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ABSTRACT With the increasing stringent QoS constraints (e.g., latency, bandwidth, jitter) imposed by
novel applications (e.g., e-Health, autonomous vehicles, smart cities, etc.), as well as the rapidly increasing
number of connected IoT (Internet of Things) devices, the core network is becoming increasingly congested.
To cope with those constraints, Edge Computing (EC) is emerging as an innovative computing paradigm
that leverages Cloud computing and brings it closer to the customer. ‘‘EC’’ refers to transferring computing
power and intelligence from the central Cloud to the network’s Edge. With that, EC promotes the idea of
processing and caching data at the Edge, thus reducing network congestion and latency. This paper presents
a detailed, thorough, and well-structured assessment of Edge Computing and its enabling technologies.
Initially, we start by defining EC from the ground up, outlining its architectures and evolution from Cloudlets
to Multi-Access Edge Computing. Next, we survey recent studies on the main cornerstones of an EC
system, including resource management, computation offloading, data management, network management,
etc. Besides, we emphasized EC technology enablers, starting with Edge Intelligence, the branch of Artificial
Intelligence (AI) that integrates AI models at resource-constrained edge nodes with significant heterogeneity
and mobility. Then, moving on to 5G and its empowering technologies, we explored how EC and 5G
complement each other. After that, we studied virtualization and containerization as promising hosting
runtime for edge applications. Further to that, we delineated a variety of EC use-case scenarios, e.g., smart
cities, e-Health, military applications, etc. Finally, we concluded our survey by highlighting the role of EC
integration with future concerns regarding green energy and standardization.

INDEX TERMS Edge computing, cloud computing, fog computing, multi-access edge computing, edge
intelligence, 5G, containerization.

I. INTRODUCTION
In recent years, the number of connected devices has grown
tremendously, causing congestion issues that push to con-
sider handling more data at the network’s Edge. According
to Gartner [1], by 2025, 75% percent of data generated by
enterprises will be processed at the Edge rather than the
centralized Cloud. In addition to those network impracticabil-
ity constraints, EC promises to provide an excellent service
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(latency, throughput) that will encourage the evolution of this
revolutionary paradigm. As IBM pointed out [2], moving the
computing workload to the Edge will reduce data circulation
time from 20 ms to 10 ms.

The added value of EC offers tremendous market oppor-
tunities to multiple market participants, counting Cloud
providers, ISP (Internet service providers), and numerous
intermediate hardware and software companies. Based on
research done by Grand View Research [3], the EC market
is forecast to extend from 3.4$ US billions dollar in 2020 to
43.4$ US billions dollar in 2027, with a growth of 37.4 %
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FIGURE 1. Edge computing number of published papers in Google
Scholar [4], between 2010 to 2020.

percent each year. From a different perspective, EC has
attracted much attention from academia in the last ten years,
as evidenced by the exponential increase in published papers
on topics ranging from EC architectures to deployment chal-
lenges, orchestration platforms, EC use-cases, and related
technologies. Figure. 1 depicts the evolution in terms of the
number of EC papers published in Google Scholar [4].

In this effort, we present a survey on edge computing,
beginning with an explanation of the novel computing con-
cept and how EC can meet the growing demand for comput-
ing and memory resources with low latency communications,
as well as how EC can solve the rising privacy problems
associated with processing data at the cloud level. Alterna-
tively, the collaboration of numerous heterogeneous devices
at various levels of the network edge is what defines edge
computing. EC enables those resources to be efficiently man-
aged, scaled, and secured, allowing them to act as performing
hosts for workloads received from end devices.

Nevertheless, EC is associated with several innovative
technologies, notably the Internet of Things (IoT). Along
with the fifth-generation networks (5g), EC is a vital solution
for enabling the polarization of connected objects. More-
over, artificial intelligence (AI) and machine learning (ML)
technologies are becoming more prevalent in novel applica-
tions. Consequently, there is a growing need for computing
resources. Not only will EC address this requirement, but it
will also adapt AI models to the network edge environment,
promoting the idea of ‘‘Edge Intelligence.’’

A. SURVEY ORGANISATION
The following is a summary of the rest of the paper, section II
presents a definition of EC and a lecture study of the different
related EC surveys, plus it underscores our unique contri-
bution and novelty. Section III gives a brief history of the
evolution of EC from Cloudlets to Multi-access Edge Com-
puting (MEC)while also highlighting the differences in archi-
tectural design of each sub-EC concept. Further, Section IV
discussed the recent advancements made in EC main pillars,

counting resource management, computation offloading, data
management, network management, security and privacy,
and EC pricing & billing. Next, in section V, we exam-
ined the three major enabling technologies of EC, which
are Edge Intelligence, 5G, and Containerization, and in the
process, we demonstrated how these technologies are crucial
for EC’s success. Furthermore, in section VI, we presented
the various scenarios and use cases in which EC is proving
to be greatly useful, ranging from e-health to smart cities,
and from entertainment to military applications. Succeeding
that, in section VII, we discussed the future concerns facing
Edge Computing, such as standardization and efficient green
energy integration to EC. Lastly, in section VIII, we ended
our work with a conclusion paragraph.

Fig. 2 shows the survey structure and a map for assisting
the reader. Table 1 offers a helpful tool for defining the used
acronyms and abbreviations in the survey.

II. RELATED SURVEYS
A. EC: DEFINITION
There is no standard definition of EC, but many researchers
view EC as an abstracted computing paradigm that aims to
move cloud computing and storage capabilities to the network
edge near where the end-users reside. For two main reasons.
The first reason is to meet the current need for quality of
service (latency & bandwidth) imposed by the latest applica-
tions, and the second reason is to address the problem of core
network up-growing pressure. Additionally, there are some
notable definitions of edge computing, one of the first papers
to use the terminology ‘‘Edge Computing’’ is [5], within, the
authors do define the concept as ‘‘the enabling technology
that allows the computation to be performed at the edge of
the network, on downstream data on behalf of cloud services,
and upstream data on behalf of IoT services’’.

In order to completely comprehend the EC concept and
its functions, the following sections tackle the main two
questions in EC: where is the Edge located? Andwhat exactly
is the purpose of edge computing?

1) WHERE IS THE EDGE LOCATED?
As a term, the word ‘‘Edge’’ signifies the extreme part of any
given network. In the case of a telecommunications network,
it refers to the RAN (Radio Access networks) part. While in
the case of the data network (the Internet), the Edge or, more
precisely, the Edge Device (ED) is any extreme end-users or
IoT device (mobile phones, cars, smartwatches, etc.) [6].

However, In EC, the devices responsible for executing
computation tasks are referred to as Edge Servers (ESs) or
Edge nodes (ENs). Those computing devices can exist in
one hope or a few more from the edge devices. Nonetheless,
processing data at the Edgemeans typically handling it before
it crosses any WAN (Wide Area Networks), knowing that
passing through any WAN denotes a significant data transfer
delay. Supplementary, the nature of an Edge Server varies
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TABLE 1. Acronym table.
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FIGURE 2. The survey structure.

depending on the architecture and context in which it was
deployed.

2) WHY EDGE COMPUTING?
There are numerous benefits and drawbacks that drove the
need for a new computing paradigm known as Edge Comput-
ing, which we divide into two categories: QoS and necessity.
• Quality of Service (QoS) is one of the most important
characteristics of novel applications, and it consists of
two elements: low latency and high bandwidth. The
first element allows numerous novel applications (e.g.,
autonomous vehicles) to access cloud services with the
lowest response time. For the second element, the data

is transferred in shorter paths between the Edge and the
end-users, allowing for a higher bandwidth exchange
between EC servers and end-users.
Shortly, many industries, homes, and hospitals will
strive to own those performance requirements, and with
EC, they will be able to effectively receive them while
edge computing suppliers handle edge servers deploy-
ment and management.

• Necessity, due to the rapidly rising number of IoT
devices (tens of billions) and the limited bandwidth, the
more computing is performed locally, the better it is
for preserving the network capacity, thus the necessity
of Edge Computing. Further, another subject that does
raise much concern today is privacy. Many users and
companies are not self-insured about sending their data
to the far Cloud. Therefore, EC, with its ability to keep
the data close to where the users requested it, could
be the perfect solution for this issue. EC has also been
found in [7] to be more environmentally friendly than
the Cloud. The video analysis experiment showed that
computing at the Edge would reduce CO2 injection by
50% compared to the Cloud.

B. RELATED SURVEYS
In the past few years, several EC surveys have been pro-
posed. Table II outlines the most important ones of these
surveys, as well as the taxonomy of the topics they covered,
which includes the ECConcept and History, ECArchitecture,
EC Fundamentals, Enabling Technologies, Applications, and
EC Challenges & Future Concerns.

Further, based on the published time and the main focus
of the surveys, we divided the Edge Computing literature
surveys into three groups.

Studies from 2012 to 2016, such as [39] and [38] are
included in the first group; these reviews provided explana-
tions of the EC concept as well as its implications on issues
counting latency, bandwidth, privacy, etc.

Concerning the second group of surveys (2016-2020), the
surveys often focused on explaining and comparing different
EC architectures (MEC, FOG, Cloudlets, etc.). Moreover,
many of them had fully or partially addressed some of EC’s
main pillars, including computation offloading, managing
resources, managing data, and protecting confidential infor-
mation [34], [37].

Furthermore, with the extensive explorations of the EC
concept and its challenges, the number of publications also
started to rise dramatically, as Fig. 1 demonstrates. Along
with that, the road map of our targeted subject started to
expand, and its branches grew tremendously, to a point where
EC began to converge and touch other related technologies
(e,g, IoT, 5G, EI, etc.). As a result, most surveys in the third
group tend to focus on a single topic or a subbranch within
EC, such as the recent resource placement survey in [12],
resource scheduling in [13], or the work in [9] that cover
security and privacy issues in EC.
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TABLE 2. Related surveys table.

1) OUR CONTRIBUTION
In our work, we drew inspiration from the excellent EC
systematic mapping study built-in [40], recognizing the
need to fill the gap and produce a systematic lecture study
on the subject. We observe a lack of works covering
EC technology enablers since the few works covering EC
enabling technologies focused only on one enabling tech-
nology of EC. Based on our modest research, this is the
first work to provide coverage of all EC primary technology
enablers.

In order to distinguish ourselves from other similar sur-
veys, we emphasize our contribution and novelty in the items
below.

1) We present a complete and comprehensive Edge Com-
puting survey, covering most topics related to Edge
Computing.

2) We offer an essential and precise road map of EC, illus-
trating the concept’s main branches and subbranches.

3) We provide an in-depth and recent lecture study about
the advancementsmade in the various EC sub-domains.
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4) This work is the first detailed overview of EC enabling
technologies, showing how Edge Intelligence, 5G, and
Containerization empower this revolutionary comput-
ing paradigm.

III. HISTORY AND ARCHITECTURES: THE EVOLUTION OF
EDGE COMPUTING
The evolution of this computing paradigm has been carried
through several stages since 1997. As shown in Fig. 3, each
step influenced the concept directly or indirectly and changed
the way EC is conceived.

A. CONTENT DELIVERY NETWORKS (CDNs)
Content delivery networks (CDNs) were developed at MIT
by a group of researchers who were trying to solve the flash
crowd problem [41], where an individual server is unable
to serve a large number of requests. The MIT researchers
recommend replicating the content on numerous intelligently
spread edge servers. Hence, CDNs were the first technology
capable of delivering memory resources at the Edge of the
network [42].

In the last decade, CDNs usage has become increas-
ingly popular among website owners, who cache their files
(HTML, Images, Java-Scripts) at a CDN provider to offer
a better web experience to their users. Fig. 4 describes the
process of requesting content from a CDN provider.

B. CLOUDLETS
To get into the history of Edge Computing, one must first
understand its parents computing paradigms, pervasive com-
puting, and cloud computing [43]. Pervasive or ubiquitous
computing inspires the idea of making computations accessi-
ble everywhere, where clients can access capable computers
from any place and at any timestamp. Motivated by the
ubiquitous concept, the Cloud Computing (CC) framework
developed as a modern worldview that conveys computing
and memory resources on a pay-as-you-consume premise.
It makes computing assets a service instead of a product [44].
In 2006, CC got prevalent with AMAZON’s ‘‘Elastic Com-
pute.’’ CC solidifies numerous heterogeneous servers for pro-
viding infrastructure as a service (IaaS), platform as a service
(PaaS), and software as a service (SaaS), all in an adaptable
and versatile design.

However, on the other hand, CC lacked one critical per-
formance indicator: latency. Because centralized data centers
were so far from the end-users, they could not guarantee
short communication delays. In response to this urge, in 2009,
Microsoft proposed Cloudlets [45], a concept in which
Cloud users can request computing resources from micro-
datacenters (from one to forty servers) called Cloudlets,
which are widespread small data centers with virtualized
infrastructure located closer to the end-users, thus offering
low latency connection between them and Cloud users. In that
process, with Cloudlets computing, users can request cached
content like in CDNs, offload computation tasks to cloudlets,
and, most importantly, get a response in a few milliseconds

(� Cloud WAN) [8]. Over the next few years, Cloudlets
will be renamed afterward to edge servers as a computing
component of EC.

C. FOG COMPUTING
The origin of fog computing is traced back to Cisco vision,
a company that served as a bridge between the end-users
and the Cloud. It saw an opportunity in 2012 to intro-
duce a new computing paradigm known as FOG Computing
(FC) [46]. FC aims to provide a continuous computing capa-
bility between IoT devices and the Cloud. FC is established
on collaboration between multiple heterogeneous devices
known as fog nodes [47]. Those devices may exist at different
levels of the network (e.g., switches, commodities, servers,
micro-data centers, etc.). Fig. 5 shows the fog computing
paradigm’s architecture and its computing elements. The fog
computing paradigm differs from Cloudlets because it does
not consider fog nodes as isolated devices but as part of a pool
of computing resources that can be extended to the Cloud.
Among Fog Computing’s keywords is ‘‘Orchestration’’ [48],
which is the essential mechanism responsible for automating
and managing fog resources across multiple network levels.

Besides that, FC does require serious cooperation between
different network and cloud provider entities, this lack of col-
laboration was the reason why two years later, Cisco canceled
the fog computing project [49], as the workload was toomuch
for Cisco to handle on its own. Additionally, as described
in [50], there are two types of fog computing architectures, the
hierarchical architecture, where nodes from different network
layers can collaborate to perform tasks together, and the flat
architecture, where nodes from the same layer join forces to
perform fog computing.

D. MOBILE EDGE COMPUTING
From an alternative viewpoint, integrating rich computation
capabilities into mobile devices has always been a significant
concern, especially since the emergence of smartphones and
their associated sophisticated applications (>2013). Those
new requirements led to the creation of Mobile Cloud Com-
puting (MCC), a computing model that extends CC capabili-
ties to mobile applications [51]. In MCC, mobile applications
can offload some of their intensive workloads to the Cloud
for processing. However, this is no longer sufficient with the
new imposed real-time communication restriction of mobile
applications, plus the number of mobile devices has increased
considerably, causing severe congestion in the core network.

Following those circumstances, in 2014, ETSI (European
Telecommunications Standards Institute) and Industry Spec-
ification Group (ISG) proposed Mobile Edge Computing
(MEC), ‘‘a computing paradigm that provides IT and cloud
capabilities within the Radio Access Networks (RANs),
in close proximity to mobile subscribers’’ [52]. Computing
Nodes in Mobile Edge Computing are called Small Cell
Clouds (SCC), which are servers used to enhance small net-
work cells (SCeNBs), counting microcells, picocells, or fem-
tocells. The idea of adding computation to RAN was first
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FIGURE 3. Edge computing evolution chronograph.

FIGURE 4. The steps of requesting a content in a CDNs.

proposed in 2012 by the European project TROPIC [36].
However, inMEC, those computing components are extended
to host different edge applications. In addition, in 2014, Nokia
and China Mobile performed a successful MEC test at a car
race stadium, where 17000 users were connected to 95 LTE
small cells receiving HD video from MEC servers [53].

E. MULTI-ACCESS EDGE COMPUTING
At MEC World Congress in 2016, the European Telecom-
munications Standards Institute (ETSI) officially changed its
MEC name from Mobile Edge Computing to Multi-Access
Edge Computing. Considering the enlargement of connected
devices that are not mobile devices, ESTI decided to focus
more on integrating MEC resources to non-cellular net-
works (WiFi) and fixed networks (physical cables) [54].
Fig. 6 represents a basic MEC architecture, where the MEC
resources are accessed from different types of networks (Cel-
lular, non-cellular and Fixed).

After the expansion, MEC can be deployed at various
places in RAN [21], listed in the following:
• Base stations, including mobile base stations, cell tow-
ers, central office base stations.

• WiFi access points.

FIGURE 5. The different EC network levels.

• Radio Network Controller (RNC).
• Cable Modem Termination Systems (CMTS) in the case
of fixed networks.

• PON OLT (Optical Cable Unit) for fiber, or the access
points for other networks such as Zigbee, LoRa (Long
Range), private LTE, etc.

F. OTHER HONORABLE RELATED COMPUTING
PARADIGMS
Besides Cloudlets, Fog, and MEC, and in the sub-sections
below, we discussed other relevant and notable distributed
Edge Computing concepts and architectures

1) MIST COMPUTING
Mist computing is a computing paradigm that exploits the
participation of multiple extreme edge components (such as
Micro-controllers, mobile devices, sensors, etc.) to provide a
computing platform that is based on the IoT devices them-
selves without relying on outsider computing nodes located
at the Edge, Fog, or Cloud level [55].

2) DEW COMPUTING
Dew computing is a computation concept that was introduced
in 2015 [56]. Dew computing focuses on the formation of
a collaborative link between Cloud Computing components
and end-personal computing devices. This collaboration
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FIGURE 6. 5G-multi-access edge computing architecture.

allows resources to migrate between the two components
depending on the network conditions.

3) OSMOTIC COMPUTING
Osmotic computing is a new computing archetype that sup-
ports the efficient execution of Internet of Things (IoT) ser-
vices at the network edge. This paradigm is founded on
the need to couple microservices deployed at the Edge with
those services running on large skill data centers [57]. If the
consolidation of multiple data centers creates CC, Osmotic
Computing is characterized by connecting the Cloud, the
Fog, and the Edge for the seamless and free microservices
movement between them.

G. USE-CASES ORIENTED COMPUTING PARADIGMS
It is widely regarded that edge computing architectures like
Cloudlets,MEC, and Fog, can serve awide range of end-users
using various computing resources. Nonetheless, there are
other use-cases-oriented architectures in the literature. Those
architectures are based on scenarios in which there are
specifications on the type of edge nodes and the nature
of end-users. For example, the following is a list of EC’s
application-oriented computing paradigms shown in Fig. 5.
• VEC (Vehicular Edge Computing) [58], in VEC, con-
nected vehicles along with a group of computing units
called RSUs (Road Side Units) collaborate to offer EC
services primarily for improving the vehicular road sys-
tem, making it more intelligent and safer.

• OEC (Orbital or Satellite Edge Computing) [59]: is a
research area aimed at equipping satellites with com-
puting power. Within, satellites utilize their collabora-
tive coverage and one-hop connection with end-users to
deliver EC services.

• ‘‘UAV-EC’’ (Unmanned Ariel Vehicle Edge Comput-
ing) [60]: is a concept in which a collection of unmanned

FIGURE 7. The different EC application oriented-architecture.

aerial vehicles (UAVs) swarm over a region to cover cus-
tomers’ needs for computing resources with low latency
connections.

• Robotics Edge Computing [61]: is a field that entails
the merging of different robotic/industrial resources to
enhance production processes and robot-human interac-
tions.

In the following chapters of our survey, if the type of EC
architecture is not specified, we will refer to any node in Fog,
MEC, or Cloudlets as an edge server or an edge node.

IV. EDGE COMPUTING FUNDAMENTALS
A. RESOURCE MANAGEMENT
The task of resource management is the act of providing the
right and comfortable scale of edge resources (CPU, memory,
I/O) to any requesting edge application while also optimizing
the usage of the exciting pool of resources. In CC, a good
resource management strategy gives the cloud provider a
flexible and efficient way to manage his IT resources, making
it an essential element of any successful cloud business. The
management of resources is one of the essential pillars in
EC, as it represents the ability that enables the consolida-
tion of multiple dynamic, heterogeneous, and dispersed edge
nodes [62].

Resource management can be broken down into many con-
nected phases, as shown in Figure 6, including generating and
distributing a pool of resources, monitoring those resources
and provisioning them ahead of time, and lastly, allocating
those resources to forthcoming demands.
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FIGURE 8. Resource management elements in edge computing.

1) RESOURCE ALLOCATION & SCHEDULING
Allocating or scheduling resources entails assigning each
upcoming workload to the best and most appropriate edge
server (physical or virtual) to host it. Since QoS is a critical
differentiator between the Edge and the Cloud, knowing the
exact quantity and quality of resources to allocate for a pend-
ing request is critical to the success of Edge Computing [13].
In EC, resource scheduling is a complex function because
there are numerous factors and conditions to consider. Some
of those are discussed further below:
� Cost-driven, in resource scheduling, one of the goals is

to reduce computation and bandwidth costs while main-
taining the required response time. Numerous studies
have been conducted to achieve a reasonable balance
between reducing the consumed energy and minimizing
the latency, [63] and [64] are some of them.

� Crowd management, whenever a workload is mapped
to the closed-edge resources, it must be aware of the
load percentage of nearby edge devices. Therefore, over-
crowding a specific host can be avoided [65]. Addition-
ally, busty requests are one of the overloading issues that
may affect a particular server or a region. The effort [66]
provides a collaborative edge-to-edge method to address
the issue of busy requests, in which the authors recom-
mend dispersing requests to other surrounding nodes or
regions.

� Dynamic demand, applications, and services at the Edge
are often characterized by dynamic changes in the quan-
tity and quality of resources they require over time and
space. Thus, the scheduler should take these changes
into account and recalculate and adjust the allocated
resource dynamically in order to avoid any degrada-
tion of QoS or under-utilization of resources [67]. The
mobile augmented reality applications provide an excel-
lent example of resource demand fluctuation [68].

� Priorities, EC Environments feature concurrency, where
many users are fighting over a spot in an edge node.

In this case, the scheduler should be as fair as possible
with all users’ requests. The study in [69] compares dif-
ferent scheduling algorithms according to different pri-
orities (for instance, the first coming, the type of client,
the nature of the task, etc.). As an example, analytical
queries follow a type of scheduling selection based on
the type of the tasks. Within, the tasks assigner prioritize
edge nodes with the most relevant data statistics for
receiving the analytical tasks [70].

� Agile learning, based on its past scheduling perfor-
mance, the resource allocation optimizer can learn to
make better decisions in the future, as demonstrated in
the platform Deft [71]. Alternatively, predicting upcom-
ing workloads in the space-time continuum provides the
edge scheduler with valuable information on which to
base his future-aware scheduling decisions. Regression
models [72], LSTM [73], and Bayesian learning [74] are
among machine learning models that have been used in
literature for predicting upcoming workloads.

� Fault-tolerance, because edge nodes can lose power
or connectivity at any time, offering backup copies of
any scheduled application would improve the overall
fault-tolerance of EC services [75]. Another reason for
duplicating service instances on several edge servers
is to avoid software multi-tenancy architecture [76],
in which one server serves numerous users; this might
result in a significant reduction in data throughput, hence
violating the EC latency requirement.

2) RESOURCE PLACEMENT AND MIGRATION
The placement of resources refers to designing and engi-
neering the optimal distributing strategy of physical and vir-
tual edge servers. Since edge/fog computing is still in its
infancy in terms of real-world deployment, many contem-
porary studies are now attempting to determine what is the
best placement strategy for edge nodes, taking into account
a variety of criteria (latency, reliability, user preferences),
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and considering a variety of scenarios (metropolitan network,
vehicular network, etc.).

People and companies in metropolitan areas can utilize EC
for their computation and memory needs. In this scenario,
edge nodes are dispersed in a similar way to antennas, which
means that as the density of a region increases, more edge
servers are needed to satisfy demand [77].Meanwhile, a more
precise approach is to consider not only the number of users
in a region but also the degree towhich the end-users are inter-
ested in using latency-aware applications [78]. Moreover,
in the case of multi-access edge computing, MEC servers are
distributed around cells. In practice, it is advisable that when
two or more users from different cells interact (play virtual
reality games together, stream with each other), they should
be served by the same MEC server to avoid a third-party
aggregation server, which typically exists in the cloud [79].

Further, many researchers suggest placing edge servers
as close as possible to access points to minimize latency.
However, this approach raises concerns about spending
CAPEX (capital) and OPEX (operational) funds. In reme-
dying those costs, the authors of [80] investigated the best
balance between QoS offering and cost reduction in 5G-MEC
servers placement.

Furthermore, an important criterion to take into consid-
eration when distributing edge resources is robustness [81].
This last is defined as the ability of a system to survive
or function normally despite multiple edge nodes failing or
being attacked. The resource distribution must be robust so
that if an edge node dies, there should be another one in that
region that can replace him. Depending on budget constraints,
this placement approachmay compromise users’ coverage for
failure resilience [82]. Additionally, another safety factor to
consider when placing edge resources is uncertain or unex-
pected workload handling. To address this issue, the authors
of [80] suggested learning about workload patterns before
deciding on edge server placement strategies.

Besides physical resource placement, virtual machine
placement is equally important. A simple technique to
arrange VMs is to use fewer physical edge servers to place as
many VMs (virtual machines) as possible in a few physical
edge servers to minimize the number of active servers and
therefore reduce the consumed energy [83]. However, this
approach can create more congestion on the network because
this procedure will lead to more VM migrating to follow
widespread demand and users’ mobility [84].

In addition to resource placement, resource migration is
a key mechanism for balancing the load on edge nodes
and accommodating the mobility challenges that exist in
EC. When migrating VMs, the researchers in [85] propose
using artificial intelligence models to predict user mobil-
ity, allowing VMs to migrate proactively before new work-
loads arrive. In addition, the following are the main three
items to be considered when VMs are migrated with user
mobility:
• The handover effect, one technique to lessen the fre-
quency of this effect in a VEC situation is to apply an

intelligent server placement strategy, in which vehicle
resources are transferred based on the user’s movements,
thereby enhancing resource availability [86].

• The task deadlines and workload should not just be
shifted to the closest server but also to the strongest one
that can help maintain the deadlines [87].

• The cost of migration, the edge service provider should
study the users’ paths to place services in a way that
reduces the overall communication costs [88].

3) RESOURCE PROVISIONING
Resources provisioning is the technology that binds the quan-
tity and quality of resources with users’ desired quality of
service. In EC, provisioning resources requires planning,
estimating, and pooling the necessary amount of physical
and virtual machines, along with their exact customization
in terms of processor, memory, and network interfaces, all
before they are passed to the scheduler to be used by the
upcoming request [89].

However, unlike Cloud Computing, in which the costs of
the resources are likely to stay steady, the edge environment
is well known for its spatial-temporal variation in prices;
thereby, resource provisioning actions must meet the recent
changes and better balance the QoS with the costs [90].
A good example of spatial changes can be seen in the case
of vehicular edge computing, where resources should be pro-
visioned according to traffic [91]. To illustrate the importance
of resource provisioning, consider the case of an edge appli-
cation provider that rents servers from an edge infrastructure
provider (EIP). In renting edge infrastructure, on one side,
an over-provisioning case can result in a loss of energy and
money. On the other side, an under-provisioning case can
have a destructive impact on the offered QoS and will also
result in a variety of overflow accidents [92]. Therefore,
resource planning is highly dependent on knowing the avail-
able budget while estimating the demand by understanding
edge client behavior patterns [93]. Additionally, an EIP may
run out of resources in some locations or at certain times.
To overcome these constraints, collaborative resource pro-
visioning across various EIPs can make edge services avail-
able everywhere [94]. Another option for dealing with edge
infrastructure constraints is to employ public cloud backup
services [95], which can keep an application running even if
the edge infrastructure runs out of capacity.

Furthermore, the resource provisioning strategy must be
aware of the preparedness of resources. In fog/edge, nodes
are characterized by high variability in terms of connectivity
and availability. Given that, a continuous resource monitoring
technique should be adopted [96], within which the alive-
ness and readiness of edge nodes are predicted by analyzing
parameters such as the battery level, the movement patterns
of edge nodes, etc. The monitoring of resources is conducted
by a group of edge nodes that aggregate information about
the states of the surrounding ENs [97]. One of the resource
monitoring techniques is overlay gossip [98], which is widely
used in wireless mesh networks [99], where a set of nodes
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distribute data to the whole network without overloading
the system, and the nodes’ correct reaction to that data is
interpreted as a sign of their aliveness.

4) RESOURCE POOLING
Creating a pool of resources that can be provisioned or sched-
uled according to the coming requests is known as resource
pooling. Resources pooling aims to group heterogeneous
edge nodes and arrange them into a coherent community
by allowing them to interact and use each other resources
(computation & networking) [100].

One of the ways of creating a sufficient pool of resources is
to encourage multiple edge infrastructure providers (EIPs) to
collaborate. In light of that, the work [101] proposes a game
theory cooperative approach. The game’s goal is to reduce
the overall service latency by creating a coalition of multiple
EIPs and rewarding the coalition members based on their
contributions. Besides EIP/EIP collaboration, a MEC/Cloud
collaborative was explored by [102], where theMECprovider
could buy resources from the Cloud when he had an over-
abundance demand. In the counterpart, the cloud provider
could buyMEC resources to offer premium QoS to his client.
Also, resource sharing is crucial for some edge computing
architectures, for example, vehicular edge computing (VEC),
where there is always a need for portal vehicles to lease their
resource for the benefit of all, as they are being rewarded in
return [237].

In Fog Computing, resource discovery and selection mech-
anisms need to be implemented to create a pool of resources
from the massive Edge heterogeneous nodes. Resource dis-
covery or node discovery helps locate new resources and
add them successfully to the pool [104]. The thesis [105]
is an excellent work that covers discovering fog nodes in
the surrounding using customized WiFi beacons techniques.
Another way to discover fog nodes is to provide them with a
metadata description that makes them known to the other fog
nodes [106].

B. COMPUTATION OFFLOADING
Computation offloading is a branch in computer science
that deals with whether to run a process locally or send
it to be processed by a commodity server outside. Com-
putational offloading gained popularity with the rise of
mobile cloud computing [51]. An incapacitated mobile
device always requires more resources to run sophisticated
applications, like Google Assistant or Apple Siri. As a
result, those voice recognition tasks are offloaded to the
Cloud.

Nevertheless, as interest in edge computing has grown, the
question of offloading has become more prevalent than ever,
as well as it did take on new forms. With EC, offloading
is not only vertical or unidirectional but also horizontal,
from IoT device to IoT device, from the edge server to edge
server, and from any IoT or end device to any destination
server in the continuum mist-fog-cloud. In [107], the authors
presented a literature review answer to the central questions

in computation offloading, which are: When and where to
offload? And according to what measurement should the
decision be taken? In that, offloading entails selecting appro-
priate resources, filtering them, and deciding which ones are
the most suitable for that giving task [108].

EC recognizes four types of offloading directions, listed
below:

• End-device-to-End-device, End devices close to one
another can collaborate, as IoT and end-user devices are
becoming more powerful. Tasks are executed locally if
possible or forwarded to light-loaded collaborative IoT
devices in the surrounding [109].

• End-device-to-Cloud, because not all tasks are time-
sensitive, incorporating the Cloud into the offload-
ing equation can significantly increase the system
capacity [110].

• End-device-to-Edge-to-Cloud, also known as hierar-
chical offloading [111], is a technique in which an
end-device sends requests to the most appropriate edge
servers, and the ES makes the decision on which parts to
execute and which to offload to the Cloud.

• Vertical and horizontal offloading, end-devices can
simultaneously transfer tasks vertically (to edge/fog/
cloud) and horizontally (to neighboring nodes). This
offloading type is well illustrated in VEC (Vehicular
Edge Computing) [112].

The following sections examine the different aspects that
can influence the offloading choice, ranging from task study-
ing to the decision-making process to various used offloading
algorithms.

1) WORKLOAD STUDYING
Before a task can be offloaded, it must first be understood
and studied. Almost any task can be represented as a DAG
(Direct Acyclic Graph) with multiple interdependent sub-
tasks (see Fig. 9). Given the limited resources of edge nodes,
effective task partitioning methods are highly valued in EC.
The ultimate goal of task partitioning is to reduce the main
task executing latency [113], which can be accomplished
by creating as many parallel subtasks as possible. However,
reducing latency in task partitioning should be accompanied
by lowering communication costs, as distributing subtasks
on many edge nodes may cause network congestion, as well
as an increase in the probability of bits errors in the data
transmission process [114].

Besides, while most theoretical studies assume that the
complexity of a task is known, in practice, it is usually
unknown before the task is executed. Consequently, the
offloading brain should always estimate the runtime of
each task before carrying it [115]. Additionally, because
tasks are divided into interdependent subtasks, the offload-
ing process should take those dependencies into account
to reduce transfer delays between subtasks, as well as to
give priority to subtasks that are required to complete other
subtasks [116].
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FIGURE 9. A task divided into a DAG, the result of both executing C and D
is required to run the subtask D in a Raspberry pi.

2) DECISION MAKING
Making the correct offloading decision is a complex problem,
and it should only be opted for if necessary since sending
requests to the edge/cloud can cause transfer delays. When
offloading a deep learning inference task, the effort [117]
recommends employing an intermediate layer to measure the
accuracy of a neural network (NN), where the authors suggest
to stake to it if it is larger than a threshold, else send the rest
of the NN to the Cloud to be processed by a more extensive
neural network. Similarly, the reference [118] proposes using
an estimator to determine whether a small NN was sufficient
or a larger one was required. Meanwhile, when outsourcing
a NN inference to the Edge, the decision should be taken
when the NN is at a layer with a small number of neurons
to reduce data transfer costs [119]. Moreover, one of the
criteria that influences the offloading decision in the network
environment is sending packages to congested networks may
add extra delays to the EC tasks [120]. Within, using data
compression techniques can help reduce network congestion
when offloading [121], although they may add extra latency
charges due to compression and decompression delays.

Generally, one of the most challenging aspects of FC
is dealing with uncertainties when the system operates in
a black-box environment. The task offloading assigner is
unaware of the computing capabilities of the surrounding fog
nodes. In that scenario, [122] proposes a Coded Computing
approach based on the map-reduce model [123], which splits
jobs into sub-jobs, each of which is sent to multiple edge
servers, with the first completed replica of a sub-job being
the only one taken into account, preventing the system from
encountering some slow or untrustworthy servers. Addition-
ally, [124] discusses another study that aimed to perform well
in those uncertain environments (unknown state of nodes,
lack of feedback from the environment), where a reinforce-
ment learning approach was used to learn to adapt to those
uncertainties.

Computation offloading can benefit significantly from
resource monitoring, knowing that without a resource
orchestrator that tracks, detects, and selects the appropriate
quantity of resources, the offloading decision will remain
unidirectional and unaware of dynamic changes in resource
pool [125]. In that process, several efforts focus on join-
ing computation offloading with resource scheduling [126].

FIGURE 10. Computation offloading algorithms diagram.

Meanwhile, the offloading decision-maker is responsible not
only for improving performance but also for maintaining
system stability [127]. This stability is measured by the queue
state of the multiple edge nodes that receive workload; when
a receiving queue of an edge node is exhausted (hectic or
converging to a situation where received tasks cannot be
organized), the assigner must bypass those types of nodes.

Furthermore, the quality of experience (QoE) is a crucial
criterion that needs to be addressed in offloading decision-
making process. For example, offloading a video stream job
is assessed by the low latency and high throughput that an
Edge Service Provider (ESP) can supply [128]. One of the
approaches used to increase user QoE is predictive work-
load [129]. Many edge-enabled apps use predictive informa-
tion about upcoming workloads to perform parts of their tasks
even before the user asks for them.

3) OFFLOADING ALGORITHMS
When taking the offloading decision, many mathematical
algorithms and methods have been proposed in the litera-
ture [12]; we highlighted them in the diagram Fig. 10.

C. DATA MANAGEMENT
The act of acquiring, storing, distributing, and using data is
referred to as data management. Data management aims to
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FIGURE 11. Data management keywords.

assist edge nodes in placing, sharing, analyzing, and retriev-
ing data from one another to make decisions and take actions
that maximize their overall utility while minimizing the end-
to-end latency. However, data management in EC is more
complicated than it is in CC. This difficulty is due to the large
number of heterogeneous and widely distributed edge nodes
that can adhere to any spatial topology distribution.

As a result of reviewing various and recent research related
to data management in EC, we listed several keywords and
terminologies related to data management in Fig. 11.

1) CONTENT CACHING
Content replication, also known as content caching, is an old
and essential concept that encapsulates the idea of deliver-
ing content close to where the user requested it. In content
caching, several servers were installed at the network’s Edge,
creating what is referred to as a CDN (content delivery net-
work) [42]. Further, caching content aims to optimize cache
hit reward, measured by the number of times users request
data stored on edge servers while lowering the cost of using
those servers [130]. The caching problem is modeled as a
multi-objective optimization problem with many parameters,
as illustrated in Table III. This problem is difficult to solve in
general. However, it can be approximated to a single objective
optimization problem by considering the costs as constraints
or by employing extra weight variables to control the opti-
mization preferences between the rewards and the costs.

In Edge Computing, the main two factors that influence the
caching policy are content popularity and edge environment
capacity.

In an edge environment, ENs are defined by memory and
connectivity constraints. As a result, the caching policy at the
Edge should consider load balancing among different edge
servers to improve fairness in terms of exploitation and avoid
exhausting a single node, or a group of nodes [131]. Addi-
tionally, when deciding on a caching policy for MEC-based
caching, it is critical to consider the connectivity capabili-
ties of base stations as well as bandwidth limitations [132].
Another capacity criterion is stability. In [133], the cache hit

TABLE 3. Caching parameters in edge computing.

and system stability is optimized concurrently to maximize
cache capacity and improve the overall system robustness.

Moreover, there is no doubt that the rewards obtained
from cache hits are directly proportional to content popu-
larity. Therefore, many recent studies have focused on pre-
dicting the popularity of content using machine learning
and deep learning models. Some of those studies include
K-mean [134], GRU (Gated Recurrent Unit) [135], and rein-
forcement learning methods like the Multi-armed bandit that
balance data exploration in finding the liked content with data
exploitation in caching the in-demand content [136].

In the last 20 years, the telecommunication industry has
grown tremendously, and one of the main reasons for its
success is infrastructure sharing [137]. As a result of this
collaboration, mobile users enjoyed a better QoE, and the
mobile infrastructure was exploited to its full potential. Simi-
larly, MEC researchers have begun studying the possibility of
sharingMEC infrastructure between differentMEC providers
(Fig. 12 depicts a simple architecture for a MEC providers’
data caching collaboration). In this collaborative caching sce-
nario, a MEC provider’s added value is the cache hit gained
from serving users subscribed to other MEC providers [138].

2) DATA DISSEMINATION
Data dissemination, or data circulation, is a fundamental
element of the Internet of Things domain. Considering the
case of wireless sensor networks (WSNs), [139], wherein a
massive amount of data is generated each second, finding the
best strategy to circulate data between the Edge and the Cloud
is a challenging task. On the one hand, the strategy should
avoid crowding the network. A solution to that is presented
in [140], in which the authors introduce a new broadcasting
protocol that uses neighbor knowledge around each EN to
prevent redundant broadcasting. Alternatively, on the other
hand, if the circulating data is an emergency one, it should
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FIGURE 12. Sharing MEC infrastructure between multiple mobile
operators.

be kept away from overcrowded parts of the network [141].
Supplementary data disseminated at the Edge must also avoid
packet loss, for which thework [142] envisions a parallel push
technique.

One of the fundamental aims of data dissemination is to
maintain data availability, which is especially important when
edge nodes enter and leave the network at any moment and
intermittent wireless connections are the norm. In response
to these circumstances, [142] proposed a strategy for reg-
ulating data transmission in fog computing using epidemic
models. In addition, network stability is another goal of data
dissemination. For example, in an Internet of Vehicles (IoV)
scenario, according to the study in [143], the disseminated
data between vehicles should use a restricted number of hops
before being transferred to a roadside unit to ensure stability.

3) DATA STREAMING
As of 2020, video streaming accounted for 71% of all down-
stream traffic according to Comcast Cable [144]. Just on
Twitch, 17 billion hours of live streams have been viewed.
As a result, streaming is now more prominent than ever.
Currently, hierarchical streaming from the Cloud to the Edge
and then from the Edge to the covered users is the most
popular architecture, particularly in companies like Netflix,
which have as a primary goal the prevention of central servers
from becoming bottlenecks [145].

In edge data streaming, users’ QoE(Quality of Experience)
is influenced by video quality (high, medium, low), latency,
and bit rate variance. In [146], the authors present Elephanta,

an adaptive bit rate algorithm that adapts to the end user’s
preferences regarding average bit rate, rebuffering, switch-
ing, and buffer occupancy to select the appropriate bit rate.
Likewise, to avoid the video flicker effect caused by changes
in video bit rate, and in the context of vehicle fog comput-
ing (VFC), the authors of [147] modeled bit selection opti-
mization as an actor-critic reinforcement learning (ACRL)
problem.

Even though Edge Computing helps reduce upstream traf-
fic to the Cloud, the need to upload data to the Cloud persists,
particularly for applications requiring high-performance
computing. [148] proposes a new stream sampling technique
that only uploads to the Cloud what is required for incre-
mental learning (IL). IL is defined as the ability of a model
to learn from the newest data continuously. Alternatively,
in downstream traffic, edge devices are expected to extract
important features from streamed data without repeatedly
processing it [149]. One of the objectives of stream process-
ing at the Edge is to discover anomalies and novelties, such
as determining the skyline sets in data streams [150], those
represent the most significant data points or data objects.

Furthermore, in EC, transcoding data streams into different
formats and different quality levels is essential because of the
heterogeneity of IoT and edge devices. Transcoding can be
done proactively at the Edge to improve system efficiency,
as demonstrated in [151]. Nonetheless, reducing transcoding
time at the Edge is also critical for providing high-quality
services. In that scope, [152] put forward a new method for
reducing transcoding time by extracting information from the
encoding time and saving it as meta-data, which is then used
to reduce transcoding time at the Edge. Besides, [153] pro-
posed the novel concept of collaborative live stream transcod-
ing, in which viewers can transcode using their own devices
and are rewarded in return. This method is a low-cost solution
for reducing delays caused by cloud transcoding.

4) DATA ANALYTIC
Nowadays, vast amounts of data are generated every second,
all over the place. There is a huge demand for data analytical
tools; hence different data processing frameworks gained
popularity, counting Hadoop [154], and Spark [155], due to
their ability to extract information from large chunks of data.
However, those tools require a lot of computing power and
memory, making them more suited to the Cloud than the
Edge.

With today’s trend toward EC, Edge Analytics is a key
technology that will meet the requirement of keeping data
at the Edge. In order to maintain real-time performance
and reduce congestion in the core network [156]. However,
edge analytics faced numerous challenges regarding accuracy
decline due to insufficient computational resources and data
decentralization. Table IV illustrates the advantages and dis-
advantages of centralized and distributed analytics. Addition-
ally, some studies such as [157] focus on balancing analytic
accuracy and bandwidth consumption based on the degree of
data decentralization. Similarly, another bandwidth-accuracy
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TABLE 4. The characteristics of centralised and distributed analytic.

trade-off occurs in cloud-edge analysis. Where edge devices
can compress images before sending them to the Cloud to
save bandwidth, but this can reduce accuracy, especially for
highly detailed images [158].

Furthermore, edge analytics must reduce energy consump-
tion when transferring data to edge nodes, especially when
dealing with large data streams. Within that, the authors
of [159] advance a technique for circumventing the limi-
tations of ENs by simultaneously adjusting the video con-
figuration (frame sampling rate, frame resolution) with the
bandwidth allocation. Alternatively, [160] investigated a data
discretization and sketching solution to overcome the band-
width limitation issue.

Further to that, the main technology underlying edge ana-
lytics is Edge Intelligence, particularly collaborative Edge
Intelligence [161] sincemany analytical tools rely onAImod-
els, usually deep learning ones. Edge Intelligence is discussed
in detail in section V.1,

5) DATA PLACEMENT
Data placement or data scheduling is the art of finding the
best place to store data. Placing the data in an Edge-Cloud
environment depends on the service’s nature that requires
the data. In the case of edge application data, the ultimate
goal of a placement strategy is to keep the latency demand
while also reducing the cost of transferring the data [162].
Meanwhile, since the sensors and IoT devices are becoming
more powerful, they can handle a reasonable amount of data,
making it more appropriate to store the data at the mist/fog
level rather than the cloud [163]. Additionally, [164] con-
ducted a comparative study of three different algorithms in
different network topologies, concluding that the algorithm
that favors placing data at the Edge outperforms the one that

chooses a fog mapping or the standard cloud data placement.
Besides, the effort [164] suggested the use of reinforcement
learning for data scheduling in VEC, where the RLmodel can
intelligently decide whether to place data locally, transfer it
to a RSU, or forward it to a collaborative vehicle.

Before placing data, the placement strategy should antic-
ipate data retrieval by shortening the retrieval routing
path [165]. A good data location service is required to retrieve
data; [166] proposes HDS (Hybrid Data Sharing), a fast data
location service adapted to the MEC environment.

Further, data placement must account for the heterogeneity
and mobility of edge nodes. Vehicle Edge Computing (VEC)
is a good example, where mobility is the norm and hetero-
geneity influences how data is placed based on the type of
vehicle (public, private, or emergency) and the importance of
the content [164].

D. NETWORK MANAGEMENT
Network management encapsulates the advancements made
in network infrastructure and architectures that adapt the
network parameters to the new computing paradigm. The
network management function focuses on monitoring, ana-
lyzing, and dynamically adjusting network status as needed.
For edge computing to be successful, it must enable resilient
and cost-effective network management methods, ranging
from access control to traffic engineering to the adaptation of
the newest network technologies. References [35] and [58]
are two of the most notable publications that have surveyed
the networking elements of EC. The following sections will
discuss notable network technologies that assisted EC, count-
ing network abstraction (SDN, NFV), radio access networks
(F-RAN, C-RAN), and radio-resources allocation.

1) SDN
SDN (Software Defined Network) is an abstraction technique
that decouples the network control from the data transmission
by logically centralizing the network command functions in a
NOS(Network Operation System) or an SDN controller. The
NOS instructs the network’s forwarding devices on handling
data packets (where and when to transfer data). For that to be
possible, the Data Plan devices must support programmable
switches that use the revolutionary OpenFlow protocol [167].
Overall, SDN allows the network to be more flexible and pro-
grammable. Fig. 13 illustrates the two layers of SDN archi-
tecture in fog computing. Besides, by designing the optimal
path and employing the best packet forwarding procedures,
SDN can be paired perfectly with the EC environment [168].
By taking all of these factors into account, [169] studied the
characteristics and limits of SDN technology for edge-cloud
computing.

Many scaling functions in edge computing, such as compu-
tation offloading or load balancing, necessitate the collusion
of multiple network data plane components. In this regard,
SDN architecture is helpful in EC because it enables the SDN
controller to distribute bandwidth resources optimally across
different data flows [170]. Additionally, because of SDN’s

69278 VOLUME 10, 2022



S. Douch et al.: Edge Computing Technology Enablers: A Systematic Lecture Study

FIGURE 13. SDN/NFV architecture.

ability to have a global overview of network topology and
users’ movement, SDN controllers aid in determining the
best edge server destination to host migrated services [171].
Other specifications, such as throughput or user preferences,
can also be implemented in a mobility scenario to guide
the SDN controller in performing the optimal handover for
edge services [172]. Aside from mobility, a networking load
balance mechanism can be performed by configuring Soft-
ware Defined Network (SDN) switches across several edge
servers [173], to ensure network resilience and protect against
traffic spikes [174].

Moreover, SDN can help improve the performance ofmany
edge applications such as CDNs (content delivery networks),
where the SDN controller can take advantage of its net-
work aggregated information to shortest paths between users
and the content provider server [175]. Additionally, UAV
air-ground communication is another application enabled by
SDN abstraction [176], in which the SDN controller can
utilize the predicted traffic load to perform data forwarding
with the highest throughput efficiency. Aside from network
decisions, the SDN controller can perform a variety of other
required decision-making tasks, including a ML inference
task [177], in which the NOS, based on the accuracy, can
decide whether to transmit the ML task to the Edge or to keep
it at the level of IoT devices.

Furthermore, one of the improved functions of using
SDN architecture is traffic classification. Traffic classifi-
cation is the study of categorizing data flows, encrypted
or not, into multiple categories based on the packet byte
information to differentiate video surveillance traffic from
e-health and email traffic. Numerous studies have been con-
ducted on the traffic classification problem, with many of
them employing machine learning techniques [178]. With
the help of traffic classification technologies, SDN and its
integration with MEC could provide better network conges-
tion handling [179]. When MEC servers benefit from their

communication with the SDN controllers, they can store the
delayed tolerant traffic (for example, email traffic), and then
redirect them after a reasonable delay. Alternatively, in the
case of latency-critical tasks, the SDN controller can select
reliable links that are less prone to failure for using them in
critical traffic, such as e-health forwarding schema [180].

In the last few years, there has been an increased demand
for SDN abstraction at the network’s edges, which can be
accomplished with the use of an SDN controller that tracks
edge nodes in the data plan [181]. Traditionally, SDN con-
trollers were deployed in the Cloud to provide a global view
of the network. Although,With the shift to eURLL (enhanced
ultra-reliable low latency) in 5G, SDN controllers have been
relegated to the Edge (e.g., MEC servers, gateways, etc.)
to facilitate efficient edge infrastructure provisioning. Addi-
tionally, ETSI sees MEC as a location for many SDN-based
services [181], such as edge packet service management,
data plane IP forwarding, adaptive routing for specific appli-
cations, etc. The Internet of Vehicles (IoV) is an excellent
example of this expansion [182]; if the vehicles and road-
side units (RSUs) are added to the data plan, the SDN con-
troller can obtain agile information about vehicle movement
changes, improving vehicle-to-X communication.

2) NFV
NFV (network function virtualization) is a network abstrac-
tion technique initiated by ETSI [183]. Traditionally, net-
work companies used specific types of hardware for each
component of the network (Firewall, Switch, Load Balancer).
However, this approach was costly and inflexible. Now with
NFV, network functions (NF) can be deployed as software
applications on the top of a VM or a container hosted by
a Blade server, and many NF can be hosted on one server
(as illustrated in Fig. 13), making the deployment of net-
work functions (NF) more flexible and scalable with fewer
expenses.

Similar to how virtualization enabled CC, NFV is the tech-
nology that enables Fog Computing. Within fog commodity
servers, network functions are deployed along with edge
applications in VMs or Containers. NFV provides fog users
with the ability tomake service placement strategies that meet
the end user’s requirements [184].

Moreover, the main challenging problem in NFV is the
placement of network functions (NFs) on the most appro-
priate fog nodes. The work [185] modeled this problem as
an optimization one, where an NF deployed in a fog node is
represented as a binary decision variable. The variables are
chosen to reduce the time it takes to deploy, process, and
communicate network functions. Additionally, As studied
in [186], the NFs placement challenge can be paired with the
optimal physical placement of fog nodes for offering the best
network/computing services.

3) RADIO ACCESS CONTROL
In 4G/5G networks, the radio access network comprises
two main components: the remote radio unit (RRU), which
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performs radio frequency receiving/transmission tasks, and
the baseband unit (BBU), which performs signal processing
functions.

C-RAN (Cloudified/Centralized Radio Access Network) is
a network architecture proposed by China Mobile in 2010.
C-RAN group BBUs from different antennas in a remote
central office, known as a BBU hotel, away from their cor-
respondent Remote Radio Units (RRUs), the grouped BBUs
are distinguished using internal routers that exist inside the
BBU hotel. The C-RAN architecture supports lower power
consumption, efficient operation, and higher reliability. How-
ever, one of the disadvantages of C-RAN is the long distance
between the RRUs and the BBU pool, which causes extra
latency between the end-users and the BBU pool. This issue
gave birth to a new RAN architecture called F-RAN [187],
in which each BBU hotel is constructed by grouping only
a small number of RRUs, giving EC’ users more options
for deciding on their optimal BBU hotel to run their ser-
vices [187]. Likewise, the reference [188] conducted a com-
parison study between F-RAN and C-RAN, demonstrating
that the F-RAN provides a faster response but at a higher
cost. Fig. 14 represents the architectural differences between
F-RAN and C-RAN.

4) RADIO RESOURCES ALLOCATION
Radio resource allocation aims to dynamically joint
edge-users with their most adequate radio resources, allowing
them to select the best transmission channel tomaximize their
throughput while augmenting their SINR (Signal to Interfer-
ence plus Noise Ratio). In that, multiple orthogonal multiple
access (OMA) techniques are exploited, including OFDM
(Orthogonal Frequency Division Multi-access), in which
every Edge User (EU) uses an orthogonal range of frequen-
cies, and TDMA (time division multiple access), within EU
access periodically a sub-channel. Moreover, studying the
radio resource allocation problem is crucial in EC, especially
when multiple edge users request EC resources. In that, the
wireless channel condition has a direct impact on the QoS
requirement of EC applications [189].

E. SECURITY & PRIVACY
Since the network edge environment is much different,
EC security issues are considered one of its biggest chal-
lenges. In CC, data is stored in multiple large data centers,
which are very well protected physically, with many guards,
fences, and security protocols. In addition to physical secu-
rity, Cloud providers are heavily investing in cybersecurity.
In contrast, the conditions in edge computing differ; physical
edge devices are much more dispersed and heterogeneous;
this makes them more vulnerable to physical attacks such
as the cooling system attacks [190], in which the attackers
inject extra thermal load on the cooling systems. Addition-
ally, the high data offloading and circulation at the network
Edge made ESs (Edge servers) prone to cyber vulnerabili-
ties [191]. Although, since the data is kept close to the end-
users, EC provides better privacy protection than the Cloud.

FIGURE 14. F-RAN architecture.

The following sections will cover the progress made in
detecting and defending against EC cyberattacks.

1) ATTACK DETECTION AND DEFENSE
Attack detection is the study of multiple adversarial attacks
and vulnerabilities that target edge devices and servers,
particularly embedded ones. Because some of those ES
are lightweight, they cannot use defensive tools such as
anti-viruses or firewalls; therefore, there is a need to develop
software anomalies detectors and testing techniques adapted
for those edge nodes [192].

One of the most well-known threats to the edge servers
is DDOS (Distributed Denial of Service). The DDOS attack
aims to overwhelm the server’s capacity by requesting the
server by thousands of zombie machines. These attacks are
significantly more efficient at the Edge than in the Cloud.
In the CC, solutions like CDNs are utilized to spread con-
tent across numerous servers to relieve the load on a single
server. On the other hand, Edge users will be unable to use
this approach since they must connect to the nearest edge
server. Nonetheless, there are some proposed defenses against
DDOs attacks, counting the collaborative edge nodes solution
in [193]; this approach suggests allowing the targeted server
to redistribute the upcoming requests to his neighbors, reduc-
ing pressure on him.

Moreover, in order to detect network attacks, an intru-
sion detection system (IDS) is required, which can detect
anomalous packet transmissions by analyzing historical data
from packet transfers, processors, and memory [194]. Many
machine learning models are being investigated in the litera-
ture to discover those hidden intrusion patterns. Among those
are [195] and [196].

Meanwhile, due to the fact that most edge devices are
fog/mist ones, those have minimal energy resources, some
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attacks take advantage of this weakness by targeting ES
batteries and causing them to consume a significant amount
of energy. The Stretch attack [197], for example, sends data
packets with headers that contain extended routing and loop-
ing paths, forcing these edge devices to consume energy
from unnecessary data transmission routes. Another attack
is Droplet attacks [198], in which the adversary sends an
802.15.4 data frame and then stops, putting the receiving edge
server in continuous reception mode.

Further, a clone node attack is another type of attack,
mainly exploited in wireless sensor networks (WSNs) [199],
where the attackers create a clone node of a sensor using
its ID. If the cloning attack is not detected, it can cause a
false data injection attack [200]. In order to recognize the
clone nodes, studying the Channel State Information (CSI)
is commonly used as an effective defense [201].

Furthermore, edge computing is tightly coupled with com-
putation offload since it is one of its main pillars. However,
offloading makes edge devices vulnerable to attacks, for
example, the Byzantine attack [202], in which a malicious
receiver of the offload can corrupt the operation or change
values as he sees fit. One of the proposed solutions to detect
these types of attacks is homomorphic hash functions [202].

2) DATA INTEGRITY
Verifying the integrity and consistency of data that is dis-
tributed over a network is known as data integrity. Ensuring
data integrity in EC is substantial because many edge devices
can be manipulated or corrupted intentionally by adversaries
or accidentally due to sensor malfunctions or transmission
errors [203]. For verifying data integrity, the work [204] put
forward a protocol called EDI-V. Their approach is based
on giving each data block a tag before storing it in an edge
node and then having a robust and trusted third-party server
audit the data changes by comparing the initial tags with the
newest ones. However, adding a third party is not adequate for
privacy issues. In that, the efforts [205] proposed a distributed
and lightweight auditing approach based on Merkle Hash
Trees.

Moreover, an excellent example of data integrity issues
is well illustrated in the case of data replications in CDNs,
where consistency could be neglected for performance. In this
case, the writers of [206] proposed a technique for locat-
ing corruption incidents that relied on generating signa-
tures during inspection time and comparing them to the
signature of the original data. Another method for ensur-
ing data integrity is to use Blockchain-based architectures,
which are well-known for their integrity and traceability
protection [207].

3) ACCESS CONTROL
Access control is a process that allows only authorized
users to access a given edge server. Since the authentica-
tion time adds to the total latency, EC authentication chal-
lenges lie in making access control as light as possible [208].
Supplementary, users’ mobility and the wide distribution of

edge servers make the authentication process more challeng-
ing in EC.

One of the first user authentication work in fog/edge com-
puting is [209], where edge users receive a master key that
allows them to access any edge server using this master key
along with the targeted Edge server public key, then having
the edge server decrypt it to check the user’s authorized status.
Another approach for controlling access is the implementa-
tion of user tokens [210]. The edge server receives tokens,
then analyzes its cryptography representation and compares
them to those in the database.

Meanwhile, effective authentication is known for resisting
and countering many attacks, counting privileged-insider and
man-in-the-middle attacks [211].

4) PRIVACY
Today, user privacy is a controversial topic, especially
with the expansion of camera surveillance systems and the
exploitation of confidential users’ data by social media plat-
forms. Connected edge devices collect information about
people to provide services that may jeopardize their privacy.
In CC and EC, the journey of processing data passes by
three main stages: data cleaning, data aggregation, and data
analysis. The cleaned data is often less representative, with
a smaller number of attributes than the rest. For privacy
reasons, [212] put forward a distributed data cleaning algo-
rithm that only asks users for data representation without
transferring the actual data to the Cloud.

After cleaning, data analysis necessitates transferring to a
centralized server(s) to run analytic models. Many undertak-
ing approaches were given in the literature to prevent this
process from violating privacy rules; lightweight encryption
of data before transferring it is one of them [213], or queries
encryption to protect the content of data [214]. Addition-
ally, [215] suggests sending data with noise and training ML
models with noised data. Similarly, [216] proposes multiply-
ing the data with projection matrices before sending it to the
Edge/Cloud for training. Besides the methods that change
or de-identified data before analyzing it, differential privacy
emerged as a powerful technique that helps defend against
re-identification attacks [217].

For analyzing data, Federated Learning (FL) is one of the
suitable leading solutions that help extract information from
data without centralizing it [218]. FL allows end-users to
share model parameters without sharing private users’ data;
each user trains the ML model locally and then offloads
parameters updates to the exterior. A good example of using
FL is in vehicular edge computing, in which car owners refuse
to share their data with others [219].

5) EDGE APPLICATION SAFETY
Edge computing enables a wide range of applications, each
vulnerable to a different type of attack depending on its
nature. In the case of EC content caching, for example,
some attackers request unpopular content regularly in order
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to deplete the reservoir of caching servers and force normal
users to request unpopular files from the cloud [220].

Meanwhile, many edge applications are AI-based, which
are subject to high-level attacks that plan to fool them with-
out any virus injection of a network intrusion. In today’s
world, AI base applications face a variety of adversarial
attacks. Those attacks are divided into two types, white box
attacks [221], within which the attacker has access to the
model parameters, and black-box attacks [222], in which the
attacker does not know the model parameters but generates
adversarial inputs from similar models.

Overall, these attacks are not limited to AI-based edge
applications, but they can also target AImodels that were used
to facilitate the primary functions of EC, such as AI-based
offloading mechanisms [223] and Network Intrusion Detec-
tion models [224].

Further, some of the proposed approaches for prevent-
ing adversarial attacks include adversarial learning [225],
in which NN is trained on the discovered adversarial exam-
ples. Another technique for increasing the NN is to train
neural networks with data that has been perturbed by a
small amount of noise with labels similar to standard clean
data [226].

Furthermore, a positive indicator about the safety
and the robustness of AI at the Edge has been addressed in the
works [227], [228], in which neural networks adapted to the
Edge using compression techniques (see section V.1) such as
quantization or distillation are found to be more robust than
their non-compressed counterparts.

F. BILLING AND PRICING
Pricing or billing of edge computing services is an important
concern for any ESP (Edge Service Provider). In the EC mar-
ket, there are four main market players: clients (individuals or
businesses), ISPs (internet service providers), clouds (cloud
providers), and ESP. These players are interconnected and can
affect directly or indirectly one another [229]. The following
section will discuss the various mechanisms for pricing EC
services.

1) EDGE SERVICE PRICING
The ultimate goal of EC pricing is to find a strategy that max-
imizes edge services prices while also taking the concurrence
and client’s willingness to pay into account [230]. EC prices
are regulated dynamically based on the supply and demand
situation, with the supply usually known but the demand
having to be estimated [231]. In pricing edge resources, the
effort [232] suggests that the pricing of edge resources should
be based on allocated resources rather than used ones in order
to maximize profits. Overall, pricing aids in mitigating the
abuse of edge resources, and it is an essential factor when
selecting the best hosting ES [233].

Moreover, achieving full EC service coverage by a sin-
gle entity is extremely difficult. As a result, collaboration
among EIP providers is the norm to serve multiple users in a
wide range of areas. Therefore, pricing policies that regulate

cooperations are required. For that, the authors of [234]
propose a peer-to-peer payment system in fog computing,
based on virtual coins, in which each fog nodes owners has a
budget of coins, and whenever he requests some resources
from his neighboring fog node, he pays them using his
coin, those coins can then be transferred to real money.
In a similar manner, a Blockchain credit values exchange
for resources was adopted in [235] to regulate multiple edge
nodes’ cooperation.

In contrast to users paying ESP, in VEC, vehicle own-
ers are compensated for providing their vehicle resources.
In that, the offloading decisions from users to vehicles should
be based on jointly minimizing the cost of running servers
locally, as well as the cost of running them in a collaborative
vehicle [236]. The amount of money the vehicle owners
are paid during this process is determined by the MEC ser-
vices demand [103]; if there is an increase in demand, MEC
providers should raise the remuneration price to entice more
vehicle owners.

2) AUCTION BASED PRICING
In an auction pricing system, each user or agency bids or sub-
mit a request for a quantity & quality of edge resources. The
objective behind the auction is to design a payment system
for all truthful users that reduce the difference between their
valuations of the allocated resource and the proposed prices.

One of the famous auction methods is Vickrey–Clarke–
Groves (VCG) [238], where competitors give valuations of an
item or a service without knowing each other’s bids. Based on
VCG, many auction pricing methods have been proposed for
edge computing, including [239], where the aim was to max-
imize users’ rational valuation without considering any envy
intention. Another auction method is Mcafee auction [240],
used in an environment with multiple ES (Edge Services)
sellers and ES buyers. Additionally, as demonstrated in [241],
the auction matching system can be used in computation
offloading, where ENs accept or deny offloaded tasks not
only based on their computation and communication resource
but also based on the proposed bid by the users; if no edge
node accepts the task, the user must augment their bid to be
competitive.

3) MARKET ANALYSIS
The pricing of edge services is determined not only by the
number of users in amarket but also by the competitionmech-
anism among multiple sellers, which has resulted in the pric-
ing problem usually being modulated as a game, typically the
Stackelberg game [242]. Because there are three main players
(ISP, ESP, EU) in the EC pricing game, the reference [243]
designing two nested Stackelberg games, one between the ISP
and EU and another one between ISP and the ESP. The EU
(Edge Users) subscribe to an ISP for radio resources allocated
by access points, plus edge services, while ISP pays the ESP
for leasing their given MEC resources.

In 5G, many private operators plan to enter the market to
meet the demand for MEC services in a region. To achieve
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TABLE 5. EC pricing parameters.

that, they will need to purchase and operate MEC servers and
rent backhaul connections from legacy telecom providers.
In order to have a good return on investment, private operators
must have a reasonable pricing strategy adjusted to QoS
offered to their clients [244]. Besides, to dynamite the EC
market, intermediate platforms are widely initiated, like the
suggested one in [245], inside which Edge services owners
can put to rent part of their edge resources that they do
not need for the users who request them, in exchange, the
platform receiving a commission fee on each transaction.

4) PRICING PARAMETERS
Many measurements influence edge computing service pric-
ing. Those parameters are represented in the table V.

V. ENABLING TECHNOLOGIES
A. EDGE INTELLIGENCE
Edge Intelligence (EI) is the study of the co-convergence
of AI and EC. EI field highlights and studies the optimiza-
tion methods that allow AI models to run efficiently in the
edge environment in one direction and reviews the various
methods that help adapt the Edge to AI application in the
other direction. There are many challenges that the EI field
is attempting to overcome in order to allow a much happier
and more satisfying union between the two technologies
(EC & AI). Our survey focused on presenting the various EI
methods that enable AI models to be adequate for EC con-
ditions [250], counting pruning, quantification, knowledge
distillation, hardware acceleration, etc.

1) A BRIEF INTRODUCTION TO AI
AI (Artificial Intelligence) refers to any program that can act
like a human when faced with complex tasks. Machine learn-
ing (ML) is a subset of AI in which intelligence is acquired
by repeatedly interacting with the environment. A machine
learning model is a system that improves by learning and
correcting its mistakes as it goes. Machine learning is clas-
sified into supervised, semi-supervised (reinforcement learn-
ing), and unsupervised. Meanwhile, Deep Learning (DL) is
a subfield of ML that employs neural networks (NN) as
the base of its models [251]. NNs are made up of many
neurons with weighted connections connecting them (see
Fig. 15). During the learning process, the network attempts
to modify the weights using an optimizer such as gradient
descent [251], to improve model performance. There are
several well-known neural network architectures, including
CNNs (Convolutional Neural Networks), which are used pri-
marily in image processing and object recognition, and RNNs
(Recurrent Neural Networks), which are used to analyze time
series.

2) PRUNING
Pruning in EI refers to the act of removing or deleting
elements from an AI model, generally in the context of
deep learning, elements such as neuron(s), weight(s), fil-
ter(s), and even entire layer(s) from a NN, for the reason
that those elements have a negligible impact on the Neu-
ral Network construction or performance. Fig. 15 shows
a case of pruning neurons and weights in a FFNN, plus
filters in CNN. As a result of pruning, neural networks’
computation and memory sizes are reduced, making them
more adaptable to edge nodes. To answer the question, what
should be pruned? Many studies intend to discard weights
or neurons based on their magnitude or influence on the
loss function; typically, this magnitude is calculated math-
ematically using the derivative of the loss function on a
given weight or neuron. Then, various norms, such as the
standard L1 norm [252], or the nuclear norm that gives more
sparsity [253] can be used to measure and compare those
values; after comparing the various normalized magnitudes,
the goal is to discard a given number of the least important
ones.

Meanwhile, due to the changes brought by pruning, it is
necessary to calibrate the portion of the NN connected to the
pruned elements. The rectifications in the case of a pruned
neuron are represented by deleting the weights connected to
that neuron. Unfortunately, pruning also results in a burst
degradation of accuracy. In this case, to preserve previous NN
knowledge, [254] proposed redistributing the pruned part of
the NN parameters (weights, biases), using linear regression
in a way that makes the sum of the outputs of the pruned
layer approximate to the total outputs of the old layer (before
pruning a neuron). Alternatively, to avoid training the model
again after pruning, it is more effective to prune the NN
during the training phase [255].
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FIGURE 15. Prunning.

In CNN, convolutional layers or filtering layers perform
most of the computation (more than 85%). As a result,
they are the best-targeted elements during the pruning pro-
cess. Within that, the effort [256] modeled the filter prun-
ing as an optimization problem that seeks to minimize the
cross-entropy loss function while having as a variable the
binary decision vector of whether to keep a filter or not.
An improvement in [257] suggests considering decision vec-
tors as Bernoulli probabilities to facilitate the solving of
the pruning optimization problem. Additionally, in [258],
an advanced pruning method is used to address the goal
of selecting a pruning strategy that achieves the best accu-
racy/speed trade-off.

3) SPARSIFICATION
Sparsification refers to the act of neglecting some NN values
because they do not have enough impact on the NN inference
result. Sparsification is a term used to describe the process
of pushing a neural network variable to 0 if it is less than a
certain threshold. Pruning and sparsification are similar but
not identical. Although pruning targets entire elements, spar-
sification, on the other hand, typically targets values within
elements.Moreover, thework [259] presented a sparsification
method based on a probability formulation that depends on
the weight magnitude. Additionally, the similarity to other
values is another justification for the sparsification of some
values. In CNN, the effort [260] introduced a kernel values
sparsification technique within if two filters have similar
absolute values in the same channel, the value of the one with
the most negligible magnitude is set to 0.

Meanwhile, sparsification can benefit greatly from weight
matrix factorization, as demonstrated in [261]. By decompos-
ing the weight matrix into SVD (singular value decomposi-
tion) (W = USV) and employing a sparsification technique
that allows many singular values to converge to 0 because
they are unimportant in comparison to the others, this feature
maximizes the number of multiplications by 0, and thus
reduce the computation time.

4) QUANTIZATION
Quantization is the process of downsizing the bits’ repre-
sentations of a neural network’s elements (weights, neurons,
and activation) from a high precision representation (32 bits)
to a lower precision representation (8 bits). Quantization’s
goal is to reduce the hardware execution time of a NN
training/inference phase. In quantization, real variables (with
32 bits) are typically rounded to the nearest number in the
new low representation; however, rounding to the nearest is
not always optimal, particularly during the training phase,
because it can disrupt the NN learning process, as demon-
strated in [262].

Quantization can be classified into three types. The first
type is a fixed bit variable quantization [263], in which the
required number of fixed bits to represent all numbers is
calculated based on the highest and lowest float numbers
that may exist in the NN. The second type of quantization
is uniform quantization [264], with each variable represented
in the spaceR based on its size using a Uniform Distribution.
The third type is non-uniform quantization, which is similar
to uniform quantization, but it uses a different distribution,
typically a Gaussian one [265].

Meanwhile, one disadvantage of quantization is that it
reduces neural network accuracy and makes the training
difficult due to non-differentiability. In [266], the authors
proposed a progressive quantization approach that starts the
NN training with low precision quantization and gradually
increases the precision, allowing control over the trade-off
between resources consumption and performance. Similarly,
an adaptive learning method was introduced in [267], which
enables the number of bits representation to be modeled as a
learnable hyperparameter.

5) KNOWLEDGE DISTILLATION
Knowledge distillation is a transfer learning technique that
transmits knowledge from a complex model (teacher) to
a simpler model (student) with fewer parameters. Knowl-
edge distillation is an efficient solution for bringing
high-performance neural networks to the Edge. Some exam-
ples of knowledge distillation applications include increas-
ing image resolution [268], fast person re-identification in
a camera surveillance environment [269] and visual dialog
comprehension [270].

6) TINY MODELS CONSTRUCTION
Besides using compression or reduction techniques, other
approaches suggest building a small neural network from
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the start, knowing that not many intelligent tasks require
a large NN. Many efforts in the literature have followed
this direction, including [271], where the authors focused
on reducing the dimension of filters in a way that does
not affect the accuracy of the CNN model. Similarly, tiny
TRU-Net was constructed in [272], and it was built using
one GRU(Gated recurrent unit) cell. Aside from reducing
NN size, changing the optimizer in the learning process can
save a lot of computation time, as in [273], in which back-
propagation is avoided in favor of a computation-friendly
automatic adjustment of the NN weights based on the loss
function. Likewise, some work like [274] even propose to
bring back multi-layer perceptron, which require far less
computation than the newest NNs.

Meanwhile, another method of reducing AI inference time
is to combine two or more AI models into one, as was
done in SSD [275], where the model does object boxing and
recognition at the same time, savingmuch time in comparison
if the task was done using two separate NNs. Along with
model parameters reduction, input compression is considered
a valuable variant for reducing NN training time, as seen
in [276].

7) DISTRIBUTED EDGE COMPUTING
Aside from the compression and reduction techniques dis-
cussed earlier, the edge environment is well known for the
large spread-out numbers of edge nodes that perform the
computing tasks. As a result, distributed computing is an
excellent solution for enabling EC to performAI tasks. In this
section, wewill cover both distributed training and distributed
inference.

There are two ways of distributing a deep NN inference,
either vertically or horizontally. In the case of vertical infer-
ence distributing, also known as the IoT-edge-cloud collabo-
ration, to execute a model inference, usually, the IoT device
starts computing the first small part of the neural network for
privacy issues, then send a small part of the rest to the Edge,
and then the large rest to the cloud [277].

In the case of horizontal inference distributing, one
of the first proposed distributed inference frameworks is
MoDNN [278], a map-reduce mechanism that makes parti-
tions of the input feature according to the number of ENs,
where each node does a part of the inference calculation, and
an aggregation layer comes to reduce the results. In addition,
In the case of CNN, Fused Tile Partitioning (FTP) is proposed
by [279], inspired by the idea that in CNN, the result of the
dot product of the input data with each filter depends only
on a specific region in the input data. Thus, good parallelism
computing could be achieved if each edge device took a
portion of the input feature. Moreover, in the case of an
FFNN (Feed ForwardNeural Network), the heavy calculation
exists in the multiplication of weight matrices with activation
layers. Therefore, the work in [280] suggests dividing the
weight matrix into multiple sub-matrices so that each edge
node is responsible for doing the multiplication of the small
sub-matrix with the corresponding part from the activation

layer. Meanwhile, according to [281], while developing a
distributed inference process, it is necessary to consider not
just reducing the overall latency but also memory limits and
communications costs related to parallelism computing.

Unlike distributed inference, distributed training is not a
time-critical task for ML applications because the training
phase is generally completed offline. Although most deep
neural networks are trained in the Cloud (public, private),
Edge Intelligence comes with the new perspective of training
ML models at the Edge, following the fundamental goal
of keeping the data at the Edge for better privacy and less
network congestion. The standard method for training a ML
model is to send the whole input data to a centralized server
and then perform the learning process there. However, in EC,
this approach is impractical since a single ES does not have
enough memory and computing power to handle the training
of an entire NN. Thereby, A new ML training paradigm has
emerged called Federated learning (FL) [282]. FL considers
distributing a NN’ input data across multiple nodes, where
each node trains based on his local data and transfers the
outcome parameters to an aggregator. Next, the aggregator
broadcasts the parameter changes for all collaborative nodes.

Further, Federated learning is plagued by high communica-
tion costs, and there is an urgent need to reduce data transfer
overhead between collaborative training devices. Following
that, [283] recommends sharing only the essential values of
the gradient matrix since sharing the entire gradient matrix is
an exhausting communication task. Alternatively, a different
approach is to advise the aggregator to only receive updates
from a small subset of ENs in order to reduce his throughput
limitations. The work [284] chooses to select those collabo-
rative nodes in a way that the staleness of the non-selected
edge nodes at each timestamp is reduced.

8) ADAPTING THE EDGE TO AI
The second part of edge intelligence is about adapting the
Edge to AI. In this section, we highlight various technologies
that allow AI algorithms to be well received at the Edge;
we mainly focus on the edge hardware adaptation for AI
models since the software part is covered in the containeriza-
tion section IV.3. According to the recent survey [285], the
most frequently asked question in AI hardware adaptation is
what type of edge hardware is optimal for hosting AI model
inference and training? Is it CPU, GPU, FPGA, or ASIC
(application-specific integrated circuit)?

Starting with the CPU (Central Processing Unit), they are
the computer’s brain; a CPU is known to be more flexible
since it can do a variety of jobs without intentionally favoring
one over another. Alternatively, GPUs (Graphics Processing
Units) differ from CPUs in that they have more transistors
in their arithmetic logic units, making them more powerful
than the CPU in doing math calculations. Further, unlike a
CPU, a GPU can have thousands of cores, allowing the GPU
to perform well in parallelism tasks like training a neural
network.
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FIGURE 16. AI hardware evolution.

Aside from GPUs and CPUs, FPGA (Field Programmable
Gate Array) is a candidate integrated circuit for hosting AI
inference. By structuring, configuring, and interconnecting a
group of logic blocks, FPGA makes it possible to perform
well in some targeted logical functions. FPGA can accelerate
AI inference by creating registers for NN input and weights
values and multiplication and arranging addition blocks in
a way that couples memory and computation and reduces
data flow latency inside the circuit, thus speeding up the
inference [286]. Because FPGAs are known for their high
customization and future profiling, if designed well, they are
regarded as one of the best hardware to host efficient model
inference. However, FPGAs suffer when it comes to training
AI models [287], especially in comparison to GPUs, due to
their limited memory space. Although, as [288] pointed out,
training in an FPGA is possible with the help of low-precision
quantization and compression methods.

Further, ASIC (application-specific integrated circuit) is
a hardware non-programmable architecture that is used for
specific applications. ASIC chips are one of the best hardware
for running AI inference at maximum efficiency due to their
high design customization. Regrettably, the disadvantage of
ASIC is that they are hard to design, especially when it comes
to integrating and supporting multiple DNNs (deep neural
networks) [289]. Some good examples of ASIC ships are
Tesla D1 Dojo chips [290], and Microsoft TPU (Tensor flow
processing unit) [291] which is specifically designed for the
well-known TensorFlow framework models.

In comparison, many types of edge hardware can be
used to accelerate AI training or inference fully or partially,
ranging from high flexibility to precise adaptation. Based
on the benchmarking done in [292], in terms of training,
ASIC (TPU) and GPU outperform other types of hardware,
and for neural network inference, FPGA and ASIC are prov-
ing to be the best. Besides electric hardware, photonic AI
accelerators are now making an appearance as candidate
hardware for hosting AI models [293].

In addition to digital hardware, analog circuits, including
Neuromorphic ones, are emerging as a powerful alternative.
Neuromorphic Hardware is a set of electrical circuits that
mimic the human biological brain [294]. They are built with
silicon-based artificial physical neurons. The primary elec-
trical component in neuromorphic hardware is the memris-
tor [294]. A Cross bare memristor perfectly replicates the
analog operation of two matrix multiplication [295]. If neu-
romorphic hardware overcomes all of its current challenges,
it will be the most advanced and adequate edge hardware to
host an AI model since Neuromorphic computing is all about
computing in memory [296]. Fig. 16 shows the evolution of
AI hardware accelerators.

B. 5G AND ITS EMPOWERING TECHNOLOGIES
5G refers to the fifth generation of telecommunications
networks, the latest group of advancements made over
the previous 4G LTE (Long-Term) networks. 5G promises
three primary services: eMBB (enhanced Mobile Broad-
band), eMMTC (Massive Machine Type Communication),
and eURLLC (Ultra-Reliable Low Latency Communication).
Certainly, EC is one of the most important technologies
enabling 5g, as it is recognized by ETSI as an essential
component of 5g [24]. With the help of MEC services, 5g
networks can provide URLLC services to clients by hosting
their services at the edge/access level of the network. Sub-
sequently, MEC resources are utilized for hosting many 5G
functions, for instance, cellular traffic prediction [297].

1) MIMO
5g is empowered by multiple technologies, including mas-
sive MIMO (multiple-input, multiple-output). MIMO is a
radio technology that incorporates different transmitter and
receiver antennas. MIMO employs spatial diversity to recon-
struct signals received from multiple receivers or transmit
a signal using multiple antennas. Integrating MIMO tech-
nology with edge computing allows multiple edge users to
send computation requests simultaneously and in high effi-
ciency [298].

2) IRS (INTELLIGENT REFLECTING SURFACES)
IRS (Intelligent reflecting surfaces) are signal-reflection sur-
faces that control the signal’s transfer angle. IRS focuses
energy by creating a beam directed toward a receiver. IRS
can be deployed in various locations between the transmit-
ter (antennas) and the receiver (mobile device), but when the
IRS is deployed at signal source in base stations, it creates
what is known as holographic beamforming. By reconfig-
uring the wireless propagation environments, MIMO tech-
nologies improve the offloading links (throughput, data rate)
between edge devices andMEC servers by intelligently phase
shift parameters of the IRS [299].

3) 5G OPTIMIZATION OF COMMUNICATION RESOURCES
5g networks are well-known for supporting massive IoT
communication via cellular networks; however, this effort
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can only be achieved by optimizing machine-to-machine and
machine-to-x communications, referred to as energy-draining
communication types. Consequently, multiple efforts in g
focused on developing DRX (Discontinuous Reception) tech-
niques for MTC (machine type communication) [300], those
methods allow end-devices to save power by sleeping when-
ever there is no packet to receive. Some of this work is based
onmodeling packet arrival time using statistical distributions.
Alternatively, as illustrated in [300], machine learningmodels
can be used to predict future arrivals, allowing machine-type
end-devices to schedule the ideal sleeping times. Addition-
ally, themachine learningmodels for DRX could be hosted on
MEC servers.Within [301] introduced DiscontinuousMobile
Edge Computing (D-MEC), a DRX technique adopted for
MEC servers.

Further to that, avoiding the execution of redundant or
identical tasks is another technique to optimize ED resources.
This technique is accomplished by reusing or partially
reusing previously completed compute tasks, exploiting what
is known by Computer Reuse Architecture [302].

Besides, the end devices at the mist level are energy-
draining and battery-depleted. The groundbreaking WPT
(Wireless power transfer) systems emerged as one of the
solutions to this energy problem. Some of the efforts about
integrating WPT and MEC were documented in [303].
The harvested energy from surrounding antennas within the
IoT/mobile devices range can be used in offloading works to
MEC servers associated with those antennas.

4) NETWORK SLICING
The 4G LTE networks are known for the concept of ‘‘one
network fits all,’’ All users share a single network with the
same performance. However, this architecture wasn’t ideal
for many applications. Thus the 5G network intended to
improve on 4G by introducing a new concept called Network
Slicing. Network slicing aims to break a network into many
slices, each of which is tailored to serve a specific group of
applications with specified requirements (Latency, Peak data
rate, Cell throughput, etc.). All of this is to provide adequate
resource sharing in 5G networks [304]. A network slice is an
end-to-end connection that contains elements from different
network parts (RAN, Core-network, transport, and so on).
Fig. 17 demonstrates how a network can be partitioned into
several slices, each with its own set of customizations.

One of the most challenging aspects of network slicing is
automating network slices based on the requests [62]. Further,
to combine edge computing with network slicing, physical
MEC resources are typically divided into multiple VMs or
containers, each with its own set of capabilities designed
for a specific slice. However, the drawback of having mul-
tiple VMs in a physical machine will reduce the throughput,
therefore, lowering the latency of applications hosted in those
VMs [305]. Also, network slicing contributed to the diffi-
culty of scheduling MEC resources since in 5G networks,
provisioning and resource selection should be combined by
picking the most appropriate network slice [306].

FIGURE 17. Network slicing illustration.

5) COGNITIVE RADIO: NOMA
In 4g legacy networks, radio resource allocation is produced
via OMA (orthogonal multiple access) procedures (OFDMA,
TDMA, etc.), in which users take turns accessing radio
resources (frequency and time). However, with the rising
pressure on spectrum utilization, OMA methods are becom-
ing insufficient and inefficient. Consequently, the future of
telecommunication networks (5G and 6G) is moving toward
a non-orthogonal multiple access (NOMA) strategy. NOMA
allows numerous devices to send data on the same band
of resources (frequency & time), maximizing spectrum effi-
ciency. NOMA is based on the superposition of numerous
signals at the transmitter side, followed by interference can-
cellation via successive interference cancellation (SIC) at the
receiver side.

NOMA is considered the leading technology that helps
optimize the workload offloading process to MEC servers,
as it enables multiple machine-type end-users to access
5g-MEC resources simultaneously. However, the main chal-
lenge in NOMA and EC is the establishment of the right
radio/MEC resource assigning strategy that respects task
delays while lowering total offloading energy [307].

6) 6G
The sixth network generation moves toward the polarization
of intelligence usage in the network from the core to the Edge.
The 6g networks promise ultra-smart and robust network
functions; however, those functions will be accompanied by
large (computing andmemory) consumption. Alongwith Fog
and Cloud computing, Edge computing will play a critical
role in hosting 6g functionalities while providing them with
ultra-low latency. The 6g evolution is characterized by the
‘softwarization’ of many parts of the network, which leads
to what is known as the convergence of computing and net-
working [308].
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FIGURE 18. Containers and VMs architectures.

C. VIRTUALISATION, CONTAINERISATION
Virtualization is a powerful technology that enables cloud
computing. Today, every data center uses virtualization to
create large pools of resources (CPUs, memory, disks, net-
work). For offering them to customers as scalable, consoli-
dated VMs. Virtualization has changed the way people think
about computing and communication resources. In cloud
computing with VMs, computation has evolved into a ser-
vice rather than a product. Similarly, in 5G, with NFV and
SDN, network components are becoming network services.
This section provides a brief introduction to containers and
container orchestration and explains why containerization is
one of the key enabling technologies of EC.

1) CONTAINER
Over the recent years, containers’ popularity increased as
they emerged as a promising alternative to virtual machines,
leveraging the lightweight implementation of virtualization.
Containers are as old as the Linux Kernel is. In 2008, Linux
Control Groups (Cgroups) and Namespaces were combined
to develop Linux containers (LXC). LXC aimed to create a
complete OS-level virtualization technology that became a
prominent Linux kernel feature. This Linux kernel feature
was incorporated into many projects/organizations, and the
most known of them is Docker. Fig. 18 depicts the differences
between VMs and containers in terms of architecture.

2) CONTAINER VS VIRTUAL MACHINE
The main advantages of using VMs and containers are con-
solidation and elasticity. Consolidating workloads reduces
hardware, power, and space requirements. Elasticity allows
dynamic allocation of resources that are needed [309]. With
VMs, companies are no longer required to own physical
servers and accommodate peak demands whenever they
occur. Additionally, yet importantly, due to their lightweight
dependencies, containers offer higher portability than VMs.
Alternatively, VMs provide a high level of isolation and thus
better security [310]. Despite VMs on a physical machine

sharing resources, mechanisms such as virtual paging are
implemented to ensure that each VM’s resource is entirely
isolated. Finally, as shown in Figure. 18, containers share a
standard operating system, different from VMs, where each
one could run under a different operating system, adding
overhead in memory and storage.

3) CONTAINERS ORCHESTRATION
Orchestration is the automated configuration, management,
and coordination of computer systems and services [311].
The goal of orchestration is to helpmanage complex tasks and
workflows more efficiently. Container orchestration auto-
mates the deployment, management, scaling, and network
of containers. There are many orchestration tools to choose
from [311]. The orchestration tool manages the life-cycle of
the running containers according to the specifications laid out
in the container’s definition file.

Kubernetes, Greek for the helmsman, is an open-source
container orchestration tool developed by Google in 2008.
Kubernetes’s main responsibility is making sure that all
the containers that execute various workloads are sched-
uled to run in physical or virtual machines [312]. Kuber-
netes is comprised of many components, but the main ones
are:
• Cluster is a collection of nodes containing at least one
master node while the rest are worker nodes.

• Node, also known as a minion, is a single host whose job
is to run pods.

• Master is responsible for the overall cluster-level
scheduling of pods and handling of events.

• Pods are an important feature and the basic unit of
work in Kubernetes. Each pod contains one or more
containers.

• Deployments, replicas, and ReplicaSets. A deployment
is a YAML object that defines the pods and the number
of container instances, called replicas.

4) CONTAINERS AT THE EDGE
Recent research shows that using containers at the Edge
has many advantages. The advantages stem primarily from
the low deployment time [313] and the quick migra-
tion time [314] provided by containerization technology.
Container orchestration allows consolidating multiple IoT
devices with heterogeneous hardware for an increased qual-
ity of service at the edge [315]. In that, containerization
perfectly matches the edge environment where mobility and
constrained resources are the norms. In addition, containers
also help expand the elasticity and resilience of the edge Eco-
System, as their advanced task recovery methods allow tasks
to run uninterruptedly at the edge [316]. Moreover, when
edge nodes send data to the Cloud, they do not typically
need to send raw data streams. Instead, the node only sends
critical information. This event-driven approach in EC can be
tackled by forking containers by the orchestrator whenever
needed.
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Furthermore, with their lightweight and portability char-
acteristics, containers are considered the best run time for
edge/mist devices like SBCs(Single Board Computers) [317].

Meanwhile, in a MEC system hosting edge application,
base station Handover needs to be coordinated with con-
tainer migration as it was presented in [318]. However,
one of the issues that containers at the Edge suffer from
is the cold start problem [319]; it refers to the needed
time to bring up a new container when there is no warm
container available. The solution to this issue is to have
warm containers available for usage by the event-driven
application, except that this method may add extra energy
consumption [319].

D. THE MOVE TOWARD FUNCTION AS A SERVICE (FaaS)
FaaS(Function as a Service) refers to the ability to decou-
ple an application into a group of interconnected pieces of
computation unit (code) known as functions. It is the next
abstraction layer above software as a service in CC, and its
goal is to provide cloud clients with a platform for running
their software without regard for OS or any virtualization
dependencies. The ability to create event-driven apps is one of
the benefits of serverless platforms.With that, some functions
such as sensing and abnormalities detection can be activated
based on events, making serverless ideal for a wide range
of edge-enabled applications, including precision agriculture,
image processing, etc.

Meanwhile, present serverless platforms are more suited
to the Cloud and far from being viable at the level of an
edge node with limited computation resources. However,
recent efforts such as [320] research minimize the issues in
deploying serverless edge computing.

VI. EDGE COMPUTING APPLICATIONS
A. SMART CITIES
Intelligent and connected cities are the image of our near
future. Smart cities encompass a wide range of subdomains,
including smart buildings, smart farms, smart roads, smart
banks (Blockchain), and so forth.

1) SMART BUILDINGS
Smart buildings are a sub-branch of smart cities that make
buildings more efficient, smart, and dynamic. Smart build-
ings’ appliances (kitchens, light fixtures, TVs) are intelli-
gently monitored and controlled based on users’ preferences.
Controlling the building environment can be computationally
expensive, and most modern intelligent functions require lit-
tle delay interaction with the user; this makes EC a valuable
tool for meeting the fast response and low-cost requirements
of smart buildings [321]. Some advanced smart building func-
tionalities include room occupancy estimation [322], video
surveillance on outdoor [323] and person tracking and iden-
tification [324], etc.

Meanwhile, intelligent buildings have been accused of con-
suming much energy, although they also contribute to energy

savings by doing energy-saving actions like turning off lights
or heaters [325].

2) SMART FARMS
Smart farming (SF), or precision agriculture, as a component
of smart cities, employs the most recent and advanced ICT
technologies to improve farm sustainability and profitability.
Smart farming is focused on controlling actuators (motors,
pumps, light regulators, and so on) based on various aggre-
gated data from sensors (temperature, humidity, brightness,
etc.). Moreover, UAV (Unmanned Ariel Vehicle) Comput-
ing is a type of application-oriented edge computing that
is widely used in agriculture today [326]. The UAVs are
deployed in the form of a swarm, outfitted with cameras
and computation resources, where they fly over large farms
to monitor crop health and plant stress. Aside from crop
rentability, EC can be used to analyze farm animal behav-
ior [327], which is vital for animal welfare and health.

Meanwhile, one of the challenges agricultural areas face is
isolation and a lack of solid and reliable connections to the
data network. Private edge computing and communication
infrastructure present a valuable solution to enrich agricul-
tural areas to address this issue. Another reason to rely on
edge/fog computing is to protect the core network from con-
gestion [328], as transferring all camera records and sensor
data from different farms to the centralized Cloud will be a
tiresome network task in the future.

Alternatively, one of the well-known low-energy commu-
nication technologies is LORA (Long Range), which is used
widely used in precision agriculture [329]. It consists of two
components: Lora Gateways, which are responsible for trans-
ferring data from sensors, and a LORA central unit, which
functions as an edge node for processing the acquired data.

3) SMART INDUSTRY
EC has perfectly aligned with the most recent industry
4.0 requirements; this integration is also known as industrial
edge computing [330]. Predictive maintenance is an approach
that new industries rely on to reduce their CAPEX and OPEX
expenses. In it, the machine is equipped with various IIoT
(industrial IoT) sensors counting temperature, vibration, and
pressure sensors, which gather data that is then transferred
to fog nodes to be processed there for predicting machines
failures and errors [331].

Further, the fourth industrial generation intends to incor-
porate artificial intelligence (AI) into its manufacturing pro-
cesses. Because industrial companies cannot transfer their
private data (for example, videos from the production scenes)
to the Cloud, they must rely on the edge [332]. Object
recognition with robots [333], automated guided vehicles
(AGV) [334] and human pose estimation [335] are some
examples of how industry 4.0 is working to improve itself
using EI.

Outside of industries, E-commerce enterprises are now
in desperate need of real-time interaction with their cus-
tomers [336], as delivering quickly with EC is one of the
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FIGURE 19. EC applications and use-cases.

best browser experiences they can provide to their cus-
tomers. Likewise, EC can help secure in-store payment
stations by upgrading their cameras with computer vision
capabilities [337].

4) SMART GRID
Smart grid (SG) enhances electrical energy with efficient,
flexible control of grid components through information
and communication technologies (ICT). SG has three main
branches, including smart grid metering and monitoring,
intelligent control of grid functions, and effective integration
of renewable energy sources into the grid [338].

Smart grids interact with edge computing via their energy
management systems, which can be hosted in edge servers
in a scalable and distributed fashion. One of the smart grid’s
primary functions is monitoring. Smart grids can monitor
their grid equipment (voltage alarms, cables, towers, etc.)
using EC. In the event of an overhead line failure, the smart
grid can quickly restore power via its low communication
with ES [339].

One of the primary smart grid energy measurement
approaches is load forecasting, also known as electricity
consumption prediction. The prediction is usually performed
using ML models, and the training of those models can be
accomplished using FL methods, in which each smart meter
is connected to an ES that does the training on its electrical

data [340]. In addition, malfunctioning smart meters is one
of the issues EC helps to resolve in SG [331]; with EC,
smart meters can be empowered with intelligence at the Edge,
allowing them to detect whether or not their monitored data
is erroneous.

Moreover, in the intelligent grid control phase [341], the
edge nodes can play a critical role in communicating with
the various grid sensors and power sources for then sending
the appropriate commands to generators and actuators in
real-time.

Renewable energy integration is a component of the Smart
grid; one of the services that VEC provides to EVs (Edge
Vehicles) is the use of MEC servers represented by roadside
units to calculate the best time and location for charging
electric vehicles based on tariffs and battery level [342].

5) SMART ROADS
Edge computing made the new smart cities’ roads and trans-
portation systems safer and more intelligent. Smart roads,
as surveyed in [343], aid in the spread of global aware-
ness among road elements by employing an intelligent traf-
fic management system, where vehicles assisted by EC
can communicate with one another to maintain road traffic
safety and equilibrium [344]. Using this Vehicle-to-Thing
communication, it is also possible to treat special road scenar-
ios more efficiently, for example, in the case of an accident or

69290 VOLUME 10, 2022



S. Douch et al.: Edge Computing Technology Enablers: A Systematic Lecture Study

emergency vehicles (ambulance, police car), where vehicles
are commanded proactively to free up some road lines.

Based on the aggregated data from the road environment,
one of the functions that will be hosted in ES is vehicle
collision detection [345]; within ES can instruct and calibrate
in real-time vehicle speeds and trajectories, as well as lighting
systems to avoid collision accidents. Additionally, FC is used
to enhance road cameras with functionalities such as vehicle
detection and tracking [346]. Another issue in road safety
is surface condition; the effort [347] proposed deploying a
crowded surface sensing system with the assistance of vehi-
cles, in which data is aggregated and analyzed using fog
nodes.

6) SMART BANKS (BLOCKCHAIN)
Blockchain is an electronic transaction system invented in
2008, and it is free of any third-party controller (Banks,
government, etc.). Miners, who work on solving a math-
ematically and computationally difficult problem known
as the Proof of Work, perform transaction verification in
Blockchain. Blockchain technology is the driving force
behind smart banks. Because of the computationally inten-
sive nature of mining tasks, Blockchain cannot be directly
integrated into IoT devices. As a result, offloading mining
tasks to the Cloud, Fog, or Edge represents a valuable solu-
tion [348]. Moreover, one of the challenges in Blockchain is
pricing collaborative miners, as there is a need to improve the
revenue of ECSP (Edge/Cloud service providers) while also
protecting miners’ investment gains from offloading to the
Edge/Cloud [349].

B. E-HEALTH
By this century, electronic and information systems had
already infiltrated the health sector, resulting in what we now
call ‘‘e-Health.’’ This new health paradigm is characterized
by the use of electronic devices for diagnosing and treating
patients and the widespread use of computers for collecting
and analyzing health records. EC is here to benefit e-health in
a variety of ways, including medical records storage, dealing
with privacy concerns, and coping with long retrieval delays
from the cloud [350]. Moreover, using fog/edge for contin-
uous remote health monitoring of patients [351] will save a
massive amount of network bandwidth. EC is essential for
next-generation e-health applications, including Telesurgery
operation [352], in which the doctor from their homes com-
mands actions to be performed by robots in operation rooms;
this communication requires a very low latency that can only
be achieved with EC.

Further, with the increasing use of AI in all human
activities, e-health is now widely benefiting from this
intelligence in many tasks, as the survey in [353] high-
lighted the EI different deployment use cases in health-
care systems. Further, some of those e-heath-enabled tasks
include arrhythmia detection [354], in which electrocar-
diogram sensors are enabled by Edge Intelligence to clas-
sify heartbeat. Another application is electroencephalogram

monitoring [355], or human brain activity classification,
where recent advancements in embedded brain-computer
interface (BCI) combined with EI allows for brain seizure
detection to be performed [356].

C. ENTERTAINMENT
There is no doubt that edge computing, in conjunction with
5G networks, will transform the gaming experience, partic-
ularly VR and AR games. The two criteria gamers despise
the most are higher pings caused by high latency and poor
FPS linked to low computing resources. In the case of aug-
mented reality, EC promises to improve these two gam-
ing quality requirements by connecting with low latency
gamers’ AR goggles and mobile devices to high resourceful
edge computing nodes [357]. In addition to AR goggles,
another type of wearable gaming device is haptic ones [358],
which provide sensing information to users whenever an
action occurs within a virtual game, to come close to instant
human reaction when touching a fire, those require Ultra-
low latency, which can only be achieved using edge Comput-
ing. Additionally, With the mean of smart wearable devices,
EC promises to enhance and improve edge users’ entertain-
ment experience [359].

Aside from gaming, EC enhances mixed reality appli-
cations, such as limited and visually impaired people
assistance [360].

D. MILITARY & SPACE
A trend toward edge computing is a trend toward Tactical-
Edge Computing. Data cannot be backhauled to a central
office in military operations because network infrastructure
is one of the first tactical targets in a war, rendering the
Cloud, fog, or MEC non-existent or out of service. In a war
scenario, the military is left with distributed edge nodes that
must be consolidated and scaled up in a high fault tolerance
environment before being used to augment other military
equipment with computation resources [361]. Given that the
EC favors decentralization, the work in [362] investigated the
case of a Swarm of Drones as an effective source provider of
FOG computing services.

Smart wearable devices (e.g., smart clothing, smart-
watches) powered by EC have proven to be extremely useful
on battlefields, as demonstrated by Microsoft’s sale of the
HoloLens smart glass to the US Army as part of a 22 billion
dollar contract [363]. Another EC-powered military device
is ground penetrating radar [364], which is typically carried
by drones or low-flying aircraft. Adding local intelligence to
these radars allows for an instant operation against under-
ground detected objects. Similarly, EI can play an essential
job in the surveillance of remote desert borders [365]. In a dif-
ferent scenario, maritime can perform rescue operations in the
middle of the ocean using UAVs equipped with object detec-
tion models by using UAV-based Edge Computing [366].

Furthermore, because terrestrial edge computing (TEC) is
vulnerable to disasters or tactical attacks, orbital edge com-
puting (OEC) [367] is becoming a valuable backup in many
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scenarios, particularly with the breakthroughs advancement
made in enhancing space-ground data rate transformation
and lessening of satellite manufacturing and operating costs.
Nonetheless, as [368] highlights, OEC still faces numerous
challenges, such as high-speed movement and channel con-
dition changes. Meanwhile, many studies, including [369]
and [370], propose outfitting satellites with embedded pro-
cessing boards to perform tasks like data analysis and AI
inference.

VII. EDGE COMPUTING CHALLENGES AND FUTURE
CONCERNS
A. GREEN ENERGY
Climate change is one of the most pressing issues of the cur-
rent decade. Climate change has compelled the globe to rely
more on clean and sustainable energy. However, with today’s
increased electricity usage due to novel edge applications,
the demand for integrating renewable energy as the primary
source of EC energy consumption is at its all-time high.
Although EC promises to reduce energy consumption pushed
by cloud data centers, there is an increasing need for powering
ES with clean energy and harvested energy approaches [371].
On the other hand, many efforts are working on reducing ENs
energy consumption while also making offloading decisions
favoring EC powered by clean energy [372].

B. STANDARDIZATION
Edge Computing has emerged as a compelling and vital
paradigm for industry and research. Several standardization
institutions have put up a lot of effort to create recommen-
dations and references on how to integrate EC either from
the cloud-Edge side or from the MEC-5g standards network
side [373]. In terms of cloud architectures, the International
Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) have put in a lot of
work to define Cloud/Edge technical architectures, software
platforms, virtual machine and container management, and
orchestration. ETSI is a prominent player in the 5g-MEC
sector, and their numerous white papers have helped to stan-
dardize Multi-access Edge Computing platforms [54].

VIII. CONCLUSION
The world is undergoing a massive shift toward digital ser-
vices. As a result, computing and memory resources are
in high demand. Furthermore, novel applications like smart
cities, e-health, smart grid, and others require resources (com-
puting & memory) with low latency services and a stable
network free of security and privacy issues. EC has emerged
to provide all of this. We presented a survey on the evolution
and construction of this computing paradigm as part of this
work. We discussed how related technologies such as 5G,
Edge Intelligence, and containerization had pushed the evo-
lution toward keeping and handling data at the Edge. Finally,
we investigated how EC will respond to future concerns such
as green energy and standardization.
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