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ABSTRACT The basic goal of Combined Heat and Power Economic Dispatch (CHPED) is to find the best
value for heat obtained from heat generators, power obtained from power generators, and both power and
heat obtained from co-generators such that fuel costs are kept minimum while heat and power demands
and constraints are met precisely. Based on enhanced discriminatory attribute, a newly Improved version of
the Heap-based Technique (IHT) is to increase the searching capacity around the leader position and avoid
trapping in a local optimum. Additionally, an adaptive parameter is used linearly to half of the iteration
to select an effective operation for creating the new solutions. On 25 benchmark optimizing functions of
unimodal or multimodal properties, the efficacy of the proposed IHT in contrast to the traditional HT is
tested. Additionally, the proposed IHT in contrast to the traditional HT are employed for CHPED with small
scale (seven units), medium scale (twenty-four) and two large-scale (eighty-four and ninety-six) systems
with consideration of valve point loading and transmission losses constraints. According to comparisons
of results obtained by the IHT with existing approaches, it is shown that the proposed IHT is particularly
effective and resilient for finding optimal solutions for the CHPED.

INDEX TERMS Heap-based technique, enhanced discriminatory attribute, combined heat and power,
benchmark functions.

I. INTRODUCTION
The development of the management patterns and efficient
energy consumption has been promoted in response to the
rising prominence of environmental pollution and the energy
crisis. Integrated energy systems, in which various energy
sectors are incorporated to achieve energy complementation
and cascade utilization, have received a lot of attention in
recent years. To meet various demands, combined heat and
power (CHP) plants are used as the basic and core energy
conversion sector in a variety of integrated energy systems.

The associate editor coordinating the review of this manuscript and
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They can supply both electricity and heat energy at the same
time, where it provides recycling and utilizing waste heat.

Moreover, the CHPED challenge necessitates the dispatch
of units to meet the heat and power demands, while achieving
the goal of lowering system operation costs and satisfying
system constraints. The rapid expansion of today’s society
has resulted in amassive increase in load demand for econom-
ically reliable power energy. The CHPED issue, under these
conditions, plays a pivotal role in the modern power system’s
operation. Because the complexity and scope of the CHPED
problem are unavoidable, tackling large-scale CHPED has
become a challenging task. Deterministic methods have been
employed, in the early years, to obtain minimum system
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cost of solving the CHPED problem including branch and
bound algorithms (BB) [1], dual and quadratic program-
ming [2], benders decomposition (BD) [3], and Lagrangian
relaxation (LR) [4]. Nevertheless, due to valve-point effects,
these methods have had difficulty in handling non-convex
fuel cost functions of the CHPED problem. Metaheuristic
algorithms (MHAs) have been demonstrated later to solve the
CHPED problem which include particle swarm optimization
(PSO) [5], [6], genetic algorithm (GA) [7], and differen-
tial evolution (DE) [8], [9]. Because of their ability to deal
with the non-linear and non-convex CHPED problem, these
MHAs have become highly popular. Accordingly, to address
the CHPED issue, a number of MHAs have been elaborated.
These methods are applied to CHPED systems of various
scales, and the number of units have been categorized into
three groups: small-scale instances are with less than 10 units,
medium-scale instances are with 10 to 50 units, and large-
scale instances are with more than 50 units.

Genetic Algorithm (GA) may be thought of as a broad
searching technique, optimization tool relying on Darwinian
concepts of evolutionary biology, reproducing, and ‘‘surviv-
ability of the strongest’’ [10]. GA keeps a population of
possible solutions and updates it on a regular basis. At each
stage, the GA chooses people from the present population
to be parents and utilizes them to generate offspring for the
following generations. Generally, the fittest people in any
community reproduced and survived to the following gen-
eration, therefore enhancing subsequent generations. Inade-
quate people, on the other hand, can live and reproduce by
random. Particle swarm optimizer (PSO) is motivated by the
capacity of bird flocks, groups of fishes, and animals to adjust
to local surroundings, discover abundant food sources, and
escape predators via the use of information exchange. The
PSO approach was developed of a social cognition investiga-
tion into the concept of collaborative intelligence in natural
groups [11]. Through PSO, a collection of completely ran-
dom individuals adapts in the searching design region toward
optimal solution across a number of iterations depending on
a significant quantity of space data gathered and exchanged
by all individuals in the swarm. PSO and GA are analogous
where they are both population-based searching algorithms
that seek the best solution by adjusting iterations. Because
the two techniques are designed to come up with a solution
to a particular target function yet use various tactics and
computing effort, comparing their efficiency is adequate.

The Heap-based technique (HT), which was recently pub-
lished [12], is motivated by the hierarchical structure of
organisations. This may be observed when a group of people
works together to achieve a mission and organize themselves
in a hierarchy, which is known as a corporate rank hierarchy
(CRH). Therefore, the notion of CRH is to arrange search-
ing individuals in a hierarchy depending on the objective
score, and the heap data architecture is used to represent this
idea. HT is built on three basic principles. The first com-
ponent is teamwork between the assistants and their respec-
tive employer. The communication among coworkers is the

second component. The third component is employee self-
contribution. The HT has been effectively employed for sev-
eral engineering optimization problems such as the optimal
power flow [13], photovoltaic cell parameter estimation [14],
distributed generation allocations in power systems [15],
[16], economic dispatch with N-1 Unit outages [17].

DE illustrated by Storn and Price in 1995 [18] is con-
sidered as one of the population-based MHA. DE has been
effectively applied to a variety of real-world issues, including
the CHPED problem, because to its few control parameters
and ease of implementation. In [19], a canonical coordinates
method (CCM) optimization with improving the searching
process has been applied to CHPED but with small number
of constraints and small system application. In [20], one
small CHPED instance with 7 units has been solved using
the original DE, while [9] presented an improved DE with
Gaussian mutation (DEGM) for 4 units CHPED problem.
In [21], stochastic fractal search (SFS) algorithm has been
used to solve the bi-objective CHPED problem with many
local minima and bounded feasible operating regions. How-
ever, only small unit systems have been considered in that
article. In [22], a social group entropy (SGE) has been applied
to CHPED with solar and wind power uncertainty. However,
small unit system has been considered. However, these meth-
ods have had good results when applied on numerous small-
scale (less than 10) CHPED problems only.

There are numerous typical instances as following. The
teaching learning based optimization (TLBO) has been illus-
trated in [23] for solving 7, 24 and 48 unit systems of
CHPED. Grey wolf optimization (GWO) has been applied
in [24] to solve 4, 7, 11, 24 and 48 unit systems of CHPED
problems with new limitations such as as ramp-rate limits,
power losses, and spinning reserve constraints. A real coded
genetic algorithm has been emerged with improved Müh-
lenbein mutation (RCGA-IMM) in [25] for solving 4, 5, 7,
and 24 unit systems of CHPED with consideration of power
losses. Particle swarm optimization has been combined with
time varying acceleration coefficients (TVAC-PSO) in [26]
to tackle small and medium-scale CHPED system with 4, 5,
7, 12 and 48-unit system. A novel Kho-Kho optimization has
been manifested in [27] for 4, 5, 7, 24 and 48 unit systems of
CHPED with consideration of environmental emissions and
power losses. In [28], an upgraded whale optimizer was used
for the economic dispatch optimization issue, and an adaptive
exploratory hunting strategy was developed to improve whale
swarm populations variety. In [29], an enhanced version
of differential evolution with an adaptive Gaussian–Cauchy
mutation was used to solve a large-scale CHPED task. In this
work, a constraint repair approach is also used to cope with
complicated operational restrictions.

On the large-scale CHPED problem, only a few MHAs
have been utilized. For instance, in [30], the CHPED problem
has been solved using the crisscross optimization approach.
The whale optimization approach (WOA) has been illustrated
to solve a large-scale CHPED system with 24 units, 84 units,
and 96 units as depicted in [31]. Additionally, in [32], a novel
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multi-player harmony search method (MPHS) has been char-
acterized to deal the large-scale CHPEDproblemwith 24-unit
and 84-unit system.

Numerous techniques for dealing with CHPED constraints
have been presented and adopted to operate well on the
CHPED problem, including penalty function and constraint
repair. However, the large-scale CHPED problem requires
immediate attention and represents a significant challenge.
As a result, the goal of this study is to develop a robust
approach that can handle the small, medium, large-scale
CHPED problem. Thus, an IHT is proposed to increase the
performance of the Heap-based technique (HT) which was
recently published [12]. The HT is based on the institu-
tion hierarchy, such as the institution rank hierarchy (IRH),
in which a group of people works together to achieve a
common goal by arranging themselves in a hierarchy based
on their fitness in a hierarchy. The performance of HT is
improved by using an enhanced discriminatory attribute to
strengthen the searching around the leader position in order
to prevent becoming locked in a local optimum and improve
its global search capabilities. An assessment is developed
to illustrate the quality of the traditional HT and the pro-
posed IHT. The following are the main contributions of this
article:
• An improvedmeta-heuristic IHT is proposed for the first
time.

• A novel effective exploitation feature is demonstrated
for HT.

• The proposed IHT is tested on 25 benchmark optimizing
functions with either unimodal or multimodal proper-
ties. The comparison with the traditional HT clearly
validates the proposed IHT.

• The proposed IHT is implemented on small scale,
medium scale and two large-scale systems with consid-
eration of valve point loading and transmission losses
constraints.

• The proposed IHT reveals better performance compared
with the traditional HT and most reported approaches in
addressing the CHPED.

II. PROPOSED IHT WITH ENHANCED DISCRIMINATORY
ATTRIBUTE
A. CONVENTIONAL HT
HT is based on the institution hierarchy [12], in which a group
works toward a common objective by arranging themselves in
a hierarchy, such as the IRH, to build search agents utilizing
the heap data structure in line with their fitness in a hierarchy.
The HT is made up of three aspects: the first aspect character-
izes the interaction between subordinates and their immediate
bosses, whereas the second and third aspect characterize
the interaction between colleagues and the employees’ self-
contribution, respectively [33].

The IRH is modelled using a heap data structure, which
is comparable to a tree-shaped data structure, with the whole
IRH representing the population and a heap node representing
the search agent. Furthermore, the master of the heap node

represents the search agent’s fitness, whilst the value of the
heap node is shown by the search agent’s population index.

The top management of the central institution creates the
plans and regulations, whilst immediate supervisors supply
the instruction, that must be carried out by subordinates. The
conundrum can be mathematically stated in each search by
changing the agent position as follows:

xki (t + 1) = Bk + γ (2r − 1)
∣∣∣Bk − xki (t)∣∣∣ (1)

where k denotes the search agent’s k th vector component;
t denotes the current iteration and B is the parent node.

As indicated in Eq. (2), the term (2r − 1) is generated at
random and exemplifies the k th component of the vector λ,
whereas γ can be assessed as shown in Eq (3).

λk = 2r − 1 (2)

γ =

∣∣∣∣2− t ∗ mod(Tmax/C)
Tmax/4C

∣∣∣∣ (3)

where r is a random value in the range [0,1], while Tmax is
the total number of iterations. Furthermore, the parameter (C)
can control the variation in the term γ (2r − 1), completed in
Tmax iterations as follows:

C = Tmax/25 (4)

Also, the nodes depict colleagues on the same level wheras
each agent position xi could be modified based on its ran-
domly assigned colleague (Sr ):

xki (t + 1) =

 Skr + γ λ
k
∣∣∣Skr − xki (t)∣∣∣ , f (

−→
Sr ) < f (−→xi (t))

xki + γ λ
k
∣∣∣Skr − xki (t)∣∣∣ , f (

−→
Sr ) ≥ f (

−→xi (t))

(5)

where f represents the search agent’s fitness.
In addition, an employee’s self-contribution is written out

as the following equation:

xki (t + 1) = xki (t) (6)

The position updating equations are combined by divid-
ing the proportions into p1, p2, and p3, the probabilities of
selection may be obtained using a roulette wheel to balance
exploitation and exploration. Therefore, the choice of pro-
portion (p1, p2, and p3) illustrated in (7), (8), and (9) allow
a search agent to update its position using (6), (1), and (5),
respectively [34].

p1 = 1−
t

Tmax
(7)

p2 = p1 +
1− p1

2
(8)

p3 = p2 +
1− p1

2
= 1 (9)

Thus, Eq. (10), as shown at the bottom of the next page,
denotes a process for updating HT’s overall position:

The key steps of the conventional HT are depicted in
Figure 1.

VOLUME 10, 2022 64327



A. M. Shaheen et al.: Intelligent HT With Enhanced Discriminatory Attribute for Large-Scale CHPED

FIGURE 1. key steps of the conventional HT.

B. PROPOSED IHT WITH ENHANCED DISCRIMINATORY
ATTRIBUTE
To increase the performance of the HT, two adjustments have
been illustrated to improve the performance of HT. Firstly,
an adaptive variable (α) which is increased linearly with
increasing iterations’ number until it reaches to 0.5 at the
maximum number of iterations and this parameter can be
expressed using this formula [35]:

α =
t

2 ∗ Tmax (11)

Secondly, an enhanced discriminatory attribute is merged
to increase the searching process for the leader position.
As a result, the conventional HT’s updating process has been
adjusted, and as depicted in (12), the positions of several
search agents can be modified.

xki (t + 1) = xki (t)+ γ λ
k
∣∣∣Leaderk − xki (t)∣∣∣ (12)

where Leader refers to the position of the search agents who
attain the lowest fitness value.

The proposed IHT’s key steps are depicted in Figure 2.
As indicated, the suggested update process of Eq. (12) is not
engaged till 75 percent of the iterations have been completed.

This condition preserves the HT’s great diversifying poten-
tial in exploring new potential directions. At this condition,
the enhanced discriminatory attribute is merged to increase
the searching process. The more increasing the iterations, the
more increasing the value of the adaptive variable (α). There-
fore, there are increasing in the production of the positions of
new search agents in the surrounding region of the Leader
position. The adaptive variable is limited to 0.5 where it
doesn’t allow activating the enhanced discriminatory attribute
to exceed the 50% of search agents. If the adaptive variable
extends to 100% at the end of the iterations, the new positions
are prone to be produced around the area of the Leader

xki (t + 1) =



xki (t), p ≤ p1

Bk + γ λk
∣∣∣Bk − xki (t)∣∣∣ , p1 < p < p2

Skr + γ λ
k
∣∣∣Skr − xki (t)∣∣∣ , p2 < p ≤ p3 and f (

−→
Sr ) < f (−→xi (t))

xkr + γ λ
k
∣∣∣Skr − xki (t)∣∣∣ p2 < p ≤ p3 and f (

−→
Sr ) ≥ f (

−→xi (t))

(10)
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FIGURE 2. Key steps of the proposed IHT.

position. Therefore, this limitation guarantees avoiding the
stagnation problem if all the search agents focus on the
surrounding region of the Leader position.

III. IMPLEMENTATION OF THE PROPOSED IHT FOR
CHPED
The purpose of solving the CHPED challenge is to reduce the
cost of system manufacture while meeting all the CHPED
requirements. The CHPED problem’s objective cost func-
tion (OCF) and constraints are provided [31]:

Min FC =
Nh∑
j=1

CjHh
j +

Np∑
i=1

CiP
p
i +

NC∑
k=1

Ck (PCk ,H
C
K )($/h)

(13)

The cost functions of this system are the following:
1) OCF of ith CHP units

Ci(Pci ,H
c
i ) = ai(Pci )

2
+ biP

p
i + ci + di(H

c
i )

2
+ eiH c

i

+ fiH c
i P

c
i ($/h) (14)

2) OCF of jth Heat only units

Cj(Hh
j ) = aj(Hh

j )
2
+ bjP

p
j + cj($/h) (15)

3) OCF of k th Power only units

Ck (P
p
k ) = ak (P

p
k )

2
+ bkP

p
k + ck

+
∣∣λk sin(ρk (Ppmin

k − Ppk ))
∣∣ ($/h) (16)

The cost of ith CHP, jth heat only, and k th power only units
are established by Ci(Pci ,H

c
i ), Cj(H

h
j ), and Ck (P

p
k ). The sym-

bols ai, bi, ci, di, ei and fi describe the ith CHP unit cost coef-
ficients, whereas the symbols aj, bj, and cj characterize the
cost coefficients of jth heat-only plant aibici and ak , bk , and ck
express the cost coefficients of k th power-only plant. The non-
convexity and non-differentiability of the problem are noticed
from the sinusoidal term of the valve-point impacts indicated
in the power only units as described in Eq. (16) [36], [37].
Besides, Eq. (14) which represent OCF of CHP contains
power output (Pc) and heat output (H c). There are diverse
number or equality and inequality constraints as described in
the following equations:

1. Heat balance constraint

Nc∑
i=1

H c
i +

Nh∑
j=1

Hh
j = Hd , (17)
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2. Bounds of heat only units’ Generation

Hhmin
j ≤ Hh

j ≤ H
hmax
j j = 1, . . . ,Nh, (18)

3. Power balance constraint

Np∑
k=1

Ppk +
Nc∑
i=1

Pci = Pd (19)

4. Bounds of power only units’ capacity

Ppmin
k ≤ Ppk ≤ P

pmax
k i = 1, . . . ,Np, (20)

5. Bounds of CHP Capacity

Pcmin
i (H c

i ) ≤ Pci ≤ P
cmax
i (H c

i ) i = 1, . . . ,Nc, (21)

H cmin
i (Pci ) ≤ H c

i ≤ H
cmax
i (Pci ) i = 1, . . . ,Nc, (22)

where the number of CHP units, heat-only units, and power
only units can be indicated by Nc, Nh, and Np, respectively,
whereas Hd and Pd demonstrate the system heat demand and
the electric power demand of the system.

Therefore, the solution of CHPED problem can be affected
by the mutual dependency among the bounds of CHP units as
manifested in Fig. 3. This figure shows that:
• For the setpoint (A), the CHP system is running within
its restrictions, hence this operating option is practical.
As a result, no penalty would be imposed.

• For the setpoint (B), the CHP system would run over
its permitted limits. Regardless of the fact that such
operating option is infeasible, the spacing between itself
and the closest border is not very great. As a result,
a minor penalty value is being designated and applied
to the fitness performance.

• For the setpoint (C), the CHP system would run over
its permitted limits. The operating option is infeasible
in such situation, and the spacing between itself and
the closest border is so great. Consequently, a severe
punishment period will be imposed.

As a conclusion, for the infeasible operational locations,
the greater the distances between itself and the closest border,
the greater the extra penalty length, and conversely.

6. Transmission losses consideration
Another reason for problem’s non-convexity is transmission
losses integration, which can be expressed as a function of the
power units’ output power as manifested in Eq. (23):

PLoss =
Np∑
i=1

Np∑
m=1

BimP
p
i P

p
m +

Np∑
i=1

Nc∑
j=1

BijP
p
i P

c
j

+

Nc∑
j=1

Nc∑
n=1

BinPcjP
c
n (23)

Consequently, Eq. (19) can be rewritten as follows:

Np∑
i=1

Ppi +
Nc∑
j=1

Pcj = Pd + PLoss (24)

FIGURE 3. Dependency between power and heat for CHP unit.

IV. APPLICATION OF THE HT AND THE PROPOSED IHT
TO BENCHMARK MATHEMATICAL FUNCTIONS
To evaluate the proposed IHT’s search capacity, 25 bench-
mark optimizing functions with varying features are run.
The testing functions under discussion are distinguished of
unimodal and multimodal optimization functions (F1-F25).
The functions of testing are Brent, Schaffer No. 4, Way-
burn Seader 3, Leon, Zettl, Ackley N.3, Adjiman, Bird,
Camel 6 Hump, Goldstien Price, Hartman 3, Hartman 6,
Cross-in-tray, Carrom Table, Chichinadze, Cross function,
Cross leg Table, Crowned cross, Giunta, Helical Valley,
Himmelblau, Holder, Test Tube Holder, Shubert and Shekel.
Complete data of these functions are detailed in Table 1.

For equitable assessments, the HT and suggested IHT use
50,000 function evaluations as a maximum number, while
the population is set at 40. Figs. 4 and 5 display comparison
of the performance of the HT and the suggested IHT using
the mean and the standard deviation, respectively. As shown,
even though there is no significant difference in the mean
goal, the suggested IHT outperforms the traditional HT in the
majority of benchmark mathematical functions with a lower
standard deviation. Full results are detailed in Table 1 [12].

As indicated, the suggested IHT finds better results than
the traditional HT for 17 benchmark functions which are F1,
F3-F5, F8, F10-F12, F14-F20, F22, F24 and F25. Added to
that, similar performance is declared between the suggested
IHT and the traditional HT for 4 benchmark functions which
are F6, F7, F13 and F23. On the other side, the suggested IHT
finds worse results than the traditional HT for 3 benchmark
functions which are F2, F9 and F21.

V. APPLICATION OF THE HT AND THE PROPOSED IHT TO
COMBINED HEAT AND POWER ECONOMIC DISPATCH
A series of tests are conducted based on the CHPED prob-
lem to assess the performance of the proposed IHT in solv-
ing small scale (seven units), medium scale (twenty-four)
and two large-scale (eighty-four and ninety-six) systems.
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TABLE 1. Comparisons between the HT and IHT for mathematical testing functions.

FIGURE 4. Comparison of the performance of HT and IHT using the mean objective of benchmark functions (F1-F25).

The experimental context considers myriads of CHPED test
systems with 7, 24, 84, and 96 units. Setting parameters: the
maximum number of iterations is 300 for small scale system
and 3000 for other systems. The proposed IHT and the tradi-
tional HT have a population size of 100 in each experiment
and runs 30 times. All of the most recent efficient algorithms
have been created and implemented in the MATLAB R2017b
64-bit platform. Tests are performed on a DELL Inspiron
computer with an Intel Core i7-4510U CPU running at 2 GHz
and 8GB of RAM.

A. THE 7-UNIT SYSTEM
The heat and power demands for the 7-unit CHPED sys-
tem are 150 MWth and 600 MW, respectively, where it
includes 2 CHP units, 1 heat-only units, and 4 conventional

thermal units. Literature [7] contains data for systems with
7 units. Two considered cases are investigated as:

Case 1: considers of the valve constraints without the
transmission losses Case 2: Considers the transmission losses
and valve constraints.

For this system, the proposed IHT and traditional HT
are applied on the two cases of the 7-unit test system.
Table 2 illustrates the detailed results of the control variables
for both cases. As shown, the minimum cost value of the pro-
posed IHT and traditional HT for case 1 are 10091.9034 $ and
10091.9966$, respectively, whilst they achieve 10094.4188$
and 10094.5077$, respectively, for case 2.

For both cases, the convergence curves of the proposed
IHT and traditional HT are manifested in figures 6 and 7,
respectively. The proposed IHT’s curve, in the early, stages
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FIGURE 5. Comparison of the performance of HT and IHT using the standard deviation of benchmark functions (F1-F25).

TABLE 2. Simulation results based on traditional HT and the proposed
IHT for 7-unit system.

clearly have the slowest descent speed, but swiftly con-
verges in the later stages. The number of iterations of the
proposed IHT when the curve approaches the optimal solu-
tion in cases 1 and 2 is roughly 150 and 200, respectively.
That is, the curse of case 1 converges to the optimal solu-
tion faster than the curse of case 2 for the proposed IHT.
For this tiny CHPED issue with complex constraints, the
findings show that the proposed IHT has poor convergence
performance. It is worth noting that the maximum num-
ber of iterations for each experiment is set high enough
to ensure that the best solution attained by each method
is a feasible one. To illustrate, the proposed IHT and tra-
ditional HT optimal solutions meet all CHPED constraints
and have fitness values equal to the objective function val-
ues. In addition, a comparison of the obtained OCF($) with
several recent techniques are tabulated in Table 3 consider-
ing case 1. As shown, the proposed IHT derives the best
performance compared to the others since it achieves the

FIGURE 6. Convergence characteristics for the HT and the proposed IHT
for case 1 of 7-unit test system.

minimum cost among these techniques. As indicated, the pro-
posed IHT acquires the least costs value with 10091.9034 $.
The other algorithms HT, DE [9], Bee Colony Optimization
(BCO) [38], CPSO [23], RCGA-IMM [25], TVAC-PSO [26],
CSO [30], TVAC-PSO [39], AIS [40], TLBO [23], WVO-
PSO [41], MRF [42], LCA [43], CSO&PPS [44], IGA-NCM
[7] and ECSA [45] obtain costs of 10091.9966, 10317, 10317,
10325.33, 10094.0552, 10100.32, 10094.1267, 10244.002,
10355, 10094.84, 10372.015, 10092.33, 10104.38, 10111,
10107.9071 and 10121.9466 $, respectively.

B. THE 24-UNIT SYSTEM
The heat and power demands for the 24-unit CHPED sys-
tem are 1250 MWth and 2350 MW, respectively, where it
includes 6 CHP units, 5 heat-only units, and 13 conven-
tional thermal units. The 13 power-only units was derived
from a 13-unit standard economic dispatch test instance
with a large number of local optima. As a result, the
24-unit system is a multimodal challenge. Literature [26]
contains data for this system. For this system, the proposed
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FIGURE 7. Convergence characteristics for the HT and the proposed IHT
for case 2 of 7-unit test system.

TABLE 3. Comparison of the proposed IHT, HT and reported techniques
for case 1 of 7-unit system.

TABLE 4. Values of heat and power generated Using HT and the proposed
IHT for the 24-unit CHPED system.

IHT and traditional HT are applied. Table 4 illustrates the
detailed results of the control variables. In this table, the
minimum cost value of the proposed IHT and traditional
HT for case 1 are 57953.5263 and 57994.515 $, respec-
tively. Additionally, as manifested in Table 5, a compari-
son for this system with other reported techniques in the

TABLE 5. Comparison the proposed IHT, HT and reported techniques for
the 24-unit system.

FIGURE 8. Convergence characteristics for the HT and the proposed IHT
for of 24-unit test system.

literature which are hybrid HTwith Jellyfish search optimiza-
tion (HHTJFSO) [46], JFSO [46], Supply demand optimiza-
tion (SDO) [46], gravitational search algorithm (GSA) [47],
GSO-based algorithm with modified scrounger and ranger
operators (GSO)[48], group search optimization (GSO) [49],
Improved GSO (IGSO) [49], TLBO [23], PSO [26], TVAC-
PSO [26], CPSO [26]. As shown, the proposed IHT shows
the best performance. It achieves the minimum cost among
these techniques where the minimum cost value of the pro-
posed IHT and traditional HT are 57953.52 and 57994.52 $,
respectively.

Also, in Table 5, the proposed IHT provides the lowestmin-
imum, average, worst and standard deviation of 57953.53,
58056.13, 58192.22 and 77.77, respectively. Therefore, the
proposed IHT derives superior robustness compared to the
others.The convergence curve of the proposed IHT and tradi-
tional HT in this system is manifested in figure 8. The number
of iterations of the proposed IHT when the curve approaches
the optimal solution is roughly 2200, respectively. For this
medium CHPED issue with complex constraints, the find-
ings show that the proposed IHT has excellent convergence
performance.
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TABLE 6. Values of heat and power generated Using HT and the proposed
IHT for the 84-unit CHPED system.

C. THE 84-UNIT SYSTEM
The heat and power demands for the 84-unit CHPED sys-
tem are 5000 MWth and 12700 MW, respectively, where
it includes 24 CHP units, 20 heat-only units, and 40 con-
ventional thermal units. Literature [31] contains the detailed
data for this system. For this system, the proposed IHT and
traditional HT are applied. Table 6 illustrates the detailed
results of the control variables. From this table, the minimum
cost value of the proposed IHT and traditional HT for case 1
are 288368.9610 and 289822.3922$, respectively.

Table 7 displays a comparison with other reported tech-
niques in the literature to minimize the OCF which are

TABLE 7. Statistical analysis of the proposed IHT, HT and reported
techniques for the 84-unit system.

WOA [31], SDO [33], MPA [33], IMPA [33], MRF [42],
HT [33], JFSO [46], and HHTJFSO [46]. As shown, the
proposed IHT achieves the minimum cost among these tech-
niques where the minimum cost value by it is 288369 $ where
the traditional HT obtains 289822.4 $. Additionally, as man-
ifested in Table 7, the proposed IHT provides the lowest
minimum, average, worst and standard deviation of 288369,
289101.7, 290282 and 553.47, respectively. Therefore, the
proposed IHT derives superior robustness compared to the
others.

D. THE 96-UNIT SYSTEM
The heat and power demands for the 96-unit CHPED sys-
tem are 9400 MWth and 5000 MW, respectively, where
it includes 24 CHP units, 20 heat-only units, and 52 con-
ventional thermal units. Literature [31] contains the studied
data for this system. For this system, the proposed IHT and
traditional HT are applied Table 8 illustrates the detailed
results of the control variables. Table 9 depicts a compari-
son of the obtained OCF($) with several recent techniques.
As shown, the proposed IHT derives the best performance
compared to the others since it achieves the minimum cost
among the other techniques. The minimum cost value of the
proposed IHT is 234090.7241 $ where the traditional HT
attains 235102.65 $. Additionally, as manifested in Table 9,
the proposed IHT provides the lowest minimum, average,
worst and standard deviation of 234090.72, 234952.84,
236243.85 and 690.33, respectively. Therefore, the proposed
IHT derives superior robustness compared to the others.
The convergence curve of the proposed IHT and traditional
HT for the 84-unit and 96-unit systems are manifested in
figures 9 and 10.

The number of iterations of the proposed IHT when
the curve approaches the optimal solution is roughly 2300,
respectively. For this large CHPED issue with complex con-
straints, the findings show that the proposed IHT has excel-
lent convergence performance. To recapitulate, the proposed
IHT’s convergence ability is comparable to that of the tra-
ditional HT in systems with small-scale units, but clearly
superior to that of the traditional HT in medium and large-
scale CHPED systems. That is, the proposed IHT can swiftly
identify a global optimal point in a high-dimensional search
space, and its optimal solution is superior to that of the com-
parable methods which demonstrate that the proposed IHT
has stability and great convergence in solving themedium and
large-scale CHPED problem.
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TABLE 8. Values of heat and power generated using HT and the proposed
IHT for the 96-unit CHPED system.

E. STATISTICAL ASSESSMENT OF PROPOSED IHT AND HT
FOR CHPED
For all studied systems, the proposed IHT and HT are 30 run
times, and the corresponding whiskers box plots are drawn
in Fig. 11. As illustrated in Fig. 11 (A), the proposed IHT
outperforms HT, for the 7-unit system (case: 1), in attain-
ing the statistical calculations of OCF value. The proposed
IHT provides the lowest minimum, average, maximum and
standard deviation of OCF values of 10091.9$, 10093.41$,
10095.9$, and 1.15$, respectively, whilst the HT provides

FIGURE 9. Convergence characteristics for the HT and the proposed IHT
for of 84-unit test system.

FIGURE 10. Convergence characteristics for the HT and the proposed IHT
for of 96-unit test system.

TABLE 9. Statistical analysis of the proposed IHT, HT and reported
techniques for the 96-unit system.

10091.99$, 10093.86$, 10097.47$ and 1.16$, respectively.
Additionally, the proposed IHT outperformsHT for the 7-unit
system (case: 2) as illustrated in Fig. 11 (B). The proposed
IHT provides the lowest minimum, average, maximum and
standard deviation of OCF values of 10094.42$, 10095.91$,
10098.78$, and 1.202$, respectively, whilst the HT provides
10094.51$, 10096.17$, 10099.3$ and 1.168$, respectively.

For the 24-unit system, as shown in Fig. 11 (C), the
proposed IHT beats HT in statistical computations of OCF
value. The suggested IHT gives the smallest minimum,
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FIGURE 11. Whiskers box plot for the total cost obtained by the HT and the proposed IHT of CHPED.

average, maximum, and standard deviation of OCF val-
ues of 57953.526$, 58056.13$, 58192.22$, and 77.77$,
respectively, whereas theHT provides 57994.515$, 58111.3$,
58309.42$, and 98.69$, respectively. Similar findings are
acquired for the 84-unit system and the 96-unit system as
illustrated in Fig. 11 (D) and (E), respectively. Therefore,

it is concluded that the proposed IHT has high stability and
robustness in attaining the minimum, average, maximum and
standard deviation of OCF values with respect to the HT.
In addition, Table 10 shows the average computing time for
the standard HT and suggested IHT methods. the computa-
tional time for both algorithms is stated for the 25 benchmark
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TABLE 10. Computational time (Sec) of the proposed IHT and the
original HT.

functions and the four studied CHPED systems. As shown
by below table, the proposed IHT method requires somewhat
less computing time than the traditional HT method.

VI. CONCLUSION
In this paper, an improved Heap-based Technique (IHT) is
proposed and implemented successfully to 25 benchmark
optimizing functions and to solve the CHPED problem. The
CHPED has become a challenging task that seeks to find
the best value for heat generated by heat generators, power
generated by power generators, and both power and heat
generated by co-generators, so that fuel costs are kept to a
minimum while heat and power demands and constraints are
met precisely. In the CHPED problem, the valve point loading
and transmission losses constraints are taken into considera-
tion. The IHT is developed in the article by performing two
modifications on the conventional HT. Firstly, developing
adaptive parameter is incorporated which increases linearly
to half of the iteration to select an effective operation for
creating the new solutions. Secondly, an enhanced discrim-
inatory attribute is merged to improve the global search
capabilities and avoid trapping in a local optimum. The IHT
is employed on different small scale, medium scale and

large-scale systems and from the simplest to the most intri-
cate. The proposed technique’s robustness and effectiveness
are investigated in each system by comparing it with other
well-known approaches. The comparisons revealed that the
proposed IHT is quite promising in terms of tackling the
CHPED problem. The proposed IHT is more efficient than
the traditional HT and most reported approaches. It provides
superior performance compared to the traditional HT and
other recent techniques. It also derives the best robustness
indices in terms of the statistical terms of minimum, average,
maximum and standard deviation OCF values.
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