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ABSTRACT Nowadays, computer networks and the Internet are unprotected from many security threats.
Introducing adaptive and flexible security-related techniques is challenging because of the new types of
frequently occurring attacks. An intrusion detection system (IDS) is a security device similar to other
measures, including firewalls, antivirus software, and access control models devised to strengthen com-
munication and information security. Network intrusion detection system (NIDS) plays a vital function
in defending computer networks and systems. However, several issues concerning the sustainability and
feasibility of existing techniques are faced with recent networks. These concerns are directly related to the
rising levels of necessary human interactions and reducing the level of detection accuracy. Several approaches
are designed to detect and manage various security threats in a network. This study uses Chimp Chicken
Swarm Optimization-based Deep Long Short-Term Memory (ChCSO-driven Deep LSTM) for the intrusion
detection process. A CNN feature extraction process is necessary for effective intrusion detection. Here, the
Deep LSTM is applied for detecting network intrusion, and the Deep LSTM is trained using a designed
optimization technique to enhance the detection performance.

INDEX TERMS Intrusion detection, deep long short-term memory, chimp optimization algorithm, chicken
swarm optimization algorithm, convolutional neural network features.

I. INTRODUCTION
The extensive amount of data generated by intrusion detec-
tion networks has more complexities and poses challenges
to network security. This research area has received sig-
nificant attention with the rapid progression of network
technologies, such as cloud computing [1], fifth-generation
(5G) [2], and Internet of Things (IoT) [3]. Network security
has gradually increased with the increasing utilization of
computer networks across various applications and fields.
Various organizations employ conventional security tools,
including anti-spammodels, antiviruses, and firewalls, to pro-
tect against network attacks. However, traditional security
models fail to identify novel and sophisticated attacks [4].
Despite cyber-attacks with large scale and high conceal-
ment features, conventional intrusion detection approaches
have more restrictions when detecting precision and accuracy
rates. Hence, it is more important to devise an effective and
precise intrusion detection approach to enhance the detec-
tion performance [5]. In today’s world, the internet is being
widely used by everyone. Various types of cyber-attacks are
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destructive to information security. Thus, network security
has become increasingly important in this research area.
Various measures are available to protect network security,
such as encryption, intrusion detection, authentication, and
firewalls. The intrusion detection model can detect the ille-
gal characteristics of such attacks. The intrusion detection
process is a vital task in network safety compared to other
protective measures because it can identify attacks from net-
work traffic. Usually, there are four common attacks: denial
of service (DoS), remote to local (R2L), user to root (U2R),
and probe.

The primary intention of intrusion detection is to cate-
gorize network traffic into five main types: Normal, DoS,
probe, R2L, and U2R. Maintainers consider various mea-
sures to protect the network, and traffic is categorized as an
abnormal attack [6]. In general, an intrusion detection model
is employed in a network system. However, the intrusion
detection model is more important during the increase in
network traffic. Intrusion detection techniques are divided
into two types: anomaly-based andmisuse-based approaches.
The Signature attacks are compared in a misuse-based
model, which effectively detects unfamiliar attacks. At the
same time, anomaly-based detection techniques can detect
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zero-day or undefined attacks. In addition, the pay-load-
driven intrusion detection method affects scalability owing to
the increase in network traffic and high-speed networks [7].
Intrusion detection is a process of detecting and marking
intrusions in a network, and it has two primary operations [8].
At first, existing network data is analyzed, and the infor-
mation features of the attack data are recorded. They are
matched with data present in a network or host, and this
process is termedmisuse detection. The second function is the
formulation of connections among normal behaviour trajec-
tory features in the sample and network data. The differences
in behaviour features are observed as intrusion behaviour.
This detection process is called anomaly detection [9]. Net-
work intrusion detection systems (NIDS) have been devel-
oped as defence systems for observing network behaviours
and detecting intrusive actions in modern times. Moreover,
a NIDS is an effective defence tool protecting against sophis-
ticated and threat attacks [10].

Network traffic is detected, and abnormal traffic is blocked
in the network intrusion detection model. The attack type
is seen, and representative data of the attack category are
constantly enhanced. Thus, the system’s defence is improved.
Incidentally, network anomaly identification is attributed
to binary class and multi-classification issues. Currently,
machine learning, data mining, and neural networks (NN)
are commonly utilized by researchers in network anomaly
recognition, and these schemes achieve better performance.
Conventional machine learning and data mining approaches
are primarily based on data selection and feature extraction
processes [9]. The machine learning technique effectively
enhances the accuracy of the intrusion detection process and
has become a promising research area in wireless network
security [5]. These approaches intend to learn appropriate
features from a large sample of unlabelled data features
employed for a restricted number of labelled data features in
the supervised learning process [11]. Unlabelled and labelled
data are obtained from various distributions, although they
should be related to each other [12]. To date, various
researchers have used deep learning methods for intrusion
detection. Standard deep learning techniques, such as stacked
auto-encoders (SAEs) [4], restricted Boltzmann machines
(RBMs) [5], supervised learning with convolutional neural
networks (CNNs) [6], and deep belief networks (DBNs) [13]
are utilized for effective intrusion detection. However, the
CNN model can decrease the number of parameters by using
various shared weights and sparse connectivity schemes. Fur-
thermore, these methods are devised for supervised learning
models and require many labelled network data as input [4].

The main contribution of this study is the introduction
of a network intrusion detection model using the devel-
oped ChCSO-based Deep LSTM. This intrusion detection
approach comprises four phases: preprocessing, dimension
transformation, feature extraction, and intrusion detection.
First, the input data are obtained from a dataset and pre-
processed to remove redundant data. Data normalization is
also performed in the preprocessing phase, which arranges

the input data. Subsequently, mutual information [14], [15] is
employed to complete the dimension transformation process,
where the dimension of the data is changed by choosing vari-
ous features. Consequently, the CNN feature [16] is extracted
from the dimension transformation output. Finally, the intru-
sion detection process is performed using Deep LSTM [17],
classifying the data as intruders or genuine users. Further-
more, Deep LSTM is trained using the devised ChCSO algo-
rithm to improve the detection performance. Accordingly, the
ChCSO model is designed by integrating the CSO [18] with
ChOA technique [19].

The most important contribution is specified as follows:

• The developed ChCSO enabled Deep LSTM for
intrusion detection, and an effective intrusion detec-
tion model is introduced based on the developed
ChCSO-based Deep LSTM. Deep LSTM is applied
for detecting intrusion, and the deep learning model
is trained using the developed ChCSO technique to
improve the detection performance. The devised ChCSO
model is developed by incorporating the CSO and ChOA
algorithms. Moreover, the Deep LSTM model classifies
the data as an intruder or genuine user.

The remainder of this paper is organized as follows:
Section 2 discusses the literature review on the conven-
tional intrusion detection model. Section 3 introduces the
ChCSO-based Deep LSTM for the intrusion detection pro-
cess. The devised scheme results and discussion are presented
in section 4, and section 5 concludes the paper.

II. MOTIVATION
Network intrusion identification is the most effective security
process. However, this process has several problems for the
effective and efficient identification of anomalies. Moreover,
labelling traffic datasets and the imbalanced class distribu-
tion of network traffic is considered a significant challenge.
These challenges and problems faced by the existing intrusion
detection approach are supposed to stimulate the develop-
ment of novel intrusion detection approaches.

A. LITERATURE REVIEW
The literature on conventional intrusion detection techniques
and their advantages and limitations is explained in this
section. Khan et al. [4] modelled a two-stage deep learn-
ing technique for network intrusion detection to enhance
detection accuracy. Here, stacked AE and softmax classifiers
were considered for network intrusion detection. Moreover,
this approach comprises two decision segments: the initial
phase is employed to classify network traffic based on the
probability score value and the detection of attack types
and normal state. The training time of this approach was
reduced, even though the computational complexity did not
decrease. Yang et al. [5] designed a deep learning scheme to
reduce the computational complexity of detecting intrusions.
In this approach, a deep belief network (DBN) is included
with a multi-Restricted Boltzmann machine (RBM) and
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backpropagation (BP) network for the effectual intrusion
detection process. Moreover, the backpropagation model was
employed to tune the weights of the multi-RBM model;
eventually, a support vector machine (SVM) was utilized for
the training process. This approach significantly increases
the precision rate but does not decrease the training time.
Wu et al. [6] introduced a CNN to identify network intrusion
to enhance performance. First, the input data were prepro-
cessed, and the input data format was changed to an image
format. Subsequently, a CNN model is applied to perform
the training process. This approach effectively solves bal-
anced database issues but does not improve detection accu-
racy. The computational complexity and storage space were
reduced in this model; however, power consumption was not
reduced. To decrease the power consumption, Wang et al. [9]
designed an improved DBN for intrusion detection. In this
approach, a kernel-based Extreme Learning Machine (ELM)
was applied for the training process. In addition, the enhanced
grey wolf optimizer (EGWO) method was employed to opti-
mize the kernel parameters. The processing time of this tech-
nique decreased even though dimension reduction was not
performed.

Shone et al. [20] presented a deep learning model for
intrusion detection. A nonsymmetric deep auto-encoder
(NDAE) was devised for the unsupervised feature learn-
ing process. The processing time of this approach was
highly reduced, although this technique was not evaluated in
real-world backbone network traffic to improve the perfor-
mance. Toldinas et al. [21] devised a multistage deep learn-
ing image-recognition model for intrusion identification to
reduce the training duration. Here, the network features
were transformed into four-channel images. Furthermore, the
converted images were used for the detection process. The
computational complexity of this approach was significantly
decreased, although the class imbalance issues were not
solved. Gustavo De Carvalho Bertoli et al. [22] presented an
end-to-end model for network intrusion recognition to solve
the class imbalance issues. Amachine learning technique was
designed for the training process. To decrease the dimension
of the data, Andresini et al. [23] introduced an AE-based
deep learning scheme to identify network intrusion. The two
AE’s were trained during the training. Besides, the triplet
network is prepared for the learning process of the feature
vector representation. The detection performance was signif-
icantly improved; Though, this model was not implemented
in artificial intelligence to simplify the process.

B. CHALLENGES
The challenges experienced by present intrusion detection
approaches are explained below,

• The major challenge of the intrusion detection process is
to achieve high attack detection and a lower false alarm
rate by analyzing and observing the events in a network
or computer system for detecting probable occurrences.

FIGURE 1. Block diagram of an intrusion detection system using
proposed ChCSO-based deep LSTM.

• A two-stage deep learning method was devised in [4]
for the network intrusion detection process to enhance
detection performance and reduce detection time. This
method does not combine other techniques, namely
multi-task and reinforcement-learning, to improve
detection performance.

• A deep learning technique was developed [5], but the
detection accuracy did not improve with a smaller sam-
ple size to enhance the detection performance.

• The CNN method was introduced in [6] for the intru-
sion detection process to control zero-day attacks, even
though this technique did not enhance the detection
accuracy or decrease the detection period.

• The deep learning approach was developed in [20] for
the intrusion detection process; however, this model
failed to manage zero-day attacks. This approach can be
further extended by including real-world network traffic.

III. DEVELOPED CHIMP CHICKEN SWARM
OPTIMIZATION-BASED DEEP LSTM FOR NETWORK
INTRUSION DETECTION
Network security has received considerable attention owing
to the increasing safety concerns. This section describes
the developed network intrusion detection process using
a ChCSO-based Deep LSTM model. The input data are
acquired from a dataset and preprocessed, where data nor-
malization is performed. Subsequently, a dimension trans-
formation is performed based on mutual information [14],
[15]. Later, the CNN feature [16] is extracted for further
detection in the feature extraction process. Finally, intrusion
detection is performed using Deep LSTM [17], and it is
trained using a designed ChCSO algorithm to obtain better
detection performance. A block diagram of the ChCSO-based
Deep LSTM for intrusion detection is shown in Figure 1.
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A. INPUT DATA
Let us consider the datasetH alongwith q amount of intrusion
data, which is specified by,

H = {K1,K2, . . . ,Ke, . . . ,Kq} (1)

where K denotes the total amount of intrusion data, H sym-
bolizes the dataset, and Ke is the data located at eth index.
Intrusion data Ke of m×n dimension is subjected to a further
pre-processing process.

B. PRE-PROCESSING
The input data Ke is used for a preprocessing process in
which data normalization is performed for intrusion detec-
tion. Normalization is an effective process that arranges data
in a database. This process generates tables and produces rela-
tionships among the created tables, depending on the rules.
Moreover, the data normalization process effectively reduced
the redundancy present in the input data. The data-normalized
output is denoted as Te with the size of m× n

C. DIMENSION TRANSFORMATION
Once data normalization is performed, dimension trans-
formation is performed using mutual information [14],
[15].Here, the preprocessed data Te is used to perform the
data transformation process to extract CNN features.The nor-
malized data from the preprocessed output are in a vector
format. However, the input should be in image format for
extracting CNN features because the vector format of the
normalized data is converted to amatrix format. If the number
of features is n, then 1 × n is converted into an k × k
matrix for the feature extraction process. The k number of the
images is chosen using the mutual information model. The
processing time of the mutual information model is shorter;
Thus, it is used for the devised network intrusion detection
model. This model is referred to as a better indicator of
relevance, and it estimates the relationship between the class
labels and features that are simultaneously sampled. Mutual
information helps estimate the information that one variable
poses with regard to another. In addition, information theory
states that mutual information between two variables is zero
if and only if two variables are statistically independent. The
mutual informationM (W ,X ) among variables indicating the
database W and class labels X is illustrated as,

M (W ;X ) =
∑
x∈X

∑
w∈W

v(w, x) log
v(w, x)
v(w)v(x)

(2)

where v(w, x) specifies the joint probability distribution func-
tion of W and X , v(w) and v(x) are marginal distributions of
W andX . The dimension transformation output is represented
as Re, and is used for further feature extraction.

D. FEATURE EXTRACTION
The dimension transformation output Re is used as the input
for extracting CNN features.The CNN model [16] includes
five layers: input, convolutional, pooling, Fully Connected

FIGURE 2. Extraction of CNN feature.

(FC), and output layers. The Extraction of CNN feature is
shown in Figure 2.

The major task of the convolution layer is to extract fea-
tures from the dimension transformation output. Moreover,
it comprises several layers of convolutional kernels, and all
the layers correspond to the weight and deviation coefficients.
The weight coefficient is considered as cl ,the input of the
convolutional layer l is Nl−1, and the deviation quality is
Sl , while convolution kernel l is in process. The convolution
procedure is given by,

Nl−1 = g (cl ⊗ Nl−1 + sl) (3)

where Nl denotes the output of the convolution kernel l, ⊗,
symbolizes the convolution operation, and g(n) specifies the
activation function.

The convolution kernel frequently bends the input data
to extract the characteristic data. In addition, the ReLU is
employed as the activation function of the convolutional
layer. The ReLU activation function is more straight for-
ward than the sigmoid, tanh, and activation functions. The
ReLU layer increased the speed of the training process and
efficiently prevented gradient disappearance. The ReLU is
represented by,

ReLU (Nl) =

{
Nl; Nl > 0
0; Nl ≤ 0

(4)

Nl Value represents the output of the convolution kernel l.In
addition, ReLU (rectified linear unit) is one of the most popu-
lar functions used as hidden layer activation function in deep
neural networks. The major operation of the pooling layer is
to understand the invariances and decrease the difficulty of
the CNN by eradicating redundant information using a down-
sampling process. The pooling process is completed in two
ways: maximum and average pooling. The maximum value
is selected as the pooling outcome in max pooling, whereas
the average value is considered as the pooling outcome in
the average pooling process. The max-pooling process is
expressed as,

Bw = max
(
O0
w,O

1
w,O

2
w, . . . ,O

f
w

)
(5)

65614 VOLUME 10, 2022



B. Deore, S. Bhosale: Hybrid Optimization Enabled Robust CNN-LSTM Technique for Network Intrusion Detection

where Bw indicates the output of the pooling area w, max
refers to the max-pooling function, and Ofw specifies an ele-
ment f of the pooling areaw. Additionally, FC layers are used
as classifiers. Their major purpose is to weigh the features of
the convolutional and pooling layers mapped to the hidden
layer, and re-map to the sample indication space. The equiv-
alent dropout function is arranged to randomly discard the
neurons in the FC layer to avoid overfitting issues.

The extracted feature is in matrix format; Then, the n
number of features and extracted CNN features are converted
to vector format for further intrusion detection. The output
of the feature extraction process is denoted as Ve, and it is
subjected to Deep LSTM for network intrusion detection.

E. DEVELOPED INTRUSION DETECTION MODEL USING
CHIMP CHICKEN SWARM OPTIMIZATION-BASED DEEP
LSTM
The output of the feature extraction process, Ve, is taken as
the input for Deep LSTM to perform the network intrusion
detection process. Moreover, the Deep LSTM [17] is trained
by the devised ChCSO approach, which is newly designed
by combining the CSO algorithm [18] and the ChOA algo-
rithm [19].

1) DEEP LSTM STRUCTURE
The Deep LSTMmodel efficiently enhances the training per-
formance with less processing time and is therefore employed
for network intrusion detection. The composite structure of
the inner relative state cells and memory cells provides an
effective detection performance. Generally, the detection out-
come is mainly dependent on cell states; Therefore, the work-
ing function of Deep LSTM is mainly based on the memory
cell. The output node Gd receives the input P from the input
layer of the network and the previous hidden state Qe−1. The
extracted features Ve andQe−1 are given to the tanh function,

Gd = tanh(P.BGP + Qe−1BGQ + Iin) (6)

where BGP indicates the weight matrix between the input
layer and an input node of the memory cell, Qe−1 is the input
of the hidden state at period stamp (e − 1), BGQ implies
the weight matrix among hidden states at numerous periods,
and Iin specifies bias to the input node. The input gate $e is
equivalent to the input node; Thus, it receives a similar input
as an identical input node. The input gate utilizes a sigmoidal
activation function, called the input gate, as it evades the input
flow passing from other nodes to the current node. The input
gate is expressed as,

$e = γ
(
PBGP + Qe−1BGQ + Iig

)
(7)

where $e indicates the input gate at period e, γ symbolizes
the sigmoidal activation function, and Iig represents the bias
to the input gate. Furthermore, the internal state Z is a node
that includes the self-loop recurrent edge of the activation
function along with the unit weight, which is given by,

Z = $e2Gd + Ze−1 (8)

FIGURE 3. Structural diagram of deep LSTM.

where Ze indicates the internal state at duration e and Ze−1 is
an internal state at period stamp e − 1. The forget gate A is
employed to reinitiate the interior state of the memory cell,
which is specified by,

Ae = γ
(
P.BAP + Qe−1BPQ + Ifrg

)
(9)

where Ae refers to the forget state at a time e, 2 symbolizes
the pointwise linear operator, BAP denotes the weight matrix
between the forget gate and input layer, BPQ indicates the
weight matrix between the forget gate and hidden state, and
Ifrg refers to the bias of the forget gate. In addition, the output
gate τe is illustrated as,

τe = γ
(
P.BτP + Qe−1BτQ + Iog

)
(10)

where BτP symbolizes the weight matrix between the out-
put gate and input layers, BτQ specifies the weight matrix
between the hidden states and output gate, and Iog refers to
the bias of the output gate. The outcome obtained from the
memory cell is expressed as,

Qe = tanh (Ze)2τe (11)

where Ze = Gd2$d + Ze−12Ae and the output of the deep
LSTM are represented as Se, where the data are detected as
genuine users or intruders. The output of the Deep LSTM is
specified as Je, and Figure 3 shows the architecture of the
Deep LSTM.

2) DEVELOPED CHIMP CHICKEN SWARM OPTIMIZATION
APPROACH FOR TRAINING PROCEDURE OF DEEP LSTM
This section describes the training of the Deep LSTM
model based on the devised ChCSO algorithm. The ChCSO
approach is introduced here by incorporating CSO [18] and
ChOA [19]. The ChOA is usually designed based on the hunt-
ing behaviour of chimps. An attacker carries out prey hunting,
and residual chimps in a group, including barriers, drivers,
and chasers, contribute to the hunting procedure. The conver-
gence speed is very high, which is the main benefit of the
ChOA; However, its computational complexity is increased.
On the other hand, the CSO approach is a bio-inspired opti-
mization method, which imitates the hierarchy of chicken
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swarms and food searching behaviour. Every chicken has a
potential solution for optimization problems. The hierarchical
order is the most significant in the social lives of chickens,
and chicken swarms are classified as one rooster, several
hens, and chicks. The chicken identifies the rooster, chick,
and hen, depending on the fitness measure of the chicken
for all groups. Meanwhile, chickens with the best and worst
fitness values are considered chicks, roosters, residuals and
hens. The CSO model effectively increased the convergence
rate and search accuracy. Therefore, the CSO approach is
integrated with the ChOA to obtain better convergence with
less computational complexity.

The algorithmic process of the devised ChCSO technique
is described as follows,

a: INITIALIZATION
Here, initialization of the t solution with the b amount of
solution is performed, which is illustrated by,

L = {L1,L2, . . . ,Lt , . . . ,Lb}; 1 ≤ t ≤ b (12)

where b specifies the entire number of solutions and Lt refers
to the t th solution. Here, L ∈ BGP,BGQ,BAP,BPQ,BτP,
BτQ, Iin, Iig, Ifrg, Iog.

b: FITNESS FUNCTION COMPUTATION
The optimal solution is selected using a fitness measure; a
fitness value with a lower value is the optimal solution for
network intrusion detection. The fitness value is estimated
using the following expression,

ρ =
1
e

e∑
ξ=1

(J∗e − Je)
2 (13)

where e specifies the total number of samples, ρ represents
the fitness measure, Je is the output from Deep LSTM, and
J∗e indicates the target output.

c: DRIVING AND CHASING PREY
Prey hunting is performed during the exploitation and explo-
ration phases. The expression is derived using the distance for
prey driving and chasing, which is specified as,

N = |kLprey(a)− xLchimp(a)| (14)

where a indicates the iteration count, x and k specify the
coefficient value, Lchimp(a) indicates the position location of
the chimp, and Lprey(a) denotes the current location of the
prey. The prey chase is expressed as follows,

Lchimp(a+ 1) = Lprey(a)− n.N (15)

where n refers to coefficient vectors, and N implies distance.
Moreover, the coefficient vector is expressed as,

n = 2mi1 − m (16)

where m linearly decreases from 2.5 to 0, and i1 represents a
random integer. The coefficient vector is illustrated by,

k = 2i2 (17)

where, i2 denotes the random number. Substitute equa-
tion (14) in (15),

Lchimp(a+ 1) = Lprey(a)− n.|kLprey(a)− xLchimp(a)| (18)

Let us consider Lprey(a) > Lchimp(a), the above equation
becomes,

Lchimp(a+ 1) = Lprey(a)− n.kLprey(a)+ n.xLchimp(a)

(19)

Lchimp(a+ 1) = Lprey(a)(1− nk)+ n.xLchimp(a) (20)

To obtain better convergence, the movement of the chick
expression is integrated in the ChOA, thereby,

Li(a+ 1) = Li(a) ∗ (1+ Randu(0, ω2)) (21)

Li(a) =
Li(a+ 1)

1+ Randu(0, ω2)
(22)

Let us assume that Li(a) = Lchimp(a), Substituting equation
(22) into equation (20),

Lchimp(a+ 1)

= Lprey(a)(1− n.k)+ n.x
Lchimp(a+ 1)

1+ Randu(0, ω2)
(23)

Lprey(a)(1− n.k)

= Lchimp(a+ 1)−
n.x.Lchimp(a+ 1)
1+ Randu(0, ω2)

(24)

Lchimp(a+ 1)
(
1−

n.x.Lchimp(a+ 1
1+ Randu(0, ω2)

)
= prey(a)(1− n.k) (25)

Lchimp(a+ 1)
(
1+ Randu(0, ω2)− n.x

1+ Randu(0, ω2)

)
= prey(a)(1− n.k) (26)

Lchimp(a+ 1)

=
1+ Randu(0, ω2)

1+ Randu(0, ω2)− n.x
× Lprey(a)(1− n.k) (27)

where randu(0, ω2) indicates a Gaussian distribution with a
standard deviationω2 and amean of 0. The standard deviation
is formulated as follows,

ω2
=

{
1, if Oi ≤ Ox
exp

(
Ox−Oi
|Oi|+ξ

)
, if otherwise,

x ∈ [1,Z ], x 6= i

(28)

d: ATTACKING PROCESS
The attack process comprised two stages: exploring the posi-
tion of the prey and surrounding the prey for the attack.
An attacker chimp typically performs the attack process.
Moreover, other chimps in a group, such as barriers, drivers,
and chaser chimps, contribute during an attack. Therefore, the
four optimal solutions are specified as,

L(a+ 1) =
L1 + L2 + L3 + L4

4
(29)
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where, L1, L2, L3 and L4 are the location of chimps. Every
best solution is specified as,

L1 = Lattacker − n1(Nattacker ) (30)

where L1 represents the attacker, n1 signifies the coefficient
vector of the attacker, and Nattacker represents the attacker’s
prey.

L2 = Lbarrier − n2(Nbarrier ) (31)

where L2 symbolizes the barrier, n2 denotes the coefficient
vector of the barrier, and Nbarrier represents the barrier prey.

L3 = Lchaser − n3(Nchaser ) (32)

where L3 signifies the barrier, n3 implies the coefficient vec-
tor of the barrier, and Nchaser denotes the chaser prey.

L4 = Ldriver − n3(Ndriver ) (33)

where L4 signifies the driver, n4 is the coefficient vector of
the driver, and Ndriver symbolizes the driver prey. In addition,
the distance of every solution is given by,

Nattacker = |k1Lattacker − x1L| (34)

Nbarrier = |k2Lbarrier − x2L| (35)

Nchaser = |k3Lchaser − x3L| (36)

Ndriver = |k4Ldriver − x4L| (37)

where k1, k2, k3 and k4 as well as x1, x2, x3, and x4 refer to the
coefficient vectors of the attacker, barrier, chaser, and driver,
respectively.

e: PREY ATTACKING
The attacker chimp completes the attack, while the prey stops
the movement at the terminal stage of an attacker. The value
of must be reduced to design the attacking stage scientifically.
Moreover, it allows chimps to update their position depending
on the position of the driver, chaser, barrier, attacker, and prey.

f: SEARCHING FOR PREY
The exploration stage of the ChOA is performed using the
positions of the barrier, attacker, driver, and the chaser. Here,
the chimps separate to chase the prey and integrate them to
attack the prey.

g: SOCIAL INCENTIVE
Obtaining social meet and appropriate motivation in the last
segment cause chimps to release hunting tasks. There is a
possibility of a preference between the normal update model
or chaotic method for restarting the position of the chimp
depending on the chasing and driving process of the prey,
which is specified as,

Lchimp(a+ 1)=


1+ Randu(0, ω2)

1+ Randu(0, ω2)− n.x
×Lprey(a)(1− n.k), if k < 0.5

Chaotic value, if k > 0.5

(38)

where, k specifies random integer among [0,1].Here,
a chaotic value may contain sequences of the evolving vari-
able that exactly repeat themselves, resulting in regular inter-
vals beginning at any point in that sequence.

h: RE-EVALUATE FITNESS MEASURE
The fitness function achieves the optimal solution, where a
lower fitness measure is taken as the best solution, and the
fitness value is computed based on Equation (13).

i: TERMINATE
The above process is repeated until the best solution is
achieved. The pseudocode of the introduced ChCSO scheme
is presented in algorithm. 1

Algorithm 1: Pseudocode of Devised ChCSO Algorithm
Input : Population L
Output: Best solution
Start
Initialize population of chimp and other algorithmic
parameters
Evaluate the position of each chimp
Arbitrarily diverse the chimps into independent groups
Until termination condition is obtained
Compute the fitness measure based on equation (13)
Lattacker =optimal search agent
Lchaser =second optimum search agent
Lbarrier =third best search agent
Ldriver =fourth optimal search agent
while a < max Iteration do

foreach Chimp do
Discover chimp group
Apply group model for updating parameters

foreach search chimp do
if k < 0.5 then

if |n| < 1 then
Update the position based on equation
(27)

else if |n| > 1 then
Choose arbitrary search agent

else if k > 0.5 then
Update the position using equation (38)

Update algorithmic parameters
a = a+ 1

return optimal solution

Thus, the Deep LSTMmodel effectively classifies the data
as intruders or genuine users with a minimal process dura-
tion. The training process is improved by using the ChCSO
approach.

IV. RESULTS AND DISCUSSION
The results and discussion of the ChCSO-enabled Deep
LSTM approach for intrusion detection are presented in
this section. The experimental setup, dataset description,
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performance metrics, comparative techniques, comparative
analysis, and discussion are presented in this section.

A. DATASET EXPLANATION
The introduced intrusion detection technique is executed
using two datasets: the NSL-KDD [24] and BoT-IoT [25]
databases.

1) NSL-KDD DATABASE
These data are usually employed in data mining tool com-
petitions and third international knowledge discovery. The
competition process is used to design a network intrusion
detector, which separates ‘‘good’’ normal connections, and
‘‘bad’’ links, termed intrusion or attacks. Furthermore, these
data comprise standard data and are imitative of the military
networks.

2) BoT-IoT DATASET
This dataset is produced by the network structure in the cyber
range lab for intrusion detection. These data are generated by
the integration of normal and botnet traffic. The source files
are provided in various formats: csv, pcap, and argus files.
These files are divided based on an attack subgroup and a
group for labelling. Furthermore, pcap files have more than
72.000.000 records with proportions of 69.3 GB, while the
extracted flow traffic in CSV is 16.7 GB in size.

B. PERFORMANCE METRICS
The performance of the ChCSO-based Deep LSTM model is
computed based on three metrics: accuracy, specificity, and
sensitivity.

1) ACCURACY
This metric is employed to estimate the appropriately
detected intrusion, which is computed by,

φ =
TP+ TN

TP+ TN + FP+ FN
(39)

2) SENSITIVITY
Sensitivity is used to detect the precisely detected ratio of
positive, and it is given by,

ν =
TP

TP+ FN
(40)

3) SPECIFICITY
Specificity is estimated to detect the accurately identified
ratio of negatives and is calculated as,

ε =
TN

TN + FP
(41)

where φ specifies accuracy, ν implies sensitivity, ε denotes
specificity, TP implies true positives, FP refers to false pos-
itives, TN symbolizes true negatives, and FN indicates false
negatives.

C. COMPARATIVE METHODS
Existing intrusion detection techniques, namely deep-stacked
auto-encoder (DSAE) [4], CNN [6],DBN [20], Dolphin atom
search optimization-based Deep Recurrent neural network
(DASO-based Deep RNN), and adaptive DASO-based Deep
RNN are considered for estimating the performance of the
devised intrusion detection model.

D. COMPARATIVE ANALYSIS
This section presents a comparative analysis of the devised
ChCSO-based Deep LSTM method based on two databases,
namely, NSL-KDD and the BoT-IoT database.

1) COMPARATIVE ANALYSIS USING NSL-KDD DATASET
A comparative analysis of the devised ChCSO-driven Deep
LSTM with and without attacks by altering the training data
is presented in this section.

a: ANALYSIS WITHOUT ATTACK
Figure 4 presents an analysis of the introduced ChCSO-based
Deep LSTM using the NSL-KDD dataset without attacks
for the performance metrics. The analysis of the developed
ChCSO-based Deep LSTM using accuracy by changing the
percentage of training data is shown in Figure 4 (i). The
accuracy value of the introduced ChCSO-based Deep LSTM
is 0.9568, whereas those of existing approaches, such as
DBN, CNN, DSAE, DASO-based deep RNN, and adaptive
DASO-basedDeep RNN, are 0.8479, 0.8245, 0.8094, 0.9180,
and 0.9367, respectively, for 80% of the training data. Fig-
ure 4 (ii) shows the analysis of the developed ChCSO-based
Deep LSTM scheme using the sensitivity by changing the
training data. The sensitivity of DBN is 0.9364, CNN is
0.9281, DSAE is 0.89, DASO-based Deep RNN is 0.9788,
adaptive DASO-based deep RNN is 0.9851, and the devel-
oped ChCSO-based Deep LSTM is 0.9872 for 80% of the
training data. The analysis of the designed ChCSO-based
Deep LSTM technique based on specificity by varying the
percentage of training data is shown in Figure 4 (iii). When
the percentage of training data is 80, the specificity attained
by the DBN, CNN, DSAE, DASO-based Deep RNN, adap-
tive DASO-based Deep RNN, and developed ChCSO-based
Deep LSTM i 0.7394, 0.8969, 0.9174, 0.9611, 0.9754, and
0.9814, respectively.

b: ANALYSIS WITH ATTACK
A comparative analysis of the devised ChCSO-driven Deep
LSTM using NSL-KDD data with an attack in terms of per-
formance metrics is shown in Figure 5. Figure 5 (i) shows an
analysis of the developed ChCSO-based Deep LSTM scheme
for accuracy by altering the training data value. The accuracy
obtained by DBN is 0.7840, CNN is 0.8076, DSAE is 0.8503,
DASO-based Deep RNN is 0.8791, adaptive DASO-based
Deep RNN is 0.8929, and the developed ChCSO-based Deep
LSTM is 0.9210 for 80% of the training data. An analysis of
the introduced ChCSO-based Deep LSTM technique based
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FIGURE 4. Comparative analysis of ChCSO based deep LSTM using NSL-KDD dataset without attacks
(i) Accuracy, (ii) Sensitivity, (iii) Specificity.

FIGURE 5. Comparative analysis of ChCSO based deep LSTM using NSL-KDD dataset with attacks
(i) Accuracy, (ii) Sensitivity, (iii) Specificity.

on sensitivity by varying the percentage of training data is
illustrated in Figure 5 (ii). When the percentage of train-
ing data is 80, the sensitivities attained by the DBN, CNN,

DSAE, DASO-basedDeep RNN, adaptive DASO-based deep
RNN, and developed ChCSO-based Deep LSTM are 0.7831,
0.8141, 0.8564, 0.8855, 0.8990, and 0.9260, respectively.
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FIGURE 6. Comparative analysis of ChCSO based deep LSTM using BoT-IoT dataset without attacks
(i) Accuracy, (ii) Sensitivity, (iii) Specificity.

FIGURE 7. Comparative analysis of ChCSO based deep LSTM using BoT-IoT dataset with attacks
(i) Accuracy, (ii) Sensitivity, (iii) Specificity.

The analysis of the developed ChCSO-based Deep LSTM
using specificity by shifting the percentage of training data
is shown in Figure 5 (iii). The specificity of the developed
ChCSO-based Deep LSTM is 0.9568, whereas those of the

existing approaches, such as DBN, CNN, DSAE, DASO-
based deep RNN, and adaptive DASO-based Deep RNN are
0.7889, 0.8147, 0.8573, 0.8802, 0.8935, and 0.9265, respec-
tively, for 80% of the training data.
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TABLE 1. Comparative description.

2) COMPARATIVE ANALYSIS IN TERMS OF BoT-IoT DATA
Acomparative analysis of the introduced ChCSO-basedDeep
LSTM with and without attacks by altering the training data
is presented in this section.

a: ANALYSIS WITHOUT ATTACK
Figure 6 shows a comparative analysis of the introduced
ChCSO-based Deep LSTM using BoT-IoT data without
attacks for the performancemetrics. The analysis of the devel-
oped ChCSO-based Deep LSTM using accuracy by changing
the percentage of training data is shown in Figure 6 (i). The
accuracy value attained by the devised ChCSO-driven Deep
LSTM is 0.9891, whereas those of existing approaches, such
as DBN, CNN, DSAE, DASO-based Deep RNN, and adap-
tive DASO-based Deep RNN are 0.9512, 0.9735, 0.9552,
0.9822, and 0.9854, respectively, for 80% of the training
data. Figure 6 (ii) shows the analysis of the developed
ChCSO-based Deep LSTM scheme using the sensitivity by
changing the training data percentage. The sensitivity of DBN
is 0.9612, CNN is 0.9635, DSAE is 0.9354, DASO-based
Deep RNN is 0.9836, adaptive DASO-based Deep RNN
is 0.99, and the developed ChCSO-based Deep LSTM is
0.9938 for 80%of the training data. An analysis of the devised
ChCSO-based Deep LSTM technique based on specificity
by varying the percentage of training data is illustrated in
Figure 6 (iii) When the percentage of training data is 80, the
specificities attained by theDBN,CNN,DSAE,DASO-based
Deep RNN, adaptive DASO-based deep RNN, and devel-
oped ChCSO-based Deep LSTM is 0.7370, 0.8178, 0.8041,
0.8255, 0.8513, and 0.8791, respectively.

b: ANALYSIS WITH ATTACK
The analysis of ChCSO-based Deep LSTM depends on the
BoT-IoT data with the attack in terms of performance met-
rics, as shown in Figure 7. Figure 7 (i) shows an anal-
ysis of the developed ChCSO-based Deep LSTM scheme
in terms of accuracy by altering the training data percent-
age. The accuracy obtained by DBN is 0.7853, CNN is
0.8359, DSAE is 0.8650, DASO-based Deep RNN is 0.8930,
adaptive DASO-based Deep RNN is 0.9038, and the devel-

oped ChCSO-based Deep LSTM is 0.9361 for 80% of the
training data. An analysis of the devised ChCSO-based
Deep LSTM technique based on sensitivity by varying the
percentage of training data is illustrated in Figure 7 (ii).
When the percentage of training data is 80, the sensi-
tivities attained by the DBN, CNN, DSAE, DASO-based
Deep RNN, adaptive DASO-based deep RNN, and devel-
oped ChCSO-based Deep LSTM are 0.7854, 0.8256, 0.8602,
0.8724, 0.8910, and 0.9115, respectively. The analysis of the
developed ChCSO-based Deep LSTM using specificity by
changing the percentage of training data is shown in Fig-
ure 7 (iii). The specificity of the ChCSO-based Deep LSTM
is 0.9297, whereas those of the existing approaches, such as
DBN, CNN, DSAE, DASO-based deep RNN, and adaptive
DASO-based Deep RNN are 0.7830, 0.8402, 0.8636, 0.8813,
and 0.8964, respectively, for 80% of the training data.

E. COMPARATIVE DESCRIPTION
A comparative description of the introduced ChCSO-based
Deep LSTM approach based on the NSL-KDD and BoT-IoT
datasets with respect to performance metrics is presented
in Table 1. The accuracy obtained by the developed
ChCSO-based Deep LSTM is 0.9596, whereas those of
existing approaches, such as DBN, CNN, DSAE, DASO-
based Deep RNN, and adaptive DASO-based Deep RNN
are 0.8483, 0.8263, 0.8119, 0.9195, and 0.9397, respectively,
for 90% of the training data. The accuracy rate is signifi-
cantly increased because of the development of an effective
optimization algorithm. The sensitivity value obtained by
DBN is 0.9366, CNN is 0.9292, DSAE is 0.93, DASO-based
Deep RNN is 0.9876, adaptive DASO-based deep RNN is
0.9888, and the developed ChCSO-based Deep LSTM is
0.9907, while the training data is 90%. The sensitivity value
increased in the developed technique by considering the deep
learning model. When the percentage of training data is 90,
the specificities of the DBN, CNN, DSAE, DASO-based
Deep RNN, adaptive DASO-based Deep RNN, and devel-
oped ChCSO-based Deep LSTM are 0.7399, 0.9008, 0.9217,
0.9642, 0.9777, and 0.9860, respectively. In this method,
the extraction of the CNN features effectively increased the
specificity.
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V. CONCLUSION
An effective network intrusion detection method using the
developed ChCSO-based Deep LSTM is presented in this
paper. In this designed network detection model, input data
are acquired from the BoT-IoT and NSL-KDD databases
and normalized to order the input data. Mutual information
is applied to the dimension transformation process. Feature
extraction is essential for effective detection. In this method,
the CNN feature is extracted from dimension-transformed
data. Finally, intrusion detection is performed using Deep
LSTM and is trained using the designed ChCSO approach.
The developed ChCSO technique is introduced by integrating
ChOA and CSO algorithms. The Deep LSTM model classi-
fies the data as genuine users and intruders. Furthermore, the
performance of the introduced intrusion-detection scheme is
estimated based on three metrics. Thus, the presented ChCSO
algorithm achieved better performance, with an accuracy
of 0.9917, specificity of 0.9994, and sensitivity of 0.9860.
In addition, the designed network intrusion detection model
can be further extended by considering another deep learning
approach, along with an effective deep learning technique.
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