UBj − LBj

)
(8)

where UB and LB represent the upper and lower bounds of
the total space.

2) MUTATION OPERATION
The mutation vector of each generation is generated with the
following formula:

vGi = xGr1 + F ×
(
xGr2 − x

G
r3

)
(9)

where indicators r1, r2, and r3 are randomly chosen from
the main population [1, 2, . . . ,N ], which are not equal to i.
Storn et al. [43] mentioned that the range of F is
within [0, 2]. F is the control parameter of the proportional
vector. The following formulas are the other most commonly
used mutation strategies:

DE/best/1 : vGi = xGbest + F ×
(
xGr1 − x

G
r2

)
(10)

DE/best/2 : vGi = xGbest + F ×
(
xGr1 − x

G
r2

)
+F ×

(
xGr3 − x

G
r4

)
(11)

DE/rand/2 : vGi = xGr1 + F ×
(
xGr2 − x

G
r3

)
+F ×

(
xGr4 − x

G
r5

)
(12)

DE/current − to− best/1 : vGi = xGi + F ×
(
xGbest − x

G
i

)
+F ×

(
xGr1 − x

G
r2

)
(13)

DE/current − to− rand/1 : vGi = xGi + F ×
(
xGr1 − x

G
i

)
+F ×

(
xGr2 − x

G
r3

)
(14)

where r1, r2, r3, r4, and r5 are randomly chosen from the main
population [1, 2, . . . ,N ], which are not similar to index i.
xGbest is the best fitness value, and F is the control parameter
of the proportional vector.

3) CROSSOVER OPERATION
In this part, the target vector and the mutation vector are
mixed, and the following scheme is used to obtain the test
vector:

uGj,i =

{
vGj,i if

(
randj,i ≤ CR or j = jrand

)
xGj,i otherwise

(15)

where CR is the control crossing number, which controls
the probability of generating parameters from the mutation
vector.

4) SELECTION OPERATION
In this part, the greedy strategy is used to discuss whether to
choose uGi or xGi . If the fitness value of uGi is better, it will
be retained; otherwise, it will be replaced by xGi . The options
are as follows:

xG+1i =

{
uGi Fit

(
uGi
)
≤ Fit

(
xGi
)

xGi otherwise
(16)

C. CHAOTIC MAPS
Chaotic methods have various characteristics, such as ergod-
icity, randomness, and irregularity. Moreover, they are effi-
cacious initial dependency criteria [38], [39]. Due to the
different characteristics mentioned above, a chaotic map-
ping method composed of different equations is con-
structed to change random variables in optimization methods.
Wang et al. [44] called this process the Chaos Optimization
Algorithm (COA) [45]. The optimization type gives the inten-
sity traversal of the chaos theory. The optimization method
can effectively help the algorithm avoid premature maturity,
and at the same time, can speed up the convergence.

III. THE PROPOSED CHDESMA
This section mainly introduces the composition and struc-
ture of CHDESMA. In the traditional SMA algorithm, the
algorithm tends to fall into local optimization and cannot
maintain the balance between exploration and exploitation.
We hybridized the original SMA algorithm with a differential
evolution algorithm and introduced chaotic mapping to solve
these problems. In the early steps of the algorithm, we used
Logistic Map to initialize the population. In the whole opti-
mization process of the algorithm, we use the operators of DE
instead of the operators of the original SMA to improve the
local search capabilities of slimemould, increase the diversity
of the population and prevent CHDESMA from stagnating
prematurely.

A. CHAOTIC INITIALIZATION
Among the current chaotic search methods, logistic chaotic
mapping is widely used [46]. Due to its simple operation and
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good optimization performance, CHDESMA uses Logistic
Map to initialize the population to achieve acceleration in the
early steps of the algorithm. The formulation of the Logistic
Map is calculated by Eq. (17), and the pseudo-code of chaotic
initialization is shown in Algorithm 2.

xk+1 = a× xk
(
1− xk

)
(17)

where a is a real number (a = 4), k indicates the current
iteration, and xk represents the k th chaotic number.

Algorithm 2 Pseudo-Code of Chaotic Initialization
Generate variable xk according to the Logistic map shown in Eq. (17)
For i = 0 to N
For j = 0 to Dim
Xi,j = LBj + xki,j× (UBj - LBj)

End for
End for

B. USE THE OPERATORS OF DE TO UPDATE THE
POPULATION
The component mark CR controls the direction of explo-
ration and exploitation. We mixed the DE strategy in the
optimization process to enhance the local search ability of
slime mould. Each position of the slime mould is calculated
based on the following formula:

uGj,i =


vGj,i

if
(
randj,i ≤ CR or j = jrand

)
xGj,i + vb×

(
W × xGj,A − x

G
j,B

)
otherwise

(18)

where randj,i is a random number in the range of [0,1],
CR is the crossover probability, and parameterW is calculated
as follows:

W =



1+ r × log
(
BF − Fit (i)
BF −WF

+ 1
)

if rand < m

1− r × log
(
BF − Fit (i)
BF −WF

+ 1
)

otherwise

(19)

m =
t

maxiter
(20)

where maxiter is the maximum number of iterations and t is
the current iteration. The parameters BF andWF are the best
and worst solutions in the current iteration, respectively, and
Fit(i) represents the fitness of a current individual.
The formulation of parameter v is defined as follows:

vGi = xGr1 + vb×
(
xGr2 − x

G
r3

)
(21)

where r1, r2, and r3 are randomly chosen from the main
population [1, 2, . . . ,N ], which are not similar to index i. The
variable vb gradually tends to 0 with the algorithm proceeded,
and vb oscillates between [−a, a]. The values of vb and a are
shown in Eq. (3) and Eq. (4).

The main steps of the CHDESMA are shown in
Algorithm 3, and Figure 1 shows the flowchart of
CHDESMA.

Algorithm 3 Pseudo-Code of CHDESMA
Initialization:MAXFES,Dim, slimemould populationN, and the
crossover probability CR.
Chaotic initialize each slime mould position xi by algorithm 2.
While (FES ≤ MAXFES)

Calculate the fitness value of each slime mould.
Calculate and update BF and WF.
Update the global optimal position xbest .
Use Eq. (19) to update the parameter weight W.
For each individual

Use Eq. (4) to update the parameter vb.
if rand ≤ CR or rand = j // Update slime moulds

Use Eq. (21) to generate mutant vector v.
else

Use Eq. (18) to generate mutant vector u.
end if
ifFit(u) <= Fit(xi)

Use Eq. (18) to set xi to mutant vector u.
end if

End for
FES += N

End while
Return BF, xbest

C. COMPUTATIONAL COMPLEXITY OF CHDESMA
This section will analyze the computational complexity of
the newly proposed CHDESMA The computational com-
plexity of CHDESMA mainly depends on chaotic maps,
DE, and SMA. Among them, the number of slime molds
populations is N , the dimension is D, and the maximum
number of iterations is T. The computational complexity of
SMA is O(D + T × N × (logN + D)), the computational
complexity of DE is O(D + T × N × D), and the com-
putational complexity of chaotic maps is O(T × N × D).
Therefore, the computational complexity of CHDESMA is
O(D+T× N (3D+logN )), which is equal to O(T× N × D).

IV. EXPERIMENTS AND DISCUSSION
The performance of CHDESMA under different functions
is evaluated, and the data are analyzed. We set up three
sets of experimental schemes. The first experimental scheme
was carried out on 29 CEC2017 benchmark functions to
verify the effectiveness of the chaotic maps and DE strategy
used. The second experiment was to test the performance
of CHDESMA on 30 CEC2014 benchmark functions. The
experiment compared CHDESMA with published DE vari-
ants, which were composed of the latest DE variants and
recognized DE variants with better performance. In the third
experiment, in order to test the scalability of CHDESMA,
CHDESMA was compared with the advanced algorithms
in different dimensions. In addition, Wilcoxon rank-sum
test was used in each experiment to study the statistical
significance of the results. To further analyze the results,
the box diagram was used to show the dispersion of data.
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FIGURE 1. Flowchart of CHDESMA.

CHDESMA was used to solve four practical engineering
problems. For the sake of fairness, referring to [47], algo-
rithmic hyper parameters of all algorithms must be tuned in
the same manner on the selected problems. Therefore, the
parameters of the competition optimizer in all experiments
were based on the most appropriate parameter settings in the
published articles, as shown in Table 4. In this paper, the
maximum number of fitness evaluations (MAXFES) was set
to 10000 × D.

A. SYSTEM DETAILS
In this study, all the involved algorithms were tested using
python 3.9 under MacOS10.15, with Intel (R) Core (TM) i5
CPU @ 3.8 GHz, and with 16 GB of RAM.

B. VALIDITY OF CHAOTIC MAPS AND DE STRATEGIES
CHDESMA algorithm is mainly composed of chaotic maps,
DE strategy, and the original SMA algorithm. This section
aims to verify the effectiveness of the use of chaotic maps
and DE strategy. CHDESMA was compared with DESMA
(SMA algorithm with DE operator), CHSMA (SMA algo-
rithm with chaotic initialization), and SMA in Table 5. The
experiment was carried out on the 30-dimensional CEC2017
test suite. The population number was set to 30. For the sake
of fairness, each test functionwas run 30 times independently,

TABLE 4. Parameter settings of the involved algorithms.

and the average (Mean) and standard deviation (Std) were
taken. In addition, Table 5 shows the statistical results (S.R.)
obtained at the 5% significance level by Wilcoxon rank-
sum test. ‘‘−’’, ‘‘≈’’, and ‘‘+’’ respectively indicate that
the performance of competitors is poor, similar, and better
than CHDESMA.

As can be seen from the SMA variants in Table 5,
CHDESMA ranks first overall. The overall performance of
the CHSMA algorithm is better than the original SMA algo-
rithm, which shows that the chaotic maps method can effec-
tively increase the diversity of slime mold populations and
improve the performance of the original SMA algorithm. The
DESMA algorithm is better than the SMA algorithm, which
means that using the DE strategy can prevent SMA from
falling into the local optimal value and enable SMA to find the
global optimal solution. Wilcoxon rank-sum tests also show
that this improvement is statistically significant.

C. COMPARISON WITH DE VARIANTS ON CEC2014
In order to test the performance of the proposed CHDESMA,
CHDESMA was compared with DE variants in Table 6,
including adaptive guided DE (AGDE) [23], ensemble
sinusoidal differential covariance matrix adaptation with
Euclidean neighborhood (LSHADE_cnEpSi) (named as
LS_cnEpSi) [48], DE with strategy adaptation (SADE) [49],
composite differential evolution (CoDE) [50], hybrid SMA
with AGDE (SMA-AGDE) [22], modified BA hybridiz-
ing by DE (MBADE) [40], and JSO algorithm for solv-
ing single-objective real-parameter optimization problems
(JSO) [51]. The experiment was carried out on the
30-dimensional CEC2014 test suites. For the sake of fairness,
each test function was run 30 times independently. In addi-
tion, Table 6 shows the S.R. obtained at the 5% significance
level by the Wilcoxon rank-sum test.

It can be seen from Table 6 that among these DE variants,
CHDESMA ranks first. The results show that the CHDESMA
has reached the global optimum value on the F2, F3, F7, F8,
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TABLE 5. Experimental and statistical results of SMA variants on the 30-dimensional CEC2017 benchmark.
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TABLE 6. Experimental and statistical results of DE variants on the 30-dimensional CEC2014 benchmark functions.
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TABLE 7. Experimental and statistical results of advanced algorithms and CHDESMA on CEC2017 with different dimensions.
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TABLE 7. (Continued.) Experimental and statistical results of advanced algorithms and CHDESMA on CEC2017 with different dimensions.
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FIGURE 2. Convergence curves with DE variants on the 30-dimensional CEC2014 benchmark functions.

F15, F19, and F23 to F30, and the CHDESMA algorithm has
achieved minimum optimization on F9, F11, F16, and F22.
According to the Wilcoxon rank-sum test in Table 6, the
p-value of most functions is ≤0.05 (5% significance level),
so the experimental results are statistically significant for
the CEC2014 test suite, verifying that the performance of
CHDESMA is not random.

The convergence of CHDESMA and DE variants on
CEC2014 test suites is shown in Figure 2. It can be observed
that the CHDESMA converges faster than other advanced
algorithms in most cases. On F8, F9, F16, F24, F25, F27,
and F28, the convergence rate of CHDESMA is fast, and
CHDESMA has reached the global optimum on functions F2,

F3, F7, F8, F15, F19, and F23 to F30. On F11 F22 and F29,
the convergence rate of CHDESMA is not the fastest, but the
final optimization results of CHDESMA are much smaller
than other competitors. On F2, F15, F18 to F20, and F22, the
convergence speed of CHDESMA is relatively slow at the
beginning of the iteration. Still, as the number of iterations
increases, the final optimization result of CHDESMA ismuch
smaller than the competition. The chaotic maps method can
effectively increase the diversity of slime mold populations
and improve the performance of the original SMA algorithm,
and the DE strategy can prevent SMA from falling into the
local optimal value and enable SMA to find the global optimal
solution.
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FIGURE 3. Boxplots of CHDESMA and DE variants on the 30-dimensional CEC2014 benchmark functions.

The boxplots of the CHDESMAandDE variants are shown
in Figure 3. It can be seen from the distribution of the data that
inmost functions, the line shape of CHDESMA is narrow, and
the distribution of the data is relatively concentrated. Only
on F11, F14, and F16 the data of this algorithm is relatively
scattered.

D. SCALABILITY OF CHDESMA AND ADVANCED
ALGORITHMS
In this part, different dimensions (dim= 10, 30, 50, and 100)
are used to test the ductility of the proposed CHDESMA.
The test results are used to compare with the advanced

algorithms proposed on the CEC2017 test functions in
Table 7, including the CMA Evolution Strategy (CMAES)
[52], memory-based grey wolf optimizer (mGWO) [53],
modified Sine Cosine Algorithm (mSCA) [54], time-
varying hierarchical salp swarm algorithm (TVBSSA) [55],
modified global flower pollination algorithm (MGFPA)
[56], phasor particle swarm optimization (PPSO) [57] and
improved opposition-based whale optimization algorithm
(OBWOA) [58]. For the sake of fairness, each test function
was run 30 times independently. In addition, Table 7 shows
the S.R. obtained at the 5% significance level by Wilcoxon
rank-sum test.
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FIGURE 4. Convergence curves of CHDESMA and advanced algorithms on CEC2017 with different dimensions.

Table 7 shows the comparison and statistical results
between CHDESMA and the advanced algorithms with dif-
ferent dimensions. As shown in Table 7, CHDESMA ranks
first across different dimensions. For unimodal functions (F1
and F3), CHDESMA converges very quickly, and the qual-
ity of its solution is very high. For multi-modal functions,
CHDESMA performs better at higher dimensions. It is worth
noting that for composition functions (F21 to F30), the per-
formance of CHDESMA did not deteriorate seriously as the
dimension increased. These results indicate that the search-
ability of CHDESMA is effective. Moreover, CHDESMA
can avoid falling into local optimum, and the optimization
performance of solving high dimensional functions is strong.
The results of p-values in Table 7 show that the p-values
of CHDESMA on most functions are less than 0.05, which
suggests that the proposed algorithm has obvious advantages
over the other algorithms.

The convergence curves of CHDESMA and other
algorithms on CEC2017 test suites are shown in Figure 4.
In Figure 4, F1 and F3 are unimodal functions, F5, F8, F9, and
F10 are multi-modal functions, F16, F17, F19, and F20 are
hybrid functions, and F22, F24, F26, and F30 are composition
functions. The first row of the figure shows the results of the
involved algorithms on a 10-dimensional test set. The second
row displays the results of the 30-dimensional test set. The
third row represents the results of 50-dimensional benchmark
functions. The graph in the fourth row shows the results of the
100-dimensional test set.

It is not difficult to see from Figure 4 that of these
advanced algorithms, CHDESMA has the best optimization
effect. As shown in Figure 4, CHDESMA converges fast
and outperforms the other algorithms on most benchmark
functions. There is close competition among all algorithms in
dealing with hybrid functions (F16, F17, F19, and F20), but
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FIGURE 5. Boxplots of CHDESMA and advanced algorithms on CEC2017 with different dimensions.

CHDESMAcan find a better solution during the overall steps.
It is because the chaotic map method in CHDESMA can
increase the diversity of the population, and the DE strategy
can prevent SMA from falling into the local optimal value
and accelerate the algorithm’s convergence rate. All in all,
the experimental results of CHDESMA are superior to other
advanced algorithms.

The boxplots of the CHDESMAandDE variants are shown
in Figure 5. It can be seen from the distribution of the data that
inmost functions, the line shape of CHDESMA is narrow, and
the distribution of the data is relatively concentrated.

E. CHDESMA FOR ENGINEERING DESIGN PROBLEMS
The performance tested by the optimizer on engineer-
ing constraint problems shows the potential efficiency
in other types of problems. Therefore, engineering con-
straint problems are often used to verify the algorithm’s

performance [59]. This article uses the proposed CHDESMA
to solve four classic engineering design problems: TCSD,
WBD, PVD, and TBTD. The CHDESMA’s results were com-
pared to results obtained with SMA [12], ILSHADE [60],
JADE [61], JSO [51], LSHADE_cnEpSi [48], LSHADE [62],
SADE [49], SHADE [63], MPEDE [64], and mGWO [53].
The constrained optimization problem in the real world can be
represented by the following mathematical formulation [65].

Minimize, f (x̄) , x̄ = (x1, x2, . . . , xn)

Subject to : gi (x̄) ≤ 0, i = 1, . . . , n

hj (x̄) = 0, j = n+ 1, . . . , n (22)

In general, one equation constraint can be transformed into
two-equation constraints, as follows:∣∣hj (x̄)∣∣− ε ≤ 0, j = n+ 1, . . . ,m (23)

where ε is a small value (close to zero).
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FIGURE 6. Schematic of the TCSD problem.

The ranking of algorithms in the table is based
on the best value. The penalty function method is as
follows [66], [67]:

minφ (X) = f (x)+ λ
∑
c∈Nc

(max (0, gc (x)))2 (24)

where f (x) represents the objective function, and gc(x) repre-
sents its constraints. λ is the penalty coefficient, and Nc is the
number of constraints.

1) ENGINEERING PROBLEM 1 (TCSD)
The primary purpose of the TCSD problem is to obtain the
value of the minimum spring weight [68]. Therefore, the
following three parameters must be optimized in modeling:
average coil diameter (D), wire diameter (d), and effective
coil number (N ), as shown in Figure 6. The detailed descrip-
tion of the TCSD is shown in Appendix A.

Table 8 shows the best design solution for the TCSD
problem, and Table 9 summarizes the comparison results
between CHDESMA and other algorithms. CHDESMA has
the smallest value for the best solution to the TCSD problem
and ranks first for the worst solution and average value.
Therefore, the CHDESMA algorithm has good performance
and stability in solving the TCSD problem.

2) ENGINEERING PROBLEM (WBD)
The primary purpose of the WBD problem is to minimize
the economic cost [69]. There are the following four opti-
mization constraints parameters: the buckling load on the
rod (Pc), the end deflection of the beam (δ), the shear
stress (τ ), and the bending stress in the beam (θ). Reduc-
ing costs requires controlling the following four variables:
connecting steel bar length (l), weld thickness (h), steel
bar thickness (b), and steel bar height (t), as shown in
Figure 7. The detailed descriptions of the WBD are shown in
Appendix B.

Table 10 and Table 11 show the best design for the
WBD problem and the statistical results of the comparison
algorithms, respectively. It can be seen from these tables that
CHDESMA ranks first in the best value among all algo-
rithms. In addition, the worst solution and average value are
also the smallest. The SMA algorithm ranks second on the
WBD problem. Therefore, the performance of the proposed
CHDESMA in solving the WBD problem is better than the
original SMA and other competing optimizers.

FIGURE 7. Schematic of the WBD problem.

TABLE 8. The best design for TCSD problems.

TABLE 9. Comparison of optimization results for TCSD problems.

TABLE 10. The best design for WBD problems.

3) ENGINEERING PROBLEM (PVD)
The PVD problem’s primary purpose is to obtain the smallest
value of the total cost [70]. Economic cost calculation needs
to consider three factors welding, forming, and material.
To minimize the financial cost, four design variables need to
be constrained: head thickness (Th), thickness (Ts), container
cylindrical section length (L), and inner radius (R), as shown
in Figure 8. The detailed description of the PVD is shown
in Appendix C.
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TABLE 11. Comparison of optimization results for WBD problems.

TABLE 12. The best design for PVD problems.

TABLE 13. Comparison of optimization results for PVD problems.

Table 12 and Table 13 show the best design for the
PVD problem and the statistical results of the compari-
son algorithms, respectively. CHDESMA can find the best
optimization solution. But the statistical results show that
CHDESMA’s worst value and average ranking are both 9th,
indicating that CHDESMA does not find the best solution
every time.

4) ENGINEERING PROBLEM (TBTD)
The primary purpose of TBTD is to ensure that the volume
of the truss should be minimized under static pressure and to
meet the stress (σ ) constraints on each truss member. This
problem can be transformed into an optimal cross-sectional
area (x1, x2) problem, as shown in Figure 9. The detailed
description of the TBTD is shown in Appendix D.

Table 14 and Table 15 show the optimized design and
statistical results on the TBTD problem. CHDESMA gets
the best function value in this problem. However, ILSHADE,
JSO, SADE, and MPEDE rank first in the worst solution and

FIGURE 8. Schematic of the PVD problem.

FIGURE 9. Schematic of the TBTD problem.

TABLE 14. The best design for TBTD problems.

TABLE 15. Comparison of optimization results for TBTD problems.

average value. Therefore, CHDESMA has a close competi-
tive relationship with these DE variants.

F. DISCUSSION OF EXPERIMENTAL RESULTS
In the proposed algorithm, we mainly use two methods
(chaotic initialization and DE algorithm) to further improve
the performance of the original SMA. Chaotic initializa-
tion has been shown to improve the quality of the solu-
tion. However, it lacks robustness in dealing with various
problems, and the performance of the proposed algorithm
is not competitive when dealing with discrete problems.
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The DE algorithm shows good exploration capabilities, but
individuals easily fall into local optima as the iterations
proceed. From the effectiveness test of the components
(Section IV.B), the effectiveness of the chaotic maps and
DE components in CHDESMA can be confirmed. From
the statistical results of the CEC2014 and CEC2017 test
functions (Sections IV.C and IV.D), the proposed algorithm
CHDESMA shows excellent performance in dealing with
multimodal and mixed functions. However, the convergence
of the algorithm is not fast enough when dealing with uni-
modal functions. In general, CHDESMA is applicable tomul-
timodal and mixed functions, but not to unimodal functions.
It can be seen from the different dimensions (10, 30, 50,
and 100) that the higher the dimensionality, the better the
performance of CHDESMA compared to other competing
algorithms. From the statistical results (Section IV.E) of four
real-world engineering problems (TCSD, WBD, PVD, and
TBTD), the CHDESMA algorithm exhibits superior perfor-
mance and can better solve the four engineerings constrained
problems.

V. CONCLUSION
This paper proposes a hybrid SMA algorithm based on
Chaotic Maps and Differential Evolution. The proposed
CHDESMA introduces the Chaotic Maps strategy to accel-
erate the convergence in the initial iteration process. The
operators of differential evolution effectively avoid prema-
turely, enhance the local searchability, and avoid stagna-
tion in local optima. CHDESMA conducted three sets of
test experiments on the CEC2014 and CEC2017 bench-
mark functions. Experiments compared with DE variants
and advanced algorithms verify the effectiveness of the pro-
posed improved strategies, including SMA-AGDE,MBADE,
AGDE, LSHADE_cnEpSi, SADE, CoDE, JSO, CMAES,
mGWO, mSCA, TVBSSA, MGFPA, PPSO, and OBWOA.
In addition, CHDESMAwas used to solve four practical engi-
neering design problems. Experimental results and statistical
analysis show that CHDESMA algorithm is more suitable
for solving multi-model and hybrid function problems, and
CHDESMA performs well in high dimensions, which can
effectively solve global optimization problems and complex
engineering practical problems.

In future work, based on the advantages of CHDESMA,
we will apply CHDESMA to large-scale and high-
dimensional problems. CHDESMA can also be used for
multi-peaked complex optimization problems, such as con-
straint engineering optimization, photovoltaic design, and
other related problems. In addition, the binary version of the
variant can be further enhanced and used for feature selection.

APPENDIX A
TENSION/COMPRESSION SPRING DESIGN PROBLEM
(TCSD)
The mathematical model of the Tension/compression spring
design problem is as follows:

min f (x) =
(
2
√
2 x1 + x2

)
× l

subject to : g1 (x) =

√
2 x1 + x2

√
2 x21 + 2x1x2

p− σ ≤ 0

g2 (x) =
x2

√
2 x21 + 2x1x2

p− σ ≤ 0

g3 (x) =
1

√
2 x2 + x1

p− σ ≤ 0

0 ≤ xi ≤ 1, i = 1, 2

l = 100cm, p = 2kN/cm2, σ = 2kN/cm2

(25)

APPENDIX B
WELDED BEAM DESIGN PROBLEM (WBD)
The mathematical model of theWelded beam design problem
is as follows:

min f (x) = 1.1047x21x2 + 0.04811x3x4 (14.0+ x2)

subject to : g1 (x) = ι (x)− ιmax ≤ 0

g2 = σ (x)− σmax ≤ 0

g3 = x1 − x4 ≤ 0

g4 (x) = 0.1047x21 + 0.0481x3x4

× (14+ x2)− 5 ≤ 0

g5 (x) = 0.125− x1 ≤ 0

g6 (x) = δ (x)− δmax ≤ 0,

g7 (x) = P (x)− Pc (x) ≤ 0

0.1 ≤ xi ≤ 2, i = 1, 4, 0.1 ≤ xi ≤ 10,

i = 2, 3

ι (x) =

√
(ι′)2 + 2ι′ι′′

x2
2R
+ (ι′′)2,

ι′ =
p

√
2 x1x2

, ι′′ =
MR
j

M = P
(
L +

x2
2

)
,

R =

√
x22
4
+

(
x1 + x3

2

)2

Pc (x) =
4.013E
√

x23x
6
4

36

L2

(
1−

x3

2L

√
E
4G

)

J = 2

{
√
2 x1x2

[
x22
12
+

(
x1 + x3

2

)2
]}

σ (x) =
6PL

x4x23
, δ (x) =

4PL3

Ex33x4

P = 6000lb,L = 14in, e = 30× 106psi,

G = 12× 106psi

ιmax = 13, 600psi, σmax = 30, 000psi,

δmax = 0.25in (26)
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APPENDIX C
PRESSURE VESSEL DESIGN PROBLEM (PVD)
The mathematical model of the Pressure vessel design prob-
lem is as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x23

+ 3.1661x21x4 + 19.84x21x3

subject to : g1 (x) = −x1 + 0.0193x3 ≤ 0

g2 (x) = −x2 + 0.00954x3 ≤ 0

g3 (x) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

g4 (x) = x4 − 240 ≤ 0

0 ≤ xi ≤ 99 i = 1, 210 ≤ xi ≤ 200 i = 3, 4

(27)

APPENDIX D
THREE-BAR TRUSS DESIGN PROBLEM (TBTD)
The mathematical model of the Three-bar truss design prob-
lem is as follows:

min f (x) =
(
2
√
2 x21 + 2x1x2

)
∗ l

subject to : g1 (x) =

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g2 (x) =
x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g3 (x) =
1

√
2 x2 + x1

P− σ ≤ 0

0 ≤ xi ≤ 1 i = 1, 2 (28)
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