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ABSTRACT Human Activity Recognition (HAR) using mobile sensor data has gained increasing attention
over the last few years, with a fast-growing number of reported applications. The central role of machine
learning in this field has been discussed by a vast amount of research works, with several strategies
proposed for processing raw data, extracting suitable features, and inducing predictive models capable
of recognizing multiple types of daily activities. Since many HAR systems are implemented in resource-
constrained mobile devices, the efficiency of the induced models is a crucial aspect to consider. This paper
highlights the importance of exploiting dimensionality reduction techniques that can simplify the model
and increase efficiency by identifying and retaining only the most informative and predictive features for
activity recognition. More in detail, a large experimental study is presented that encompasses different
feature selection algorithms as well as multiple HAR benchmarks containing mobile sensor data. Such a
comparative evaluation relies on a methodological framework that is meant to assess not only the extent
to which each selection method is effective in identifying the most predictive features but also the overall
stability of the selection process, i.e., its robustness to changes in the input data. Although often neglected,
in fact, the stability of the selected feature sets is important for a wider exploitability of the induced models.
Our experimental results give an interesting insight into which selection algorithms may be most suited in
the HAR domain, complementing and significantly extending the studies currently available in this field.

INDEX TERMS Feature selection methods, human activity recognition, machine learning algorithms,
mobile sensor data.

I. INTRODUCTION
Sensor-based Human Activity Recognition (HAR) is a grow-
ing research field that deals with automatically identifying the
activities a user is performing based on the analysis of data
collected from a variety of sensors [1]. HAR systems have
several important applications in different areas including
ambient assisted living [2], physical training [3], [4], activity
monitoring for health assessment [5], assistance for child and
elderly care [6] as well as assistance for people with cognitive
disorders [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu .

In particular, sensors fitted in mobile devices (accelerome-
ters, gyroscopes, etc.) have now reached widespread adoption
and allow to envisage intelligent monitoring systems that
can seamlessly track daily activities, in a non-intrusive way,
and help users to make better decisions about their future
actions [8]–[10]. However, such an automatic decision sup-
port capability is still limited, despite the increasing capac-
ity of processing data from smart devices. Furthermore, the
exploitation of HAR systems in real-world scenarios not only
demands high recognition accuracy but also poses multiple
challenges in terms of power consumption and robustness
with respect to different context conditions [11], [12], solic-
iting further research efforts in this field.
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In recent years, several machine learning approaches have
been explored for the automatic classification of daily living
activities based on mobile sensing [13]–[18]. The overall
process involves different steps, including the cleansing of
raw data to remove noise and artifacts, and the extraction of
high-level features that can be useful to discriminate among
the considered activities [19]. A common methodology for
feature extraction relies on segmenting the sensor data, e.g.,
the tri-axial acceleration signals, into time windows that are
subsequently mapped, through proper functions, into a set of
meaningful features. Different types of mapping approaches
have been explored based on the application scenario [20],
resulting in time-domain, frequency-domain, or other types
of features that can be finally fed to a classifier to induce
the HAR model. Automatic feature extraction based on
deep learning methods has also been recently investigated
[11], [21]. Both the features’ definition and the choice of
the classifier may significantly affect the performance of the
recognition system, as witnessed by a vast amount of litera-
ture in the field [5], [8], [20].

The computational efficiency of theHAR system is another
important aspect to consider when dealing with mobile
devices that may have limitations in terms of processing capa-
bility as well as energy consumption. From this point of view,
it may be convenient to contain the dimensionality of the
feature vectors used at the classification stage, as discussed in
some recent studies [22]–[24]. The feature extraction process
can indeed result in a large number of features, especially in
a multi-sensor system where the feature sets generated from
the single sensors can be fused to create feature vectors of
high dimensionality [25]. In such a scenario, it can be useful
to apply automatic techniques to identify and select the most
important features for prediction, in order to simplify the
activity recognition models, decrease overfitting, and reduce
computations. Indeed, it has been observed that not all the
extracted features have the same importance in the classifi-
cation of physical activities [19], [26]. Some features may be
redundant, weakly relevant, or even irrelevant/noisy for a spe-
cific task, suggesting that feature selection techniques could
be effectively employed to reduce the data dimensionality and
improve the HAR system’s efficiency without compromising
the final prediction accuracy.

However, not much research has so far explored the poten-
tial of feature selection in this field. Most emphasis has
been given to investigating which classification methods and
strategies may be best suited for inducing the HAR mod-
els [5], [20], [27], [28], while few studies have compared
the impact of different feature selection algorithms on such
models [29], gaining insight into which heuristics may be
most effective in selecting reduced subsets of discriminative
features. To make a contribution in this direction, we present
here an extensive comparative study that encompasses several
selection approaches and investigates their behavior on typi-
cal HAR datasets extracted from mobile devices, like smart-
phones and smartwatches, where recognition performance
and computational efficiency need to be jointly optimized.

More in detail, extending our previous research in this
field [30], this work provides a two-fold contribution. First,
a general methodological framework is presented that allows
evaluating the effectiveness of the feature selection process
along with two directions: i) the capacity of the algorithm
of identifying the most important features for activity pre-
diction, and ii) the stability of the selected feature subsets,
i.e., their robustness to perturbations in the input data. This
way we can better understand the suitability of a given selec-
tion method for the considered application scenario. Indeed,
identifying feature subsets that are both highly predictive and
stable is important for a wider exploitability of the induced
models, as highlighted in recent literature [31], [32].

Leveraging such a framework, we carried out an exper-
imental evaluation for different levels of dimensionality
reduction, i.e., for different percentages of selected features,
in order to find an optimal trade-off between the number of
features used for prediction and the resulting classification
performance. Specifically, our study includes selection meth-
ods that are representative of different heuristics: univariate
approaches, which assess every single feature independently
of the others; multivariate approaches, which capture the
inter-dependencies among the features; filter approaches,
which carry out the selection process without interacting
with the learning algorithm; embedded approaches, which
exploit the features’ weights derived by a proper classifier
to assess the relevance of the features. Such a comprehensive
evaluation has been performed in conjunction with learning
algorithms that have proven highly effective in this domain,
such as Support Vector Machines and Random Forest.

The experimental study has been conducted on five HAR
datasets extracted from mobile sensor data [33]–[37], both
using a single sensor type (accelerometer) or different types
of sensors (accelerometer, gyroscope, magnetometer). Fur-
ther, the considered benchmarks present different levels of
dimensionality, ranging from about 150 features to over a
thousand features, which has allowed us to explore the behav-
ior of the considered selection algorithms across different
feature spaces.

Overall, the results of our experiments show that the feature
selection process can reduce the original dimensionality to
a great extent without any degradation in the final recogni-
tion performance, which confirms the importance of intro-
ducing an automatic dimensionality reduction step into any
mobile sensing processing pipeline. By jointly evaluating the
predictive performance and the selection stability, we also
obtained some interesting insights into which methods may
be best suited in the considered domain. To the best of our
knowledge, this is the first work that evaluates several feature
selection approaches in this field based on different real-
world benchmarks. Moreover, in this work we investigate the
stability of selection methods, which is neglected by most of
the existing studies.

The remainder of this paper is structured as follows.
Section II gives some background concepts on feature
selection and discusses its applications in the HAR field.
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Section III describes the adopted methodological framework
and the specific selection algorithms chosen for the experi-
mental study. The characteristics of the considered datasets
are illustrated in Section IV. Section V presents the exper-
imental analysis and Section VI further discusses the main
findings. Finally, Section VII gives some concluding remarks
as well as directions for future work.

II. BACKGROUND CONCEPTS AND RELATED WORK
In the last two decades, several research efforts have focused
on devising proper methods for handling high dimensional
datasets [38]. Feature selection plays an important role in
such a context as it can discard irrelevant and redundant
information, as well as noisy factors, with significant benefits
in terms of computational efficiency, model interpretability
and data understanding [39]. As summarized below, a wide
variety of feature selection methods can be found in the
literature, with some promising applications also in the HAR
field [22]–[24], [29], [40]–[51], [53]–[55].

A. BACKGROUND ON FEATURE SELECTION
In the context of supervised learning tasks, like those consid-
ered in this paper, the available selection techniques can be
broadly distinguished into three categories [39], [56]:
• Filters methods, that conduct the selection process as a
pre-processing step, without interacting with the learn-
ing algorithm used at the model induction stage, thus
leading to a classifier-independent selection outcome.
This can involve the individual evaluation of every
single feature, based on its correlation with the class
attribute, or the evaluation of subsets of features, within
which the reciprocal correlation among the features
is also considered to minimize redundancy (but at an
increased computational cost).

• Wrapper methods, that search for the feature subset
that can optimize the predictive performance of a given
classifier. In this case, the learning algorithm itself is
employed as an evaluation function to assess each can-
didate subset of features. The computational cost of the
selection process is hence dependent on the classifier’s
intrinsic efficiency, as well as on the search strategy
used to build the candidate subsets (e.g., an evolu-
tionary search or a greedy stepwise search), with an
overall burden generally higher than the one of filter
methods.

• Embedded methods, that leverage the intrinsic capacity
of some classification algorithms (e.g., Support Vector
Machines classifiers) to assign weights to the features,
without requiring a systematic search through different
candidate subsets, as in the case of wrappers. In terms
of computational cost, this approach often provides a
reasonable trade-off between filters and wrappers, with
results that have proven quite satisfactory in multiple
scenarios.

Several studies have investigated the potential and the
drawbacks of the different selection methods proposed so

far [57], [58]. Due to their reduced computational require-
ments, filter and embedded methods have found wider
adoption in high-dimensional problems, with a variety of
algorithms available that support both univariate and multi-
variate selection processes, as better discussed in section III.
Hybrid and ensemble techniques, that properly integrate dif-
ferent selection methods, have also been studied with promis-
ing results in recent years [39], [59], [60].

B. FEATURE SELECTION IN THE HAR FIELD
Feature selection methods falling in the filter category have
been generally preferred in the HAR field. For example,
[40] and [41] have investigated the use of MRMR and CFS
filters [38], which are designed to search for subsets of fea-
tures that are highly correlated with the target class but not
correlated with each other. Similarly, the inter-dependencies
among the features are considered in [42], where a game
theory-based feature selection (GTFS) method is proposed
to optimize the size of the selected feature subsets. Such
a subset-oriented evaluation tries to reduce redundancy and
can be an effective and viable solution when the original
dimensionality is not too high.
A more efficient ranking-based filter is exploited in [43],

where every single feature is weighted according to an infor-
mation theoretical criterion, known as Information Gain,
with an overall ordering of features based on the result-
ing weights. Such an approach allows discarding the fea-
tures that are less useful in discriminating the target class
and has proven well suited even in the presence of very
high dimensionalities. Ranking-based filters have also been
applied in [44], [45], where the Chi-Squared, Fisher score,
and ReliefF methods are employed to weight the features
and arrange them in decreasing order of relevance. A com-
parison between ranking-based and subset-oriented filters is
presented in [23], which emphasizes that the filter-selected,
classifier-independent, feature subsets have potentially broad
exploitability in smartphone-based HAR.

Fewer applications can be found in this field for the embed-
ded methods and the wrapper methods [46]–[48]. Specifi-
cally, given the higher computational cost of wrappers, they
have been mainly applied after preliminarily reducing the
data dimensionality by means of a filter, as in [24] and [49].
Some direct comparisons between filter and wrapper
approaches are presented in [22], [50], [51]; in such studies,
however, the dimensionality of the original feature space is
relatively low, which can make acceptable the higher compu-
tation time required by wrappers.

An interesting line of research recently explored in the
HAR field relies on the use of nature-inspired and swarm
intelligence algorithms [52] for optimizing the feature subset
selection process within a wrapper model approach. In partic-
ular, [53] proposes a new method that involves the hybridiza-
tion of two algorithms, namely the gradient-based optimizer
(GBO) and the grey wolf optimizer (GWO). A binary fire-
fly algorithm (BFA) is used in [54], in combination with a
GTFS filter that preselects potentially interesting features.
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The integration of bee swarm optimization (BSO) and rein-
forcement learning is explored in [55], with a comparison
with other swarm-based methods.

Despite an increasing amount of research pointing out
the benefits of feature selection in HAR applications, there
is a lack of comparative studies that extensively evalu-
ate the strengths and weaknesses of the different selection
approaches in this field. At the time of writing, the largest
experimental comparison is presented in [29], where ten
different selection algorithms (seven filters, two wrappers
and one embedded method) are evaluated on a single sen-
sor dataset involving more than 200 attributes; interestingly,
the feature subsets selected using efficient filter methods
are found to outperform those produced by wrappers that,
although potentially capable of yielding superior results, are
more prone to the problem of overfitting.

Finally, to the best of our knowledge, only the impact of
feature selection on the performance of HAR models has
been considered so far, without investigating the stability
of the selection process, i.e., its sensitivity to changes in
the input data, which may critically affect the robustness
of the induced models. Taking such an aspect into account,
this work presents a wide comparative analysis that comple-
ments the studies available in this field, encompassing several
selection methods and several benchmarks, as detailed in the
following sections.

III. METHODOLOGICAL FRAMEWORK
Ourmethodological framework ismeant to be general enough
to be implemented with different selection methods as well as
different learning algorithms. Further, as anticipated above,
it involves evaluating both the predictive power and the sta-
bility of the selected feature subsets, which is important to
understand the extent to which these subsets can be truly
relevant for the task at hand, regardless of the specific compo-
sition of the training data. All the steps of the adoptedmethod-
ology are outlined in what follows, alongwith a description of
the specific methods and settings chosen for the comparative
analysis.

A. RANKING-BASED FEATURE SELECTION AND
PERFORMANCE EVALUATION
As a general framework for a wide comparison, we chose a
ranking-based selection approach [39] that is flexible enough
to encompass the use of filtermethods, that assign weights to
the features based on their degree of correlation with the class
(i.e., the activity to be predicted), and embedded methods,
that rely on the features’ weights derived by a proper learning
algorithm.

The assigned weights, regardless of how they are com-
puted, can be used to obtain a ranked list in which the N
features of the data at hand (D) appear in decreasing order of
relevance, i.e., from the most important (rank 1) to the least
important (rank N ), as schematized in Figure 1. Such a list
can then be cut at a suitable threshold point (n) to select a
subset of highly relevant features, i.e., the n top-ranked ones.

Considering only these features, an activity recognition
model can be induced from D by training any suitable clas-
sifier. The performance of the resulting model is evaluated
on a separate set of test records that are structured to contain
only the features previously selected from D (to avoid any
selection bias, in fact, the test records must not be used in the
feature selection process).

The best level of dimensionality reduction, i.e., the optimal
value of the cut-off threshold in Figure 1, may vary depending
on the specific task at hand. The effect of modifying such
a threshold is explored experimentally in our study, which
encompasses different values of n and evaluates their impact
on the final recognition performance. This approach allows
discarding the unnecessary features in a cost-effective way
(especially when the data dimensionality makes impractical
the direct adoption of wrapper-based search strategies).

B. STABILITY EVALUATION
For a stable selection method, we expect to obtain (almost)
the same outcome when the original set of training instances
is somewhat perturbed (e.g., randomly removing a given
percentage of records) [61].

Evaluating stability essentially involves two aspects [62]:
(i) a procedure to create multiple sample sets from the avail-
able data, and (ii) a consistency index to quantify the sensitiv-
ity of the selection process to sample variation.More in detail,
given a dataset D with R instances and N features, a number
K of reduced datasets Di (i = 1, 2, . . . , K ) are drawn, each
containing a fraction f of the original instances. The chosen
selection algorithm is then applied to each Di, obtaining an
output Oi (i = 1, 2, . . . , K ) that may depend on Di’s specific
composition. A proper similarity measure is finally used to
assess the pairwise similarity between the outputs Oi: the
more their average similarity, the more stable the selection
method.

In our framework, each output Oi takes the form of a
feature subset Si containing n of the original features (selected
according to the approach explained previously), for a total of
K subsets of the same size. To evaluate how similar these sub-
sets are to each other, we rely on a consistency index known
as Kuncheva measure [63], which has proved to be suitable in
the context of high dimensional problems. Specifically, given
a pair of subsets Si and Sj, their similarity is measured as
follows:

simij =
|Si ∩ Sj| − n2/N

n− n2/N
(1)

where |Si ∩ Sj| is the number of features that are common to
Si and Sj. The similarity simij essentially measures the degree
of overlap between the two subsets, with a proper correction
reflecting the probability that a feature is included in both
subsets simply by chance [31].

The resulting similarity values are then averaged across
all pair-wise comparisons to assess the overall degree of
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FIGURE 1. The adopted ranking-based selection approach.

consistency among the K subsets:

simavg =
2

K (K − 1)

K−1∑
i=1

K∑
j=i+1

simij (2)

This average similarity can be assumed as a measure of the
stability level of the selection process. Since simij and simavg
may vary in dependence on the size n of the selected subsets,
our experimental study investigates the stability trend for
feature subsets of increasing size, as shown in Section V.

C. METHODS AND SETTINGS
For implementing the methodological framework presented
above, we considered some popular selection algorithms that
are representative of different feature weighting paradigms.
In particular, we employed five univariate methods, that
weigh every single feature independently of the others, and
five multivariate methods, that are able to capture the inter-
dependencies among the features.

Specifically, among the univariate techniques, we chose:
• Chi Squared (χ2), that leverages the well-known chi-
squared statistic to evaluate how relevant a feature is
with respect to the class [57]. Specifically, once a feature
has been discretized into I intervals, its χ2 value is
obtained as:

χ2
=

I∑
i=1

C∑
j=1

(Aij −
Ri·Bj
R )2

Ri·Bj
R

(3)

where R is the total number of instances, C the number
of classes, Ri the number of instances in the ith interval,
Bj the number of instances in the jth class, and Aij the
number of instances in the ith interval and jth class.

• InformationGain (IG), that measures the extent to which
the class entropy decreases when the value of a given
feature is known: the greater the decrease in entropy, the
more discriminative the feature [64]. Namely, by denot-
ing asH the entropy function, we can derive the IG value
for a feature X as:

IG(X ) = H (Y )− H (Y |X ) (4)

where H (Y ) is the entropy of the class Y before observ-
ing X , while H (Y |X ) is the conditional entropy of Y
given X [65].

• Symmetrical Uncertainty (SU) and Gain Ratio (GR),
that in turn rely on the IG measure but include suitable
correction factors that try to compensate for the IG’s bias
toward features withmore values [66]. Specifically, after
computing the IG value for a feature X , the correspond-
ing SU and GR values are obtained as follows:

SU (X ) =
2 · IG(X )

H (X )+ H (Y )
(5)

GR(X ) =
IG(X )
H (X )

(6)

where H (X ) and H (Y ) denote the entropy of, respec-
tively, the feature X and the class Y .

• OneR (OR), that weights each feature based on the
accuracy of a simple classification rule built on that
feature, according to the approach originally proposed
in [67]. More in detail, for each of the available features,
the algorithm creates one rule by determining the most
frequent class for each feature’s value (a rule is simply
a set of attribute values bound to their majority class).
The prediction accuracy of each rule is then computed,
and the features are ranked according to the quality of
the corresponding rules.

Among the multivariate techniques, we considered two
Relief-based selectors [68] and three SVM-based selec-
tors [69]. More in detail, we chose:

• ReliefF (RF), that evaluates the strength of the features
according to their ability to discriminate between data
instances that are near to each other (nearest neighbors)
in the feature space. Basically, in the original two-class
formulation, a sample instance Ri is extracted from the
training set, and its features’ values are compared to
the corresponding values of the instance’s nearest hit H
(neighbor from the same class) and miss M (neighbor
from the opposite class). A weight W is then iteratively
computed for each feature X , starting from an initial
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value W (X ) = 0:

W (X ) := W (X )−
diff (X ,Ri,H )

r
+
diff (X ,Ri,M )

r
(7)

where r is the number of randomly drawn instances and
diff is a function that computes the difference between
the value of X for Ri and H as well as for Ri andM . The
underlying assumption is that a ‘‘good’’ feature should
have the same value for data points of the same class
and different values for data points of different classes.
Such a binary formulation can be easily extended to
deal with multi-class problems [68]. In turn, ReliefF-
weighted (RFW) adopts a similar strategy but weighting
the neighbors by their distance.

• SVM-AW, that relies on a linear SVM classifier, which
has an embedded capability of assigning aweight to each
feature based on how it contributes to the hyperplane
decision function induced by the classifier. This function
can indeed be written as follows:

f (X) = W · X + b (8)

where X is the N -dimensional vector of input features,
W is a weight vector, and b is a bias constant. The weight
Wj assigned to the jth feature can be interpreted as a
measure of the strength of the feature; specifically, the
SVM-AW algorithm considers the absolute value of this
weight (AW ) [69].

• SVM-RFE, that, in turn, exploits a linear SVM but adopts
a recursive feature elimination strategy that iteratively
removes the features with the lowest weights and repeats
the weighting process on the remaining features. In our
study, two versions of this approach are evaluated:
RFE10, where the percentage p of features removed at
each iteration is set to 10%, and RFE50, where this
percentage is 50% (in the special case where p= 100%,
SVM-RFE reduces to SVM-AW as no iteration occurs).

As regards the computational complexity of the above
techniques, it depends on both the number of features (N )
and the number of instances (R). In particular, it can be shown
that the number of operations is of the order of N · R for the
univariate approaches [70], while the multivariate approaches
have a higher computational cost. Indeed, in the worst case,
the number of operations is of the order of N · R2 for the
Relief-based methods while it is of the order of max(N ,R) ·
R2 for SVM-RFE. However, efficient implementations exist
that optimize the nearest-neighbor calculations involved in
ReliefF as well as the kernel-matrix calculations involved in
SVM-RFE [71].
Furthermore, note that some of the above techniques

(χ2, IG,GR, SU, RF, and RFW), which only rely on the data’s
intrinsic characteristics, fall in the category of filter methods,
while others (OR, SVM-AW, RFE10, and RFE50) leverage
the features’ weights derived by a suitable classifier and can
be thus categorized as embedded methods. Irrespective of
the specific algorithm used to derive the features’ weights,

the final selection is carried out according to the approach
shown in Figure 1, i.e., by retaining a number n of top-ranked
features; such a number is varied in our experiments encom-
passing different percentages of selected features, from 5%
to 90%.

As learning algorithms to induce the activity recognition
models, we chose, after a series of preliminary experiments,
an SVM classifier with a polynomial kernel of degree 2 and a
RandomForest classifier, which proved to be a suitable option
for the considered benchmarks (described in section IV). For
both classifiers, as well as for the different selection methods,
we leveraged the implementations provided by the WEKA
machine learning library [72].

More in detail, we trained the SVM classifier using the
well-known Sequential Minimal Optimization (SMO) algo-
rithm [73]. For the Random Forest classifier, we relied on
100 unpruned trees, each built using log2(n) + 1 random
features at the splitting stage, according to commonly adopted
settings [74]. The WEKA ChiSquaredAttributeEval, Info-
GainAttributeEval, SymmetricalUncertAttributeEval, Gain-
RatioAttributeEval, and OneRAttributeEval were used to
implement the univariate methods χ2, IG, SU, GR, and OR,
respectively. For the Relief-based methods, we employed
the ReliefFAttributeEval function, with and without instance
weighting (for RFW and RF respectively). Finally, for the
SVM-based selection methods, i.e., SVM-AW and SVM-RFE,
we exploited the SVMAttributeEval function, properly setting
the percentage of features to be removed at each iteration.
Each of these feature weighting functions was used in con-
junction with the Ranker search method that allows selecting
a specified number of top-ranked features.

IV. DATASETS
For our comparative study, we used five datasets meant for
mobile human activity recognition. Specifically, one of these
datasets contains data acquired from a fitness watch and a
mobile phone, three of them contain smartphone sensor data,
and the last one contains body-worn sensor data. In each
dataset, data instances are labeled with the corresponding
activities, which are primarily sport/fitness activities and
activities of daily living. The high-level characteristics of
these experimental benchmarks are summarized in Table 1.

The COSAR dataset [33], [75] was collected in exper-
iments concerning the recognition of 10 different activi-
ties: brushing teeth, climbing up and down, riding bycicle,
standing still, jogging and strolling, walking downstairs and
upstairs, writing on blackboard. These activities were carried
out by 6 volunteers wearing two accelerometers: the first one
located inside the left pocket and the second one on the right
wrist. In addition, a GPS receiver in the left pocket tracked
the person’s location. Overall, the dataset consists of 5 hours
of activity data, sampled at a frequency of 16Hz, and each
activity instance has a time extension of 1 second, for a total
of 18000 instances (divided into 13500 training records and
4500 test records, as reported in Table 1).
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TABLE 1. Datasets used in the experimental study.

The second dataset (HAR) [34] was collected from 30 vol-
unteers wearing a smartphone on the waist, as described
in [76]. Inertial data were acquired from the smartphone’s
3-axial accelerometer and 3-axial gyroscope at 50 Hz. Each
subject carried out six activities: walking, walking upstairs
and downstairs, sitting, standing and laying. Raw data were
filtered to remove noise and sampled using a 50% overlap-
ping sliding window of 2.56 seconds, resulting in a total of
10299 instances (partitioned into 70% training data and 30%
test data).

The third dataset (HAR_ALL) [35] is an extension of
the HAR dataset described above; indeed, it was obtained
by carrying out similar experiments and contains the same
activities, as described in [77]. 30 subjects participated in the
experiments, resulting in a collection of 5744 records.

In turn, the HAPT dataset [36] is an updated version of
the HAR dataset that contains an extended set of activities,
including postural transitions: walking, walking upstairs and
downstairs, sitting, standing and laying, stand-to-sit and
stand-to-lie, sit-to-stand and sit-to-lie, lie-to-sit and lie-to-
stand. This benchmark, described in detail in [14], is con-
sidered especially challenging due to the highly imbalanced
activity distribution (given the lower frequency of postural
transitions).

The last dataset we considered is (DSA) [37], previously
used in various researchworks including [78] and [79]. It con-
tains 19 daily and sport activities: sitting, standing and lying
on back and on right side, ascending and descending stairs,
standing and moving around in an elevator, walking in a
parking lot and on a treadmill (in flat and 15◦ inclined posi-
tions), running on a treadmill, exercising on a stepper and on
a cross trainer, cycling on an exercise bike in horizontal and
vertical positions, rowing, jumping and playing basketball.
The activities were carried out by 8 subjects and the total
duration of each activity was 5minutes per subject. Data were
acquired at a sampling rate of 25 Hz, using five body-worn
orientation trackers, each containing a 3-axial accelerometer,

a 3-axial gyroscope and a 3-axial magnetometer. The sensor
signals were divided into 5-second segments, yielding a total
of 9120 instances (480 per activity).

As we can see in Table 1, the five considered bench-
marks have quite different dimensionalities, due to the dif-
ferent numbers of sensors involved as well as to the different
set of high-level features computed for each sensor signal
(after segmenting it into time windows). Specifically, for
each window, feature vectors were computed in the time and
frequency domains (Fast Fourier Transform was applied to
sensor signals to transform data in the frequency domain).
Several statistical measures were computed for each window:
some of them, e.g., mean, standard deviation, Kurtosis, and
min/max values, were extracted for all five datasets, while
others have been used only in some of them. Note that we
maintained the features’ definitions employed in the original
studies in which the datasets were published, in order to
avoid introducing any bias and make the experiments fully
repeatable. See Appendix I for more details on the extracted
features.

V. EXPERIMENTAL ANALYSIS
Leveraging the activity recognition benchmarks described
in the previous section, we conducted an extensive experi-
mental study aimed at investigating the extent to which the
original feature space can be reduced without degrading the
final predictive performance. The overall analysis, in terms
of both capacity of discriminating the classes and selection
stability, has been carried out for different levels of dimen-
sionality reduction, according to the methodological frame-
work detailed in Section III. The main experimental results
are summarized in Figures 2, 3 and 4, each containing ten
charts that compare the behavior of the considered selection
methods.

Specifically, Figure 2 and Figure 3 show a compari-
son in terms of F-score, which is a performance metric
widely employed in activity recognition tasks. Defined as the
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FIGURE 2. F-score performance of the SMO classifier, in conjunction with the univariate (on the left) and the multivariate (on the right) selection methods.
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FIGURE 3. F-score performance of the Random Forest classifier, in conjunction with the univariate (on the left) and the multivariate (on the right)
selection methods.
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FIGURE 4. Stability trend for the univariate (on the left) and the multivariate (on the right) selection methods.
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harmonic mean between the model sensitivity (i.e., the frac-
tion of positive instances classified correctly) and the model
precision (i.e., the fraction of correct predictions among all
the instances assigned to the positive class), the F-score takes
both the false positives and the false negatives into account,
providing a reliable estimate of the model ability to recognize
a given class (considered as positive). By measuring the aver-
age F-score across the different classes, we obtained an over-
all evaluation of the recognition performance of the induced
models. For model induction, as anticipated in Section III-C,
we employed both the SMO (Figure 2) and Random Forest
(Figure 3) classifiers, in conjunction with ten different selec-
tion methods.

More in detail, for both the univariate (χ2, IG, SU,GR,OR)
and the multivariate (RF, RFW, RFE10, RFE50, SVM-AW)
selection techniques, Figures 2 and 3 show the F-score trend
for different percentages of selected features (the abscissa
100 corresponds to the model induced on the whole dataset,
without any dimensionality reduction). In absolute terms, the
COSAR dataset is the one where both SMO and Random
Forest achieve the lowest recognition performance, due to the
intrinsic difficulty of discriminating multiple activities using
features extracted only from accelerometer signals. In the
other four datasets, where we have a multi-sensor scenario
(as detailed in Table 1), the average F-score is generally
better, sometimes above 0.9, with quite similar trends for the
two classifiers.

But the most interesting observation, for the purpose of
our study, is that no significant degradation in performance
is observed when the original dimensionality is reduced,
regardless of the specific characteristics of the dataset at
hand. In particular, 10-20% (or even less) of the origi-
nal features may be sufficient, for some selection meth-
ods, to obtain recognition performances comparable to those
achieved using the whole dataset. This reveals the appropri-
ateness of introducing a suitable feature selection step into
any activity recognition protocol in order to simplify the final
models and make them more efficient.

When comparing the different selection techniques, the
multivariate approaches, which can capture the inter-
dependencies among the features, turn out to be overall more
effective in terms of F-score. In particular, among the SVM-
based methods, RFE10 and RFE50 sometimes have slightly
superior performances but at a higher computational cost than
the simpler SVM-AW, whose behavior is still satisfactory.
As regards the Relief-based multivariate approaches (RF and
RFW), quite good performance can be obtained with at most
20% of the features. Among the univariate methods, on the
other hand, SU and GR overall exhibit the worst behavior,
with an unsatisfactory performance for some datasets, espe-
cially when small feature subsets are selected. For the other
univariate approaches, i.e., χ2, IG and OR, feature subsets
containing (at most) 20% of the features turn out to be suffi-
cient to obtain quite good F-score values.

Overall, the strong potential of feature selection in this
domain is witnessed by both Figures 2 and 3, despite some

small differences between the curves reported for the SMO
and Random Forest classifiers. However, as recognized by
recent literature in the feature selection field, e.g., [31], [39],
[61], [62], a good selection method should not only be effec-
tive (in terms of final predictive performance) but also as
stable as possible to avoid that the selected subsets depend
toomuch on the specific composition of the training data, thus
becoming less useful in future applications of the model.

The results of the stability analysis we have performed on
the five considered benchmarks (COSAR, HAR, HAR_AAL,
HAPT, DSA) are shown in Figure 4, where the stability trend
is reported for different percentages of selected features,
according to the methodology detailed in sub-section III-B;
specifically, such a methodology has been here implemented
with the settings K = 20 and f = 0.80, which have proven
suitable in similar studies [31], [39].

A first point to highlight regarding Figure 4 is that the
differences observed in terms of stability are generally higher
than those observed in terms of F-score (Figure 2 and
Figure 3), revealing that some selection methods system-
atically exhibit a more stable behavior across the different
datasets. In particular, χ2 and IG turn out to be the most stable
of the univariate approaches, followed by OR, while SU and
GR have shown significantly lower stability in some datasets;
GR, in particular, appears to be the least robust method in
the univariate group. Among the multivariate approaches,
on the other hand, the Relief-based methods (i.e., RF and
RFW) have proven to be very stable, with similar trends for
all levels of dimensionality reduction. Conversely, the SVM-
basedmethods appear to be less robust, especiallyRFE10 and
RFE50, whose stability is always lower than the one of the
simpler SVM-AW.
Overall, the univariate χ2, IG and even OR show a quite

good trade-off between F-score and stability and may there-
fore be an option to consider when inducing activity recog-
nition models from mobile sensor datasets like those con-
sidered in our study. As well, the multivariate Relief-based
approaches exhibit a good behavior when jointly considering
both predictive performance and stability, at least for subsets
containing more than 10% of the original features. It is worth
mentioning, nevertheless, that the least stable methods could
be made significantly more robust when implemented in a
bootstrap-based ensemble version [39], thus envisaging mar-
gins of improvement for some selection techniques (but at
the expense of the computational cost of the feature selection
process).

Based on a wide set of experiments, the above results
consolidate the findings of our preliminary study in this
field [30], showing that feature selection can be effectively
exploited to reduce the dimensionality of mobile sensor
datasets, leading to robust and more efficient recognition
models.

VI. DISCUSSION
The experimental analysis here presented complements
and extends the findings of recent comparative studies
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TABLE 2. HAPT dataset (1 accelerometer, 1 gyroscope, 561 features): different levels of dimensionality reduction and corresponding F-score performance.

TABLE 3. DSA dataset (5 accelerometers, 5 magnetometers, 5 gyroscopes, 1170 features): different levels of dimensionality reduction and corresponding
F-score performance.

conducted on similar activity recognition benchmarks
[23], [29], [44], [45], providing stronger evidence of the
suitability of the filter selection paradigm in this field.

Specifically, [23] discusses the advantages of leveraging
classifier-independent selection approaches that can identify
feature subsets conveying useful information for targeted
populations and applications, regardless of the chosen clas-
sifier and the specific implementation settings. Compared
to our work, the dataset considered in their study is rela-
tively low-dimensional, with only seventy-six features, which
allows efficiently using subsets-oriented filters (CFS,FCBF),
along with a multivariate ranker (ReliefF), while the ranking-
based approach is usually preferred in the presence of higher
dimensionalities [44], [45]. Both subset-oriented filters (CFS,
MRMR) and ranking-based filters (Information Gain, Gain
Ratio, Symmetrical Uncertainty, ReliefF), along with wrap-
per and embedded methods, are also evaluated in [29], using
a single sensor dataset involving 206 attributes (both time-
domain and frequency-domain features), with empirical evi-
dence of the effectiveness of the simpler univariate rankers in
yielding good feature subsets for HAR models.

Through wider experiments on five high-dimensional
benchmarks, our study has presented a more in-depth evalu-
ation of the ranking-based selection approach, with both uni-
variate and multivariate techniques, showing that they can be
effectively employed in conjunction with different classifiers
(see Figures 2 and 3). Actually, besides filters that inherently
perform a classifier-independent selection, our experiments
also encompass ranking methods that leverage some learning
algorithm to compute the features’ weights, as in the case of
the SVM-based selectors. The final subsets produced by these
methods, of the embedded category, are often used like those
produced by filters, i.e., as a reduced feature space to train any
potentially suitable classifier. However, as shown in Figure 4,
this kind of ranker has proved to be overall less stable.

Our study has also shown that the adopted ranking-based
approach allows to control the level of dimensionality reduc-
tion in a fine-grained way, in order to find the optimal trade-
off between the number of the selected features and the
resulting classification performance. Indeed, as discussed in

section V, the original dimensionality can be reduced to a
very great extent, with a final recognition performance simi-
lar to that achieved with the full feature set.

To provide concrete examples of such a dimensionality
reduction, Tables 2 and 3 show the SMO classifier’s F-score
(averaged across the different classes, as in Figures 2 and 3)
for the two multi-sensor benchmarks with the highest num-
bers of features/classes. Specifically, besides the full feature
set, three feature subsets with smaller cardinality are consid-
ered, as selected by one of the univariate rankers that have
shown the best tradeoff between predictive performance and
stability, namely χ2 (which also has a reduced computational
cost compared to the multivariate ranking methods). As we
can see, in the HAPT dataset (Table 2), only 15% of the
original features are sufficient to obtain a final performance
comparable to that achieved using the whole feature set,
while 10% of the features turn out to be as predictive as the
whole feature set in the DSA dataset (Table 3). Furthermore,
interesting insight can be gained into the extent to which each
sensor type contributes to the optimal set of features, with
clear evidence of the high discriminative power of the features
extracted from the accelerometer signals (that, however, are
not sufficient to obtain the highest F-score values). This kind
of analysis can leverage different ranking methods, as pre-
viously observed in Figures 2 and 3, and allows the design
of fast-response recognition systems where only a reduced
set of highly discriminative features need to be computed at
operation time.

Overall, our results clearly show how beneficial fea-
ture selection can be in sensor-based activity recognition.
However, some limitations exist in the current study that will
be addressed in further investigations. Indeed, the explored
ranking-based selection approach, although effective and
generally more efficient than subset-oriented selection meth-
ods, may be sub-optimal in the presence of some degree of
redundancy among the features. Hence, the potential impact
of feature redundancy in this field should be better analyzed,
for example by exploring hybrid selection strategies that first
reduce the data dimensionality through a simple and efficient
ranker and then further refine the resulting subset through

64054 VOLUME 10, 2022



M. M. Manca et al.: Exploiting Feature Selection in HAR: Methodological Insights and Empirical Results

TABLE 4. Statistical measures used for feature extraction.
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a more sophisticated search strategy that can remove highly
correlated features [38]. But this would increase the compu-
tational cost of the selection process, requiring careful cost-
benefit analysis. Although some recent works have applied a
hybrid selection approach in the HAR field [24], [49], [54],
there is a lack of comparative studies that investigate the
effects of different hybrid strategies in terms of final recogni-
tion performance as well as selection stability and computa-
tional efficiency.

VII. CONCLUDING REMARKS
Recent advances in mobile sensor technology have opened
up growing opportunities for HAR applications in a variety of
fields, from personal wellness to healthmonitoring. However,
as data collection becomes easier and easier, fully exploit-
ing the available data to build reliable models for activity
recognition remains challenging. Further, when dealing with
wearable devices, the issues of limited resources and energy
consumption cannot be neglected, posing additional require-
ments in terms of efficiency of the induced models. In such
a perspective, feature selection may have an important role
since it can significantly reduce the data dimensionality by
removing irrelevant and noisy features.

In this paper, we have explored the potential of feature
selection in the HAR field, leveraging five public mobile
sensor datasets with heterogeneous characteristics and rely-
ing on a methodological framework that considers both the
predictive power and the stability of the selected features
subsets (i.e., their robustness to perturbations in the input
data). Ten different selection methods have been compara-
tively evaluated, revealing the suitability of univariate rank-
ing approaches, such as Chi Squared and Information Gain,
as well as of some multivariate approaches, such as ReliefF,
which exhibit a quite good trade-off between recognition
performance and selection stability. Encompassing different
levels of dimensionality reduction, our analysis has shown
that the original number of features can be reduced to a very
large extent in all the considered benchmarks, without any
worsening of performance.

Such a large comparative study gives evidence of the poten-
tial benefits of systematically exploiting feature selection
when inducing HAR models, also providing methodological
insights into how to evaluate the robustness of the selec-
tion outcome and choose the optimal level of dimensionality
reduction. This line of research is worthy of further investi-
gation, given the lack of such kind of comparative studies in
this field.

As future work, our study will be enlarged to better inves-
tigate the extent to which the behavior and the stability
pattern of a given selection algorithm may depend on the
underlying feature extraction strategy (i.e., the type and num-
ber of features extracted for each sensor). Furthermore, the
ranking-based selection framework here adoptedwill be com-
pared with different and more sophisticated methodological
approaches, including hybrid techniques that exploit different
heuristics at different stages of the selection process and

ensemble techniques that suitably combine the outcome of
different selectors.

APPENDIX I. FEATURE DESCRIPTION
In this appendix, our aim is to give an overview of the statisti-
cal measures that were computed to build the feature vectors
of the considered datasets (i.e., COSAR, HAR, HAR_AAL,
HAPT, DSA).

All the measures are listed in Table 4, with the correspond-
ing formula. Note that the third column of the table cites the
datasets that use the measure and, in brackets, the number of
times it was calculated.

In each formula of the table, the variable x represents
the signal. Depending on the dataset used and the feature
calculated, this signal x can be understood as an acceleration,
an inclination, an angular velocity, a magnitude signal, or a
Jerk signal (that is the first time derivative of the acceleration).

As mentioned in Section IV, the signals were segmented
into sliding windows for feature extraction; specifically, all
the measures reported in Table 4 are calculated on windows
containing a number of observations denoted byM .
It should also be considered that the sensors used in

the experiments (accelerometers, magnetometers, and gyro-
scopes) acquire the three spatial components of each signal;
thus, in some measures, x can represent the component on
the X, Y or Z axes of the considered signal. Other features,
such as correlation and covariance, are calculated using two
or more components on the axes; therefore, in the formulas
it has been necessary to differentiate these components, indi-
cating with x1, x2 and x3 the components on the X, Y and Z
axes respectively. Some other features, such as median and
percentiles, are calculated using the window signal values
sorted in ascending order, so we have indicated the ordered
values differently using x̃.

As already pointed out in Section IV, the feature vectors
were computed in both the time domain and the frequency
domain; some measures in fact, e.g. Entropy, have been cal-
culated in the frequency domain; consequently, in Table 4,
the frequency signal is indicated with the capital letter X ,
to distinguish it from the signal x in the time domain.
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