
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 24 May 2022, accepted 3 June 2022, date of publication 15 June 2022, date of current version 27 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3183198

Supremal Marker-Controllable Subformula of a
Given Canonical Temporal-Safety Formula
KIAM TIAN SEOW , (Senior Member, IEEE)
Robot Intelligence Technology Laboratory, School of Electrical Engineering, KAIST, Daejeon 305-701, South Korea

e-mail: kiamtian@singnet.com.sg

ABSTRACT The existence of marker-progressive supervisory control – about ensuring constant marker
progress under specified temporal safety for a class of fair discrete-event systems (DES’s) – is a new
control problem formulation that has been studied in terms of DES marker-controllability of a linear-time
temporal logic (LTL) safety formula given in canonical form. In this paper, provided it exists, the supremal
marker-controllable subformula of a given canonical temporal-safety formula for the fair DES model
considered is characterized as the weakest fixpoint of some monotone operator�. In the case where the DES
model is finite state and the complete specification for constant marker progress under temporal safety is a
formula of a decidable LTL fragment, it is shown that this fixpoint can be computed as the limit of the (finite)
sequence of iterations of computing operator � in the syntax of LTL. Marker-progressive control synthesis
by fixpoint computation can therefore be made in the same natural-language motivated algebra of LTL as
writing the specification, providing the unique opportunity to exploit not only the role of fair events in DES’s,
but also the human readability of LTL formulas and the associated, syntax-based calculational approach
that is transparent; such fixpoint computation is illustrated with four examples. A discussion examines and
illuminates the significance of this paper and its potential impact on the logic foundation of supervisory
control; it includes making comparisons with related work, and explaining a straightforward generalization
of DES marker-controllability that directly extends the proposed fixpoint computation to cover the full
specification hierarchy of canonical LTL.

INDEX TERMS Fair discrete-event systems, linear-time temporal logic, supervisory control.

I. INTRODUCTION
The rapid advancement in the Internet, robotics, and artificial
intelligence has accelerated the pace of reimagining our
living space as one supported by a cyber-physical world
of innovative applications. These applications are deployed
in ubiquitous electronic devices and robots, offering capa-
bilities of smart service systems that enhance not only the
productivity but also the welfare and well-being of humans
in everyday life and work. Arguably limited only by human
imagination, these applications – in domains such as home
and office automation, transportation, and manufacturing –
can be modeled and controlled as discrete-event systems
(DES’s) at some level of design focus using a systems and
control design approach. To support this approach, the DES
field of supervisory control, founded in the 1980’s [1], [2], has
been enriched to-date in various ways in the control literature.
That these applications are amenable to DES modeling is
because a DES is a model of state evolution induced by the

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

abrupt transitional occurrence of various discrete qualitative
changes called events [3]. Events are characteristic of an
application’s core design focus, such as ‘lights turned on’ and
‘window blinds lowered’ for a home service robot [4]. The
objective of supervisory control theory is to understand and
control systems of the discrete-event type; being behaviorally
non-continuous in time, such systems cannot generally be
modeled and controlled in continuous or discrete time
differential-equations.

In the field of supervisory control, this paper continues
the study, initiated in [5], of a new supervisory control
problem formulation in linear-time temporal logic (LTL)
[6]. Introduced in [5], the concept of marker-controllable
safety formula in LTL is shown to play a fundamental
role in the existence of marker-progressive supervisory
control for fair DES’s. Marker-progressive control is about
ensuring constant marker progress in a DES under specified
temporal safety. The fair DES model considered is one
whose infinite evolution is directed by event-occurrence
conditions governing the subset of system events designated
as ‘fair’. Over an event space in a rudimentary language,

66300 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5784-1132
https://orcid.org/0000-0002-0915-7181


K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

the founding DES theory of nonblocking control [1] and
its generalization to multitasking [7] are shown in [5] to
be conceptually unified, extended, and refined by the LTL
theory of marker-progressive control over a state space under
DES event fairness [5]. Besides, the founding theory [1],
its extensions [3], [8] including [7], and generally the DES
control literature to date, are not augmented with greater
transparency and structure endowed by the richer setting
of fair DES’s and canonical LTL, in a uniform framework
[6], [9] as adopted in this paper and its predecessor [5]. Under
the canonical formula classification [9], two key classes
crystallize the notion of marker-progressive control, namely
response and safety. The former, in specifying constant
progress of markers, is about ‘regular completion of tasks’
and the latter is about ‘no bad occurrences’, as respectively
expressed in canonical form by the infinite oftenity and
invariance of past formulas.

Based on the theoretical foundation laid in [5] (and
summarized in Section II), in this paper, provided it exists,
the supremal marker-controllable ‘subformula’ of a given
canonical LTL safety formula studied in [5] for the fair DES
model considered is shown to be characterized as the weakest
fixpoint of a certain monotone operator � (see Corollary 1,
as developed in Section III). Considering the case where
the DES is finite state and the fragment (or sublanguage)
of LTL used for safety and marker-response specification
is decidable, it is shown that this weakest fixpoint can
be computed, in the syntax of LTL, as the limit of some
(finite) iteration sequence of � (see Theorems 1 and 2,
as developed in Section IV). With regard to operator fixpoint
and successive iteration for supremal control synthesis, the
approach of this paper is developed principally in the same
vein as the approach for multitasking control [7], which
extends that [2] for nonblocking control [1]. Importantly,
it provides the unique opportunity for control synthesis by
fixpoint computation to bemade in the same natural-language
motivated algebra of LTL as writing the specification,
exploiting not only the role of fair events in DES’s, but also
the human readability of LTL formulas and the associated,
syntax-based calculational approach that is transparent. In the
case considered, together with DES logic modeling, four
examples are worked out to some detail, to illustrate the
iterative weakest �-fixpoint computation, synthesizing the
supremal marker-controllable safety formula with syntax-
based calculations in LTL over � (Section V). A discussion
(Section VI) with technically related work and beyond
examines and illuminates the significance of this paper and
its potential impact on the logic foundation of supervisory
control. For a general review of related but different DES
control research using temporal logic, refer to [5] for
one recent perspective. Finally, a conclusion is presented
(Section VII).

II. MARKER-CONTROLLABLE FORMULAS
The theoretical LTL control foundation [5] needed for this
paper is summarized in this section.

A. DES MODEL STRUCTURE
Consider the model G of a DES in the form of a basic
transition system (5,Q, 6, δ, θ ). 5 denotes the finite state
variable set which is typed; the type of each state variable
v ∈ 5 indicates the domain Range(v) over which the variable
ranges. Q denotes the state set, defined by the cross product
of the ranges of the variables in5, i.e.,Q def

=
⊗

v∈5 Range(v),
such that every state q ∈ Q is unique in terms of its
assignment of domain values to all state variables in 5. 6
denotes the finite event set with the subset of uncontrollable
events 6u – events that cannot be disabled by a supervisor;
6\6u is the subset of controllable events that can be. δ :
6 × Q → Q is a (deterministic) state transition function
that is partial. θ is the initial condition – a Boolean valued
formula that characterizes the set of initial states Q0 ⊆ Q of
G, such that q ∈ Q0 provided (the value assignment by) q ∈ Q
satisfies θ . It is assumed that Q0 , ∅,6 , ∅ due to nontrivial
system modeling.

B. LTL AND DES – SYNTAX & SEMANTICS
LTL [6] is a language of predicate logic that is augmented
with a temporal operator set to facilitate reasoning over
sequences of states. These sequences are producible by
DES G along its state trajectories or interpretations. Each
interpretation I is a ‘labeling’ of a string e(1)e(2) · · · e(k) · · ·
generated by G with e(k) ∈ 6, in that I def

= q0 − q1 − · · · −
qk · · · , where q0 ∈ Q0 (an initial state) and for k ≥ 1, qk =
δ(e(k), qk−1). With k ≥ 0, the k-prefix of I is q0−q1−· · ·−
qk , and denoted by I(k). A state q ∈ Q is said to be terminal
(in G) if (∀σ ∈ 6)(δ(σ, q) is not defined). An interpretation
I is finite (in length) and said to be terminating if it ends
in a state qk that is terminal, i.e., I = I(k); otherwise, it is
infinite and said to be non-terminating, i.e., I = I(∞). Note
that I(0) = q0. Two interpretations or, respectively, their
k-prefixes, are defined to be equal (or the same) if the two
have the same sequence of states and label the same string.

This paper assumes reader familiarity with LTL [6] with
regard to the construction of LTL formulas and the sound
LTL proof system (of axioms and theorems) for syntax-based
or symbolic reasoning. As reviewed in [5], the formula
construction is over a finite set of atomic propositions
expressed in terms of state variables in 5 of DES G (over
their domains) and system transition logics, using temporal
operators and Boolean connectives. The system transition
logics and temporal operators will be defined later. The
symbols used for basic connectives and, and-ing (or logical
product), not, and quantifier ‘there exists’ are, respectively,
· (a dot),

∏
, − (an overhead bar), and ∃. The symbols

for derived connectives or, or-ing (or logical sum), implies,
equals, and quantifier ‘for all’ are, respectively, +,

∑
, →,

=, and ∀. Also included are the propositional constants,
namely validity true and inconsistency false. The symbol for
abbreviation or syntactic equality is≡, to relate formulas that
are ‘always equal’.

The satisfaction relation
(
|H
I (k) ω

)
∈ {true, false} (read:

‘I at its state qk satisfies ω’, or simply ‘I satisfies ω’ if k = 0,

VOLUME 10, 2022 66301



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

since I (0) def
= I ) defines the semantics of an arbitrary LTL for-

mula ω at state qk (k ≥ 0) along an arbitrary interpretation I
of DESmodelG. In addition to the standard rules for Boolean
connectives, LTL uses satisfaction relation rules for temporal
operators to inductively evaluate the satisfaction of an
arbitrary I (k) (k ≥ 0) over an LTL formula. Below, the rules
are defined for the basis sets {always , next , until U},
{has-always-been , previously , since S} of future and
past operators, by which a formula constructed with no
future (past) operators is called a past (future) formula, and
more specifically called a state formula if it contains no future
or past operators. If ω is a state formula, then over I (k) and in
state qk , |HI

(k)
ω iff |Hqk ω, with (|Hqk ω) ∈ {true, false}

(read: ‘qk satisfies ω’) defining the semantics of the state
formula ω in state qk . The rule for operator requires the
following event-transition logic to account for a trajectory I
that is finite.
Definition 1 (The σ -Transition Logic): Given σ ∈ 6, for

an arbitrary state trajectory I of DES G, I = q0 − q1 − · · · −
qk · · · , the function τ : σ → (I → {true, false}) is a system
σ -transition logic, defined at qk ∈ Q such that

|H
I (k) τσ iff (∃I(k+1)) qk+1 = δ(σ, qk ).

Now, given LTL formulas ω, ω1, ω2:

1) |HI
(k)

ω iff for all j ≥ k , |HI
(j)
ω.

2) |HI
(k)

ω iff |HI
(k)
τ → |HI

(k+1)
ω, where τ ≡

∑
σ∈6

τσ .

3) |HI
(k)
ω1Uω2 iff there is a j (j ≥ k) such that |HI

(j)
ω2 and

for all i (k ≤ i < j), |HI
(i)
ω1.

4) |HI
(k)

ω iff for all j (0 ≤ j ≤ k), |HI
(j)
ω.

5) |HI
(k)

ω iff k > 0 and |HI
(k−1)

ω.
6) |HI

(k)
ω1Sω2 iff there is a j (0 ≤ j ≤ k) such that |HI

(j)

ω2 and for all i (j < i ≤ k), |HI
(i)
ω1.

The derived temporal operators eventually , unlessW , once
, weak previously , and back-to B are defined by the

following abbreviations (≡): 1) ω ≡ (ω) ≡ trueUω,
2) ω1Wω2 ≡ ω1 + ω1Uω2, 3) ω ≡ (ω) ≡ trueSω,
4) ω ≡ (ω), and 5) ω1Bω2 ≡ ω1 + ω1Sω2. These
abbreviations define and relate useful temporal operators,
providing alternative formulas insightful for control. For a
clearer exposition, Abbreviation (4) may be presented by the
following satisfaction relation:

|H
I (k) ω iff k = 0 or |HI

(k)
ω.

Lastly, LTL formulas can be expanded; the following
abbreviations are formula expansion rules applicable to
past formulas [6, p. 219]: 1) ω ≡ ω · ( ω), and
2) ω1Sω2 ≡ ω2 + ω1 · (ω1Sω2).

To model DES transitional behavior in LTL formulas
more compactly, system dynamic event-operators and event-
transition operators are used. Below, the former operators are
defined in terms of either the σ -transition logic in Definition 1
or the following logic; in turn, each latter operator is defined
in terms of a former.
Definition 2 (TheConditioned σ -Transition Logic): Given

an arbitrary LTL formula ψ over DES G and σ ∈ 6, for an

arbitrary state trajectory I of G, I = q0 − q1 − · · · − qk · · · ,
and an arbitrary I ′ ∈ I(G), I ′ = I(k) − q′k+1 · · · (if it exists),
the function τx : (σ,ψ) → (I → {true, false}) is a system
ψ-conditioned transition logic, defined at qk ∈ Q such that

|H
I (k)
(
τx|σ (ψ) = τσ · (∀I ′, I ′(k+1) , I(k+1)) |H

I ′(k) ψ
)
.

The logic τx|σ (ψ) may be called the transition of event σ
in the next ψ-barred neighborhood.
Then given arbitrary LTL formulas ψ , ϕ over DES G

and σ ∈ 6, the system dynamic event-operators σ ,
σ , x|σ (., .) over an arbitrary state trajectory I of G,

I = q0 − q1 − · · · − qk · · · , are defined as follows:
1) |HI

(k)
σ (ϕ) = (τσ · ϕ).

2) |HI
(k)

σ (ϕ) = (τσ → ϕ).
3) |HI

(k)
x|σ (ψ, ϕ) =

(
τx|σ (ψ) · ϕ

)
.

The respective system uncontrollable and conditioned event-
transitions τu, τx(.) are characterized as follows:
1) τu ≡

∑
σ∈6u

τσ . 2) τx(.) ≡
∑
σ∈6

τx|σ (.).

The system dynamic event-transition operators u, u,
x(., .) are characterized as follows:
1) u ≡

∑
σ∈6u

σ . 2) u ≡
∏
σ∈6u

σ .

3) x(., .) ≡
∑
σ∈6

x|σ (., .).

Let T be a unary temporal operator. Then T n, for n ≥ 0,
is defined over an arbitrary formula ω as follows:

T n (ω) ≡

n times︷                  ︸︸                  ︷
T (T (T (· · · T (ω) · · · ))) .

Note that T 0 is an identity operator, i.e., T 0 (ω) ≡ ω.
The model operational premise is this: From every non-

terminal state that DES G is in, one event will occur and
transition the DES into another state.

Only interpretations or state trajectories that refer to the
actual behavior of DES G are of interest; these are legal and
constitute the legal set I(G), onwhich the notion ofG-validity
of an LTL formula ω, denoted by G |H ω, is defined:

G |H ω iff (∀I ∈ I(G)) |HI ω.

In LTL semantics, for an arbitrary set I(G), ω1 ≡

ω2 denotes G |H (ω1 = ω2). Define always-implies ⇒
such that ω1 ⇒ ω2 denotes G |H (ω1 → ω2); therefore
(ω1 ≡ ω2) ≡ (ω1 ⇒ ω2) · (ω2 ⇒ ω1). In addition, let ω1 ≈

ω2, ω1 { ω2 denote G |H (ω1 = ω2), G |H (ω1 → ω2),
respectively, where the connectives ≈, { are said to be the
anchored versions of ≡,⇒, respectively.

C. FAIR DES MODEL
Let 6F = 6C ∪ 6J denote the set of fair events, where 6C
denotes the strongly fair set of compassionate events, and6J
denotes the weakly fair set of just events.
Definition 3 (The σ -Definition Logic): Given σ ∈ 6, for

an arbitrary state q ∈ Q of DES G, the function ξ : σ →
(q → {true, false}) is a system σ -definition logic, defined

66302 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

such that

|H
q ξσ iff (∃q′ ∈ Q)q′ = δ(σ, q).

Then the DESmodelG considered is said to be fair [6, p. 256]
(with respect to6F ⊆ 6u), where6F = 6C∪6J such that,
for every state trajectory I of G, I ∈ I(G) iff I satisfies the
event-fairness formulas:
1) (∀σ ∈ 6C) |HI ξσ → τσ . (Strong fairness)
2) (∀σ ∈ 6J ) |HI ξσ → τσ . (Weak fairness)

The characterization above may assume that
6C ∩ 6J = ∅ without loss of generality. The event-fairness
formulas constitute the legal conditions that model the
set I(G).

D. CONTROL OF FAIR DES’s
In supervisory control, the trajectory set of interest for fair
DES G is I~(G), given by I~(G) = I(G) ∪ I~(G), where

I~(G) = {I(k) | I ∈ I(G), finite k ≥ 0, and I(k) < I(G)}

is the legally prefix-admissible set; I(G) ∩ I~(G) = ∅.
An LTL formula ϕ is an invariant if ϕ ≡ ψ , where ψ is

some past formula; and this ψ is called the kernel of ϕ if it
has no operator in its outermost scope. The DES theory
of supervisory control centers around the invariant and its
kernel.

Bring in the specification pair (P,M) over DES G to
denote (

P ·
m∏
i=1

Mi

)
,

where P is the kernel of some arbitrary invariant, and
M = {M1,M2, · · · ,Mm} is the system marker set, where
each Mi ∈ M (1 ≤ i ≤ m) is an arbitrary past formula
specifying a system marker condition. In their respective
forms [6], [9], P is a canonical LTL safety formula and

Mi is a canonical LTL response formula. An arbitrary
invariant ϕ over DES G is said to be (with respect to G):
1) P-history bounded if G |H (ϕ→ P), 2) initially
satisfied if G |H ϕ (or, equivalently, G |H (ini→ ϕ),
where ini ≡ false), 3)6u-invariant ifG |H

(
u(ϕ)→ ϕ

)
,

4) (M, ϕ)-condition invariant if

G |H

(
x

(
ϕ, ϕ ·

m∑
i=1

Mi

)
→ ϕ

)
,

and 5) (marker- or) M-alive under conditional invariance if

G |H ϕ→

(
m∏
i=1

Mi

)
.

It then follows that P is said to be (with respect to G):
1) controllable if P is initially satisfied and 6u-invariant,
2) M-directing if P is initially satisfied, (M, P)-
condition invariant, and M-alive under conditional invari-
ance, and 3) M-controllable if P is controllable and
M-directing.

For the specification pair (P,M), the set of all
M-controllable temporal-safety formulas whose invariants
are not weaker than P is introduced:

C(P,M) =

 ψ is M-controllable, where
ψ ψ is the kernel of an invariant

that is P-history bounded

 .
If M = ∅, then

C(P,∅) =

 ψ is controllable, where
ψ ψ is the kernel of an invariant

that is P-history bounded

 .
In this case, let C(P) def

= C(P,∅).
Proposition 1: Consider the kernel P of an arbitrary

invariant over fair DES G with system marker set M,
and assume C(P,M) , ∅. Then C(P,M) is closed
under arbitrary or-ings. Specifically, C(P,M) contains a
(unique) supremal element (which is hereby denoted by
sup C (P,M)).

Proof: See [5].
Note that, in logic terms, sup C(P,M) ≈ false provided

C(P,M) = ∅. Thus, in general, sup C(P,M) ∈ C(P,M) ∪
{false}. Provided C(P,M) , ∅, sup C(P,M) is the supremal
or weakestM-controllable subformula of P.

Based on the foregoing technical summary, the synthesis of
sup C(P,M) as the weakest fixpoint of a monotone operator
may now be formulated and investigated.

III. PRELIMINARIES
A. A RELATION

G
' DELIMITING PROGRESS IN SAFETY

A relation
G
' is first defined: Given two arbitrary LTL

formulas ψ , χ over fair DES G,
ψ

G
' χ (read: ‘ ψ exists that delimits χ in G’) iff:

ψ is the kernel of some invariant, and:
(∀I ∈ I(G))(∀k ≥ 0)
|H
I ( ψ = χ ), |HI(k) (χ → ψ), and

|H
I(k) ψ → (∃I ′ ∈ I(G)) |HI ′ ψ or |HI

′

(j) χ ,
for I ′(k) = I(k) and some j ≥ k .

Intuitively, where χ is an LTL progress formula, the relation
G
' means an LTL safety formula ψ exists that bounds
exactly the progress specified by χ in DES G, in that, every
state trajectory of I~(G) satisfying χ , satisfies ψ , and each
prefix of an arbitrary state trajectory of I(G) satisfying ψ

either can be extended to or is a state trajectory of I~(G)
satisfying χ . The LTL formula ψ is said to be the exact
‘delimiting safety-closure’ or ‘prefixing’ formula for χ .

The relation
G
' above is closely related to the notion of

topological closure of an LTL formula χ studied in [10], [11].
While the latter notion captures the strongest safety formula
that is not stronger than χ , the former relation captures a
safety formula that exists as the exact delimitation ofχ , which
is of control interest in this paper. Besides, this relation admits
finite state trajectories possibly present in DES G, and prefix
state trajectories that may result due to control. The ensuing
results studied are believed to be quite new and of theoretical
interest in the LTL context of supervisory control.

VOLUME 10, 2022 66303



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

Proposition 2: If ψ
G
' χ , then ψ ≈ χ .

Proof: By definitions of
G
', G-validity, and ≈.

Proposition 3: Consider the kernels ψ , P of two arbitrary
invariants and an arbitrary LTL formula Y over fair DES G.

If ψ
G
' Y · P, then:

P3.1) ψ
G
' Y · ψ , and P3.2) ψ ≈ Y · P ≈ Y · ψ .

Proof: Consequent P3.1 follows from the definition of
G
' and the following reasoning: Consider an arbitrary I ∈
I(G) and an arbitrary index k ≥ 0. Since Y · P ≡ Y ·Y · P,
it follows that:
|H
I ( ψ = Y · P), |HI(k) (Y · P→ ψ), and

|H
I(k) ψ → (∃I ′ ∈ I(G)) |HI

′

ψ or |HI
′

(j) Y · P,
for I ′(k) = I(k) and some j ≥ k.

implies
|H
I ( ψ = Y · ψ), |HI(k) (Y · P→ ψ), and

|H
I(k) ψ → (∃I ′ ∈ I(G)) |HI

′

ψ or |HI
′

(j) Y · ψ,

for I ′(k) = I(k) and some j ≥ k.

implies
|H
I ( ψ = Y · ψ), |HI(k) (Y · ψ → ψ), and

|H
I(k) ψ → (∃I ′ ∈ I(G)) |HI

′

ψ or |HI
′

(j) Y · ψ,

for I ′(k) = I(k) and some j ≥ k.

Consequent P3.2 follows from Proposition 2 and Conse-
quent P3.1.
Proposition 4: Consider the kernels ψ , P of two arbi-

trary invariants over fair DES G with system marker set
M = {M1,M2, · · · ,Mm}. If

ψ
G
'

(
P ·

m∏
i=1

Mi

)
,

then ψ is: 1) (M, ψ)-condition invariant, 2) M-alive
under conditional invariance, and 3) P-history bounded.

Proof: Suppose

ψ
G
'

(
P ·

m∏
i=1

Mi

)
,

where ψ , P are the kernels of two arbitrary invariants over
fair DESGwith systemmarker setM = {M1,M2, · · · ,Mm}.
The proof then proceeds as follows.

1) To prove that ψ is (M, ψ)-condition invariant: By
Proposition 3: P3.1,

ψ
G
'

(
ψ ·

m∏
i=1

Mi

)
.

By contradiction, assume that ψ is not (M, ψ)-condition
invariant with respect to DES G, i.e., there exists a state
trajectory I ∈ I(G) such that

|H
I

(
x

(
ψ, ψ ·

m∑
i=1

Mi

)
· ψ

)
.

This implies that there is a k ≥ 0 such that |HI(k) ψ and

|H
I (k)

m∑
i=1

Mi; and so where I ′′ is I ′ or I ′(j), for I
′
∈ I(G),

I ′(k) = I(k), and some j ≥ k , it follows that for all such I ′,

|H
I ′(k+1) ψ , and for all I ′′,

|H
I ′′ ψ, if I ′′ = I ′

|H
I ′′

(
ψ ·

m∏
i=1

Mi

)
, if I ′′ = I ′(j).

It follows that the relation ψ
G
'

(
ψ ·

m∏
i=1

Mi

)
is

contradicted.
2) To prove that ψ is M-alive under conditional

invariance: Note that the result is implied by the relation
G
'.

3) To prove that ψ is P-history bounded: Note that,

as implied by the relation
G
', (∀I ∈ I(G))(∀k ≥ 0) |HI(k)

ψ → (∃I ′′) |HI
′′

(
P ·

m∏
i=1

Mi

)
, where I ′′ is I ′ or I ′(j),

for I ′ ∈ I(G), I ′(k) = I(k), and some j ≥ k . Thus (∀I ∈ I(G))
(∀k ≥ 0) |HI

(k)
( ψ → P), and the result follows.

Proposition 5: Consider the kernel ψ of an arbitrary
invariant over fair DES G with system marker set M =

{M1,M2, · · · ,Mm}. Then ψ
G
'

(
ψ ·

m∏
i=1

Mi

)
iff ψ

is: 1) (M, ψ)-condition invariant, and 2) M-alive under
conditional invariance.

Proof: Consider the kernel ψ of an arbitrary invari-
ant over fair DES G with system marker set M =

{M1,M2, · · · ,Mm}. The proof then proceeds as follows.
(If) Because ψ is (M, ψ)-condition invariant, it

follows that, for each I ∈ I(G) and each k ≥ 0, such
that |HI

(k)
ψ or, equivalently, |HI(k) ψ , there exists an

I ′ ∈ I(G), I ′(k) = I(k), such that

either: |HI
′

ψ ,

or: for some j ≥ k , |HI
′

(j)

(
ψ ·

m∏
i=1

Mi

)
.

Since ψ is also M-alive under conditional invariance,
it follows that

(∀I ∈ I(G)) |HI
(

ψ →

(
ψ ·

m∏
i=1

Mi

))
.

Since |HI
′′

( (
ψ ·

m∏
i=1

Mi

)
→ ψ

)
for an arbitrary I ′′

that is I ∈ I(G) or its prefix I(k) (k ≥ 0), the result follows.
(Only if) The result follows by Proposition 4

(with P ≡ ψ).
Proposition 6: Consider the kernel ψ of an arbitrary

invariant over fair DES G with system marker set M =

{M1,M2, · · · ,Mm}. Then ψ is M-directing iff ψ is

66304 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

initially satisfied and

ψ
G
'

(
ψ ·

m∏
i=1

Mi

)
.

Proof: The result follows by logical reasoning when
applying Proposition 5 and the fact ψ ≈ ψ to the definition
of M-directingness.
Proposition 7: Consider the kernel ψ of an arbitrary

invariant over fair DES G with system marker set M =

{M1,M2, · · · ,Mm}. Then ψ is M-controllable iff ψ is
controllable and

ψ
G
'

(
ψ ·

m∏
i=1

Mi

)
.

Proof: It is a definitional fact that the controllability of
ψ impliesψ is initially satisfied. The result then follows by

logical reasoning when applying Proposition 6 and this fact
to the definition of M-controllability.
Proposition 8: Consider the kernels ψ1, ψ2 of two arbi-

trary invariants over fair DES G with system marker set
M = {M1,M2, · · · ,Mm}. If, for all i (1 ≤ i ≤ 2),

ψi
G
'

(
ψi ·

m∏
i=1

Mi

)
, then

( ψ1 + ψ2)
G
'

(
( ψ1 + ψ2) ·

m∏
i=1

Mi

)
.

Proof: The result follows by logical reasoning over the

definition of
G
'.

B. AN OPERATOR � CHARACTERIZING supC(P,M)
Two modularity results of interest are first presented.
Proposition 9: Consider the kernels ψ1, ψ2 of two arbi-

trary invariants over fair DES G. If, for all i (1 ≤ i ≤ 2),
ψi is controllable, then ( ψ1 + ψ2) is controllable.
Proof: By logical reasoning over the constituents in the

controllability definition of ψi (1 ≤ i ≤ 2), it can be shown
that ( ψ1 + ψ2) is controllable. The result then follows
by the fact that ( ψ1 + ψ2) ≈ ( ψ1 + ψ2).
Proposition 10: Consider the kernels ψ1, ψ2 of two arbi-

trary invariants over fair DES G with system marker set
M = {M1,M2, · · · ,Mm}. If, for all i (1 ≤ i ≤ 2), ψi is
M-directing, then ( ψ1 + ψ2) is M-directing.

Proof: Given that ψi (1 ≤ i ≤ 2) is M-directing.
By logical reasoning when applying Propositions 6 and 8,
it can be shown that ( ψ1 + ψ2) is M-directing. The
result then follows by the fact that ( ψ1+ ψ2) ≈ ( ψ1+

ψ2).
By mathematical induction, the results in Propositions 9

and 10 can be extended to more than two invariants.
Now, consider the specification pair (P,M), where

system marker set M = {M1,M2, · · · ,Mm}. Let

Ym ≡

(
m∏
i=1

Mi

)
and R be the set of LTL formulas,

each of the form
(
Ym · P′

)
, where P′ is the kernel of some

invariant that is P-history bounded. LTL formulas in this form
are temporal-response formulas (under ≈) [6].

Define the operator � : R→ R according to

�
(
Ym · P′

)
≈ Ym · sup C(ψ), where

ψ
G
'
(
Ym · P′

)
. (1)

Operator � is well defined in that, inferring from Propo-
sition 1 that is proved in [5], the set C(.) ∪ {false} is
closed under arbitrary or-ings. Note that, based on the
definition of M-controllability, the proof of Proposition 1
may also, in essence, follow from the result extensions of
Propositions 9 and 10.
Proposition 11: Consider the kernel ψ of an arbitrary

invariant over fair DES G with system marker set M. Then
ψ ∈ C(P,M) ∪ {false} iff �( ψ) ≈ ψ , where

ψ
G
' Ym · ψ .
Proof: If C(P,M) = ∅, the result is trivially true.

If C(P,M) , ∅, then to prove that the result is also true, first
show that given the kernel ψ of an arbitrary invariant such
that ψ is not false over DES G with system marker setM,
ψ is M-controllable and ψ is P-history bounded iff

�(Ym · ψ) ≈ Ym · ψ,

where ψ
G
' Ym · ψ . This follows by Proposition 7,� (1),

and the fact that since ψ is not false, ψ is controllable
provided sup C(ψ) ≈ ψ . It then follows by Proposition 2
that ψ ≈ Ym · ψ , thereby completing the proof.
Proposition 11 characterizes C(P,M) ∪ {false} as the set

of fixpoints of �. Since, for every ψ ∈ C(P,M) ∪ {false},
ψ { sup C(P,M), the following corollary is immediate.
Corollary 1: sup C(P,M) is the weakest fixpoint of �.

IV. FIXPOINT COMPUTATION OF supC(P,M)
A. ITERATION OF � & COMPUTING supC(P,M)
In view of Corollary 1, consider computing sup C(P,M) by
iteration of � along the following sequence of formulas:

K0 ≈ Ym · P,
Kj+1 ≈ �(Kj), j = 0, 1, · · ·

≈ Ym · sup C(ψj), where ψj
G
' Kj.

(2)

Proposition 12: Given the sequence {Kj} (2) for the
specification pair (P,M), the (logic-theoretic) limit
K ≈ lim

j→∞
Kj exists such that sup C(P,M){ K .

Proof: Let S ≈ sup C(P,M), L ≈ Ym · P.
It is clear that � is monotone, i.e., for X ,Y ∈ R:
If X { Y , then �(X ){ �(Y ).

Now, the following is true:
Base case: K1 ≈ �(K0){ L ≈ K0.
Induction case (for j ≥ 1, established by monotone �):
If Kj { Kj−1, then Kj+1 ≈ �(Kj){ �(Kj−1) ≈ Kj.

It follows that Kj+1 { Kj for j = 0, 1, · · · .

Thus K ≈ lim
j→∞

Kj ≈
∞∏
j=0

Kj exists.

VOLUME 10, 2022 66305



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

Now, the following is also true:
Base case: S ≈ �(S){ L = K0.
Induction case (for j ≥ 1, established by monotone �):
If S { Kj, then S ≈ �(S){ �(Kj) ≈ Kj+1.

It follows that S { Kj for j = 0, 1, · · · .
Hence, S { K .
The sequence {Kj} (2) is said to converge if there exists an

index i ≥ 0 such that (∀j ≥ i)Kj ≈ Ki. Proposition 13 states
the necessary and sufficient condition for its convergence.
Proposition 13: Under the sequence {Kj} (2) for the

specification pair (P,M),

(∀j ≥ i)Kj ≈ Ki iff �(Ki) ≈ Ki, where i ≥ 0.

Proof: Under {Kj} (2) for (P,M), the proof proceeds as
follows:

(Only If) (∀j ≥ i)Kj ≈ Ki implies Ki+1 ≈ Ki, where i ≥ 0.
Since Ki+1 ≈ �(Ki), it follows that �(Ki) ≈ Ki.
(If) Trivially, Kj ≈ Ki for j = i. Given that �(Ki) ≈ Ki,

it remains to show by mathematical induction that,
(∀j ≥ i)Kj+1 ≈ Ki, as follows:

Base case (j = i): Ki+1 ≈ �(Ki) ≈ Ki.
Induction case: Assume for j = k , K(k+1) ≈ Ki. Then
for j = k + 1, K(k+1)+1 ≈ �(K(k+1)) ≈ �(Ki) ≈ Ki.

Proposition 14: Consider the sequence {Kj} (2) for the
specification pair (P,M). If at iteration i + 1 (i ≥ 0),

�(Ki) ≈ Ki where φ
G
' Ki, then sup C(P,M) ≈ φ.

Proof: Suppose at iteration i + 1 (i ≥ 0), �(Ki) ≈ Ki,

where φ
G
' Ki. Then Ki ≈ Ym · φ and by Proposition 2,

φ ≈ Ym · φ. By Proposition 13 and from the proof of
Proposition 12 that Kj+1 { Kj for all j ≥ 0, the limit K ≈
Ki. Thus by Proposition 12, sup C(P,M) { φ. Together
with the fact that Ki ≈ φ, it follows by Proposition 11 that
φ ∈ C(P,M) ∪ {false}. Therefore, φ { sup C(P,M),

and combining, sup C(P,M) ≈ φ. Hence the result.
Inferring from Proposition 13 on Proposition 14, the

desired result is obtained if� (1) can be iteratively computed
to convergence along the sequence {Kj} (2).
To iterate � along {Kj} for computing the desired LTL

formula sup C(P,M), the key question of this paper may now
be posed:

Under what condition(s) is {Kj} (2) (syntactically) conver-
gent to sup C(P,M)?
This {Kj}-convergence question is studied in the case of

finite state DES G, where all variables in5 range over finite
domains [12].

B. SYNTACTIC COMPUTABILITY OF �
To answer the {Kj}-convergence question requires a syntactic
computability result for � (1) in {Kj} (2).

Some facts about the decidability of LTL are first stated.
An LTL fragment of interest and its formulas are said
to be decidable if, over DES G, the satisfaction relation
and hence G-validity of these formulas are provable to
be true or false. Propositional and monodic LTL refer
to LTL’s respective propositional and monodic (predicate)

fragments. The propositional fragment of LTL restricts
formulas to syntactic constructions from Boolean variables
and propositions (with a unique truth value – true or false),
with no quantifier added. The monodic fragment [13] of
LTL restricts its temporal part to formulas of the following
construction: Every constituent of a monodic formula that
is a formula of the form T1ψ or ψ1T2ψ2, where T1, T2 are
temporal operators, has at most one free variable; a free
variable x in a constituent being one that occurs at least
once in the constituent without being introduced by a
quantification (∃x) or (∀x). Roughly speaking, a monodic
subfragment is decidable if its non-temporal part is restricted
to some decidable fragment of predicate logic. Propositional
LTL is decidable [12], [14], and so are various subfragments
of the monodic fragment [13], [15] of LTL, each subsuming
and is therefore more expressive than propositional LTL.

In the case of finite state (or finite domain) DESG, despite
the claim of adequacy inferred from [14] that modeling the
DES and specification can be expressly made in propositional
LTL [14], such modeling may, in principle, also be made in
one decidable subfragment of monodic LTL.

At this juncture, it may well be noted that, because the
states of DES G are defined as unique, every state q ∈ Q
can be simply characterized by the proposition

pq ≡
∏
vi∈5

(vi = ai) for some ai ∈ Range(vi)

– a state formula which is a decidable predicate such that |Hq

pq and
(
∀q′ ∈ Q\{q}

)
|H
q′ pq.

In view of the various known decidable LTL fragments
that the specification pair (P,M) can be expressed in, the
syntactic computability result of Theorem 1 that follows
immediately after Lemma 1 below is quite general for the case
of finite state DES’s.
Lemma 1: Consider the case that DES G is finite state.

Then for an arbitrary decidable LTL formula χ over G, there
exists a decidable ψ which is the kernel of some invariant,

such that ψ
G
' χ .

Proof: A transition system model G′ exists for an
arbitrary decidable LTL formula χ over DES G, such that

I(G′) =
{
I ∈ I(G) | |HI χ

}
∪

{
I(j) | I ∈ I(G) & |HI(j) χ

}
.

Clearly, I(G′) ⊆ I~(G). Now, the closure of I(G′), denoted
by clo[I(G′)], is the smallest temporal-safety set such that
I(G′) ⊆ clo[I(G′)], and is defined by

clo[I(G′)] = A∗ ∪ A∞,where, with index k ≥ 0,

A∗ =
{
I ′(k) | I

′

(k) ∈ I(G′),where k is finite
}
,

A∞ =
{
I(∞) | I ′(∞) ∈ I(G

′) & (∀k)
(
I ′(∞)= I(k) − · · ·

)}
.

By a modest generalization of the case [10], [11] where A∗ =
∅, the result remains that clo[I(G′)] is expressible by an LTL
safety formula. And note that it is always the case that

I(G′) ⊆ clo[I(G′)] ∩ I~(G).

66306 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

Given that DESG is finite state, it thus follows that I(G′) is a
temporal safety also expressible by some LTL safety formula
ψ , such that ψ is the kernel of some invariant and:

(∀I ∈ I(G))(∀k ≥ 0)
|H
I ( ψ = χ ), |HI(k) (χ → ψ), and

|H
I(k) ψ → (∃I ′ ∈ I(G)) |HI

′

ψ or |HI
′

(j) χ,

for I ′(k) = I(k) and some j ≥ k.

Accordingly, a decidableψ exists which is the kernel of some

invariant, such that ψ
G
' χ .

The required syntactic computability result may now be
presented.
Theorem 1: Consider the case that DES G is finite state

and the specification pair (P,M) is decidable. Then operator
� (1) is syntactically computable in the sequence {Kj} (2) (for
the specification pair).

Proof: Define u∗ ≡
∏
n≥0

n
u, called the conjunctive or

product closure of u. Given an arbitrary decidable ψj as the
kernel of some invariant over DES G, the weakest solution
(in R) of two ‘simultaneous equations’ on, respectively, the
conditions of 6u-invariance and ψj-history boundedness:

G |H ( u(R) → R) and G |H (R→ ψj),

is obtained as R ≡ u∗( ψj) [16, Theorem 20] or,
equivalently, R ≡ u∗(ψj). Over DES G, a model with
finite state set Q and a deterministic state transition function,
it can be shown for the decidable u∗(ψj), with the aid of the
syntax-based, iterative computing method in [16], that

u∗(ψj) ≡ ψj ·
n∏
i=1

Bi for some (finite) n ≥ 0, (3)

where, for some P′i that is the kernel of some invariant,

Bi ≡ P′i, or Bi ≡
(
Ti→ P′i

)
with Ti ≡

r∏
p=0

p(τσ pi )

for some r ≥ 0, such that σ pi ∈ 6u (0 ≤ p ≤ r) and, for an
arbitrary I ∈ I(G) and an arbitrary k ≥ 0,(
(∀I ′ ∈ I(G), I ′(k) = I(k)) |HI

′(k)
(Ti→ P′i)

)
iff |HI

(k)
P′i.

This is because each such P′i exists such that(
(∀I ′ ∈ I(G), I ′(k) = I(k)) |HI

′(k)
(Ti→ P′i)

)
→ |H

I (k) P′i.

(4)

This P′i is constructed such that (Ti→ P′′i ) ≡ (Ti→ P′i) or,
equivalently, Ti · P′′i ≡ Ti · P′i for the given or a previously
computed kernel P′′i of some invariant, and such that it is
logically in the form:

P′i ≡ H ′i +
∑
q∈Qi

pq, (5)

where H ′i is some past formula and state set Qi ={
qk ∈ Q | (∃I ′ ∈ I(G)) |HI ′(k) Ti · P′′i

}
, thus implying that

|H
I (k) P′i→

(
(∃I ′ ∈ I(G), I ′(k) = I(k)) |HI

′(k)
Ti · P′i

)
– the contrapositive of (4).

Now, let

Pj+1 ≡

(
ψj ·

n∏
i=1

P′i

)
(6)

– and refer to it as the embedded kernel of u∗(ψj) (3). Then
Pj+1 is the weakest solution that is an invariant (a past

formula, whose kernel is Pj+1). Along with Proposition 1
that C(ψj), i.e., C(ψj,∅), contains a unique supremal or
weakest controllable (canonical safety) subformula of ψj
if C(ψj) , ∅, it then follows that C(ψj) , ∅, such that
sup C(ψj) ≈ Pj+1 iff G |H Pj+1.

In the sequence {Kj} (2) for the specification pair (P,M),
K0 is the pair (P,M). Given that (P,M) is decidable, K0 is
decidable. Now, assume Kj (j ≥ 0) is decidable. Then, since
DES G is finite state, by Lemma 1, a decidable ψj, for which
u∗(ψj) is also decidable over DESG, can be found such that

ψj
G
' Kj, with sup C(ψj) in Kj+1 given by

sup C(ψj) ≈
{

Pj+1, ifG |H Pj+1
false, otherwise,

(7)

where the kernel Pj+1 (6) in (7) can be computed by the
following syntax-based method:

Define an operator H as follows: H (R) ≡ ψj · u(R0),
where R0 is ‘kernelized’ R, i.e., R0 is always equal to R but
with every product component

(
τσ → P′

)
, σ ∈ 6u, replaced

by P′ that is the kernel of some invariant. Then, procedurally
identical to the syntax-based method in [16] for computing
u∗(ψj) over DES G, compute via finite iteration of operator

H along the monotone decreasing sequence:

R0 ≡ ψj and Rk+1 ≡ H (Rk ), k = 0, 1, · · ·

until a fixpointW of H is reached, i.e., H (W ) ≡ W , in which
case Pj+1 ≡ W if it is in the form (6) [where its component
past formulas P′i (1 ≤ i ≤ n) are each of the form (5)].
To converge to the form (6), it suffices to construct, at iteration
k + 1, some state formulas p′1,s, p

′

2,s such that

τσ ·
(
H ′ + p′′s

)
≡ τσ ·

(
H ′ + p′1,s

)
·
(
p′1,s + p

′

2,s
)

for every
(
τσ → H ′ · p′′s

)
present following past formula

expansion [6, p. 219] and LTL reasoning, where σ ∈ 6u,
H ′ is some past formula and p′′s is some state formula, and
such that they are logically in the form:

p′1,s ≡
∑
q∈Q′1

pq, p′2,s ≡
∑
q∈Q′2

pq,

where

Q′1 =
{
qk ∈ Q | (∃I ′ ∈ I(G)) |HI

′(k)
τσ · p′′s

}
,

Q′2 =
{
qk ∈ Q | (∃I ′ ∈ I(G)) |HI

′(k)
τσ · H ′

}
.

VOLUME 10, 2022 66307



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

Since u∗(ψj) is decidable, so is kernel Pj+1. It follows
that Kj+1 ≈ Ym · sup C(ψj) is decidable. Therefore,
by mathematical induction, Kj is decidable for all j ≥ 0. This
implies � (1) is syntactically computable in {Kj} (2).

C. CONVERGENCE OF �-ITERATION TO supC(P,M)
The key result of this section answers the {Kj}-convergence
question.
Theorem 2: Consider the case that DES G is finite state

and the specification pair (P,M) is decidable. Then the
sequence {Kj} (2) over DES G for (P,M) converges after a

finite number of iterations i to the limit Ki, φ
G
' Ki, where

sup C(P,M) ≈ φ.
Proof: In the sequence {Kj} (2) over DES G, K0 ≈ Ym ·

P, ψ0
G
' Ym · P, and so by Proposition 2,

ψ0 ≈ Ym · P.

Since � (1) is syntactically computable in {Kj} (2) by
Theorem 1, Kj ≈ Ym · sup C(ψj−1) exists for all j ≥ 1. And

since ψj
G
' Ym · sup C(ψj−1), likewise,

ψj ≈ Ym · sup C(ψj−1). (8)

Thus, for all j ≥ 0, since sup C(ψj){ ψj, it follows that

sup C(ψ0){ P,

and for all j ≥ 1,

sup C(ψj){ sup C(ψj−1).

Because the state set of DES G is finite, the resulting
state trajectory set I~(G) is finite, as immediate from
the (standard) description of finite state G and elementary
combinatorics. In syntactically computing the component
formula sup C(ψj) under {Kj} (2), each iteration j+1 therefore
removes some nj ≥ 0 state trajectories from the subset Lj ⊆
I~(G) of DES state trajectories satisfying ψj, successively
reducing Lj by nj trajectories, and to an empty set provided
sup C(ψj) ≈ false. Therefore, there exists a j = i ≥ 0,

Ki ≈

{
Ym · P, if i = 0
Ym · sup C(ψi−1), otherwise,

such that

Ki+1 ≈ �(Ki)

≈ Ym · sup C(ψi),where ψi
G
' Ki

≈ Ym · ψi (∵ ψi is controllable or false)

≈ Ki (By Proposition 3: P3.2).

This means �(Ki) ≈ Ki at iteration i + 1 with i ≥ 0, where,

in letting ψi ≡ φ so that φ
G
' Ki, the result follows by

Propositions 13 and 14.

D. COMPUTATION OF DELIMITING SAFETY CLOSURE
Lemma 1 is an important supporting result on existence
of the exact delimiting safety-closure formula for an LTL
formula over the DES model. Its proof, however, does not
furnish a general procedure for determining or constructing
the formula. In pointing a general direction for finding such
a delimiting safety-closure formula in the case of finite state
DES G and an arbitrary decidable specification pair (P′,M),
it is noted that, under DES state-uniqueness, the ψ that exists

by Lemma 1, for which ψ
G
' Ym · P′, i.e., ψ is the

exact delimiting safety closure formula for Ym · P′, can be
logically expressed in the general form:

ψ ≡
(
D · P′

)
. (9)

In general, formula D is called the conditional state-
forbiddance refinement on P′ byψ under invariance to assure
exact delimitation of Ym · P′. It assumes one of the three
possible cases, DSF-1 to DSF-1, as explained below. Under
the first two cases, at least one state trajectory I ∈ I~(G)
satisfies Ym · P′. Below, the cases are described based on

the definition of
G
'.

DSF-1) D ≡
n∏
i=1

(Ai→ Ci).

In Case DSF-1, starting from an initial DES state, D on P′

under invariance lets P′ stay true without the DES entering
any state identified as forbidden in the consequent state
formula Ci, whenever the corresponding antecedent past
formula Ai is true. This refinement of D on P′ is such that
no state trajectory I ∈ I~(G) satisfying Ym · P′ does not
satisfy (D · P′), every (D · P′)-satisfied I ∈ I(G) satisfies
Ym · P′, and every (D · P′)-satisfied prefix I(k) of an
arbitrary I ∈ I(G) can be extended to (i.e., is a prefix of)
some I ′ ∈ I(G) satisfying (D · P′) or its prefix I ′(j) (j ≥ k)
satisfying Ym · P′.

DSF-1) D ≡ true.
In Case DSF-1, every P′-satisfied I ∈ I(G) satisfies
Ym · P′, and every P′-satisfied prefix I(k) of an arbitrary
I ∈ I(G) can be extended to some I ′ ∈ I(G) satisfying
P′ or its prefix I ′(j) (j ≥ k) satisfying Ym · P′. Note

that, by Proposition 5, the former condition defines the M-
liveness under conditional invariance while the latter defines
the

(
M, P′

)
-condition invariance, both of invariant P′.

DSF-1) D ≡ false.
In Case DSF-1, no state trajectory I ∈ I~(G) satisfies Ym ·
P′, i.e., no I ∈ I(G) or its prefix I(k) that is P′-satisfied

satisfies Ym.

V. LOGIC MODELING & WORKED EXAMPLES
In logic modeling of DES G, transition relations [6]
axiomatize the DES’s possible transitions by abbreviating
event-transition logics in terms of state variables in 5. For
the purpose of mathematical computation by logic reasoning,
DESG is axiomatized by an LTL formula κG that is a product
of DES G’s initial condition, transition relations of events in
6, and event-fairness formulas (the legal conditions) of those

66308 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

in 6F , such that for every state trajectory I of G,

I ∈ I(G) iff |HI κG.

The DES model G is usually a modular (synchronous)
composition of a finite number of component process models
G1,G2, · · · ,Gn (n ≥ 1) of the same type (in terms of model
structure). The overall model runs by events interleaving
and synchronization of shared events among its component
processes. An event σ is said to be shared between processes
Gj andGk (j , k) if σ ∈ 6j∩6k . LetG = G1 ‖ G2 ‖ · · · ‖ Gn
represent a modular DES, whereGi = (5i,Qi, 6i, δi, θi) and
their (finite) state variable sets are mutually disjoint, i.e., for
j , k , 5j ∩ 5k = ∅. Then the synchronous operator ‖ for

DES G with (finite) event set 6 =
n⋃
i=1

6i is logically defined

with:

1) the system’s initial condition θ given by θ ≡
n∏
i=1

θi, and

2) the transition relation of an arbitrary σ ∈ 6 expressed
in the form:

τσ ≡
∏
i

∑
j,k

(
pqi,j · pqi,k

)
,

where Gi (1 ≤ i ≤ n) is every process with σ ∈ 6i
that is defined at some state in Qi, such that for every
state pair (qi,j, qi,k ) ∈ Qi × Qi, qi,k = δi(σ, qi,j). By the
asynchrony of occurrences of σ < 6i′ (i′ , i) in every
such Gi with Gi′ ,

τσ · pq ≡ τσ · pq, ∀q ∈ Qi′ .

Note that the transition relation model above is a modular
generalization and a slight logical variant of that in [6]
which was first used in [17] for LTL control synthesis. The
transition relation form may be expanded into a logical sum
of product terms, each term of the form h · t , where h, t
are state formulas. Possible natural system dynamics that help
simplify a relation include the following:
1) Inaccessibility of h-satisfied state (in state set

Q = Q1 × Q2 × · · · × Qn).
This may arise due to event synchronization under DES
G’s state transition function with respect to θ . Such an
inaccessibility constraint is of the form h ≡ false (if it exists).

After applying every inaccessibility constraint and re-
expressing into the original product form, the new transition
relation is obtained:

τσ ≡
∏
i

∑
j′,k ′

(
pqi,j′ · pqi,k′

)
,

where i (1 ≤ i ≤ n) is the index of every process involved in
the original transition relation, such that (qi,j′ , qi,k ′ ) ∈ Qi ×
Qi, where qi,k ′ = δi(σ, qi,j′ ), is every remaining state pair.
Equivalently,

τσ ≡
∑
j′,k ′

(
pqi,j′ · pqi,k′

)
,

where i is the index of any process involved in the new
transition relation above.

1) Guaranteed accessibility of t-satisfied state (next).

This is due to event singularity at h-satisfied state, in that
σ ∈ 6 is the only event defined at every such state. Such an
accessibility constraint is of the form h · t ≡ h (if it exists).
Next, the natural structure of DES G, by design, may be

such that, under the invariance of some kernel ψ starting
from an initial state, the DES, in reaching some state
qd ∈ Q, must have evolved from some state qs ∈ Q upstream.
This structural attribute, if it exists, induces an accessibility
constraint of the form ψ · pqd { pqs or, equivalently,
ψ · pqs { pqd . Because of their logical truth over

every k-prefix of an arbitrary DES state trajectory, such
accessibility constraints, alongwith the LTL proof system [6],
may be used in logic calculations to help simplify an LTL
formula for DES G.
With each component process Gi (1 ≤ i ≤ n) itself a

DES model, the model operational premise (regarding event
occurrences) applies locally to Gi, albeit subject to the same
premise being applied tomodular DESGwhich is necessarily
constrained by synchronization of shared events between the
component processes. The events that are fair in each Gi are
as fair in modular DES G.
In what follows, four worked examples are provided to

mainly illustrate the synthesis results of syntactic computabil-
ity (Theorem 1) and convergence (Theorem 2), with each
example DESmodel axiomatized as described above. In these
examples, the first three of which are adapted from [2] while
the last is adapted from [5], propositional LTL is used; each
example DES G is finite state and has one initial state.
An edge-labeled directed graph is used to represent a finite
state DESmodelGi. In this graph, a node denotes a DES state;
a σ -labeled edge, directing a node denoting a state q ∈ Qi to a
node denoting a state q′ ∈ Qi, denotes the transition of event
σ ∈ 6i from q to q′, as defined by δi(σ, q) = q′. The node
with an entering arrow denotes the initial state. As appropriate
to each example, a characterizing proposition or a denoting
symbol for a DES state is written beside its node. Besides,
in these examples, a given DES G, whether monolithic
(n = 1) or modular (n ≥ 2), has every component process
Gi associated with one marker condition in the overall system
marker setM. As each system marker condition is specified
by a state formula for Gi, a darkened node can be and is used
to identify each state in Gi satisfying the associated marker
condition.

For these examples, accordingly, Theorem 2 ensures a
finite number of iterations computing �(Kj), starting from
j = 0 along the sequence {Kj} (2) over DES G to obtain
sup C(P,M). Let P0 ≡ P. At iteration j + 1, with Kj ≈
Ym · Pj, first find the kernel ψj that exists by Lemma 1,

such that ψj
G
' Kj, whereψj ≡

(
Dj · Pj

)
(9) andDj assumes

one of the three possible cases, DSF-1 to DSF-1, as discussed
earlier. Then apply the syntax-based method contained in
the proof of Theorem 1, to obtain sup C(ψj) in �(Kj) as
follows: Using the transition relation modeling of DES G
as the axiomatic basis, perform syntax-based calculations
accordingly to obtain the successive Pj+1 – the embedded

VOLUME 10, 2022 66309



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

FIGURE 1. The DES G for Example 1.

kernel of u∗(ψj). In completing iteration j + 1, determine
sup C(ψj) in �(Kj) as either Pj+1 or false, according to (7).
In general solution form, sup C(P,M) ≈ (D·P), whereD

is an iteration outcome of {Kj}-convergence. In the interesting
case where D is neither always equal to true nor false,
it means that for each component formula of the product D
added in one iteration of� to ensure supremal controllability
of temporal safety, there is in general another component of
D added in the subsequent iteration to establish the required
G
'-relation, so as to, as explained by Proposition 4, the fact
that (D · P) is initially satisfied, and the formal definition of
M-directingness, thwart the violation of M-directingness
that adding the former component otherwise causes.

A. EXAMPLE 1
For the DES G depicted in Fig. 1, the (unique state)
propositions over state set Q are related as follows:

pi ≡
∑

j∈Q\{i}

pj, ∀i ∈ Q.

Initial condition θ ≡ p0. With event set 6 = {α1, α2, β}, the
transition relations are as follows:

τα1 ≡ p0 · p1,

τα2 ≡ p0 · p4,

τβ ≡ p1 · p2 + p2 · p3 + p3 · p3 + p4 · p4
≡ p1 + p2 + p3 + p4 (By event singularity).

Finally, it is given that 6u = {β}, 6F = ∅.
Consider the specification pair (P,M):

P ≡ p3,

M = {p3 + p4}; and therefore Ym ≡ (p3 + p4).

G |H Ym by the transition structure of and operational
premise for the DES G. Hence any invariant over G is
M-alive under conditional invariance. In the following
computation, each exact delimiting safety-closure formula

ψ (under
G
') for the given and successive pair (P′,M) is

both determined with ψ ≡ P′ (a case DSF-1), by observation
that invariant P′ is

(
M, P′

)
-condition invariant, and by

applying Proposition 5.

K0 ≈ Ym · P.

K1 ≈ �(K0), P
G
' Ym · P (A case DSF-1)

≈ Ym · sup C(P).

To compute the embedded kernel P1 of u∗(P), let R0 ≡ P.
Then:

R1 ≡ H (R0)

≡ P · u(R00)

≡ P · u(P)

≡ P ·
(
τu→ ( p3)

)
≡ P · (τβ → p3)

≡ P · p3 [∵ τβ · p3 ≡ p3].

R2 ≡ H (R1)

≡ P · u(R01)

≡ P · u (P · p3)

≡ P · u(P) · u(p3)

≡ R1 ·
(
τβ → p3

)
≡ P · p3 · p2 [∵ τβ · p3 ≡ (p2 + p3)].

R3 ≡ H (R2)

≡ P · u(R02)

≡ P · u (P · p3 · p2)

≡ P · u (P · p3) · u(p2)

≡ R2 ·
(
τβ → p2

)
≡ P · p3 · p2 · p1 [∵ τβ · p2 ≡ p1].

R4 ≡ H (R3)

≡ P · u(R03)

≡ P · u (P · p3 · p2 · p1)

≡ P · u (P · p3 · p2) · u(p1)

≡ R3 ·
(
τβ → p1

)
≡ R3 [∵ τβ · p1 ≡ false].

∴ Embedded kernel P1 ≡ R03 ≡ P · p3 · p2 · p1.
Since G |H P1 [∵ (θ → P1) ≈ true],

sup C(P) ≈ P1
≈ (P · p3 · p2 · p1)

≈
(
( p3) · p3 · p2 · p1

)
≈ (p3 · p2 · p1) [∵ p3 { p3]

≈ p1 [∵ p1 { p3, p1 { p2
(two accessibility constraints)].

∴ K1 ≈ Ym · P1 ≈ Ym · p1.

∵ p1
G
' Ym · p1 (A case DSF-1), p1 ≈ P1, and P1 is

controllable,

K2 ≈ �(K1), P1
G
' Ym · P1

≈ Ym · sup C(P1)
≈ Ym · P1
≈ K1.

∴ sup C(P,M) ≈ P1
≈ p1.

66310 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

FIGURE 2. The DES G = M1 ‖ B ‖ M2 for Example 2. In this example of a
simple manufacturing system, M1, M2 are DES models of two machines
connected in tandem. Each machine Mi (1 ≤ i ≤ 2) is either idling (Ii ) or
working (Wi ). In its idling state, the machine takes (αi ) a workpiece from
one buffer for processing and transitions to its working state. Once
finished with processing in its working state, it deposits (βi ) the finished
piece into another buffer that transitions it back to its idling state. Only
the buffer in between the two machines is shown. Of unit size, this buffer
is modeled by B defining the propositions E (buffer empty), F (buffer
full), such that M1 ‖ B ‖ M2 is M1 ‖ M2 with state characterization
enriched by these propositions.

B. EXAMPLE 2
For the modular DES G = M1 ‖ B ‖ M2 depicted and
described in Fig. 2, let Zi be the set of (unique process-state)
propositions over state set Qi of process Gi (1 ≤ i ≤ 3), with
G1 = M1, G2 = M2, G3 = B. Then:

p ≡
∑

p′∈Zi\{p}

p′, ∀p ∈ Zi.

Initial condition θ ≡ (I1 ·E · I2). With event set6 = 61∪62,
where 61 = {α1, β1}, 62 = {α2, β2}, 63 = {β1, α2}, the
transition relations are as follows:

τα1 ≡ I1 · W1,

τβ1 ≡ (W1 · I1) · (E · F + F · F)

≡ (W1 · I1) · F (By logic simplification)

≡ (W1 · I1)

≡ F,

τα2 ≡ (I2 · W2) · (F · E + E · E)

≡ (I2 · W2) · E (By logic simplification)

≡ (I2 · W2)

≡ E,

τβ2 ≡ W2 · I2.

For σ ∈ 6i, but σ < 6j (j , i, 1 ≤ i, j ≤ 3):

τσ · pq ≡ τσ · pq, ∀q ∈ Qj.

Finally, it is given that 6u = {β1, β2}, 6F = ∅.
Consider the specification pair (P,M) with P ≡ (P1 ·P2):

P1 ≡
(

(F ·W1)→ I1
)
,

P2 ≡
(

(E · I2)→ W2
)
,

M = {I1, I2}; and therefore Ym ≡
2∏
i=1

Ii.

The first product component of the temporal-safety part
(P1 ·P2) may be paraphrased as follows: ‘MachineM1 is not

to have deposited another workpiece into Buffer B whenever,
previously, the buffer is full while it is working.’ The second
component may be paraphrased as follows: ‘Machine M2 is
not to have acted to take another workpiece from Buffer B
whenever, previously, the buffer is empty while it is idling.’ In
short, the former specifies no overflow and the latter specifies
no underflow for Buffer B. Paraphrasing Ym, each machine
must regularly process workpieces to completion, one at a
time, taking from and depositing into their respective buffers.
G |H Ym by the transition structure of and operational

premise for each component process Gi (1 ≤ i ≤ 2),
and the fact that under ‖, it remains that τσ . false for
each σ ∈ 6. Hence any invariant over G is M-alive under
conditional invariance. In the following computation, each

exact delimiting safety-closure formula ψ (under
G
') for

the given and successive pair (P′,M) is both determined
with ψ ≡ P′ (a case DSF-1), by reasoning that invariant
P′ is

(
M, P′

)
-condition invariant, and by applying

Proposition 5. The reasoning for condition invariance in each
instance is that although the respective temporal-safety part
P′ specifies a maintenance of P′, the imposed sequencing

or ordering among events in G1, G2 that results permits all
the events in the DES G to occur infinitely often.

K0 ≈ Ym · P.

K1 ≈ �(K0), P
G
' Ym · P (A case DSF-1)

≈ Ym · sup C(P)
≈ Ym · sup C(P1 · P2).

To compute the embedded kernel P1 of u∗(P1 · P2), let
R0 ≡ (P1 · P2). Then:

R1 ≡ H (R0)

≡ (P1 · P2) · u(R00)

≡ (P1 · P2) · u(P1 · P2)

≡ (P1 · P2) · u(P1) · u(P2)

≡ (P1 · P2) · F ·W1, since:

u(P1) ≡
(
τu→

(
F ·W1→ I1

))
≡
(
F ·W1→

(
τβ1 → I1

)
· (τβ2 → I1)

)
≡ F ·W1 [∵ τβ1 · I1 ≡ true].

u(P2) ≡
(
τu→

(
E · I2→ W2

))
≡
(
E · I2→

(
τβ1 → W2

))
·
(
E · I2→

(
τβ2 → W2

))
≡
(
E · I2→

(
τβ1 → W2

))
·
(
E · I2→

(
τβ2 → W2

))
[∵ τβ1 · W2 ≡ τβ1 ·W2]

≡ true ·
(
E · I2→

(
τβ2 → W2

))[
∵ W2 ≡ I2

]
≡ true [∵ τβ2 · W2 ≡ false].

R2 ≡ H (R1)

VOLUME 10, 2022 66311



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

≡ (P1 · P2) · u(R01)

≡ (P1 · P2) · u

(
P1 · P2 · F ·W1

)
≡ (P1 · P2) · u(P1 · P2) · u

(
F ·W1

)
≡ R1 · u

(
F ·W1

)
≡ R1 ·

(
τβ1 → F ·W1

)
·
(
τβ2 → F ·W1

)
≡ R1 · true ·

(
τβ2 → F ·W1

)
[∵ τβ1 · (F ·W1) ≡ false]

≡ R1 ·
(
τβ2 → F ·W1

)
[∵ τβ2 · (F ·W1) ≡ τβ2 · (F ·W1)]

≡ (P1 · P2) · F ·W1 ·
(
τβ2 → F ·W1

)
≡ (P1 · P2) · F ·W1

≡ R1.

∴ Embedded kernel P1 ≡ R01 ≡ (P1 · P2) · F ·W1.
Since G |H P1 [∵ (θ → P1) ≈ true],

sup C(P1 · P2) ≈ P1

≈

(
(P1 · P2) · F ·W1

)
≈

(
F ·W1 ·

(
(F ·W1)→ I1

)
· P2

)
≈

(
F ·W1 ·

(
F ·W1 + I1

)
· P2

)
≈

(
F ·W1 · P2

)
[
∵ F ·W1 {

(
F ·W1 + I1

)]
.

∴ K1 ≈ Ym · P1 ≈ Ym ·
(
F ·W1 · P2

)
.

∵
(
F ·W1 · P2

) G
' Ym ·

(
F ·W1 · P2

)
(A case DSF-1),(

F ·W1 · P2
)
≈ P1, and P1 is controllable,

K2 ≈ �(K1), P1
G
' Ym · P1

≈ Ym · sup C (P1)
≈ Ym · P1
≈ K1.

∴ sup C(P,M) ≈ P1

≈

(
F ·W1 · P2

)
≈

(
F ·W1 ·

(
(E · I2)→ W2

))
.

C. EXAMPLE 3
For the modular DES G = CAT ‖ MOUSE depicted and
described in Fig. 3, 5 = {i, j}, where (i = a), (j = b),
with a, b ∈ N = {0, 1, 2, 3, 4}, are the (unique process-state)
propositions over the process state sets of CAT, MOUSE,
respectively. Then for a, b ∈ N ,

(i = a) ≡
∑

a′∈N\{a}

(i = a′), (j = b) ≡
∑

b′∈N\{b}

(j = b′).

Initial condition θ ≡ (i = 2) · (j = 4) ≡ (i, j) = (2, 4). With
G1 = CAT, G2 = MOUSE, event set 6 = 61 ∪ 62, where

FIGURE 3. The DES G = CAT ‖ MOUSE for Example 3. In this example,
a cat and a mouse are placed in a 5-room maze, as shown. CAT, MOUSE
are DES models of the free room-to-room movements of the cat, mouse,
respectively, in the maze. The models have the animal location variables
i , j taking a room number (0 to 4) that the cat, mouse occupy,
respectively, as states; the room-to-room movements of the animals are
modeled by transitions via gateways set up for their exclusive use, with
gateway depicted by a ` for the cat, and gateway depicted by -) (- for the
mouse. As shown in the maze, indicated by the direction of movement
through a gateway, ck (1 ≤ k ≤ 7) denotes a gateway transition by the cat,
and ml (1 ≤ l ≤ 6) denotes a gateway transition by the mouse.

61 = {ck | (1 ≤ k ≤ 7)}, 62 = {ml | (1 ≤ l ≤ 6)}, and the
transition relations are as follows:

τc1 ≡ (i = 0) · (i = 1), τc5 ≡ (i = 3) · (i = 4),

τc2 ≡ (i = 1) · (i = 2), τc6 ≡ (i = 4) · (i = 0),

τc3 ≡ (i = 2) · (i = 0), τc7 ≡ (i = 1) · (i = 3)

τc4 ≡ (i = 0) · (i = 3), + (i = 3) · (i = 1),

τm1 ≡ (j = 0) · (j = 2), τm4 ≡ (j = 0) · (j = 4),

τm2 ≡ (j = 2) · (j = 1), τm5 ≡ (j = 4) · (j = 3),

τm3 ≡ (j = 1) · (j = 0), τm6 ≡ (j = 3) · (j = 0).

For ck (1 ≤ k ≤ 7), ml (1 ≤ l ≤ 6), a ∈ N :

τck · (j = a) ≡ τck · (j = a),

τml · (i = a) ≡ τml · (i = a).

Finally, it is given that 6u = {c2, c7,m4}, 6F = 6C = 6u.
Consider the specification pair (P,M):

P ≡ i , j,

M = {i = 2, j = 4};

and therefore Ym ≡
(

(i = 2) · (j = 4)
)
.

The specification states that the cat and the mouse must never
be in the same room simultaneously, and each must regularly
return to the room it initially occupied.
G |H Ym by the transition structure and compassionate

events of, and the operational premise for, the individual
component processes CAT, MOUSE, coupled with the fact

66312 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

that under ‖, it remains that τσ . false for each σ ∈ 6. In the
following computation, each exact delimiting safety-closure

formula (under
G
') for the given and successive specification

pair is determined to be a case DSF-1 and a case DSF-1,
respectively.

Four accessibility constraints are found to be useful in the
following calculations for formula simplification, as listed
below:

Ex3-C1) (i , j) · ((i, j) , (1, 3)){ ((i, j) , (3, 1)),
Ex3-C2) (i , j) · ((i, j) , (1, 3)){ ((i, j) , (3, 2)),
Ex3-C3) (i , j) · ((i, j) , (1, 3)){ ((i, j) , (1, 2)),
Ex3-C4) (i , j) · ((i, j) , (1, 3)){ ((i, j) , (4, 0)).

K0 ≈ Ym · P.

K1 ≈ �(K0), P
G
' Ym · P (A case DSF-1)

≈ Ym · sup C(P).

To compute the embedded kernel P1 of u∗(P), let R0 ≡ P.
Then:

R1 ≡ H (R0)

≡ P · u(R00)

≡ P · u(P)

≡ (i , j) · u(i , j)

≡ (i , j) ·
(
(τc2 + τc7 + τm4 )→ (i , j)

)
≡ (i , j) ·

(
τc2 → (i , j)

)
·
(
τc7 → (i , j)

)
·
(
τm4 → (i , j)

)
≡ (i , j) ·

(
τc2 → (i, j) , (1, 2)

)
·
(
τc7 → (i, j) , (1, 3) · (i, j) , (3, 1)

)
·
(
τm4 → (i, j) , (4, 0)

)
[∵ τc2 · (i = j) ≡ τc2 · (i, j) = (1, 2), τc7 ·

(i = j) ≡ τc7 · ((i, j) = (1, 3)+ (i, j) = (3, 1)) ,

τm4 · (i = j) ≡ τm4 · (i, j) = (4, 0)].

R2 ≡ H (R1)

≡ P · u(R01)

≡ (i , j) · u(i , j)

· u((i, j) , (1, 2)) · u((i, j) , (1, 3))

· u((i, j) , (3, 1)) · u((i, j) , (4, 0))

≡ (i , j) · u(i , j) · u((i, j) , (1, 2))

· u((i, j) , (1, 3)) · u((i, j) , (3, 1))

[∵ τc2 · ((i, j) = (4, 0))

≡ τc7 · ((i, j) = (4, 0))

≡ τm4 · ((i, j) = (4, 0)) ≡ false]

≡ (i , j) · u(i , j) · u((i, j) , (1, 2))

· u((i, j) , (1, 3)) · (τc7 → (i, j) , (1, 1))

[∵ τc2 · ((i, j) = (3, 1))

≡ τm4 · ((i, j) = (3, 1)) ≡ false,

τc7 · ((i, j) = (3, 1)) ≡ τc7 · (i, j) = (1, 1)]

≡ (i , j) · u(i , j) · u((i, j) , (1, 2))

· (τc7 → (i, j) , (3, 3)) · (τc7 → (i, j) , (1, 1))

[∵ τc2 · ((i, j) = (1, 3))

≡ τm4 · ((i, j) = (1, 3)) ≡ false,

τc7 · ((i, j) = (1, 3)) ≡ τc7 · (i, j) = (3, 3)]

≡ (i , j) · u(i , j) · (τc7 → (i, j) , (3, 2))

· (τc7 → (i, j) , (3, 3)) · (τc7 → (i, j) , (1, 1))

[∵ τc2 · ((i, j) = (1, 2))

≡ τm4 · ((i, j) = (1, 2)) ≡ false,

τc7 · ((i, j) = (1, 2)) ≡ τc7 · (i, j) = (3, 2)]
≡ (i , j) · u(i , j) · (τc7 → (i, j) , (3, 2))

[∵ (i , j) ≡ (i , j) · (i, j) , (3, 3)
≡ (i , j) · (i, j) , (1, 1)]

≡ R1 · (τc7 → (i, j) , (3, 2))
≡ (i , j) ·

(
τc2 → (i, j) , (1, 2)

)
·
(
τc7 → (i, j) , (1, 3)

)
·
(
τc7 → (i, j) , (3, 1)

)
·
(
τm4 → (i, j) , (4, 0)

)
·
(
τc7 → (i, j) , (3, 2)

)
.

R3 ≡ H (R2)
≡ P · u(R02)
≡ (i , j) · u(i , j) · u((i, j) , (1, 2))

· u((i, j) , (1, 3)) · u((i, j) , (3, 1))
· u((i, j) , (4, 0)) · u((i, j) , (3, 2))

≡ R2 · u((i, j) , (3, 2))
≡ R2 · (τc7 → (i, j) , (1, 2))

[∵ τc2 · ((i, j) = (3, 2))
≡ τm4 · ((i, j) = (3, 2)) ≡ false,
τc7 · ((i, j) = (3, 2)) ≡ τc7 · (i, j) = (1, 2)]

≡ (i , j) ·
(
τc2 → (i, j) , (1, 2)

)
·
(
τc7 → (i, j) , (1, 3)

)
·
(
τc7 → (i, j) , (3, 1)

)
·
(
τm4 → (i, j) , (4, 0)

)
·
(
τc7 → (i, j) , (3, 2)

)
·
(
τc7 → (i, j) , (1, 2)

)
.

R4 ≡ H (R3)
≡ P · u(R03)
≡ (i , j) · u(i , j) · u((i, j) , (1, 2))

· u((i, j) , (1, 3)) · u((i, j) , (3, 1))
· u((i, j) , (4, 0)) · u((i, j) , (3, 2))

≡ R3.

∴ Embedded kernel P1 ≡ R03 ≡ (i , j) · (i, j) , (1, 2) · (i, j) ,
(1, 3) · (i, j) , (3, 1) · (i, j) , (4, 0) · (i, j) , (3, 2).
Since G |H P1 [∵ (θ → P1) ≈ true],

sup C(P) ≈ P1
≈ ((i , j) · (i, j) , (1, 2) · (i, j) , (1, 3)

· (i, j) , (3, 1) · (i, j) , (4, 0) · (i, j) ,

(3, 2))

≈ ((i , j) · (i, j) , (1, 3))

[∵ of Ex3-C1 – C4]

≈ P′1,where P
′

1 ≡ (i , j) · (i, j) , (1, 3).

∴ K1 ≈ Ym · P1 ≈ Ym · P′1.

VOLUME 10, 2022 66313



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

∵
(
P′1 · (i, j) , (0, 3)

) G
' Ym · P′1 (A case DSF-1) and

P′1 ≈ P1,

K2 ≈ �(K1), (P1 · (i, j) , (0, 3))
G
' Ym · P1

≈ Ym · sup C (P1 · (i, j) , (0, 3)) .

To compute the embedded kernel P2 of u∗(P1 · (i, j) ,
(0, 3)), let R0 ≡ P1 · (i, j) , (0, 3). Then:

R1 ≡ H (R0)

≡ P1 · (i, j) , (0, 3) · u(R00)

≡ P1 · (i, j) , (0, 3) · u(P1) · u((i, j) , (0, 3))

≡ P1 · (i, j) , (0, 3) · u(P1)

[∵ τc2 · ((i, j) = (0, 3))

≡ τc7 · ((i, j) = (0, 3))

≡ τm4 · ((i, j) = (0, 3)) ≡ false]

≡ (i , j) · (i, j) , (1, 2) · (i, j) , (1, 3)

· (i, j) , (3, 1) · (i, j) , (4, 0) · (i, j) , (3, 2)

· (i, j) , (0, 3) · u(i , j) · u((i, j) , (1, 2))

· u((i, j) , (1, 3)) · u((i, j) , (3, 1))

· u((i, j) , (4, 0)) · u((i, j) , (3, 2))

≡ (i , j) · (i, j) , (1, 2) · (i, j) , (1, 3)

· (i, j) , (3, 1) · (i, j) , (4, 0) · (i, j) , (3, 2)

· (i, j) , (0, 3) ·
(
τc2 → (i, j) , (1, 2)

)
·
(
τc7 → (i, j) , (1, 3)

)
·
(
τc7 → (i, j) , (3, 1)

)
·
(
τm4 → (i, j) , (4, 0)

)
·
(
τc7 → (i, j) , (3, 2)

)
·
(
τc7 → (i, j) , (1, 2)

)
[By R4 ≡ R3 under iteration K1]

≡ (i , j) · (i, j) , (1, 2) · (i, j) , (1, 3)

· (i, j) , (3, 1) · (i, j) , (4, 0) · (i, j) , (3, 2)

· (i, j) , (0, 3)

≡ P1 · (i, j) , (0, 3)

≡ R0.

∴ Embedded kernel P2 ≡ R00 ≡ P1 · (i, j) , (0, 3) ≡ (i ,
j) · (i, j) , (1, 2) · (i, j) , (1, 3) · (i, j) , (3, 1) · (i, j) , (4, 0) ·
(i, j) , (3, 2) · (i, j) , (0, 3).
Since G |H P2 [∵ (θ → P2) ≈ true],

sup C(P1 · (i, j) , (0, 3)) ≈ P2
≈ (P1 · (i, j) , (0, 3)).

∴ K2 ≈ Ym · P2
≈ Ym · (P1 · (i, j) , (0, 3))

≈ Ym · P1
[By Proposition 3: P3.2]

≈ K1.

Now,

P2 ≈ ((i , j) · (i, j) , (1, 2) · (i, j) , (1, 3)

· (i, j) , (3, 1) · (i, j) , (4, 0)

FIGURE 4. The DES G for Example 4. The forbidden states specified by P
are denoted by nodes marked with a cross.

· (i, j) , (3, 2) · (i, j) , (0, 3))

≈ ((i , j) · (i, j) , (1, 3) · (i, j) , (0, 3))

[∵ of Ex3-C1 – C4]

≈ P′2,where

P′2≡ (i , j) · (i, j), (1, 3) · (i, j) , (0, 3).

∴ sup C(P,M) ≈ P2
≈ P′2
≈ ((i , j) · (i, j) , (1, 3) · (i, j) , (0, 3)).

D. EXAMPLE 4

For the DESG depicted in Fig. 4, the states are unique, initial
condition θ ≡ pq0 , and it is given that 6u = ∅; therefore
6F = ∅.

Consider the specification pair (P,M):

P ≡ pq12 + pq15 ,

M = {pq4 , pq7}; and therefore Ym ≡
∏

i∈{4,7}

pqi .

With 6u = ∅, clearly P is controllable, since G |H P
because (θ → P) ≈ true. However, P is not (M, P)-
condition invariant; this condition fails at state q12. In the
absence of strong fairness in events σ05, σ06, it is also not
M-alive under conditional invariance; this condition fails for
the legal state trajectory that stays forever traversing in Loop
X formed by the state-transition sequence q6 − q7 − q8 −
q9 − q10 − q0 − q3 − q2 − q1 − q6 (see Fig. 4), satisfying
P but violating pq4 . It also fails for any legal trajectory

satisfying P that enters and stays forever traversing in Loop
Y formed by the state-transition sequence q5−q4−q3−q2−
q1−q5 (see Fig. 4), violating pq7 . For P to be violating
either condition, P is notM-directing, and hence is notM-
controllable.

K0 ≈ Ym · P.

K1 ≈ �(K0), (D · P)
G
' Ym · P (A case DSF-1),

66314 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

TABLE 1. Example 4: Product components of D, the state-forbiddance refinement on P .

where past formulaD, constructed by some human ingenuity,
is a logical product of three formulas as shown in Table 1.

Now, G |H (D · P) [∵ (θ → (D · P)) ≈ true].

∴ K1 ≈ Ym · sup C(D · P)
≈ Ym · (D · P)

[∵ (D · P) is controllable]

≈ Ym · P

[By Proposition 3: P3.2]

≈ K0.

∴ sup C(P,M) ≈ (D · P) .

Depicted in Fig. 4, Loops X , Y in the DES G are called
M-incomplete loops; in general, an M-incomplete loop is
with respect to a state trajectory of a DES that enters and
stays traversing therein forever, without meeting at least
one marker condition in system marker set M infinitely
often. By their execution to exit M-incomplete loops in a
DES, strategically defined fair events play a crucial role in
M-controllability that is of pragmatic importance in sim-
plifying supervisor design. Take for instance: If events
σ5, σ6 were or could be made compassionately fair, the
refinement D on P would have been reduced to pq11 , leading
to a simpler sup C(P,M) as the supremal M-controllable
subformula of P. But as it is, the absence of fairness in
events σ5, σ6 (that are controllable) leads to constructing a
formula sup C(P,M) that is more complex. This is because
the exact delimiting safety-closure formula ψ for Ym · P
required in the LTL control synthesis also needs to ‘emulate’
the necessary but missing event fairness. This is done byψ ≡
D · P, with the invariance of the synthesized formula D (see
Table 1) constraining the DES further around every existent
M-incomplete loop under the invariance of P, essentially
specifying a breakout to exit the loop in the temporal loop
limit.

Interestingly, with the supremal M-controllable subfor-
mula of P existing in the complex form constructed, the
realization of a supervisor [5] in practice requires an a
priori arbitrary setting of x, y in D (explained in the note
under Table 1) to possibly different, finite positive numbers.
Optimality of supervision, as defined by sup C(P,M),
becomes purely a theoretical condition because any such
supervisor realization is suboptimal; however, the loss of
optimality or permissiveness is due, reciprocally, only to
each of x, y being finitely set with regard to permitting the

maximum number of consecutive cycles the DES can traverse
in the respectiveM-incomplete loops under supervision. The
setting of x, y may be made to a finite numerical extent that
this loss is deemed immaterial.

VI. DISCUSSION WITH RELATED WORK & BEYOND
A. DES MODELING & A SYNTHESIS ALTERNATIVE
Fair DES model G, by the sets of labeled strings of finite
and infinite length arising from the pair (I~(G), I(G)), is a
state augmented version of the ‘live’ DES model due to [18].
Besides, unlike the latter model, the legal evolution of DES
G is explicitly described, over its model structure, by fairness
formulas of events in the fair event set 6F . This makes the
fair modelG conceptually cleaner and more explainable from
the design and synthesis perspective – a unique feature that
will be elaborated and made clear by the end of Section VI.

The ‘live’ DES model is adopted in [18], [19] for
progressive control that is more arbitrary and realizes an ω-
language (i.e., a set of strings of infinite length, as opposed to
a language which refers to a set of strings of finite length), for
which state-of-the-art algorithms for synthesis of controllers
in ω-automata (accepting ω-languages termed regular) are
available. One might then suggest that an alternative to this
paper is to use propositional LTL – the widely used fragment
of LTL that is translatable [20], [21] to ω-automata – as a
DES modeling and specification language over a finite state
space, and then proceed in principle as follows, to perform
controller synthesis that is not syntax-based or in state space:
1) Construct someω-automatonmodel for a given fair DES

G. This ω-automaton is defined using a deterministic
state transition function over the event set 6 (and hence
is termed deterministic). Its construction (see [22, Ch.
5: Sec. 5.1.6 & Rem. 5.44]) entails translating from the
LTL formula κG that axiomatizesG’s transition structure
(in terms of initial condition and transition relations of
events in 6) and its fair evolution (in terms of fairness
formulas of events in the fair event set 6F ).

2) Translate a specified LTL formula of finite length (in
terms of the number of symbols) into some deterministic
ω-automaton.

3) Apply an appropriate ω-automata-based controller
synthesis algorithm.

However, current such controller synthesis algorithms, the
earliest of which is given in [19], are about deadlock-free or
infinite progressive control, not the more structured marker-
progressive control that admits and in fact unifies both types

VOLUME 10, 2022 66315



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

of controlled behavior, finite [1] and infinite [18], [19], in a
common framework. The opinion held herein is that, from
the design perspective, what matters most is having a unified
framework for finding an understandable control solution that
conforms to correctly stated specifications, not whether the
resultant controlled behavior is infinite (or deadlock-free,
meaning it has no deadlocks) or otherwise – for, that is a
solution output, not a problem input. The term ‘deadlock’
used in [19] means entering a state that is terminal or made
terminal (under control), and carries a negative connotation;
this paper is of the opinion that, provided the specification
is correctly stated, a terminal state that exists and can be
entered in a controlled behavior is part of the solution, such
as a graceful system cessation. Insisting on infinite control1

at the outset as a problem objective might therefore distort the
intended control solution. Given a DES that has no terminal
state (that it can transit into from an initial state), if one wishes
to check if the controlled behavior due to a specification
pair (P,M) is infinite, one only needs to check that, for the
supremal control solution obtained with φ as its kernel, the
solution invariant φ is ({false}, φ)-condition invariant.
In the case that the DES under a control solution can enter an
unexpected terminal state, the principled approach then is to
reflect on and iteratively refine, as needed, the system design
and specification.

B. INFINITE CONTROL
Used in the respective frameworks – specifically [5, Def. 20
& Thm. 3] versus [18, Prop. 3.1],2 [19, Prop. 4.5] – M-
directingness [5] is analogous to relative ω-closure [18], [19],
in the sense that each concept characterizes the solvability
or existence of controls in conjunction with their associated
basis concept of controllability. The associated basis concept
used in [19] is called ω-controllability; it refines the standard
concept of controllability [1], used in [18, Prop. 3.1] in
the originating language form [1] and in [5, Def. 20 &
Thm. 3] in an LTL form [5], with a characterization in
terms of some controllability prefix, and is shown to reduce
to the standard concept under relative ω-closure [19, Prop.
4.4] (for a specification given by an ω-sublanguage of the
DES). However, in general, the union of relative ω-closed
sublanguages (of the DES) is not relative ω-closed, although
that of ω-controllable sublanguages is ω-controllable, thus
implying that the supremal ω-controllable and relative
ω-closed sublanguage does not exist in general [19], [23].
This contrasts with the optimality result for the specification
pair (P,M) that the LTL control synthesis method (2)
is based on: Inferring from Proposition 1, sup C (P,M)

exists which the method (2) computes, such that it is
the supremal M-controllable subformula of P provided
sup C(P,M) 0 false.

1Infinite control and finite control are understood to refer to control
that effectively realizes an ω-sublanguage and a sublanguage of a DES,
respectively.

2Restated in [19, Prop. 4.2], where the term ‘deadlock-free’ is used instead
of the term ‘nonblocking’.

In fact, for the specification pair (P,M) considered,
relative ω-closure is technically stronger or more restricting
than M-directingness in general; to intuitively explain this
technicality in the context of an arbitrary specification pair
(ψ,M), where ψ ⇒ P, relative ω-closure of the DES
ω-sublanguage equivalent of the pair (ψ,M) only permits
entering anyM-incomplete loop that the DES will exit under
the invariance of ψ , either by itself or after a finite number
of cycles (of the loop) specified by ψ under invariance.
This is not the only case permitted with M-directingness
of ψ ; as evident by Proposition 6 and a reading of the

relation
G
' therein according to definition, the concept also

allows the DES to enter and stay in each M-incomplete
loop that it may not exit by itself, if not for the arbitrary
number of cycles in the temporal loop limit posed byψ under
invariance. This is illustrated in Example 4 by the supremal
M-controllable solution φ obtained for some ψ ≡ φ,
where some practical design implications are also discussed,
and will be elaborated further below in connection to related
work.

Despite the differences, for common problem settings,
one may, in practice, apply either the LTL control syn-
thesis method (2) or an appropriate ω-automata-based
synthesis algorithm available. Then, where a non-trivial
solution exists, the former method yields a (satisfiable)
supremal marker-controllable formula. For the ω-automaton
equivalent of specification pair (P,M), after limiting it
suitably to represent a regular ω-sublanguage that is relative
ω-closed, the latter algorithms in [19], [24], [25] each uses
the resultant ω-automaton to compute a controllability state
subset over a finite state automaton (to be controlled),
which it then uses, if the subset is nonempty, to compute
the supremal ω-controllable sublanguage [19] as an ω-
automaton; as the computed sublanguage is also relative
ω-closed [18, Prop. 3.2], it is hence a (specification-
conforming) control solution. An algorithm in [23] uses a
reactive synthesis approach that also yields an ω-automaton
as solution. However, due to the stronger concept of relative
ω-closure as discussed above, a stronger solution may result
for the latter algorithms, depending on the relative ω-closed
sublanguage of the given specification that is selected a
priori; such a selection may not be straightforward, be it from
a regular ω-sublanguage specification not known a priori to
be ω-closed, or from the nonempty supremal ω-controllable
sublanguage first computed that only ascertains the existence
of infinite control [19, Thm. 5.3]. In contrast, a supremal
LTL control solution obtained may at times turn out to be
purely theoretical, in that it is not practically realizable or
implementable as a supervisor. Consider such a supremal LTL
control solution obtained and discussed in Example 4. Its
solution form, however, can serve as a transparent basis for
selecting a posteriori a suitably permissive but necessarily
suboptimal solution for practical supervisor realization,
which in this example corresponds to an ω-automaton
control solution (whose regular ω-controllable language is
relative ω-closed).

66316 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

Clearly, though related, the concepts of M-directingness
and relative ω-closure have resulted in different treatments
to handling M-incomplete loops under the invariance of
P, for control synthesis of the specification pair (P,M)
on, respectively, its LTL formula and equivalently translated
ω-automaton. Related is the DES dynamics or evolution
induced by the fair event set, which provides a more concrete
means to explaining DES behavior, especially with regard
to whether the DES can guarantee exiting, by itself, any
M-incomplete loop it may enter. The basic role of fair
events in driving DES behavior, with implications for control
synthesis, is, however, abstracted out in the original infinite
or ω-language control theory [18], [19].

To aid further comparison, define a (weakly) control-
forcible event as one that must eventually occur if it is
infinitely often control-enabled and defined in an automaton.
Then in [25], a finite state automaton is assumed to satisfy
an additional condition called state fairness, asserting that
every event is control-forcible. Over an automaton endowed
with such control dynamics, the synthesis algorithm in [25]
computes a controllability state subset in polynomial instead
of exponential time by that in [24]. However, such an
approach might inadvertently accommodate what, at the
design outset, is infeasible regarding the control dynamics of
some events.

C. FINITE CONTROL (IN THE LIMIT)
Last but not least, consider the, perhaps, simplest infinite
control problem, where the fair event set is not accounted for,
and the DESmodel and specification are expressible by finite
non-terminal state automata3 – accepting the language, say L,
hence termed regular, of the DES, and its sublanguage, say E ,
that is L-closed,4 respectively – in the limits, or these regular
languages in the limits [27, Sec. 6]. The problem instances
in Examples 1 to 3 consider DES models and specifications
that are, language-wise, correspondingly expressible as such
under the condition that the fair event set, which is not
empty in the case of Example 3, is not accounted for.
This is because, in these examples, the DES G has no
terminal state (that it can transit into, starting from an initial
state), and the specification given by the pair (P,M), where
M = {M1,M2, · · · ,Mm}, is under the following modeling
restriction: The j-prefix of every state trajectory I ′ ∈ I(G)
satisfying P can be extended to some I ∈ I(G), I(j) = I ′(j),

satisfying P ·

(
m∏
i=1

Mi

)
that is logically stronger than

(the LTL formula denoted by) the specification pair (P,M).
The correspondence, however, is only up to those DES

modeling and specification in the limits. As explained earlier,
the LTL control synthesis method (2) does not specially seek
an infinite control solution as that is not an objective of the

3In this paper, an automaton [1], [26] is conveniently referred to as non-
terminal state if every state of the automaton that can be reached from its
initial state is not terminal; the term ‘terminal’ is in the sense defined for the
DES model G of this paper.

4To recall from [27], the prefix closure of a language E , denoted by E ,
is E = {s′ | (∃s, s′t ∈ E)s′t = s}; and E is L-closed if E = E ∩ L.

problem it addresses, unlike the finite state automata-based
algorithm in [27]. Besides, like nonblocking (finite) control
synthesis [1], [2], the synthesis algorithm in [27] seeks the
most ‘optimistic’ control solution without accounting for
the fair event set. This means that, keeping specified safety
uncompromised, the infinite control solution sought permits
the DES to enter anyM-incomplete loop, so long as the DES
can logically transition out of it – although it need not happen
at runtime – and proceed onto a state trajectory I ∈ I(G)

satisfying P·

(
m∏
i=1

Mi

)
. This approach of optimistically

admitting M-incomplete loops by the algorithm in [27]
produces a generally more permissive solution than that
by the method (2), whenever both yield an infinite control
solution for the same problem instance. As a result, whether
more or as permissive, the former’s solution may not always
be truly specification-conforming, due to the possibility
of the control solution permitting the DES to entering an
M-incomplete loop and staying in there forever.
As it turns out, if the nonblocking synthesis algorithm [2]

yields a control solution that does not render terminal any
state which it permits the DES to reach, then the problem
instance addressed is equivalent to that which the algorithm
in [27] can address with the same solution. Such is indeed the
case for Examples 1 to 3 that originated in [2]. The reader
may therefore treat the control solutions presented in [2] for
these examples as those yielded by the algorithm in [27].

With that said, for each of the Examples 1 to 3, it is
coincidental that the LTL control synthesis method (2) and
the finite state automata-based algorithm in [27] yield,
automaton-wise, the same supremal control solution, with
the latter yielding the so-called complete or live supremal
controllable ω-sublanguage as a finite (non-terminal) state
automaton in the limit. On why the solutions coincide, firstly,
applying either the method (2) or the algorithm in [27],
supremal infinite control solutions exist. Secondly, with the
aid of, automaton-wise, the same control solutions presented
as automata in [2], it can be observed that, for Example 1
(see [2, Sec. 7.1: On p. 650]) and Example 2 (see [2, Sec. 7.2:
On p. 653]), there is no M-incomplete loop to be admitted
by the control solution; and for Example 3 (see [2, Sec. 7.3:
Fig. 7.5]), although there is oneM-incomplete loop, formed
by transitions of only event c7 due to the model CAT (see
Fig. 3) which the solution by the algorithm in [27] admits,
the LTL control solution synthesized permits the DES to also
enter this loop, since the fair event c2 ∈ 6C is there to help
guarantee exiting this loop.

D. MARKER-PROGRESSIVE CONTROL & BEYOND
In an overall remark, the preceding discussions under com-
mon problem settings should be regarded as reconciliatory.
After all, though technically related, LTL and ω-languages
are different formalisms with their own independent analysis
frameworks, and so are the problem settings and objectives
in general, as formulated in these frameworks. In the former
is about (state-based) logic control of fair DES’s while in

VOLUME 10, 2022 66317



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

the latter is about (event-based) ω-language control of ‘live’
DES’s.

1) ON SPECIFICATION CORRECTNESS GUARANTEE
That said, the discussion on the concept of M-directingness
has exposed the necessity to exit or ‘break out’ of M-
incomplete loops to guarantee specification correctness,
meaning, to ensure that a controlled DES can never trace
out a state trajectory in runtime that violates the speci-
fication it is designed for. This necessity was previously
hidden under the concept of relative ω-closure for infinite
controlled behavior [18], [19]. Formulated in a unified
behavioral framework, this necessity carries over to finite
controlled behavior [1], unearthing a fundamental insight
about specification-correctness guarantee. Now, it is hitherto
almost conventional thinking that a controlled DES meeting
a specification (in terms of language containment) provides
specification-correctness guarantee. But a DES in runtime
is ‘generative’ of strings (of events) [1], not all of which
are ‘accepting’ in the standard automata-theoretic sense [26].
The unintuitive insight unearthed is this: In synthesizing
finite controlled behavior, it is necessary but not sufficient in
general to guarantee specification correctness, if a controlled
DES meeting a language specification is achieved by optimal
control synthesis [2] in finite state automata [26] based on the
founding nonblocking control theory [1], or by that slightly
modified based on related work [27], with nonblocking
control understood as always permitting a DES to transition
and enter or reenter a state of the marker state set that is
a special case of the system marker set (see [5, M (2)]).
This guarantee insufficiency is due to the optimal control
synthesis [2], [27] being carried out optimistically without
modeling and accounting for DES fairness dynamics, thus
possibly allowingM-incomplete loops that exist in the DES
with no loop exit assurance to be admitted. Note then, that, for
Example 3, the LTL control solution yielded by the synthesis
method (2) guarantees specification correctness with the
cooperation of fair event c2 ∈ 6C . But the same cannot be
said of the automaton solution [2, Sec. 7.3: Fig. 7.5] yielded
by the synthesis algorithm in [2] or [27]; as discussed earlier,
this solution is, automaton-wise, no different from the cor-
responding LTL control solution, but it is the same solution
the synthesis algorithms [2], [27] yield regardless of whether
event c2 is a fair event of the compassionate type or not.

Clearly, the cause of not guaranteeing specification
correctness by nonblocking control synthesis [2] is its synthe-
sized control solutions in finite state automata [26] possibly
admitting M-incomplete loops, with no exit assurance of
such loops. This cause may have ramifications for the
nonblocking control framework [1], [2] and its subsequent
developments (e.g., [3], [8], [27]) to-date.

2) SUPERVISORY CONTROL UNIFIED
IN TRANSPARENT LTL SYNTHESIS
Besides bringing into focus the issue of specification-
correctness guarantee in the cited literature on finite con-
trolled behavior, a more obvious and undeniable fact is

that all the aforementioned research efforts are based on
formal languages and automata which are rather elementary.
Inherent therefore is formal language control giving little
regard to human designer considerations, fundamental of
which are clearer system dynamics modeling in terms of
evolution characterizable by fair events, and transparency of
synthesis along with solution readability in LTL, all of which
are desirable in engendering a higher level of explainability
that might, for instance, help a human designer decide if a
solution is right, and not just getting it right. By applying the
mathematical method (2), these fundamental considerations
are fulfillable for marker-progressive control synthesis of fair
DES’s. As illustrated by examples, the synthesis transparency
of this method is enhanced by an equational style of logic
reasoning it supports, referred to as calculational logic [28],
in the readable syntax of LTL that applies LTL syntactic logic
rules [6] in an algebraic style, manipulating and presenting
LTL formulas in ‘a sequence of substitutions of equals
for equals’. This reasoning style is akin to calculations in
many fields of mathematics, including linear algebra, modern
algebra, and calculus; its use motivates formal workings that
human analysts can freely make in their own line of logic
reasoning as long as it is correct, rendering the mathematical
problem solving of control synthesis more transparent in
general.

As carefully illustrated by examples, applying the LTL
control synthesis method (2) currently involves working out
by hand and, in some cases, it requires human ingenuity.
But the process is demonstrably transparent and the solution
obtained is a readable LTL formula. These, along with
explicitly engaging the role of fair events for guaranteed
marker-liveness, are needed for a more holistic mathematical
treatment of understandable control design in general, setting
this paper uniquely apart.

Admittedly, the method (2) is presently not computer-
algorithmic, as its current development is not primarily
motivated by problem solving using algorithms and software
tools. But in some respects, it has conceptually unified
and extended the aforementioned research efforts under
canonical LTL for the specification pair (P,M) considered.
This specification pair may seem limited to some, but
in the generic realm of supervisory control – largely of
accomplishing tasks regularly without violating safety – it is
about the most general that a control designer can practically
think of.

3) EXTENSION TO GENERAL-PROGRESSIVE
SUPERVISORY CONTROL
That said, to handle specification beyond the specification
pair (P,M), let N = {N1,N2, · · · ,Nm} be some system
asymptote set, where eachNi ∈ N (1 ≤ i ≤ m) is an arbitrary
past formula specifying a system asymptote condition. That
each asymptote condition Ni ∈ N is to be stable, in the sense
of being eventually met and maintained henceforth in DESG,
is specified by Ni, an LTL formula in canonical temporal-
persistence form [6], [9]. Then the LTL control foundation

66318 VOLUME 10, 2022



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

[5] and associated synthesis results of this paper are directly
extendible from the specification pair (P,M), to the pair
(P,M×N ) denoting the LTL formula P · Zm, where

Zm ≡
m∏
i=1

(
Mi + Ni

)
is an LTL formula of the canonical reactivity class –
the most general class situated topmost in the complete
hierarchy of canonical classes of LTL formulas [6], [9];
the formula Zm may be called the most general reactivity
formula of M × N -rank m. In essence, this extension,
to general-progressive supervisory control that covers the full
specification hierarchy of canonical LTL, is anchored on the
following two main concept generalizations:

The first is generalizing M-directingness of P to
M × N -directingness, such that P is said to be M ×

N -directing if P is initially satisfied, (M×N , P)-
condition invariant, i.e.,

G |H

(
x

(
P, P ·

m∑
i=1

Mi + Ni

)
→ P

)
,

and M×N -alive under conditional invariance, i.e.,

G |H P→ Zm.

Being (M×N , P)-condition invariant and M×N -alive
under conditional invariance are direct extensions of being
(M, P)-condition invariant andM-alive under conditional
invariance, respectively.

The second is generalizing M-controllability of P to
M×N -controllability, such that P is said to be M×N -
controllable if P is controllable and M×N -directing.
Note that the extension to general-progressive control

is prescriptively a simple scale-up, in that the results for
(P,M × N ) are obtainable from those for (P,M) as
presented in this paper and its predecessor [5], by replacing
Ym with Zm, and every M-related concept with the corre-
sponding (M×N )-related concept defined above.
Note also that(

Mi + Ni
)
≡
(

Ni→ Mi
)
.

One may therefore think of general-progressive supervisory
control as temporal-safety or invariance control of P to bring
about marker-progressive (or M-progressive) responses to
asymptotic instability (or N -instability) triggers. Interest-
ingly, by interpreting the specified triggers as arising con-
ditionally from a system operating environment, it becomes
conceptually clearer that DES G is a behavioral model of a
system in an environment.
Finally, in the special case of finite state DES G and

specification pair (P,M × N ), where P ≡ true, M × N -
rank m = 1, and M, N are sets of state formulas, the
general-progressive control problem reduces to a version of
the reactive synthesis problem [29], [30] that is extended
to admit uncontrollable events [23], and unified to subsume
finite reactive behavior [31]. This resultant reactive synthesis

problem may be efficiently solved by adapting a two-player
game approach [29], [32]. However, it entails a formal
investigation and is, in any case, beyond the scope of this
paper.

4) TOWARDS COMPUTER-ALGORITHMIC SYNTHESIS IN
FUTURE WORK
Finally, the research direction pursued in this paper and its
predecessor [5] is relatively new; not unexpectedly, this paper
lags the related literature in algorithmic complexity studies,
among others. Certainly, making the LTL control synthesis
method (2) computer-algorithmic (or automated) – fully
or partially, to help construct supremal marker-controllable
formulas which are satisfiable, is a challenging subject for
future research; so is making the method’s generalization
to specification pair (P,M × N ) automated. Already, the
complexity of satisfiability of propositional LTL in finite
state DES’s is PSPACE-complete, as inferred from [14].
Synthesis complexity is thus expected to be analyzed only
for interesting problem subclasses of practical interest in
a future comparative study with existing related research.
The synthesis efforts include deriving axiomatic modeling
constraints due to the natural dynamics and structure of a
givenDES for logic simplification purposes, and constructing
the exact delimiting safety-closure formula in compact form
for a given specification pair.

VII. CONCLUSION
This paper has presented an existence characterization of
supremal marker-controllable safety formula for fair DES’s.
This new LTL characterization result of Corollary 1 should
be of theoretical interest, and lends itself to an algebraic
syntax-based framework for transparent control synthesis in
the ‘regular’ case of finite state DES’s and specification pairs
given by decidable LTL formulas. Future research of interest
includes finding subclasses of infinite state DES’s for which
{Kj} (2) converges, extending the main synthesis results of
Theorems 1 and 2.

In conclusion, DES’s and their controls span a wide
range of modern engineering systems that are human-
designed. It is thus advantageous to develop a mathematical
control-theoretic framework supporting human readable
specification and transparent control synthesis in the same
natural-language motivated algebra. Together with the pre-
decessor paper [5], this paper is a step in this direction, for
fair DES’s and marker-progressive control readily extendible
to general-progressive control in the algebra of canonical
LTL [6]. Importantly, this line of research has given new
insights into supervisory control, and provided the basis for
further progress in the field.

Looking ahead, on the horizons are no doubt new unique
opportunities in DES control theory research. Anchoring on
the well-organized hierarchy of canonical classes of LTL
formulas [6], [9], the goal (and hope) is to continue the
high-level andmore structured control-theoretic development

VOLUME 10, 2022 66319



K. T. Seow: Supremal Marker-Controllable Subformula of Given Canonical Temporal-Safety Formula

in future research endeavors, bringing new control-theoretic
findings on board in the process.

REFERENCES
[1] P. J. Ramadge and W. M. Wonham, ‘‘Supervisory control of a class

of discrete event processes,’’ SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, Jul. 1987.

[2] W. M. Wonham and P. J. Ramadge, ‘‘On the supremal controllable
sublanguage of a given language,’’ SIAM J. Control Optim., vol. 25, no. 3,
pp. 637–659, 1987.

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
3rd ed. Cham, Switzerland: Springer, 2021.

[4] U.-H. Kim and J.-H. Kim, ‘‘A stabilized feedback episodic memory
(SF-EM) and home service provision framework for robot and IoT
collaboration,’’ IEEE Trans. Cybern., vol. 50, no. 5, pp. 2110–2123,
May 2020.

[5] K. T. Seow, ‘‘Supervisory control of fair discrete-event systems: A
canonical temporal logic foundation,’’ IEEE Trans. Autom. Control,
vol. 66, no. 11, pp. 5269–5282, Nov. 2021.

[6] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems: Specification. New York, NY, USA: Springer-Verlag, 1992.

[7] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, ‘‘Multitasking
supervisory control of discrete-event systems,’’ Discrete Event Dyn. Syst.,
vol. 15, pp. 375–395, Oct. 2005.

[8] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems, A. Isidori, J. H. van Schuppen, E. D. Sontag, and M. Krstic, Eds.
Cham, Switzerland: Springer, 2019.

[9] Z. Manna and A. Pnueli, ‘‘Completing the temporal picture,’’ Theor.
Comput. Sci., vol. 83, no. 1, pp. 97–130, Jun. 1991.

[10] B. Jonsson and T. Yih-Kuen, ‘‘Assumption/guarantee specifications in
linear-time temporal logic,’’ Theor. Comput. Sci., vol. 167, nos. 1–2,
pp. 47–72, 1996.

[11] G. Petric Maretić, M. Torabi Dashti, and D. Basin, ‘‘LTL is closed under
topological closure,’’ Inf. Process. Lett., vol. 114, no. 8, pp. 408–413,
Aug. 2014.

[12] N. Piterman and A. Pnueli, ‘‘Temporal logic and fair discrete systems,’’ in
Handbook of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith,
and R. Bloem, Eds. Cham, Switzerland: Springer, 2018, pp. 27–73.

[13] I. Hodkinson, F. Wolter, and M. Zakharyaschev, ‘‘Decidable
fragments of first-order temporal logics,’’ Ann. Pure Appl. Log.,
vol. 106, nos. 1–3, pp. 85–134, Dec. 2000. [Online]. Available:
https://www.sciencedirect.com/journal/annals-of-pure-and-applied-
logic/vol/106/issue/1

[14] A. P. Sistla and E. M. Clarke, ‘‘The complexity of propositional linear
temporal logics,’’ J. ACM, vol. 32, no. 3, pp. 733–749, Jul. 1985.

[15] I. Hodkinson, ‘‘Monodic packed fragment with equality is decidable,’’
Studia Logica, vol. 72, no. 2, pp. 185–197, 2002.

[16] K. T. Seow, ‘‘Syntax-based synthesis for temporal-safety supervision,’’
Automatica, vol. 41, no. 11, pp. 1965–1972, Nov. 2005.

[17] K. T. Seow and R. Devanathan, ‘‘A temporal logic approach to discrete
event control for the safety canonical class,’’ Syst. Control Lett., vol. 28,
no. 4, pp. 205–217, Aug. 1996.

[18] P. J. Ramadge, ‘‘Some tractable supervisory control problems for discrete-
event systems modeled by Büchi automata,’’ IEEE Trans. Autom. Control,
vol. 34, no. 1, pp. 10–19, Jan. 1989.

[19] J. G. Thistle and W. M. Wonham, ‘‘Supervision of infinite behavior
of discrete-event systems,’’ SIAM J. Control Optim., vol. 32, no. 4,
pp. 1098–1113, Jul. 1994.

[20] D. Gabbay, ‘‘The declarative past and imperative future: Executable
temporal logic for interactive systems,’’ in Temporal Logic in Specification
(Lecture Notes in Computer Science), vol. 398, B. Banieqbal, H. Barringer,
and A. Pnueli, Eds. Berlin, Germany: Springer-Verlag, 1989, pp. 409–448.

[21] J. Esparza, J. Křetínský, and S. Sickert, ‘‘A unified translation of linear
temporal logic to ω-automata,’’ J. ACM, vol. 67, no. 6, p. 33, 2020.

[22] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[23] A.-K. Schmuck, T. Moor, and R. Majumdar, ‘‘On the relation between
reactive synthesis and supervisory control of non-terminating processes,’’
Discrete Event Dyn. Syst., vol. 30, no. 1, pp. 81–124, Mar. 2020.

[24] J. G. Thistle, ‘‘On control of systems modelled as deterministic rabin
automata,’’ Discrete Event Dyn. Systems: Theory Appl., vol. 5, no. 4,
pp. 357–381, Sep. 1995.

[25] J. G. Thistle and R. P. Malhamé, ‘‘Control of ω-automata under state
fairness assumptions,’’ Syst. Control Lett., vol. 33, no. 4, pp. 265–274,
Apr. 1998.

[26] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Reading, MA, USA: Addison-Wesley, 1979.

[27] T.Moor, C. Baier, T.-S. Yoo, F. Lin, and S. Lafortune, ‘‘On the computation
of supremal sublanguages relevant to supervisory control,’’ in Proc. 11th
Int. Workshop Discrete Event Syst., Guadalajara, Mexico, Oct. 2012,
pp. 175–180.

[28] D. Gries and F. B. Schneider, A Logical Approach to Discrete
Math. Berlin, Germany: Springer-Verlag, 1993. [Online]. Available:
https://www.cs.cornell.edu/gries/Logic/intro.html

[29] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar, ‘‘Synthesis
of reactive(1) designs,’’ J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938,
May 2012.

[30] R. Bloem, R. Ehlers, S. Jacobs, and R. Könighofer, ‘‘How to handle
assumptions in synthesis,’’ Proc. Electron. Theor. Comput. Sci., 3rd
Workshop Synth. (SYNT), Vienna, Austria, vol. 157, Jul. 2014, pp. 34–50.

[31] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi, ‘‘Supervisory control
and reactive synthesis: A comparative introduction,’’ Discrete Event Dyn.
Syst., vol. 27, no. 2, pp. 209–260, Jun. 2017.

[32] R. Majumdar, N. Piterman, and A.-K. Schmuck, ‘‘Environmentally-
friendly GR(1) synthesis,’’ in Tools and Algorithms for the Construction
and Analysis of Systems (Lecture Notes in Computer Science), vol. 11428,
T. Vojnar and L. Zhang, Eds. Cham, Switzerland: Springer, 2019,
pp. 229–246.

KIAM TIAN SEOW (Senior Member, IEEE)
received the B.Eng. degree (Hons.) in electrical
engineering from the National University of Sin-
gapore, Singapore, in 1990, and the M.Eng. and
Ph.D. degrees in electrical and computer engi-
neering from Nanyang Technological University
(NTU), Singapore, in 1993 and 1998, respectively.

He was a Full-Time Faculty Member with the
School of Computer Science and Engineering,
NTU, from 2003 to 2014, where he was anAdjunct

Associate Professor, from 2014 to 2016. He has held visiting research
appointments with the Systems Control Group, University of Toronto,
Toronto, ON, Canada, in 1997; the School of Electrical Engineering, KAIST,
Daejeon, South Korea, in 2002; the Nippon Telegraph and Telephone
Corporation (NTT) Communication Science Laboratories, Kyoto, Japan,
in 2003; and the Institute of Information Science, Academia Sinica, Taipei,
Taiwan, in 2005. Since 2014, he has been a Visiting Professor with the Robot
Intelligence Technology Laboratory, KAIST. He has authored or coauthored
over 60 articles in refereed journals and conference proceedings, and
coauthored the monograph ‘‘Soccer Robotics’’ (Heidelberg: STAR Series,
Springer Verlag, 2004). His current research interests include modeling,
control design, and applications of discrete-event, and agent systems.

Dr. Seow was an Associate Editor of the IEEE TRANSACTIONS ON

AUTOMATION SCIENCE AND ENGINEERING, from 2009 to 2013, and the IEEE
TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS-PART A: SYSTEMS AND

HUMANS, from 2010 to 2012. He has been an Associate Editor of the IEEE
TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS, since 2013.

66320 VOLUME 10, 2022


