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ABSTRACT In this paper, we re-examine the classical problem of efficiently evaluating the block and bit
error rate performance of linear block codes over binary symmetric channels (BSCs). In communication
systems, the maximum likelihood decoding (MLD) bounds are powerful tools to predict the error perfor-
mance of the coded systems, especially in the asymptotic regime of low error probability (or high signal-to-
noise ratio). Contrary to the conventional wisdom, we prove that for BSCs, all bounds based on Gallager’s
first bounding technique, including the famous union bound, are not asymptotically tight for all possible
choices of the Gallager region. By proposing the so-called input demodulated-output weight enumerating
function (IDWEF) of a code, asymptotically tight MLD upper and lower bounds for BSCs are then derived.
In many practical scenarios where performance bounds are not applicable (e.g., due to the unavailability
of the relevant coding parameters under a given decoder), the Monte Carlo simulation is commonly used
despite its inefficiency, especially in the low error probability regime. We propose an efficient importance
sampling (IS) estimator by deriving the optimal IS distribution of the Hamming weight of the error vector.
In addition, the asymptotic relative saving on the required sample size of the proposed IS estimator over the
state-of-the-art counterpart in the recent literature is characterized. Its accuracy in predicting the efficiency
of the proposed IS estimator is verified by extensive computer simulation.

INDEX TERMS Linear block codes, importance sampling, Monte Carlo simulation, asymptotically tight
bounds, binary symmetric channel.

I. INTRODUCTION
Linear block codes have been widely used in real-world
communication systems for providing reliable data transmis-
sion over noisy channels [1], [2]. How to efficiently evalu-
ate the performance of such coded systems, especially at a
very low target bit (or word) error rate, is a long-standing
problem. Useful performance bounds on the average error
probability of the random code are available for any given
blocklength and code rate [3]–[5]. However, efficient perfor-
mance evaluation of a specific coding scheme with a specific
decoder remains indispensable for practical code selection
and verification of codec implementation. As a result, perfor-
mance bound analysis and Monte Carlo (MC) performance
simulation based on some specific properties of the target
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code and decoder receive ongoing research interests in the
communication community.

Many known bounds on maximum likelihood decod-
ing (MLD) performance have been reported in the literature
[6], [7]. Many of them are derived using a general bounding
technique developed by Gallager and later referred to as
Gallager’s first bounding technique (GFBT) by Divsalar [8].
The method introduces the so-called Gallager region around
the transmitted codeword to divide the observation space and
avoid over-estimating the error probability outside the region.
The GFBT-based bounds resulted from different choices of
the Gallager region include many well-known bounds as
special cases. For instance, for the additive white Gaussian
noise (AWGN) channel, the famous union bound can be
obtained by setting the Gallager region to the whole observa-
tion space. The tangential bound of Berlekamp [9] tightens
the union bound by determining the region as a boundary
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of a plane. The sphere bound [10] derived by Herzberg and
Poltyrev chooses the region as a sphere centered at the trans-
mitted signal vector. The tangential sphere bound [11] selects
the region as a circular cone whose central line passes through
the origin and the transmitted signal vector.

Somewhat surprisingly, we discover that for binary sym-
metric channels (BSCs), the GFBT-based bounds are not
asymptotically tight for all possible choices of the Gallager
region. In particular, the knowledge of the minimum
Hamming distance and the number of minimum-distance
codewords of a code are insufficient for characterizing its
asymptotic word error probability. To fix this issue, we pro-
pose the so-called input demodulated-output weight enu-
merating function (IDWEF) of a given linear block code
and a given decoder. Intuitively speaking, the IDWEF rep-
resents the input-output weight relationship of the decoder,
while the conventional input-output weight enumerating
function (IOWEF) represents that of the encoder. Hence,
unlike the IOWEF, the IDWEF characterizes the classifica-
tion of all dominating error vectors according to which code-
words they are decoded to and contains sufficient knowledge
of the encoder-decoder pair to express asymptotically tight
bounds.

For many practical coding schemes, the performance
bound analysis is difficult to conduct. This is because
the parameters (such as the minimum distance, IOWEF or
IDWEF) of a given encoder-decoder pair required in the
bounding expressions may not have been tabulated and made
publicly available. Determining such coding parameters by
theoretical analysis or by computer enumeration searches is
in general a very challenging and costly (if not, intractable)
task. Under such scenarios, MC simulation is a common
numerical technique to carry out performance estimation.
One drawback of this technique is the requirement of a
sufficiently large number of generated samples in order to
provide reliable estimates of the target bit error rate (BER) or
word error rate (WER), which may be very low in the error
rate region of practical interest. For example, in the modern
Dense Wavelength Division Multiplexing (DWDM) optical
communication systems, the transmission capacity per fiber
can exceed a Tbps and the target BER is typical 10−12 and
sometimes even as low as 10−15 [12]. At this level of error
probability, performance evaluation byMC simulation is pro-
hibitively complicated. It is noteworthy that due to the high
circuit complexity and power consumption associated with
the very high transmission rate requirement, hard-decision
decoding, in place of soft-decision decoding, has been widely
used in optical communication applications [12]. The same
holds in the storage applications, such as nanoscale and flash
memories [13], [14]. Therefore, a fast simulation method for
accurately estimating a very low target error probability under
hard-decision decoding (or the resulting BSCs) is highly
desirable.

One of the most efficient ways to reduce the computa-
tional complexity of the MC method is to use the impor-
tance sampling (IS) technique. The idea is to use a biased

distribution, called the IS distribution, to generate samples
so that the frequency of the occurrence of the rare events
can be increased. It can significantly enhance the efficiency
in terms of the sample size for simulating the performance
of communication systems. Although the optimal IS dis-
tribution is known from [15], it does not allow a practi-
cal sampling process to be implemented since it depends
on the parameters to be estimated itself. Therefore, sev-
eral sub-optimal but implementable schemes are presented.
Many works in the literature choose the IS distribution from
a parametric family of distributions like the mean transla-
tion [16], the variance scaling [15]. This kind of method is
easy to implement but its efficiency in terms of the sample
size is low if the parametric family is far away from the
optimal IS distribution. To overcome this problem, a mix-
ture of components is used in the multiple IS methods
[17], [18], and an iterative adaptation of the IS distribution
is applied in the adaptive IS methods [19], [20]. The adaptive
IS is used in [21] for error probability estimation for multiple
access systems, and a nested IS method that estimates the
random-coding error probability of the coded-modulation is
provided in [22]. There also exist methods based on non-
parametric IS distributions, such as the dual adaptive IS
method [23]. The method shows a significant improvement
in reducing the sample size of the simulation. However, the
empirical reliability measure of the estimated results makes
the efficiency analysis of the method ambiguous compared to
the MC method.

For BSCs, the method presented in [24] divides the sample
space into different regions according to the error weight
(i.e., Hamming weight of an error vector) and calculates the
WER by manually assigning large enough samples for each
weight to counting the number of errors and estimating the
conditional error probability. Although themethod is efficient
in the sense that no additional computation cost is needed
for different signal-to-noise ratios (SNRs), the number of
samples allocated to eachweight in this method is empirically
chosen which can be further improved. A quasi-analytical
simulation method is presented in [25], which estimates the
boundary of the decision region and predicts the error per-
formance. It is efficient under the assumption of the geodesic
channel and the star domain decoder. The state-of-the-art IS
method over BSCs, called the minimum-variance Bernoulli
estimator, is introduced in [26]. It is assumed therein that the
IS distribution is a parametric Bernoulli distribution and the
optimal parameter is determined by minimizing the variance
of the IS estimator. However, the optimal parameter requires
the conditional error probabilities for each error weight,
which need to be estimated themselves. A fast simulation
algorithm, called the IS-MC basic, that estimates both the
optimal parameter and the WER iteratively is therein pre-
sented.

We take the state-of-the-art IS method in [26] as the bench-
mark estimator in this paper. If we regard the error weight
as a random variable, we find out that this estimator can
be interpreted as sampling the error weight with a binomial
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distribution as the IS distribution. Apparently, restricting the
IS distribution of the error weight to the Binomial family is
generally suboptimal. By relaxing the restriction and exploit
the larger degree-of-freedom to optimize the IS distribution
of the error weight, we propose a new IS estimator that can
outperform this benchmark IS estimator [26] in terms of the
sample size.

In this paper, we present new WER and BER evaluation
methods including both performance bound analysis and IS
simulation for linear block codes over BSCs. Our main con-
tributions are summarized as follows.
1. We prove that the GFBT-based bounds for BSCs are

not asymptotically tight for all possible choices of the
Gallager region. By proposing the so-called IDWEF of
a coding scheme, the asymptotically tight MLD upper
and lower bounds for linear block codes over BSCs are
proposed.

2. The optimal IS distribution among all the possible dis-
tributions of the error weight over BSCs is derived.
AHammingweight-based IS algorithm that can estimate
the optimal IS distribution and the error probability iter-
atively without assuming any knowledge of the coding
parameters is proposed1,.2

3. The asymptotic relative saving on the required sample
size of the proposed IS estimator over the state-of-the-
art counterpart [26] is derived. It only depends on the
error-correcting capability of the code and can be used
to predict the efficiency of the estimator before the
simulation.

The rest of the paper is organized as follows. Section II
briefly reviews some conventional GFBT-based bounds and
some preliminaries of the IS method. In Section III, the
definition of IDWEF for a linear block code and a given
decoder is introduced and based on which, asymptotically
tight upper and lower bounds are derived. In Section IV,
the optimal IS distribution for error weight is given and
a corresponding IS estimator is proposed. The asymptotic
relative saving on the required sample size of the proposed
IS estimator over the benchmark IS estimator [26] is derived
in Section V. A comparison of the MC estimator, the bench-
mark IS estimator and the proposed IS estimator is presented
in Section VI. Finally, some concluding remarks are given
in Section VII.

II. PRELIMINARIES
For an (n, k) binary linear block code, a length-k infor-
mation bit sequence is encoded into a length-n codeword
c ∈ C ⊂ X n , {0, 1}n, where C denotes an k-dimensional
subspace (i.e., the code) of the n-dimensional Hamming space
X n. After the codeword is transmitted over the BSC with

1Part of the contribution was presented in the conference version [27].
In this paper, we extend the method to the BER simulation and analyze the
efficiency of the proposed IS estimator shown in the last contribution.

2We open-source our HW-IS algorithm in [28] and make it user-friendly
for any linear block codes.

cross-over probability p, a vector z ∈ X n is received. Since
the code is linear and the channel is symmetric, without loss
of
generality, assume that the all-zero codeword c0 is trans-
mitted. Then the received vector z can also be regarded as
the error vector. Denote wt(z) as the Hamming weight of z.
Hence, the error vector z follows the multivariate Bernoulli
distribution Bern(z; p) with the probability mass function
(p.m.f.) f (z) = pwt(z)(1− p)n−wt(z).

The word error rate (WER) Pe and the bit error rate (BER)
Pb are widely used metrics to measure the error performance
of a block code and the associated decoder. To avoid possible
confusion between the similar notations for WER and BER,
subscripts e and b are used to differentiate them. Denote E
as the error region of the all-zero codeword and Ie(z) as the
indicator function that equals 1 when z leads to a decoding
error and 0 otherwise. TheWER can be expressed in terms of
Ie(z) as

Pe = Pr(z ∈ E) =
∑
z∈X n

Ie(z)f (z), (1)

Denote Ib(z) as the ratio of the number of the non-zero
information bits to k . The BER is defined as

Pb =
∑
z∈X n

Ib(z)f (z). (2)

A. ERROR PROBABILITY BOUNDS FOR BSC
Error probability bounds are widely used to evaluate theMLD
performance of a binary linear block code. One thing that
plays an essential role in the derivation of many conventional
bounds is the IOWEF [6]. It is defined as

A(X ,Y ) =
∑
h,d

Ah,dXhY d , (3)

where X and Y are the input and output indeterminates,
respectively, and Ah,d represents the number of weight-
d codewords generated from weight-h information bit
sequences (i.e., the coefficient of the IOWEF with input
weight h and output weight d with 0 ≤ h ≤ k and 0 ≤ d ≤ n).
By setting X = 1 in (3) we get the expression of the weight
enumerating function (WEF).

For example, denoteZ as a random error vector, the famous
union bound can be expressed as

Pe ≤
n∑

d=1

AdPr (Z ∈ Vd ) =
n∑

d=1

Ad
d∑

`=dd/2e

(
d
`

)
p`(1− p)d−`,

(4)

where the WEF coefficient Ad ,
∑k

h=0 Ah,d , and Vd denotes
the pairwise error region between a weight-d codeword and
the all-zero codeword.

As we know, the union bound is loose when p is large.
By limiting the usage of the union bound to an introduced
Gallager regionR around the transmitted codeword, a tighter
bound can be derived by avoiding over-estimating the error
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probability outside the Gallager region. Mathematically, the
GFBT-based bound can be derived as

Pe = Pr(Z ∈ E ∩R)+ Pr(Z /∈ E ∩R)

≤

n∑
d=1

AdPr (Z ∈ Vd ∩R)+ Pr(Z /∈ R). (5)

By choosing the region R as the Hamming sphere cen-
tered at the transmitted codeword and optimizing the radius
to tighten the bound, the sphere bound is proposed by
Poltyrev [11]. Based on the simpler formulation in [4], it can
be expressed as

Pe ≤
n∑

w=0

pw(1− p)n−wmin

{(
n
w

)
,

n∑
d=1

AdB(w, d, n)

}
, (6)

where

B(w, d, n) =
min{w,d}∑
`=dd/2e

(
d
`

)(
n− d
w− `

)
(7)

represents the number of weight-w error vectors at the same
distance or closer to a weight-d codeword compared with c0.
On the other hand, by assuming that a decoding error

occurs only if the error vector falls inside any packing
sphere centered at a codeword other than c0 [29, eqn. (20)],
the union-of-packing-spheres (UPS) lower bound can be
derived as

Pe ≥
n∑

w=0

pw(1− p)n−w
n∑

d=1

Ad B̃(w, d, n), (8)

where

B̃(w, d, n) =
min{w,d}∑
`=d d+w−t2 e

(
d
`

)(
n− d
w− `

)
(9)

is the number of weight-w vectors within the decoding sphere
of a weight-d codeword and t is the error-correcting capabil-
ity of the code.

It is noteworthy that if the WEF coefficient Ad in (5), (4)
and (8) are replaced by

∑k
h=1

h
kAh,d , the GFBT-based bound,

the classical union bound and the UPS bound for BER are
obtained.

B. IMPORTANCE SAMPLING AND RELATIVE ERROR
The MC estimator of the WER is unbiased and can be
written as

P̂MC
e =

1
N

N∑
i=1

Ie(zi), zi ∼ f (z), (10)

where N is the total number of samples. Variance is com-
monly used as the reliability measure of the estimator. It is
well-known that the variance of the MC estimator is

Var
[
P̂MC
e

]
=
Pe (1− Pe)

N
. (11)

In IS simulation, the WER in (1) can be rewritten as

Pe =
∑
z∈X n

Ie(z)
f (z)
f ∗(z)

f ∗(z), (12)

where the p.m.f. f ∗(z) represents the IS distribution. The IS
estimator can be expressed as

P̂ISe =
1
N

N∑
i=1

Ie(zi)
f (zi)
f ∗(zi)

, zi ∼ f ∗(z). (13)

The IS estimator is also unbiased and its variance can be
derived as

Var
[
P̂ISe
]
=

1
N

(∑
z∈X n

Ie(z)
f 2(z)
f ∗(z)

− P2e

)
. (14)

Relative error of the estimator is commonly used as the
stopping criterion of the simulation, which is defined as [30]

κ ,

√
Var

[
P̂ISe
]

Pe
. (15)

Specifically, if the IS distribution is same as the original
sampling distribution, the IS estimator is equivalent to theMC
estimator. When the error probability is small (i.e. Pe � 1),
the relative error in the MC estimator is

κ =

√
1− Pe
NPe

.

The number of samples needed to achieve a given κ can be
approximated as

N ≈
1

κ2Pe
, (16)

which suggests that N ≈ 100/Pe samples are required in
order to obtain a reliable estimation result with a relative error
of 10%, i.e., κ = 0.1.
The BER counterparts of Pe, P̂MC

e and P̂ISe , denoted by Pb,
P̂MC
b and P̂ISb , can be obtained by substituting Ib for Ie in (12),

(10) and (13), respectively.

III. PROPOSED ASYMPTOTICALLY TIGHT BOUNDS
Many bounds in the literature have been derived to predict
the error performance of the linear block codes for BSCs.
Contrary to the conventional wisdom, we found that they
are not asymptotically tight, as p tends to 0. For instance,
as shown in Fig. 2 in Section VI, both the union bound and the
sphere bound have a non-vanishing gap from the simulated
WER performance for the example code considered therein.
Consistent with the terminology in the literature, a WER
bound Pe,bound is said to be asymptotically tight if

lim
p→0

Pe,bound
Pe

= 1

holds for all linear block codes. In other words, as long
as there exists a code for which the WER bound cannot
give the asymptotic exact performance, we shall not call it
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an asymptotically tight bound in this work. The asymptotic
tightness of a BER bound is defined in a similar manner. The
following theorem formalizes our claim for the GFBT-based
WER bounds.
Theorem 1: The WER bound (5) based on Gallager’s first

bounding technique for binary linear block codes over BSCs
is not asymptotically tight for all possible choices of the
Gallager region, as the cross-over probability p tends to 0.

Proof: Since only the asymptotic error probability is
relevant, it is sufficient to only consider the weight-(t + 1)
Hamming shell denoted by Yt+1 = {z ∈ X n

: wt(z) = t+1}.
Denote the constrained pairwise error region Vi = {z ∈

Yt+1 : wt(z) ≥ wt(z − ci)} of the i-th codeword ci, i =
1, 2, . . . ,m, as the set of weight-(t + 1) vectors which are
at the same distance or closer to ci compared with c0. As
p→ 0, a weight-(t+1) vector may only be wrongly decoded
to a weight-(2t + 1) or weight-(2t + 2) codeword. Let m =
A2t+1 + A2t+2 and index these codewords from 1 to m in a
certain order. Obviously, the number of weight-(t+1) vectors
that are decoded wrongly is |

⋃m
i=1 Vi|, where | · | represents

the cardinality of a set. Therefore, the asymptotic WER is

Pe ∼

∣∣∣∣∣
m⋃
i=1

Vi

∣∣∣∣∣ pt+1(1− p)n−t−1 (p→ 0).

It follows that a WER bound is asymptotically tight if and
only if it converges to the above value as p tends to 0.
Define Rt+1 , R ∩ Yt+1 and R′t+1 , R{

∩ Yt+1. As p
tends to 0, the GFBT-based bound (5) can be rewritten as

Pe,GFBT ∼
2t+2∑

d=2t+1

AdPr (z ∈ Vd ∩Rt+1)+ Pr(z ∈ R′t+1)

=

m∑
i=1

Pr (z ∈ Vi ∩Rt+1)+ Pr(z ∈ R′t+1)

=

(
m∑
i=1

|Vi ∩Rt+1| + |R′t+1|
)
pt+1(1− p)n−t−1

×(p→ 0).

On the other hand, we have∣∣∣∣∣
m⋃
i=1

Vi

∣∣∣∣∣ =
∣∣∣∣∣
m⋃
i=1

Vi ∩Rt+1

∣∣∣∣∣+
∣∣∣∣∣
m⋃
i=1

Vi ∩R′t+1

∣∣∣∣∣
≤

∣∣∣∣∣
m⋃
i=1

Vi ∩Rt+1

∣∣∣∣∣+ |R′t+1|
≤

m∑
i=1

|Vi ∩Rt+1| + |R′t+1|,

where the second last equality holds if and only if R′t+1
is a subset of

⋃m
i=1 Vi, i.e., the Gallager region R contains

all weight-(t + 1) vectors that can be decoded correctly.
In order to make the bound asymptotically tight, assume the
chosen Gallager regionmeets this condition. The last equality
holds if and only if the sets Vi ∩ Rt+1, i = 1, 2, · · · ,m,

are mutually disjoint. According to the inclusion-exclusion
principle, we have∣∣∣∣∣
m⋃
i=1

Vi ∩Rt+1

∣∣∣∣∣ =
m∑
i=1

|Vi ∩Rt+1|

−

∑
1≤i<j≤m

|Vi ∩ Vj ∩Rt+1|

+ · · · + (−1)m−1|Vi ∩ · · · ∩ Vm ∩Rt+1|.

For general binary linear block codes, Vi’s are clearly
not disjoint. It is possible that the sets Vi ∩ Rt+1, i =
1, 2, · · · ,m, are disjoint with a suitable choice of the Gal-
lager region, i.e., Vi ∩ Vj ⊂ R′t+1 for all i, j. However,
this requires the knowledge of the intersections of Vi and
Vj, which involves the decoding error relationships among
three codewords (including the all-zero codeword). This sug-
gests that the conventional pairwise error weight distribution
represented by the WEF coefficients Ad is insufficient for
expressing an asymptotically tight WER bound for BSCs
because, except the first term on the right-hand side, the other
terms involve the error relationships among two or more non-
zero codewords. Obviously, the issue remains for all possible
choices of the Gallager regionR. Therefore, in general, there
exists a non-vanishing gap between the GFBT-based bound
and the asymptotic WER as p tends to 0. This completes the
proof. �

TABLE 1. The codebook of a (6,2) example linear block code.

Take the (6, 2) binary linear block code, whose codebook
is shown in Table 1, as an example. The error-correcting
capability is t = 1. The WEF coefficients of the code are
A0 = 1, A3 = 2, A4 = 1. The total number of weight-
(t + 1) vectors is

(6
2

)
= 15. If we index the three non-all-zero

codewords in Table 1 from top to bottom, the sets V1, V2 and
V3 can be written as
• V1 = {[0 1 1 0 0 0], [0 1 0 0 1 0], [0 0 1 0 1 0]};
• V2 = {[1 0 1 0 0 0], [1 0 0 0 0 1], [0 0 1 0 0 1]};
• V3 = {[1 1 0 0 0 0], [1 0 0 0 1 0], [1 0 0 0 0 1],
[0 1 0 0 1 0], [0 1 0 0 0 1], [0 0 0 0 1 1]}.

We can see that the vector [0 1 0 0 1 0] appears in both
V1 and V3, and the vector [1 0 0 0 0 1] appears in both
V2 and V3. The exact number of the wrongly decoded weight-
(t + 1) vectors is |V1 ∪ V2 ∪ V3| = 10. However, based only
on the knowledge of WEF coefficients, the number of the
wrongly decoded weight-(t + 1) vectors is overestimated as
A3
(3
1

)
+ A4

(4
2

)
= 12 = |V1| + |V2| + |V3| (as in the classical

union bound and sphere bound). Note that the GFBT-based
bound is asymptotically tight for this code by choosing the
Gallager region to exclude the set of vectors [0 1 0 0 1 0] and
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[1 0 0 0 0 1], which can be viewed an additional code-specific
parameter that cannot be deduced from the WEF.

Although the GFBT-based WER bounds are not asymptot-
ically tight for all codes, they can be tight for some specific
codes. One example is that if the code satisfies |

⋃m
i=1 Vi| =( n

t+1

)
(i.e., all the weight-(t + 1) vectors will be decoded

wrongly, such as the perfect code), the bounds can be asymp-
totically tight. Another example is that if all the sets Vi of
the code are pairwise disjoint, the WER bounds can also be
asymptotically tight. In particular, allVi’s satisfy the pairwise
disjoint condition if A2t+2 = 0.
Note that some weight-(t+1) vectors are wrongly decoded

although they do not fall in the radius-t decoding spheres of
any codewords. Thus, the UPS lower bound is not asymptot-
ically tight.

The arguments behind the proof of Theorem 1 can be
readily extended to assert that the GFBT-based BER bound
for BSCs is not asymptotically tight for all possible choices
of the Gallager region. Specifically, it can be deduced that the
pairwise error weight distribution represented by the IOWEF
is insufficient for representing an asymptotically tight BER
bound for BSCs.

By far, we can see that in order to get an asymptotically
tight bound for the WER, we need to get the exact number of
weight-(t+1) vectors that lead to an error. Furthermore, if the
bounds for the BER are considered, we also need to know the
weights of the information sequences that the weight-(t + 1)
vectors wrongly decoded to. Therefore, we introduce the
IDWEF defined as

S(D,Y ) ,
n∑

w=0

k∑
h=0

Sh,wDhYw, (17)

where D and Y are the output and input indeterminates of
the decoder, respectively, and Sh,w is the number of weight-
w vectors that will be decoded to an information sequence
with weight h. It actually can be regarded as the IOWEF
of the decoder as it focuses on the relationship between the
weights of the error vectors and the information sequences.
Consequently, the IDWEF is decoding algorithm dependent.
Note that the sphere partitioning function defined in [29] is a
special case of our IDWEF. It only shows the first term of the
IDWEF and does not consider the weight of the information
sequence. For a specific hard-decision decoder, the following
proposition provides the exactWER andBERof a given code.
Proposition 1: Given the IDWEF (i.e., Sh,w ∀h,w) of a

binary linear block code and its decoder over BSCs,

Pe =
n∑

w=1

pw(1− p)n−w
k∑

h=1

Sh,w (18)

Pb =
n∑

w=1

pw(1− p)n−w
k∑

h=1

h
k
Sh,w (19)

give the exact WER and BER expressions, respectively.
Unfortunately, the decision regions of a decoder are usually

too complex for us to obtain the full details of the IDWEF.

It is reasonable to use a truncated IDWEF and the existing
bounds in order to acquire asymptotically tight bounds of the
WER and BER. By replacing the w = t + 1 term of the
sphere bound (6) and UPS bound (8), we can get the proposed
asymptotically tight upper and lower bounds for WER.
Proposition 2: Given the weight-(t + 1) IDWEF coeffi-

cients (i.e., Sh,t+1 ∀h) of a binary linear block code and its
decoder,

Pe ≤ pt+1(1− p)n−t−1
k∑

h=1

Sh,t+1 +
n∑

w=t+2

pw(1− p)n−w

·min

{(
n
w

) n∑
d=1

AdB(w, d, n)

}
, (20)

Pe ≥ pt+1(1− p)n−t−1
k∑

h=1

Sh,t+1

+

n∑
w=t+2

pw(1− p)n−w
n∑

d=1

Ad B̃(w, d, n) (21)

give asymptotically tight upper and lower bounds onWER for
BSCs, respectively.

Similar modifications can be applied to the BER case,
where we replace the first term of the union bound (4) and
the UPS bound (8).
Proposition 3: Given the weight-(t + 1) IDWEF coeffi-

cients (i.e., Sh,t+1 ∀h) of a binary linear block code and its
decoder,

Pb ≤ pt+1(1− p)n−t−1
k∑

h=1

h
k
Sh,t+1

+

n∑
w=t+2

pw(1− p)n−w
n∑

d=1

k∑
h=0

h
k
Ah,dB(w, d, n) (22)

Pb ≥ pt+1(1− p)n−t−1
k∑

h=1

h
k
Sh,t+1

+

n∑
w=t+2

pw(1− p)n−w
n∑

d=1

k∑
h=0

h
k
Ah,d B̃(w, d, n) (23)

give asymptotically tight upper and lower bounds on BER for
BSCs, respectively.

It is natural to think that the more terms in (4), (6) and (8)
are replaced by those in (18) and (19), the tighter the final
bounds can achieve. As the number of weight-w vectors
increases dramatically w.r.t. the error-correcting capability of
t (i.e., the value

( w
t+1

)
is huge for large t), the cost of the

brute-force is already unaffordable with some short block-
length codes. Efficient ways to acquire the IDWEF remains
open. The simulation is still a practical way to estimate
the error performance of long codes. The relative saving
on the sample size that required for reliable estimation can
be further improved if some fast simulation algorithms are
applied.
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IV. PROPOSED IMPORTANCE SAMPLING ESTIMATOR
In this section, we propose an IS estimator for error proba-
bility evaluation of linear block codes over BSCs with cross-
over probability p. A corresponding Hamming weight-based
IS algorithm is then presented.

For a given linear block code with blocklength n, the
complexity of searching for a proper n-dimensional IS distri-
bution is high. We define W , wt(Z) as a random variable,
named as the error weight. It follows the binomial distribu-
tion Bin(w; p) with p.m.f. Pw =

(n
w

)
pw(1 − p)n−w and its

sample space is the one-dimensional Hamming weight space
{0, 1, 2 · · · , n}.We search for the optimal one-dimensional IS
distribution in the Hamming weight space that minimized the
variance of the IS estimator. The complexity of the searching
process can be significantly reduced while the most sensitive
dimension of the randomness to the cross-over probability
remains.

A. OPTIMAL IS DISTRIBUTION
Define the error probability conditioned on the weight-w
vectors as

θe(w) , Pr (Ie(Z) = 1|wt(Z) = w) , (24)

which is named as the error ratio. Since θe(w) is independent
from p, assigning a larger sample size to the error weight
that contributes the most to the accuracy of the estimation
helps accelerate the simulation process. Assume P∗w for w =
0, 1, · · · , n is the applied IS distribution in the Hamming
weight space. The corresponding IS distribution over BSCs
with cross-over probability p can be derived as

f ∗(z) =
f (z)
Pwt(z)

· P∗wt(z) =
P∗wt(z)( n
wt(z)

) . (25)

The physical meaning of the IS distribution (25) can be
illustrated as that we need to adjust the occurrence probability
for each weight from a binomial distribution to an optimized
{P∗w}

n
w=0 while keeping the distribution conditioned on each

weight unchanged. Therefore, the IS estimator for WER
in (13) specializes to

P̂ISe =
1
N

N∑
i=1

Ie(zi)
f (zi)
f ∗(zi)

=
1
N

N∑
i=1

Ie(zi)
Pwt(zi)
P∗wt(zi)

, (26)

where zi are generated from f ∗(z).
By substituting the IS distribution (25) into (14), we can

derive the expression of the variance of the IS estimator as

Var
[
P̂ISe
]
=

1
N

(∑
z∈X n

Ie(z)
f 2(z)
f ∗(z)

− P2e

)

=
1
N

 n∑
w=0

(
n
w

) ∑
z∈Yw

Ie(z)
f 2(z)
f ∗(z)

− P2e


=

1
N

(
n∑

w=0

θe(w)
P2w
P∗w
− P2e

)
, (27)

whereYw = {z ∈ X n
: wt(z) = w} is the weight-wHamming

shell. One remark is that the variance expression in Lemma 1
of benchmark paper [26] is not rigorous.

The following theorem provides the general expression for
the p.m.f. {P∗w}

n
w=0 that minimizes the variance of the pro-

posed IS estimator (i.e., the sample size required to achieve a
specific relative error is minimized).
Theorem 2: The optimal p.m.f. {P∗w}

n
w=0 on the Hamming

weight space that minimizes the variance of the proposed IS
estimator (27) is given by

P?w =

√
θe(w)Pw∑n

j=0
√
θe(j)Pj

, for w = 0, 1, . . . , n. (28)

Proof: Since P∗w, for w = 0, 1, · · · , n, are probabilities
and only involved in the first term of the variance (27), the
minimization problem can be formulated as

minimize
P∗0,··· ,P

∗
n

n∑
w=0

θe(w)P2w
P∗w

s.t.
n∑

w=0

P∗w = 1

0 ≤ P∗w ≤ 1, for w = 0, 1, . . . , n. (29)

Denote J (P∗0,P
∗

2, · · · ,P
∗
n) =

∑n
w=0

Cw
P∗w

as the objective
function, where Cw = θe(w)P2w. The Hessian of J is

∇
2J = diag

(
2C0

P∗30
,
2C1

P∗31
, . . . ,

2Cn
P∗3n

)
, (30)

where diag(·) represents the diagonal matrix.
The Hessian matrix is positive definite ∇2J � 0, ∀P∗w ∈

Rn
+, where Rn

+ is the n-dimensional non-negative real space.
The feasible set is a subset ofRn

+ and is convex. Furthermore,
the objective function is a subset of Rn

+. Since both the
objective function and the feasible set are convex on Rn

+, the
optimization problem is convex.

Relax the problem by removing all the inequality con-
straints (i.e., extending the feasible set). The relaxed problem
is still convex on Rn

+. Its Lagrangian can be derived as

L(P∗0, · · · ,P
∗
n) =

n∑
w=0

Cw
P∗w
+ λ

 n∑
j=0

P∗j − 1

 , (31)

where λ denotes the Lagrange multiplier.
The solution of the relaxed problem can be derived by

setting the derivative of the Lagrangian to 0

∂L
∂P∗w
= −

Cw
P∗2w
+ λ = 0 ⇒

n∑
w=0

P∗w =
n∑

w=0

√
Cw
λ
= 1

⇒ λ =

(
n∑

w=0

√
Cw

)2

, and P∗w =

√
Cw∑n

j=0
√
Cj
.

The above solution satisfies 0 ≤ P∗w ≤ 1, which indi-
cates it falls inside the feasible set of the original problem.
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Therefore, the optimal solution for the problem in (29) is

P∗w =

√
θe(w)Pw∑n

j=0
√
θe(j)Pj

, for w = 0, 1, . . . , n. (32)

�
By substituting (28) into (25), the optimal IS distribution

w.r.t. p can be written as

f ?(z) =
√
θe(wt(z))Pwt(z)( n

wt(z)

)∑n
j=0
√
θe(j)Pj

. (33)

As we can notice, the optimal solution (28) contains part
of the target information itself θe(w), with which the error
probability can be straightforwardly calculated. Therefore,
it is impossible to obtain the optimal solution in practice.
A straightforward way that can avoid the problem is to use the
estimated or approximated θe(w), denoted as θ̂e(w), to eval-
uate the p.m.f. {P∗w}

n
w=0. There exists some knowledge of

the codebook like the error-correcting capability t and the
IDWEF conditioned on weight t + 1 that can help to get a
good approximation of θe(w) for the asymptotic case.

A naive IS estimator is therefore introduced. Based on
either some knowledge of the codebook or a preprocessing
with limited computational power, a rough estimation of
some dominant terms of θe(w) is assumed. Then, an approx-
imated IS distribution is derived and used for further error
probability simulation. Also, since error ratios θe(w) for small
weights are important properties for the code, it’s worthwhile
to do an off-line simulation and tabulate them like the exam-
ples shown in [24].

One remark is that the counterparts of θe for the BER case
θb can be obtained by substituting Ib for Ie in (24). All the
above results still hold for BER case if these counterparts are
replaced in all equations.

B. HAMMING WEIGHT-BASED IS ESTIMATOR
Wepropose theHammingweight-based importance sampling
(HW-IS) algorithm that is more efficient than the state-of-
the-art IS-MC basic algorithm [26] for the fast simulation
purpose.

Since the optimal IS distribution requires the information
of θe(w) which is also absent at the very beginning, an iter-
ative algorithm is proposed. With the initial guess θ̂0(w),
the iteration alternates between performing a p.m.f. {P∗w}

n
w=0

update and a WER or BER estimation. The implementation
of the HW-IS algorithm is shown in Algorithm IV-B. Initially,
the sample size counter N_tot is set as 0 and the relative error
WERre is set as 1. The p.m.f. {P∗w}

n
w=0 is initialized with the

inputs of the cross-over probability and θ̂0(w).
The sample generation from the IS distribution f ∗(z) con-

sists of two phases. During the first phase, an integer w is
randomly generated from the p.m.f. {P∗w}

n
w=0. In the sec-

ond phase, a sample z is generated by randomly permuting
the element order of a weight-w length-n binary vector to
mimic the uniform distribution of error vectors conditioned
on wt(z) = w. During the iteration, the error ratio θ̂e(w) for

each Hamming weight is updated by

θ̂e(w) =

∑N
i=1 Ie(zi)Iw(zi)∑N

i=1 Ie(zi)
, (34)

where Iw(z) returns 1 if wt(z) = w and 0 otherwise. The p.m.f.
{P∗w}

n
w=0 for the next iteration is updated with (28). The error

probability is estimated inside the while loop until the relative
error calculated by (15) meets the stopping criterion or the
maximum number of iteration is reached.

Algorithm 1 Hamming Weight-Based Is Algorithm for Fast
Simulation Over BSCs
Input: Cross-over probability p, initial error ratio θ̂0 and

relative error re
Output: Error probability P̂e and sample size N_tot
Initialization: N_tot:= 0, WERre:= 1, initialize {P∗w}

n
w=0

with (28) while WERre > re do
Randomly generatew from the p.m.f. {P∗w}

n
w=0 Generate

z uniformly conditioned on wt(z) = w Pass c0 + z
through the decoder if N_tot > N_min then

Compute P̂e according to (26) Compute WERre
according to (15) Update θ̂e with (34) Update
{P∗w}

n
w=0 with (28)

end
N_tot:= N_tot + 1

end
return P̂e and N_tot

In order to avoid the violation due to the insufficient
number of samples during the first several iterations, we set
the minimum sample size N_min needed for both P̂e and
{P∗w}

n
w=0 to start an update. However, for some small θe(w)

terms, it’s possible that no error has been found after N_min
samples are generated. This may lead to θ̂e(w) = 0 ⇒
P∗w = 0 after the update, which means no more samples
with those weights will be generated afterwards and P∗w will
be frozen to be 0. In order to avoid this frozen distribution
parameter problem, we sacrifice part of the efficiency by
forcing P∗w0−1

= βP∗w0
, where w0 is the first weight with

non-zero θ̂ (w0) by far and β is a factor set heuristically. This
will make the algorithm keep searching for weight-(w0 − 1)
vectors that may contain errors. Apparently, for the cases
with the knowledge of t , no efficiency loss happens. While
for the cases without t , we need to keep generating samples
with weight w0 − 1 until the stopping criterion satisfies.
One can regard this as the efficiency loss led by the lack of
knowledge of t .

Furthermore, the algorithm can be extended to an SNR
invariant version by accurately estimating θe(w) during one
simulation. Compared with the SNR-invariant algorithm
in [26] the advantage is that even for long codes, not only
the error floor part but also the water-falling region can
be accurately predicted. Similar to [26], the error-correcting
capability t can be estimated according to the result. The algo-
rithm is also applicable for the BER case if all the notations
for WER are replaced by those for BER.
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V. ASYMPTOTIC RELATIVE SAVING ON THE
REQUIRED SAMPLE SIZE
In this section, the efficiency of the proposed IS estimator is
analyzed. From the simulation results of the benchmark IS
estimator in [26], one can observe that the number of the
generated samples becomes saturated at some point in the
high SNR region. A similar phenomenon can be found in
the results of the proposed estimator as well, which means
the IS distribution does not depend on the SNR or p anymore.
Since for the asymptotic case, the weight-(t+1) error vectors
dominate the performance, once the reliable estimation of the
error ratio θe(t + 1) is obtained, the error probability result
meets the accuracy requirement and no more samples are
needed. Above all, it’s natural to show the advantage of the
proposed estimator by comparing the efficiencies of these two
estimators in the asymptotic case.

In order to make a fair comparison, define the relative
saving η as the percentage that the proposed estimator can
save compared to the benchmark estimator in terms of the
sample size under the reliability (i.e., the relative error values
are equal).

η = 1−
Nprop

Nbench
, (35)

where Nprop and Nbench are denoted as the sample sizes
for the proposed estimator and the benchmark estimator,
respectively.

For the asymptotic case where the assumption np � 1 is
usually made, [31] suggests that the following approximation
for (27) holds

Var
[
P̂ISe
]
≈

1
N

(
θe(t + 1)

P2t+1
P∗t+1

− P2e

)
. (36)

which indicates that the weight-(t + 1) error vectors not only
dominates the error probability but also the variance of the
estimator. It can be foreseen that the saturated value of the
number of samples is only related to the term θe(t + 1) in
the error ratios of the code. For the proposed estimator, this
will make the parameter of the optimal distribution P∗t+1
approaches 1 to generated samples on the target weight as
many as possible. An asymptotic approximation of the rela-
tive saving on the required sample size can be derived.
Theorem 3: Assume that np� 1. The relative saving ηMC

(in terms of the sample size) of the proposed IS estimator w.r.t.
the MC estimator is

ηMC ≈ 1−
(

n
t + 1

)
pt+1(1− p)n−t−1. (37)

The relative saving η of the proposed IS estimator w.r.t. the
state-of-the-art counterpart in [26] is

η ≈ 1−
(

n
t + 1

)(
t + 1
n

)t+1 (
1−

t + 1
n

)n−t−1
. (38)

Proof: According to the approximation of the variance
in (36) and the definition of the relative error in (15), we can
derive the total number of samples required for the MC

estimator, the benchmark IS estimator [26] and the proposed
IS estimator with relative error κ as

NMC =
1

κ2P2e

(
θe(t + 1)Pt+1 − P2e

)
,

Nbench =
1

κ2P2e

(
θe(t + 1)P2t+1( n

t+1

)
qt+1(1− q)n−t−1

− P2e

)
,

Nprop =
1

κ2P2e

(
θe(t + 1)P2t+1

P∗t+1
− P2e

)
.

Under the assumption np � 1, the approximation Pe ≈
θe(t+1)Pt+1 holds. Therefore, the number of samples needed
for the proposed estimator can be written as

Nprop =
P2t+1θe(t + 1)

κ2P2eP
∗

t+1
−

1
κ2

≈
P2t+1

(θe(t + 1)Pt+1)2
·
θe(t + 1)
κ2P∗t+1

−
1
κ2

≈
1

κ2P∗t+1θe(t + 1)
.

where the last approximation is made due to that most of the
cases, the error ratio satisfies θe(t + 1) � 1. Similarly, for
the MC and the benchmark estimator, the sample sizes can
be derived as

NMC ≈
1

κ2Pt+1θe(t + 1)
,

Nbench ≈
1

κ2
( n
t+1

)
qt+1(1− q)n−t−1θe(t + 1)

.

As the probability Pt+1 dominates the tail partw ≥ t+1 of
the p.m.f. Pw under the assumption np � 1, the approxima-
tion P∗t+1 ≈ 1 can be achieved according to (28). Further-
more, from [26], we know that the optimal parameter for the
benchmark estimator in the asymptotic case is q? = t+1

n for
the minimum-variance purpose within the parametric family
of Bernoulli distribution.

Hence, the efficiencies that the proposed IS estimator can
achieve compared to the MC and the benchmark are

ηMC ≈ 1−
Pt+1
P∗t+1

≈ 1−
(

n
t + 1

)
pt+1(1− p)n−t−1,

and

η ≈ 1−

( n
t+1

)
q?t+1(1− q?)n−t−1

P∗t+1

≈ 1−
(

n
t + 1

)(
t + 1
n

)t+1 (
1−

t + 1
n

)n−t−1
,

respectively. �
As p tends to 0, the saving ηMC compared to the MC

estimator in (37) approaches 1. We are more interested in η
compared to the benchmark estimator [26]. Since most of the
block codes satisfy the condition n� t + 1, the influence of
the blocklength on η is negligible when n becomes large. This
also can be verified through Fig. 1, where the curves become
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FIGURE 1. Asymptotic relative saving (38) on the required sample size
that the proposed IS estimator can achieve compared to the benchmark
estimator [26] in terms of the blocklength n with different
error-correcting capabilities t .

steady as n increases. Therefore, η can be further simplified
by approximation as stated in the following corollary.
Corollary 1: Assume that np � 1 and the code satisfies

n� t + 1. The relative saving η of the proposed IS estimator
given in Theorem 3 can be further simplified as

η ≈
1
2
+ Q

(
1

√
t + 1

)
, (39)

where Q(x) = 1
√
2π

∫
∞

x e−
x2
2 dx.

Proof: When n is large, we can use the normal distribu-
tionN (np, np(1− p)) to approximate the binomial distribu-
tion B(n, p). Here define a random variable X ∼ N (µ, σ 2)
with mean µ = t+1 and variance σ 2

= (t+1)
(
1− t+1

n

)
≈

t + 1 under the assumption n � t + 1. The following
approximation holds(

n
t + 1

)
q?t+1

(
1− q?

)n−t−1
≈ Pr (t + 1 ≤ X < t + 2)

≈ Pr
(
0 ≤

X − µ
√
t + 1

<
1

√
t + 1

)
=

1
2
−Q

(
1

√
t + 1

)
.

�
From the above corollary, we know that the asymptotic

relative saving η can be represented as a function of t only and
is indepedent of the blocklength n. The larger t the code has,
the higher asymptotic η one can achieve. And we will show
examples in Section VI that although several approximations
are made during the analysis, the asymptotic η predicts the
efficiency very well in practice.

Finally, since (39) is irrelevant to the error ratios of the
code, both the BER and WER simulations have the same
the relative saving on the sample size. There also exist ways
to further improve η if more knowledge of the codebook

TABLE 2. The weight-(t + 1) IDWEF coefficients (see (17)) of the (15,7)
primitive BCH code with MLD and t = 2.

FIGURE 2. A comparison of the proposed upper and lower bounds with
the union bound, Poltyrev’s sphere bound [10], the UPS bound [29],
Keren-Litsyn’s bound [32], Cohen-Merhav’s bound [33] and the MLD
simulation results using the (15,7) primitive BCH code.

is provided. Since the samples are uniformly drawn within
each weight, the sample size needed for a reliable estimation
of θe(w) won’t reduce no matter what kind of biased dis-
tributions is applied. Combining the derived IS distribution
with a smarter biased distribution conditioned on each weight
instead of the uniform one will further reduce the required
sample size. But that may be code specific since the codebook
knowledge, as well as the decoding algorithms’ mechanism,
are required.

VI. NUMERICAL RESULTS AND DISCUSSIONS
In this section, various bounds mentioned in Section II are
firstly compared, and then the simulation results about the
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FIGURE 3. Simulation results of BCH codes with rate R ≈ 0.9 using the
proposed HW-IS algorithm and the IS-MC basic algorithm [26].

sample size needed for reliable estimation of the proposed
HW-IS algorithm are shown. The comparisons between the
results of the proposed algorithm with those of the state-
of-the-art ‘‘IS-MC basic’’ algorithm in [26] are presented.

FIGURE 4. Simulation results of BCH codes with rate R ≈ 0.5 using the
proposed HW-IS algorithm and the IS-MC basic algorithm [26].

Furthermore, the relative savings on the sample size of the
example codes in the high SNR region are listed to show
the accuracy of the derived asymptotic η. All the simulation
results can be reproduced by our open-source tool [28].
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FIGURE 5. A comparison of the asymptotic relative saving in (39) and the
corresponding simulation results of the proposed HW-IS algorithm using
the BCH codes considered in in Fig. 3 and Fig. 4.

A. COMPARISONS OF BOUNDS
We consider the (15,7) primitive BCH code with MLD and
t = 2. The weight-(t+1) IDWEF coefficients of the code are
obtained by an exhaustive search, and the results are listed
in Table 2.

In Fig. 2, we compare the proposed upper and lower
bounds in Proposition 2 and 3 with several known bounds
in the literature. For reference, the union bound (4),
Poltyrev’s sphere bound [10], the UPS bound [29] and
the MLD simulation results are plotted for both WER and
BER in Fig. 2(a) and (b), respectively. In addition, Keren-
Litsyn’s bound [32, Theorem 1] and Cohen-Merhav’s bound
[33, Proposition 4.2] on WER are plotted in Fig. 2(a). These
two bounds have almost the same performance for the consid-
ered code and and are marginally tighter than the UPS bound.
It can be seen that all three lower bounds have the same
asymptotic performance and are not asymptotically tight.
Since there are no BER counterparts derived in [32] and [33],
only the UPS lower bound on BER is plotted in Fig. 2(b)
for comparison with the proposed lower bound. One can
see that the proposed bounds are asymptotically tight in the
high SNR region, while the others have non-vanishing gaps
from the MLD simulation results. For the union bound and
the sphere bound, the gaps are caused by over-counting the
number of wrongly decoded weight-(t + 1) vectors as we
stated in Theorem 1.
Although the bounds are powerful tools for performance

evaluation, it requires parameters of the applied encoder-
decoder pair (such as the IOWEF or the IDWEF). Deter-
mining such parameters may be computationally costly or
intractable. Also, MLD is not always applicable for the prac-
tical case. For example, people usually decode the BCH
codes by the Berlekamp-Massey (BM) algorithm [34], [35]
in practice, which is suboptimal. Simulation is a commonly
used tool to estimate the error performance for the coded
systems. Next, we will show how the proposed IS method
can significantly improve the efficiency in terms of the
sample size.

FIGURE 6. Simulation results of some representative LDPC codes using
the proposed HW-IS algorithm and the IS-MC basic algorithm [26]. The
(273,191) DSC LDPC code is taken from [36] and the others are MacKay’s
LDPC codes from [37].

B. COMPARISONS OF SIMULATION RESULTS
According to the HW-IS algorithm in Section IV, it is natural
to think that a good initial guess of θ̂0(w) will accelerate the
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FIGURE 7. Simulation results of EG-LDPC codes [38] using the proposed
HW-IS algorithm and the IS-MC basic algorithm [26].

convergence of the optimal IS distribution. The choice of
θ̂0(w) depends on what kind of knowledge is assumed. In this
part, we consider two cases - the one with the knowledge
about the error-correcting capability t and the other without

FIGURE 8. Simulation results of Polar codes decoded by the SC
decoder [39] using the proposed HW-IS algorithm and the IS-MC basic
algorithm [26].

any side information. For the former one, we can set θ̂0(w)
to be that of the worst-case bounded distance decoder
(i.e., θ̂0(wi) = 0 and θ̂0(wj) = 1, for wi = 0, 1, · · · , t and
wj = t + 1, 2, · · · , n). While the latter one can be regarded
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TABLE 3. A comparison of the asymptotic relative saving (‘‘Asymptotic η’’) in (40) and the simulated relative saving (‘‘Simulated η’’) of the proposed IS
estimator (HW-IS algorithm) w.r.t. the benchmark IS estimator (IS-MC basic algorithm [26]) at WER ≈ 10−13 using various LDPC and Polar codes.
Nprop and Nbench denote their required sample sizes, respectively.

as an uncoded system (i.e., t = 0). The stopping criterion of
the simulations in this section is set as κ = 0.1.
We choose some representative BCH codes [31] with rate

R = k/n ≈ 0.9 as examples. The BER results as well
as the generated sample size w.r.t. Eb/N0 are shown in
Fig. 3(a) and (b), respectively. All the codes are decoded by
the BM algorithm. A sample size N_min = 103 is assured
before we start to update the IS distribution.

It can be noticed that all the curves in Fig. 3 (b) increase
exponentially and become saturated after reaching some spe-
cificEb/N0’s. The reason is that as SNR increases, the sample
size needed keeps growing until the error ratio of the dom-
inant weight-(t + 1) Hamming shell is reliably estimated.
The Eb/N0’s for the curves become saturated vary for dif-
ferent codes as they depend on the codebook knowledge and
the decoding algorithm. Further increasing the sample size
wastes the computational power. We may claim the HW-IS
algorithm is SNR-invariant for high SNR.

The BER and sample size vs Eb/N0 of BCH codes with
rate R ≈ 0.5 using the proposed HW-IS algorithm and the
benchmark IS-MC algorithm are shown in Fig. 4(a) and (b),
respectively. Similar observations as those with rate
R ≈ 0.9 also hold.
The relative saving η vs the error-correcting capability t

for the BCH codes considered in Fig. 3 and Fig. 4 are shown
in Fig. 5, where the solid line represents the approximated
asymptotic result derived in Corollary 1. All the simulation
results are calculated in the high SNR region (i.e., the part
that the number of samples becomes saturated). As we can
see, the curve for the asymptotic η is achievable and can
predict the efficiencies of the HW-IS algorithm pretty well.
Also, the trend that a larger saving on the sample size can be
obtained for the codes with bigger t is verified according to
these simulation results.

Next, we consider the cases with no side information pro-
vided and apply the HW-IS algorithm on the LDPC and Polar
codes. In order to make a fair comparison, let us start with the
same examples used for the IS-MC basic algorithm in [26].
The LDPC codes taken from [36], [37] are implemented.
In Fig. 6 (a) and (b), the simulation results of the WER and
the sample size are shown, respectively. Since the knowledge

of t is absent, the factor β = 1 is set to keep the estimator
unbiased. Subsequently, the asymptotic η will be degraded to

η ≈ 1−
1+ β
2
+ (1+ β)Q

(
1

√
t + 1

)
. (40)

All the settings of the algorithm are the same as the cases
for the BCH code. The LDPC codes are decoded by the bit-
flipping decoder presented in [24] with a maximum iteration
number of 20.

Similar to the BCH codes, we can observe that from
Fig. 7 (b), the curves of the sample size reach a saturated
value after some Eb/N0 points. This flat region indicates that
the weight-t + 1 errors dominate the performance and the
assumptions for the asymptotic analysis for the error prob-
ability hold now. Hence, the estimated θ̂e(w) for this region
can be used to predict the t of the LDPC codes. Since those
saturated values are determined by the value of θe(t + 1), for
the code with a thinner weight spectrum, the smaller θe(t+1)
it owns, the more samples needed for a reliable estimation in
the asymptotic case.

We further implement the HW-IS algorithm on the
EG-LDPC codes [38] and the Polar codes. The EG-LDPC
codes are decoded by the same decoder as stated in the previ-
ous example. Due to the values of t for these codes have been
tabulated, we can verify the derived asymptotic efficiencies
η with the simulated ones. The Polar codes are decoded with
the successive-cancellation algorithm proposed in [39].

One can see by Fig. 7 and 8 that for all of these examples,
the proposed HW-IS algorithm can beat the IS-MC basic
algorithm in the aspect of the efficiency while keeping the
same accuracy of the WER estimation.

Usually, people are more interested in the performance
of the LDPC codes over the water-falling region instead of
the asymptotic cases. Since in practical applications, there
is no need to get the specific position of the error floor
as long as it’s below the error probability level of interest.
Hence, for the purpose of studying the performance of the
HW-IS algorithm in the non-asymptotic cases, we apply it
on two more practical EG-LDPC codes [38] with parameters
(1023, 781) and (4095, 3367). The level of WER Pe ≈ 10−13

(approximated from the level of required BER Pb = 10−15)
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is focused on, which is commonly required for the optical
communication applications [12].

The sample sizes and the asymptotic efficiencies of all the
used LDPC codes and Polar codes compared to the IS-MC
basic algorithm are summarized in Table 3.

Due to the efficiency loss caused by the lack of knowledge
of t , the asymptotic η’s of these codes are smaller than those
of the BCH codes under the same t . Though, compared to
the large sample size required for the low error probability
estimation, the saving is still considerable. By combining
the results shown in Table 3 and Fig. 6-8, we can see that
the asymptotic η predicts the performance quite well even
for (1023, 781) and (4095, 3367) codes, whose curves for
the sample size have not reached the saturated region at
Pe = 10−13. These provide evidences that our method
can outperform the IS-MC basic algorithm for the non-
asymptotic cases as well.

VII. CONCLUSION
In this paper, the problem of efficiently evaluating the BER
and WER of linear block codes over BSCs was studied.
Firstly, we showed that any GFBT-based bounds are not
asymptotically tight for all possible choices of the Gallager
region. By proposing the IDWEF of a coding scheme, the
asymptotically tight MLD upper and lower bounds were
proposed. Secondly, aiming at accelerating the simulation
process for the low BER and WER region, a Hamming
weight-based IS estimator was proposed. Its relative saving
on the sample size required for a reliable estimation com-
pared with the state-of-the-art IS-MC basic algorithm [26]
was investigated. The derived asymptotic η can predict the
efficiency of the proposed IS estimator accurately. Our sim-
ulation results showed that the proposed IS estimator is more
efficient than the benchmark [26] in all cases under consid-
eration. The saving on the sample size ranges from 47% to
97% and increases with the error-correcting capability of the
code. As a future work, it is interesting to extend the presented
results for BSCs to the counterparts for continuous channels,
including but not limited to the Gaussian channel.
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