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ABSTRACT A full multispan two-degree-of-freedom (2-DOF) iced covered transmission line model is
presented. Taking multispan conductors as the research object, based on the Hamiltonian principle, a non-
linear galloping model of multispan conductors considering the influence of insulator strings is established,
and its galloping equation is derived. Based on the theoretical formula, the modes and frequencies in-plane
and out-of-plane of the multispan conductor plane were obtained. After the partial differential equation
was transformed into an ordinary differential equation by the Galerkin discrete method, the multiple
scale method was used to solve the dynamic response of the multispan conductors. Through numerical
calculations, this study is the first to systematically analyze the effects of parameters such as span number,
span length, and tension on the in-plane and out-of-plane motion characteristics of multi-span conductors
from a theoretical perspective. The research results in this paper have certain reference value for preventing
multispan conductor galloping and interphase flashover.

INDEX TERMS Iced covered transmission lines, mode, multispan, natural frequency, nonlinear galloping.

I. INTRODUCTION
The galloping of the ice covered conductors will cause hard-
ware wear and damage transmission lines, seriously hin-
dering the normal operation of the line and bringing huge
losses to the national economy [1]. The investigation of ice
covered conductor galloping has important practical engi-
neering value for the development of galloping prevention
and galloping suppression technology.

According to different types of galloping phenomena,
Den Hartog proposed a vertical galloping mechanism [2],
Nigol proposed a torsional galloping mechanism [3], [4], and
Yu proposed an eccentric inertial couplingmechanism [5], [6]
on the basis of the former. These three galloping mechanisms
can explain the causes of galloping well, so it is generally
accepted. On this basis, scholars from all over the world
have put forward more galloping models of iced covered
conductors. The main research methods include experiments,
theoretical derivations and finite element methods. The aero-
dynamic characteristics of conductors are the premise of
research on galloping [7]. The wind tunnel experiment
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conducted in the literature [8] considered the aerodynamic
parameters of single conductors at different wind speeds.
In the wind tunnel experiment conducted in reference [9],
the influence of turbulence was added to measure the aero-
dynamic parameters of single span conductors with different
ice-covered shapes. In the wind tunnel experiment described
in the literature [10], the aerodynamic coefficients of each
subconductor of the four-split conductors were measured.
The study found that the wake effect had a great influence
on the aerodynamic characteristics. The conductor mode and
frequency are the keys to the theoretical study of ice covered
conductor galloping. Reference [11] proposed the theory of
linear free vibration of suspension cable with a small sag,
and the normal symmetric mode of cable depends on a
dimensionless parameter. Reference [12] extends the theory
of suspension cables to stay cables. Reference [13] revises the
formula of mode and frequency of stay cables proposed by
Irvine, considering the influence of cable tilt angle on mode
and frequency. According to the observation of extensive field
data, the galloping of the ice-covered conductors is actually
the galloping of the conductors in the tension section, so it
is of great significance to study the galloping characteristics
of the multispan conductors. With the maturity of computer
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FIGURE 1. Multispan conductor model.

software, the finite element method has become an effective
method to study the galloping characteristics of multispan
conductors. This is because theoretical studies have focused
on single-span conductors.

However, the existing single-span conductor theory fails
to consider the influence of the interaction between insulator
strings and conductors, so the galloping characteristics of
multispan conductors cannot be studied. In references [14],
[15], the finite element model of 3-DOF multispan conduc-
tors was established by using a three-node isoparammet-
ric cable element. The study found that the amplitude of
three-span conductors was much greater than that of single-
span conductors, so the interaction between conductors could
not be ignored.

A review of the research of the above scholars shows that
few scholars have adopted the theoretical derivation method
to study the galloping of multispan conductors at present.
Reference [16] carried out a simple theoretical study on
parallel length multispan conductors and believed that only
the mode and frequency of the conductors could be obtained
before the theoretical study onmultispan conductor galloping
could be carried out. Reference [17] established two indepen-
dent coordinate systems to focus on the frequency and mode
of the two-span conductors but ignored the axial motion of
the conductors, and the dynamic tension changes caused by
galloping cannot be ignored. Reference [18] considered the
oscillating problem of insulators and the axial movement of
multispan conductors and proposed the theoretical formula
for calculating the frequency and mode of multispan conduc-
tors for the first time.

Based on the literature [18], the galloping characteristics
of multispan conductors are theoretically studied for the first
time. A simplified galloping model of multispan conductors
considering the influence of insulators is established, and
its corresponding galloping equation is derived. The fourth-
order Runge–Kutta method was used to solve the equation
of galloping and compared with the finite element numerical
simulation results and multiscale method of reference [14]
to verify the rationality of the model. The calculation effi-
ciency of the multispan transmission line galloping calcula-
tion method proposed in this paper is higher than that of the
finite element method, and considering the nonlinear effects
of transmission lines, it is more reasonable than methods
found in the literature [14].

According to the calculation method proposed in this
paper, the effects of parameters such as span number, span

length and tension on the galloping characteristics of multi-
span conductors are systematically analyzed for the first time
from a theoretical point of view.

II. THE EQUATION OF MOTION OF ICED COVERED
CONTINUOUS CONDUCTORS
A simplified mechanical model of iced covered conduc-
tors hinged at both ends without a height difference was
established. The Cartesian coordinate system A-x-y-z was
established with the left suspension point as the origin. The
connection between the two hinged points was the x-axis,
the positive direction of the y-axis was perpendicular to the
downward x-axis, and the positive direction of the z-axis
was perpendicular to the plane determined by x and y. The
configuration of continuous span iced covered conductors can
be divided into two types, namely, the static configuration
under the natural state represented by the dotted line and the
dynamic configuration under the wind load represented by
the solid line, as shown in Fig. 1.

In Fig. 1, x, y, and z represent static displacement, and u1,
u2, and u3 represent dynamic displacement. The displacement
in the y direction is vertical vibration, and the displacement
in the z direction is horizontal vibration. li is the length of the
i th span conductor, di is the sag of the i th span conductor,
and the subscript i represents the i th span conductor.

To simplify the calculation, the following assumptions are
made according to the actual situation of the transmission
lines.

(1) Since the span is much larger than the diameter of
the conductors, the bending stiffness and shear stiffness of the
conductors are ignored. Since the axial displacement of the
conductors is much smaller than the lateral displacement and
the longitudinal vibration frequency is much higher than the
transverse vibration frequency, the longitudinal displacement
of the conductors is ignored.

(2) Assuming the sag ratio of any span conductor
di/li <1/8, the parabolic configuration can be used to describe
the static configuration of the conductors. The static config-
uration yi of any span conductor can be expressed as:

yi =
ql2i
2H

(
x
li
− (

x
li
)2) (1)

In Equation (1), q is the weight of the conductors per
unit length, and H is the static horizontal tension of the
conductors. The initial horizontal tension of each spanning
conductor is considered to be equal.
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(3) Assuming that the ice is evenly distributed on the con-
ductors, the influence of sectional eccentricity on galloping
is not considered.

(4) The interaction between the tower and conductors is
ignored.

The vibration equation of any span conductor can be
obtained by the Hamiltonian variational principle:∫ t

t0
δkvdt −

∫ t

t0
δ
∏

dt +
∫ t

t0
δWdt = 0 (2)

In Equation (2), δ represents the first-order variation, kv

represents the kinetic energy, 5 represents the potential
energy, and W represents the work done by gravity, damping
force and external force. The expressions of kinetic energy
and potential energy are as follows:{

kv =
∫ li
0

1
2m(u̇

2
1 + u̇

2
2 + u̇

2
3)dx∏

=
∫ li
0 (Hε + 1

2EAε
2)dx + 1

2

∫ li
0 GIP(

∂θ
∂x )

2dx
(3)

In Equation (3), (.) represents the first-order derivative of
time, m is the mass per unit length of conductors, EA is the
tensile stiffness, GIp is the torsional stiffness of conductor in
the axial direction, θ is the torsional angle of conductor in
the axial direction, ε is the total dynamic strain in the tension
section, and its expression is as follows:

ε =

N∑
i=1

∫ li
0 [ dydx

∂u2
∂x +

1
2 (
∂u2
∂x )

2
+

1
2 (
∂u3
∂x )

2]dx

le
(4)

In Equation (4),N is the number of spans, and le is the total
length of the conductors in a tension section.

According to Equation (2), the nonlinear vibration equa-
tions of any span conductor of the multispan iced covered
conductors are obtained:

∂
∂x {(

dy
dx +

∂u2
∂x )

EA
le

(
N∑
i=1

∫ li
0

dy
dx
∂u2
∂x +

1
2 ((

∂u2
∂x )

2
+ ( ∂u3

∂x )
2)dx)+ H ∂u2

∂x }

= mü2 + µ2u̇2 − py
∂
∂x {(

∂u3
∂x )

EA
le

(
N∑
i=1

(
∫ li
0

dy
dx
∂u2
∂x +

1
2 ((

∂u2
∂x )

2
+ ( ∂u3

∂x )
2)dx)+ H ∂u3

∂x }

= mü3 + µ3u̇3 − pz

0 = J θ̈ − GIP ∂
2θ
∂x + µθ θ̇ − pθ

(5)

In Equation (5), µ2 and µ3 are damping coefficients of in-
plane and out-of-plane, respectively, and py and pz are aero-
dynamic forces of in-plane and out-of-plane, respectively.

The transverse and torsional displacements are represented
through separate variables as follows: The product of ψyj(x),
ψzj(x)and mode functions qyj(t), qzj(t) is separated by the mode

truncation method.

u2(x, t) =
∞∑
j=1
ψyj(x)qyj(t)

u3(x, t) =
∞∑
j=1
ψzj(x)qzj(t)

uθ (x, t) =
∞∑
j=1
ψθ j(x)qθ j(t)

(6)

In Equation (6), the subscript j represents the mode order,
ψyj(x) is the in-plane modal function, ψzj(x) is the out-plane
modal function, ψθ j(x) is the tortional modal function, and
qyj(t), qzj(t) and qθ j(t) are the amplitudes of the discretizing
modal functions.

The displacement function (6) is substituted into the non-
linear vibration Equation (5) of the iced covered conductors,
and the nonlinear dynamic partial differential Equation (5)
are transformed into nonlinear dynamic ordinary differential
equations by the Galerkin method as follows:

b1q̈yj + b2q̇yj + b3qyj + b4q2yj + b5q
2
zj + b6q

3
yj

+b7qyjq2zj = ppy

c1q̈zj + c2q̇zj + c3qzj + c4qyjqzj + c5q2yjqzj

+c6q3zj = ppz

d1q̈θ j + d2q̇θ j + d3qθ j = ppθ

(7)

See the appendix for the expressions of coefficients in
Equation (7).

III. THEORETICAL FORMULAE FOR MODES AND
FREQUENCIES OF MULTISPAN CONDUCTORS
In this paper, the Galerkin method is adopted to trans-
form the partial differential Equation (5) of the galloping
transmission line into the ordinary differential Equation (7).
However, the specific expression of the mode is not yet
known, so Equation(7) cannot be solved. At present, the
method to solve the conductor mode is divided into the finite
element method and the theoretical method, but the finite ele-
ment method using discrete elements to solve the conductor
mode is not very accurate. In reference [18], in-plane and
out-of-plane modes and frequencies of arbitrary multispan
conductors were obtained based on the dynamic stiffness
theory, and it was pointed out that the calculation method of
anti-symmetric modes of multispan conductors was consis-
tent with the calculation method of anti-symmetric modes of
Irvine single span conductors. For symmetric modes, themul-
tispan conductors are decomposed into several substructures,
and the shape function of each substructure corresponds to
the modal function of a single span conductor. This paper
uses the mode superposition method to study the gallop-
ing characteristics of multispan conductors on the basis of
reference [18].
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A. IN-PLANE MODES AND FREQUENCIES IN
MULTISPAN CONDUCTORS
Equation (7) is also suitable for solving single span con-
ductors. According to reference [11], the symmetrical mode
and frequency formula of single-span conductors can be
obtained:

ψy=1-tan(
ω̄

2
)sin

ω̄

l
x-cos

ω̄

l
x (8.a)

1− (
λ

ω̄
)2(1− tan(

ω̄

2
)
2
ω̄
) = 0 (8.b)

In Equation (8.a), ψy is the symmetric mode of the single
span conductors, ω̄ =

√
m/Hωl, and ω̄ is the dimensionless

frequency, which can be obtained by solving Equation (8.b).
In Equation (8.b), λ = (ql/H )

√
EA/H .

In reference [18], the in-plane modes and frequencies of
multispan conductors are derived based on Irvine’s single
span suspension cable vibration theory. The in-plane mode
expression in any N -span conductor plane is as follows:

ψyij =



αi1j sin(
ω̄i1jx1
2l1

) sin(
ω̄i1j
2 −

ω̄i1jx1
2l1

)/ sin2(
ω̄ikj
4 )

(0 < x1 < l1)

αi2j sin(
ω̄i2jx2
2l2

) sin(
ω̄i2j
2 −

ω̄i2jx2
2l2

)/ sin2(
ω̄ikj
4 )

(0 < x2 < l2)
· · ·

αiNj sin(
ω̄iNjxN
2lN

) sin(
ω̄iNj
2 −

ω̄iNjxN
2lN

)/ sin2(
ω̄ikj
4 )

(0 < xN < lN )
(9)

The corresponding frequency is obtained by:
N∑
i=1

tan(
ω̄ikj

2
) =

1
2
(1− (

ω̄i1j

λ21

)2)
N∑
i=1

ω̄ikj (10)

In Equation (9), the subscript i of ψyij indicates that the
mode is dominated by the i-th span, and the subscript j
represents the number of mode half waves of a single span
conductor. ω̄ikj is the dimensionless frequency obtained by
the parameter of the i-th span conductor. The coefficient
αiNj = cos(ω̄ikj/2)/ cos(ω̄

i
Nj/2) is used to form the mode

vectors into a normalized set of mode shapes.

B. OUT-OF-PLANE MODES AND FREQUENCIES OF
MULTISPAN CONDUCTORS
The formulas for solving the out-of-plane mode and fre-
quency of the multispan conductors are related to the span
number. Since this paper mainly studies the galloping of mul-
tispan conductors with two or three spans, only the formulas
of these two cases are listed. The mechanical model of the
two-span conductors is proposed (see Fig. 2).

According to substructure theory, reference [18] proposed
the out-of-plane mode expression and frequency calculation
formula of two-span conductors:{
ψz1 = 1z sin(

ω̄1x
l1

)/ sin(ω̄1)(0 < x < l1)

ψz2 = 1z cos(
ω̄2x
l2

)−1z̄ cot(ω̄2) sin(
ω̄2x
l2

)(0 < x < l2)
(11)

FIGURE 2. Mechanical model of two-span conductors.

Ha
ω̄1

l1
[cot(ω̄1)+ cot(ω̄2)]+

l1 + l2
2

q−
Jω2

a
= 0

(12)

In Equation (11),1z is an arbitrary value. As the rotational
inertia J of the insulator in Equation (12) is small, Jω2/a
can be ignored for simplified calculation and solution. The
mechanical model of the three-span conductors is shown
in Fig. 3.

IV. AERODYNAMIC LOAD OF ICED
COVERED CONDUCTORS
A. ESTABLISH AERODYNAMIC LOAD MODEL
Different shapes of iced covered conductors have different
aerodynamic characteristics in the air flow. According to
actual observations, in an external environment with low tem-
perature and little rain, crescent-shaped ice is easily formed
on the surface of the conductors, which is a common ice type
in the galloping of iced covered conductors [19].

Based on the galloping mechanism of Nigol, this paper
establishes a galloping model of crescent-shaped iced cov-
ered conductors, studies the effect of lift, resistance and
torque on the conductors under wind load, and makes the
following assumptions.

(1) The steady wind blows from left to right along the
z-axis horizontally.

(2) The thickness and shape remain constant along the
conductors.

(3) Based on quasi-steady theory, the influence of
conductor motion on aerodynamic coefficients is not
considered [20].

In Fig. 4, Pd and Pl are the drag force and lift force for
the iced covered conductor in stable wind. The Pd direc-
tion is consistent with the relative wind direction, and the
Pldirection is orthogonal to the Pd direction.U is the average
wind speed,Ur is the relative wind speed, α is the wind attack
angle, and α0 is the initial wind attack angle.
Obtaining the aerodynamic load of the iced covered con-

ductors is important for studying galloping and its preven-
tion and control technology. In this paper, the dimensionless
aerodynamic coefficients of the iced covered conductors are
defined according to aerodynamic theory as follows:

Cy =
2py
ρU2D

,Cz =
2pz
ρU2D

,Cθ =
2M

ρU2D2 (13)
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FIGURE 3. Mechanical model of three-span conductors.

FIGURE 4. Cross section of iced covered conductors.

In Equation (13),Cy,Cz andCθ are load coefficients, py, pz
and M are the lift force, resistance and torque, respectively,
ρ is the density of air, and D is the diameter of the bare
conductors.

When the average wind blows horizontally toward the iced
covered conductors, an initial velocity will be generated due
to an initial disturbance on the y-axis of the iced covered
conductors, and then there is an angle between the relative
wind speed and the real wind speed. The change in the angle
of attack during the galloping of crescent-shaped iced covered
conductors can be expressed as:

α = α0 + θ −
u̇2 + 1

2 θ̇D

U
≈ θ −

u̇2
U

(14)

In Equation (14), θ is the dynamic angle.

B. AERODYNAMIC COEFFICIENT
The third-order Taylor expansion of Cy, Cz, and Cθ can be
obtained: 

Cy = λ1α + λ2α2 + λ3α3

Cz = λ4α + λ5α2 + λ6α3

Cθ = λ7α + λ8α2 + λ9α3

(15)

See the appendix for the expressions of coefficients in
Equation (15).

According to reference [14], the aerodynamic coefficient
can be obtained at wind speed U = 8.5 m/s and wind attack
angle α =180◦ as follows:

Cy = −2.0821α − 0.0288α2 + 5.0779α3

Cz = −0.6644α − 0.2196α2 + 0.3095α3

Cθ = 0.1874α + 0.6924α2 + 0.0323α3

(16)

Substitute Equation (14) into Equation (15) to obtain the
lift and drag in the y and z directions:

py = 1
2ρU

2D[λ1(−
u̇2
U )+ λ2(−

u̇2
U )2 + λ3(−

u̇2
U )3]

pz = 1
2ρU

2D[λ4(−
u̇2
U )+ λ5(−

u̇2
U )2 + λ6(−

u̇2
U )3]

M = 1
2ρU

2D2[λ7(−
u̇2
U )+ λ8(−

u̇2
U )2 + λ9(−

u̇2
U )3]

(17)

Substitute Equation (17) into Equation (7) to obtain the
ordinary differential equations of the coupled vibration of
three degrees of freedom:

b1q̈2 + b̄2q̇2 + b3q2 + b4q22 + b5q
2
3 + b6q

3
2

+b7q2q23 + b9q̇
2
2 + b10q̇

3
2 = 0

c1q̈3 + c2q̇3 + c3q3 + c4q2q3 + c5q22q3
+c6q33 + c8q̇2 + c9q̇

2
2 + c10q̇

3
2 = 0

d1q̈θ + d2q̇θ + d3qθ + d4q̇2 + d5q̇22 + d6q̇
3
2 = 0

(18)

The expressions of coefficients in Equation (18) are given
in the Appendix.

V. MULTIPLE SCALE METHOD FOR SOLVING
NONLINEAR EQUATIONS
The multiple scale method is one of the most important
methods to study nonlinear problems [21]. It is widely used
not only for strict periodic motion but also for attenuated
vibration of dissipative systems and many other occasions.
The galloping problem of iced covered conductors belongs
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to a weak nonlinear vibration problem. For the analysis
of weak nonlinear problems, the steady-state response and
transient response can be calculated by the multiple scale
method.

Before solving nonlinear differential equations with the
multiple scale method, this paper simply changes the form
of the two-degree-of-freedom nonlinear coupled vibration
Equation (18) as follows:

q̈y + b′1q̇y + ω
2
yqy + b

′

2q
2
y + b

′

3q
2
z + b

′

4q
3
y+

b′5qyq
2
z + b

′

7q̇
2
y + b

′

8q̇
3
y = 0

q̈z + c′1q̇z + ω
2
z qz + c

′

2qyqz + c
′

3q
2
yqz+

c′4q
3
z + c

′

6q̇y + c
′

7q̇
2
y + c

′

8q̇
3
y = 0

(19)

See the appendix for the expressions of coefficients in
Equation (19).

The nonlinear term in the finishing Equation (20) can be
obtained as follows:

q̈y + ω2
yqy + ε(b

′

1q̇y + b
′

2q
2
y + b

′

3q
2
z + b

′

4q
3
y

+b′5qyq
2
z + b

′

7q̇
2
y + b

′

8q̇
3
y) = 0

q̈z + ω2
z qz + ε(c

′

1q̇z + c
′

2qyqz + c
′

3q
2
yqz

+c′4q
3
z + c

′

6q̇y + c
′

7q̇
2
y + c

′

8q̇
3
y) = 0

(20)

In Equation (20), qy and qz represent the displacement in
the y-direction and z-direction, respectively. ωy and ωz are
the circular frequencies in the y-direction and z-direction,
respectively. ε is a small dimensionless parameter.
The displacement can be expressed as the following

function:{
qy(t) = qy0(T0,T1)+ εqy1(T0,T1)+ ε2 · · ·
qz(t) = qz0(T0,T1)+ εqz1(T0,T1)+ ε2 · · ·

(21)

The variables T0 = t and T1 = εt of the time scale are
introduced into Equation (21).

The velocity and acceleration of iced covered conductors
can be obtained by taking the first-order and second-order
derivatives of Equation (21):

q̇y = D0qy0 + ε(D1qy0 + D0qy1),
q̇z = D0qz0 + ε(D1qz0 + D0qz1)
q̈y = D0qy0 + ε(2D0D1qy0 + D2

0qy1)
q̈z = D0qz0 + ε(2D0D1qz0 + D2

0qz1)
(22)

Substituting Equation (22) into Equation (19) and equating
the coefficients of the similar terms of ε, we can obtain the
following set of linear differential equations:

ε0 :

{
D2
0qy0 + ω

2
yqy0 = 0

D2
0qz0 + ω

2
z qz0 = 0

(23)

ε1 :



D2
0qy1 + ω

2
yqy1 = −2D0D1qy0 + b′1D0qy0

+b′2q
2
y0 + b

′

3q
2
z0 + b

′

4q
3
y0 + b

′

5qy0q
2
z0

+b′7(D0qy0)2 + b′8(D0qy0)3

D2
0qz1 + ω

2
z qz1 = −2D0D1qz0 + c′1D0qz0

+c′2qy0qz0 + c′3q
2
y0qz0 + c′4q

3
z0+

c′6(D0qy0)+ c′7(D0qy0)2 + c′8(D0qy0)3

(24)

The periodic solution adopted as the solution to
Equation(23) is as follows:{

qy0 = Ay(T1)eiωyT0 + cc
qz0 = Az(T1)eiωzT0 + cc

(25)

In Equation (25), i is an imaginary number and cc denotes
the complex conjugates ofAy(T1)eiωyT0 , Az(T1)eiωzT0 . Then,
substitute Equation (25) into the system of equations of
order ε1:

D2
0qy1 + ω

2
yqy1 = −2iωyD1AyeiωyT0 + b′1iωyAye

iωyT0

+b′2(A
2
ye

2iωyT0 + 2AyĀy)+ b′3(A
2
z e

2iωzT0 + AzĀz)
+b′4(A

3
ye

3iωyT0 + 3A2y Āye
iωyT0 )+ b′5(AyA

2
z e
i(2ωz+ωy)T0

+2AyAzĀzeiωyT0 + AyĀ2z e
i(−2ωz+ωy)T0 )+ b′7(−ω

2
y

A2ye
2iωyT0 + 2ω2

yAyĀy)+ b
′

8(−iω
3
yA

3
ye

3iωyT0

+3iω3
yA

2
y Āye

iωyT0 )+ cc
D2
0qz1 + ω

2
z qz1 = −2iωyD1AzeiωzT0 + c′1iωzAze

iωzT0

+c′2(AyAze
i(ωz+ωy)T0 + AyĀzei(ωy−ωz)T0 )+ c′3(Az

A2ye
i(2ωy+ωz)T0 + 2AzAyĀyeiωzT0 + AzĀ2ye

i(−2ωy+ωz)T0 )
+c′4(A

3
z e

3iωzT0 + 3A2z Āze
iωzT0 )+ c′6iωyAye

iωyT0+

c′7(−ω
2
yA

2
ye

2iωyT0 + 2ω2
yAyĀy)+ c

′

8(−iω
3
y

A3ye
3iωyT0 + 3iω3

yA
2
y Āye

iωyT0 )+ cc
(26)

Eliminating the secular terms in qy1 and qz1 gives:
(−2iωyD1Ay + b′1iωyAy + b

′

43A
2
y Āy+

b′52AyAzĀz + b
′

83iω
3
yA

2
y Āy)e

iωyT0 = 0
(−2iωyD1Az + c′1iωzAz + c

′

32AzAyĀy+
c′43A

2
z Āz)e

iωzT0 = 0
(27)

Assume that Ay(T1) and Az(T1) are expressed as follows:{
Ay(T1) = 1

2ay(t)e
iθy(t)

Az(T1) = 1
2az(t)e

iθz(t)
(28)

In Equation (28), ay and az are the amplitudes ofgalloping,
and θy and θz are the phases.

We substitute Equation (28) into Equation (27) and sepa-
rate the real and imaginary parts to obtain:

ȧy = 1
2ayb

′

1 +
3
8a

3
yω

2
yb
′

8

θ̇y = −( 3
8ωy

b′4a
2
y +

1
4ωy

b′5a
2
z )

ȧz = 1
2azc

′

1

θ̇z = −( 1
4ωz

c′3a
2
y +

3
8ωz

c′4a
2
z )

(29)
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If the right side of each Equation (29) is zero, the steady-
state amplitude of the iced covered conductors can be
obtained.

Integrating Equation (29) with time yields:

a =
1√

( 1
a20
+

n
p )e
−2pt − n

p

θ = {−
1

8ωy
(b̄2 − b2)2 −

b̄2 − b2
4ωy

µy+

[(−
5

12ω3
y
b′22 +

3
8ωy

b′4)−
1

2ω2
y
b′2b
′

8]
p

pe−2pt − n
}t

(30)

In Equation (30), p = − b̄2−b2
2 −

µy
2 ; n = −

3b′8
8 ω

2
y , a0 is

the initial value.
The approximate solutions of themultiple scales method of

the solution form of the first-order small parameter (T0 and
T1) are [22]:

qy = a cos(ψ)+ a2[
b′2
6ω2

y
cos(2ψ)−

b′2
2ω2

y
]

+

[
(
b′2

2

48ω4
y
+

b′4
32ω2

y
)a3 cos(3ψ)

+
1

9ω3
y
b′2(b̄2 − b2)a

2 sin(3ψ)

]
(31)

In Equation (31), ψ = ωyt + θ .
Equation (31) is the analytical solution of the conductors.

It is faster to use the analytical solution to obtain the displace-
ment time-history curve of the conductors than the numerical
solution.

VI. NUMERICAL EXAMPLES AND RESULT ANALYSIS
The galloping characteristics of multispan ice-covered con-
ductors are mainly related to the length of span, the initial
tension and the number of spans. When the number of spans
is second or third, the multispan conductor model can accu-
rately reflect the influence of adjacent spans on the overall
galloping of the conductors in a tension section. This paper
studies the galloping characteristics of ice-covered conduc-
tors under changes in these structural parameters. Since it
is very difficult to solve the analytical solution of dynamic
Equation (21) according to the theory of current nonlin-
ear dynamics, in this paper, the fourth-order Runge–Kutta
method is used to solve Equation (21). To verify the accuracy
of the model in this paper, the same structural parameters as
those in reference [14] were selected. The specific physical
parameters of the conductors are shown in Table 1, with
a length of 125 m, an initial tension of 15 kN for single
conductors, and a length of 2.1 m and a weight of 490 N for
each insulator string connected to the conductors.

A. VERIFY THE PROPOSED GALLOPING MODEL
According to actual field observations of galloping, there is
torsional motion in conductor galloping [23], so some studies

add the influence of torsional freedom on conductor galloping
[24], [25], but some studies only establish a two-degree-of-
freedom model [26], [27]. These two studies based on the
Niol galloping mechanism and Den Hartog galloping mech-
anism have been accepted, but increasing the degree of free-
dom will increase the amount of calculation. Therefore, this
paper first carries out numerical simulation of ice-covered
single span conductors (initial tension 15 kN) with 3-DOF
and 2-DOF lower span spacing of 125 m and compares the
influence of different degrees of freedom on the galloping
characteristics of single span conductors.

Equation (8) is used to obtain the modal and frequency
of the single span conductors. The parameters and modal
in Table 1 are put into Equation (19), and the time-history
curves of the displacement of the single span conductors with
3-DOF and 2-DOF can be obtained by using the fourth order
Runge–Kutta method, as shown in Fig. 5.

Fig. 5 shows that the in-plane amplitude of the 3-DOF sin-
glespan conductors is 0.294 m and that of the 2-DOF single-
span conductors is 0.301 m by the fourth order Runge–Kutta
method. The out-of-plane amplitude was 0.009 m for 3-DOF
and 0.009 m for 2-DOF. Therefore, joint torsional degrees of
freedom can reduce the conductor wave amplitude, but with
three degrees of freedom, calculating conductors galloping
for a long time, and the two-degree-offreedom model can
also be a very good reaction adjacent to spans, leading to
multiple lead wave characteristics. The influence of torsion
energy does not occur through the insulator to the adjacent
spans, so this is does not consider the effect of torsion.

The time-history curves of in-plane displacement within
10 s after the single span conductors tend to be stable in the
literature [14]. Fig. 6 shows the calculation results of the finite
element method, the multiscale method and the 2 degrees of
freedom of this paper.

As shown in Fig. 6, the conductor frequency in reference
[13] is 0.70 Hz, and the conductor frequency in this study is
0.68 Hz. The frequencies obtained by these two calculation
methods are very close. However, Desai used finite element
software to establish a single-file model and found that the
in-plane amplitude was approximately 0.2 m [14]. There may
be several reasons for this difference. First, Desai adopted
a modal decomposition method based on linear assump-
tions to solve the dynamic equation, ignoring the geometric
nonlinearity caused by the large galloping of the conduc-
tors, while the Runge–Kutta method was used to calculate
nonlinear problems with higher accuracy. Second, the finite
element method used the damping ratio as a whole mode,
but multiple modes would be excited, and the change in
damping ratio had a great influence on the amplitude. Finally,
some errors may also occur when reading the data of the
time-history curves of single conductor displacements in the
literature [14].

In this study, the in-plane amplitude of the 2-DOF sin-
gle span conductors is 0.288 m by using the multiple scale
method. The results obtained by themultiple scalemethod are
very close to those obtained by the fourth order Runge–Kutta
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TABLE 1. Physical parameters of transmission lines.

FIGURE 5. Displacement time-history curves of single-span conductors
with different degrees of freedom: (a), (c) three degrees of freedom; (b),
(d) two degrees of freedom.

method, which also shows that the results obtained by the
model in this paper are accurate.

B. ANALYSIS OF GALLOPING CHARACTERISTICS OF
SINGLE CONDUCTORS
In this paper, single-span conductors with 100 m span length
and 15 kN initial tension are first selected to study the
difference between single-span conductors and multispan
conductors and the influence of the span number on the
galloping characteristics of the conductors. Other parame-
ters are shown in Table 1. To verify the accuracy of the
theoretical formula calculated in this paper, Abaqus finite
element software was used to establish the corresponding
model to calculate the frequency and mode. A cable element
was used to simulate the cable, and a rod element was used to
simulate the insulator string. The number of grids was 100.
The first three order symmetric modes and frequencies of
the single span conductors plane calculated by theoretical
Equation (8) and finite element software are shown
in Table 2.

Table 2 shows that the results obtained by the two cal-
culation methods are very close, so the conductor model
established by Abaqus in this paper is also accurate. The

results of the first-order in-plane symmetric modal frequency
calculated by the theoretical formula in Table 2 are substituted
into Equation (19), and the displacement time-history curves
of a single-span conductor with a length of 100 m (initial
tension 15 kN) are obtained, as shown in Fig. 7.

Fig. 7 shows that the in-plane amplitude of the single-span
conductors is 0.154 m and the out-of-plane amplitude is 0.
006 m. According to the frequency analysis of the charac-
teristics of in-plane galloping of the single-span conductors,
the frequency is 0.762 Hz before the single-span conductors
tends to be stable and 0.755 Hz after it tends to be stable.
The frequency calculated by the fourth-order Runge–Kutta
method is very close to the first-order frequency of 0.764 Hz
calculated by the finite element method. Therefore, the fre-
quency of the single-span conductors does not change greatly
from the beginning of galloping to stabilizing.

To compare the difference between the galloping char-
acteristics of multispan conductors and single-span con-
ductors after the initial tension increases, the displacement
time-history curves of single-span conductors after the initial
tension gradually increases are given in Fig. 8.

Fig. 8 shows that the amplitude of the single-span conduc-
tors increases first and then decreases with increasing initial
tension.

C. ANALYSIS OF GALLOPING CHARACTERISTICS OF
TWO-SPAN CONDUCTORS
1) EFFECT OF SPAN LENGTH ON THE GALLOPING OF
TWO-SPAN CONDUCTORS WITH UNEQUAL
SPAN LENGTH
In this study, the length of the first-span conductors is kept
constant, and the length of the second-span conductors is
gradually increased to analyze the influence of the length
between adjacent spans on the galloping characteristics of
the two spans. The length of the two conductors is set to
100 m-50 m, 100 m-80 m, 100 m-150 m, and 100 m-200 m,
and the initial tension is 15 kN; see Table 1 for other param-
eters. The frequency and mode of the two-span conductors
obtained by theoretical Equations (10) and (12) and the
Abaqus solution are shown in Table 3.

Table 3 shows that the results of the theoretical solution
and finite element solution are basically the same, and the
existing errors are within a reasonable range, thus prov-
ing the accuracy and precision of the calculation results by
using the theoretical formula. The in-plane and out-of-plane
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FIGURE 6. Displacement time-history curves of single span transmission
lines in the two studies (initial tension is 15 kN, single span length
of 125 m).

TABLE 2. Frequency and mode of 100 m length single span conductors
(initial tension 15 kN).

frequencies of the two-span conductors decrease gradually
when the length between adjacent spans increases grad-
ually, and the frequency of the two-span conductors is
obviously lower than that of the single-span conductors.
The modes drawn using theoretical Equation (9) are shown
in Fig. 9.

Fig. 9 shows that the modal shapes of the first span
conductors are basically the same. With the increase in the
length of the second-span conductors, the amplitude of the
mode of the second-span conductors gradually increases.
Limited by space, this paper only gives the conductor modal
diagram calculated by the finite element method when the
length of the two-span conductors is 100 m-200 m, as shown
in Fig. 10.

Fig. 10 shows that the modal shapes obtained by Abaqus
are basically consistent with Fig. 9, so the modes in Fig. 9 are
also accurate.

Substituting the first-order normalized symmetric modal
frequency in Table 3 into Equation (19), the fourth-order

FIGURE 7. Displacement time-history curves of single span transmission
lines.

FIGURE 8. Displacement time-history curves of single-span conductors
(different initial tensions).

TABLE 3. Frequency of two unequal-pitch conductors with an initial
tension of 15 kN.

Runge–Kutta methodwas used to solve, and the displacement
time-history curves of unequal length two-span conductor
galloping were obtained, as shown in Fig. 11.

Fig. 11 shows that the galloping time of the two-
span conductors tends to stabilize and gradually decrease
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FIGURE 9. Mode diagram of two-span transmission lines with unequal
span lengths.

with increasing length of the second-span conductors.
The in-plane amplitude is 0.841 m in 100 m-50 m,
1.174 m in 100 m-80 m, 1.736 m in 100 m-150 m, and
1.876 m in 100 m-200 m. The amplitude in the plane between
100 m-200 m is 2. 084m by using themultiscale method. The
amplitudes of the multispan conductors obtained by the two
methods are relatively close, so the model for calculating the
two-span conductors in this paper is also accurate.

The amplitude of the two-span conductors with lengths of
100 m-50 m is significantly greater than that of the single-
span conductors with lengths of 100 m. This is because the
energy of the two-span conductors will be transmitted to the
adjacent conductors through the insulator string, resulting in
a greater amplitude. Therefore, it is necessary to study the
galloping of multispan conductors in practical engineering.
In addition, in-plane galloping is mainly the galloping of
multispans conductors [2]. Tomore clearly compare the effect
of increasing the length of adjacent spans on amplitude, the
time-history curves of displacement within 10 s are selected
when the galloping of two-span conductors is stable, as shown
in Fig. 12.

Fig. 12 shows that the amplitude of multiple conductors
with adjacent spans increases with increasing span. Accord-
ing to the single degree of freedom of the wave amplitude
Equation A = 2µ/(

√
3ω0), the greater the conductor cir-

cular frequency is, the smaller the amplitude (where A is
the amplitude, µ is related to wind speed and the conductor
aerodynamic parameter parameters, and ω0 is the circular
frequency of the conductors). These results are consistent
with the conclusion of the formula in this paper.

Studying the galloping trace of ice-covered conductors can
provide an important basis for galloping mechanisms and
antigalloping measures. The galloping traces of the two-span
conductors with unequal span lengths are shown in Fig. 13.

Fig. 13 shows that galloping is mainly in the vertical
direction, and the trajectory is approximately oval. This is

FIGURE 10. Two-span conductor modes obtained by the finite element
method.

FIGURE 11. Displacement time-history curves of two-span transmission
lines with nonequal span length.

consistent with the galloping form described by the gallop-
ing mechanism widely recognized in the current galloping
research field; that is, galloping is a process of gradual for-
mation. At the initial span, the conductors oscillate with a
small amplitude near the equilibrium position. Due to the
accumulation of wind energy and the negative damping of
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FIGURE 12. Displacement time-history curves of two-span transmission
lines with unequal span length (initial tension is 15 kN).

air, the horizontal amplitude gradually decreases. At the same
time, the vertical amplitude increases, forming an ever-larger
elliptic galloping trajectory, which eventually tends to be
stable due to the influence of system damping. This also
proves the correctness of the numerical simulation.

The circular frequency of the single-span conductors is
almost unchanged before and after galloping is stable. Now,
the displacement time-history curves of the two-span conduc-
tors with lengths of 100 m-200 m are selected for 10 s before
and after galloping is stable, as shown in Fig. 14.

Fig. 14 shows that the frequencies of the two-span conduc-
tors before and after galloping tend to be stable are 0. 389 Hz
and 0.449 Hz, respectively. The frequency obtained by using
Abaqus is 0.385 Hz, which is very close to the frequency
obtained by the fourth-order Runge-Kuta method before con-
ductor galloping tends to be stable. However, with increas-
ing conductor galloping time, the frequency will increase
after conductor galloping tends to be stable. This is because
the influence of the nonlinear term causes the in-plane fre-
quency of the two-span conductors to increase when they are
galloping.

2) EFFECT OF SPAN LENGTH ON THE GALLOPING OF
TWO-SPAN CONDUCTORS WITH EQUAL SPAN LENGTH
It is a special case that the length of each conductor in two
spans is the same because the conductor frequency is the
same. In this paper, two-span conductors with equal span
lengths are selected for study. The frequency after the change
in the length of the two-span conductors is shown in Table 4,
and the other parameters remain unchanged.

Table 4 shows that the frequencies of the two-span con-
ductors with equal span lengths are also very accurate.
As the span length of the two-span conductors with equal
span length increases, the frequency gradually decreases.
The modes drawn using theoretical Equation (9) are shown
in Fig. 15.

Fig. 15 shows that when the conductor spacing is equal,
it has the same shape. With the increase in the second

FIGURE 13. Galloping trace of two-span transmission lines with unequal
span length under different spans.

conductor length, there are two downward half waves in the
conductor mode because the sag increases with increasing
length.

Substitute the first-order in-plane symmetric modal fre-
quency results calculated by the theoretical formula in Table 4
into Equation (19) and obtain the time-history curves of the
two-span conductor displacement at different spans (initial
tension 15 kN), as shown in Fig. 16.

Fig. 16 shows that the time when the two-span conductors
with equal length gallops stabilize gradually decreases with
the simultaneous increase in the length between the two con-
ductors. The in-plane amplitude of the two-span conductors
with lengths of 80 m-80 m is 0.878 m, and that of the two-
span conductors with lengths of 100 m-100m is 1.378 m. The
in-plane amplitude of the two-span conductors with lengths of
150 m-150 m is 2.391 m, and that of the two-span conductors
with lengths of 200 m-200 m is 3.466 m.

When the total span of the two-span conductors is 300 m,
the in-plane amplitude of the two conductors increases by
27.45% after the nonequal two-span conductors with dis-
tances of 100 m-200 m are changed into equal two-step
conductors with distances of 150m-150m. Although the total
span distance does not change, the amplitude will continue
to increase when the frequencies of the two conductors are
close.

To more clearly compare the effect of increasing the
conductor spacing on the vertical amplitude, the displace-
ment time-history curves within 10 s are selected when the
two-span conductors with equal span length are galloping
steadily, as shown in Fig. 17.

Fig. 17 shows that the amplitude of the two spans with
equal span length increases with increasing conductor length.
Therefore, regardless of whether the child traverse length is
the same, the amplitude of the two spans will increase when
the length of one of the two spans increases or the length of the
two spans increases simultaneously.
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TABLE 4. Frequency of two-span conductors with equal pitch and initial tension of 15 kN.

FIGURE 14. Displacement time-history curves before and after galloping
stability of two-span transmission lines (two-span length of
100 m -200 m).

FIGURE 15. Mode diagram of two-span transmission lines with equal
span length.

The galloping tracks of the two-span conductors with equal
span lengths are shown in Fig. 18.

Fig. 18 shows that when the length between the conductors
increases simultaneously, the vertical amplitude of the two-
span conductors increases significantly, while the horizontal
amplitude does not change significantly.

3) EFFECT OF INITIAL TENSION ON THE GALLOPING OF
TWO-SPAN CONDUCTORS WITH EQUAL SPAN LENGTH
The mode and frequency of the conductors will also change
after the initial tension of the conductors change. Next, two
kinds of common initial tension of the conductors are selected

FIGURE 16. Displacement time-history curves of two-span transmission
lines with equal span length.

in this paper to study the influence of different initial tensions
on the galloping characteristics of the two-span conductors
with span lengths of 100 m-100 m. The frequencies of the
two-span conductors under the two initial tensions are shown
in Table 5.

Table 5 shows that the results calculated using the theo-
retical formula are accurate. The frequency of the equal-span
two-span conductors increases with increasing initial tension.
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FIGURE 17. Displacement time-history curves of two-span transmission
lines with equal span length (initial tension is 15 kN).

FIGURE 18. Galloping trace of two-span transmission lines with equal
span length under different spans.

The modes drawn using theoretical Formula (9) are shown
in Fig. 19.

Fig. 19 shows that the modal shapes of the two-span con-
ductors with equal length are basically the same, and the
increase in initial tension has little influence on the modal
of the two-span conductors.

Different initial tensions span two displacement time his-
tory curves of the conductors, as shown in Fig. 19, and when
the initial tension is 40 kN and above, the two conductors do
not gallop because when the initial tension increases to more
than 40 kN with a smaller sag, the damping ratio remains
unchanged, causing the aerodynamic damping term to be
positive and unable to absorb wind energy.

Fig. 20 shows that the time for the equal-span two-span
conductors to gallop to stabilize gradually decreases with
increasing initial tension. The amplitude of the two-span
conductors with span lengths of 100 m-100 m (initial tension

TABLE 5. Frequency of two equal-span conductors at different initial
tensions (length between 100 m -100 m).

20 kN) is 1.113 m, and that of the two-span conductors
withspan lengths of 100 m-100 m (initial tension 30 kN)
is 0.680 m. To more clearly compare the influence of the
increase in initial tension on the opposite internal amplitude,
the displacement time-history curves within 10 s are selected
when the two conductors are galloping steadily, as shown
in Fig. 21.

Fig. 21 shows that when the initial tension increases grad-
ually, the amplitude of the equal-span two-span conductors
decreases gradually, while when the initial tension is too
large, the equal-span two-span conductors will not gallop.
Compared with Fig. 8, as the initial tension increases from
15 kN to 20 kN, the amplitude of the two-span conductors
decreases by 19.23%, while that of the single-span conduc-
tors increases by 12.32%. When the initial tension increases
from 20 kN to 30 kN, the amplitude of the two-span con-
ductors decreases by 38.90%, while that of the single-span
conductors decreases by 177.69%.

The galloping traces of the two-span conductors with
equal span lengths under different initial tensions are shown
in Fig. 22.

Fig. 22 shows that when the initial tension increases, the
galloping trace of the two-span conductors with lengths of
100 m to 100 m begins to decrease.

D. ANALYSIS OF GALLOPING CHARACTERISTICS OF
THREE-SPAN CONDUCTORS
1) EFFECT OF SPAN LENGTH ON THE GALLOPING OF
THREE-SPAN CONDUCTORS WITH UNEQUAL
SPAN LENGTH
In this paper, when studying the influence of the change in
adjacent span length on the overall galloping of the three-
span conductors, the middle conductor length should be kept
unchanged, and the conductor length on both sides should be
consistent and gradually increased. Theoretical Equation (9)
has the highest accuracy in calculating the in-plane frequency
of the multispan conductors when the length between the
spans is not equal. Therefore, this paper uses the theoretical
formula to solve the in-plane frequency of the three-span
conductors to avoid the same value. However, when using the
theoretical Equation (14) to solve the out-of-plane frequency,
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FIGURE 19. Mode diagram of two-span transmission lines with equal
span length under different initial tensions.

FIGURE 20. Displacement time-history curves of two-span transmission
lines with equal span length (two-span length of 100 m -100 m).

the value of the length between the spans can be directly sub-
stituted to ensure the highest accuracy. To verify the accuracy
of the theoretical formula, Abaqus was used to establish the
corresponding finite element model. The calculation results
of the two algorithms are shown in Table 6.

Table 7 shows that the theoretical formula is close to the
frequency calculated by Abaqus, so the frequency calculated
by using the theoretical formula is accurate. Themodes drawn
using theoretical Equation (9) are shown in Fig. 23.

Fig. 23 shows that the modal shapes of the middle con-
ductors are basically the same. As the length of the sub
conductors on both sides increases at the same time, the
amplitude of the conductor modes on both sides increases
first and then decreases. Limited by space, this paper only
gives the conductor modal diagram calculated by the finite
element method when the length of the three-span conductors
is 200 m- 100 m-200 m, as shown in Fig. 24.

Fig. 24 shows that the modal shapes obtained by Abaqus
are basically consistent with Fig. 23, so the modes in
Fig. 23 are also accurate.

FIGURE 21. Displacement time-history curves of two equal-span
transmission lines with equal span length (different initial tension).

FIGURE 22. Galloping trace of two-span transmission lines with equal
span length under different initial tensions.

By substituting the frequency of the first-order mode in
Table 6 into Equation (19), the displacement time-history
curves of the three-span conductors are obtained, as shown
in Fig. 25.

Fig. 25 shows that the timewhen the nonequal length three-
span conductors gallops to stability gradually decreases with
the simultaneous increase of the length of the two conductors
on the edge. The amplitude of the three-span conductors with
lengths of 50 m-100 m-50 m is 0.266 m, and that of the
three-span conductors with lengths of 80 m-100 m-80 m is
0.904 m. The amplitude of the three-span conductors with a
length of 150 m-100 m-150 m is 0.717 m, and that of the
three-span conductors with a length of 200 m-100 m-200 m
is 0.854 m. The multiscale method is used to calculate
the amplitude of the three-span conductors with lengths
of 200 m-100 m-200 m, which is 0.922. The results of the
fourth-order Runge–Kutta method are basically consistent
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TABLE 6. Frequency of nonequal pitch three-span conductors with an initial tension of 15 kN.

FIGURE 23. Mode diagram of three-span transmission lines with unequal
span lengths.

with the multiscale method, proving that the three-span con-
ductor model is also accurate.

To more clearly compare the influence of the increase in
the length of adjacent spans on the amplitude of the nonequal-
length three-span conductors, the displacement time-history
curves of the three-span conductors within 10 s after it gallops
steadily are shown in Fig. 26.

As shown in Fig. 26, when the length of the two conductors
on the edge is smaller than the length of the middle con-
ductors, the amplitude of the three-span conductors increases
as the length of the two conductors on the edge increases
at the same time. When the length of the two conductors on
the edge is greater than the length of the middle conductors,
the amplitude of the three-span conductors increases with
increasing length of the two conductors on the edge.

The galloping traces of the three-span conductors with
unequal span lengths are shown in Fig. 27.

Fig. 27 shows that the galloping traces of the three-span
conductors with unequal span lengths are basically elliptical.

Because there are many conductors hanging on the ten-
sion tower at present, as shown in Fig. 28, if the conductor

FIGURE 24. Three-span conductor modes obtained by the finite element
method.

distance is too close, it will cause accidents such as interphase
flashover. Studying the amplitude of conductors is helpful for
the design of lines in actual projects and provides a reference
for preventing and controlling the interphase flashover of
conductors.

2) EFFECT OF SPAN LENGTH ON THE GALLOPING OF
THREE-SPAN CONDUCTORS WITH EQUAL
SPAN LENGTH
In this paper, the influence of the galloping characteristics
of three-span conductors with the length of the conductors is
studied. Four three-span conductors with a gradual increase
in span length are selected, and their frequencies are shown
in Table 7.

Table 7 shows that the frequency calculated by the theoreti-
cal formula is accurate. The model obtained using theoretical
Equation (9) is shown in Fig. 29.

As shown in Fig. 29, when the three conductors are spaced
relatively close, the modal shapes of the three conductors are
basically the same. However, when the three conductors are
spaced relatively far apart, two downward half waves will
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FIGURE 25. Displacement time-history curves of three-span transmission
lines with unequal span lengths.

FIGURE 26. Displacement time-history curves of three-span transmission
lines with unequal span length (initial tension is 15 kN).

appear in each conductor. This is due to the increase in the
spans, and the conductor sag is too large.

After the frequency is obtained, the time-history curves
of the displacement of the three-span conductors with
equal length are calculated by the fourth-order Runge–Kutta
method, as shown in Fig. 30.

FIGURE 27. Galloping trace of three-span transmission lines with
unequal span length under different spans.

FIGURE 28. Three-span transmission tower lines.

FIGURE 29. Mode diagram of three-span transmission lines with equal
span length.

Fig. 30 shows that the galloping time of the equal-
length three-span conductors tends to stabilize and gradually
decrease with the simultaneous increase in the length of the
three conductors. The amplitude of the three-span conductors
with lengths of 80 m-80 m-80 m is 0.369 m, and that of the
three-span conductors with lengths of 100 m-100 m-100 m is
0.413 m. Compared with (a), (b), (c) and (d) in Fig. 25, the
amplitude of the three-span conductors is the minimumwhen
the three conductor lengths are all equal. The amplitude of the
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TABLE 7. Frequency of equal-pitch three-span conductors with an initial tension of 15 kN.

three-span conductors with lengths of 150 m-150 m-150 m is
0.298 m, and that of the three-span conductors with lengths
of 200 m-200 m-200 m is 0.454 m. The sudden drop in
amplitude in Fig. 28 (a)-(c) is also because the in-plane fre-
quency of the conductors is approximately twice the out-of-
plane frequency when it gallops. To more clearly compare the
influence of the amplitude of the third span conductors with
the increase of the length between the secondary conductors
and its counterpart, the displacement time-history curves of
the three-span conductors within 10 s after it gallops steadily
are shown in Fig. 31.

It can be seen from Fig. 31 shows that the amplitude of the
three-span conductors with equal spacing increases first, then
decreases, and then continues to increase.

The galloping traces of the three-span conductors with
equal span lengths are shown in Fig. 32 below.

Fig. 32 shows that although the horizontal amplitudes in
the figure seem to differ greatly, the actual horizontal ampli-
tudes vary very little, and the galloping trace is mainly in the
vertical direction.

3) EFFECT OF INITIAL TENSION ON THE GALLOPING OF
THREE-SPAN CONDUCTORS WITH EQUAL
SPAN LENGTH
In this paper, the influence of initial tension on the galloping
characteristics of parallel and three-span conductors is stud-
ied. Two common initial tensions of transmission lines are
selected, and their frequencies are shown in Table 8.

Table 7 shows that the frequency calculated by the theoreti-
cal formula is accurate. The model obtained using theoretical
Equation (9) is shown in Fig. 33.

Fig. 33 shows that the shape of the three-span conductors
is basically the same under two different initial tensions, and
the initial tension has little influence on the modal shape of
the three-span conductors.

After obtaining the frequency, the fourth-order Runge–
Kutta method is used to calculate the time-history curves
of the displacement of the three-span conductors with equal
length under different initial tensions, as shown in Fig. 34.

FIGURE 30. Displacement time-history curves of three-span transmission
lines with unequal spans.

Fig. 34 shows that the galloping time of equal-span three-
span conductors tends to stably decrease first and then
increase with increasing initial tension. The amplitude of
the three-span conductors with an initial tension of 20 kN
(three-span length of 100 m-100 m-100 m) is 0.204 m. The
amplitude of the three-span conductors with an initial tension
of 30 kN (three-span length of 100 m-100 m-100 m) is

64596 VOLUME 10, 2022



J.-Y. Zheng et al.: Investigation Into the Galloping Characteristics of Multispan Iced Covered Conductors

FIGURE 31. Displacement time-history curves of three-span transmission
lines with equal span length (initial tension is 15 kN).

FIGURE 32. Galloping trace of three-span transmission lines with equal
span length under different spans.

FIGURE 33. Mode diagram of three-span transmission lines with equal
span length under different initial tensions.

0.196 m. To more clearly compare the influence of the initial
tension of the conductors on the increase of the amplitude, the

FIGURE 34. Displacement time-history curves of three-span transmission
lines with equal span length (three-span length of 100 m -100 m -100 m).

FIGURE 35. Displacement time-history curves of three-span transmission
lines with equal span length (different initial tension).

FIGURE 36. Galloping trace of three-span transmission lines with equal
span length under different initial tensions.

displacement time-history curves of the third-span conduc-
tors within 10 s after it gallops steadily are shown in Fig. 35.
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TABLE 8. Frequency of three-span conductors with equal span length
under different initial tensions (span length of 100 m-100 m-100 m).

Fig. 35 shows that when the initial tension increases, the
amplitude of the equal-pitch three-span conductors increases
first and then decreases. Compared with Fig. 21, as the ini-
tial tension increases from 15 kN to 20 kN, the amplitude
of the three-span conductors decreases by 50.60%, and the
two-span conductors decrease by 19.23%. When the initial
tension increases from 20 kN to 30 kN, the amplitude of the
three-span conductors decreases by 20.40%, while that of the
two-span conductors decreases by 38.90%.

Therefore, when the initial tension increases, the amplitude
of the single-span conductors first increases slowly and then
decreases greatly, the amplitude of the equal-pitch two-span
conductors first decreases slightly and then decreases greatly,
and the amplitude of the equal-pitch three-span conductors
first decreases significantly and then decreases slightly.

The galloping traces of the three-span conductors with
equal span lengths under different initial tensions are shown
in Fig. 36.

Fig. 36 shows that the galloping track of the three-span
conductors with equal span length under different initial ten-
sions decreases with increasing initial tension.

VII. CONCLUSION
In this paper, the influence of insulator strings and adjacent
spans was taken into account when establishing the multispan
conductor galloping model, and the galloping characteristics
of multispan conductors under different parameters were ana-
lyzed when all the conductors in the whole tension section
met the galloping conditions. The research results are as
follows.

1) The amplitude of the multispan conductors is obvi-
ously greater than that of the single-span conductors, so the
interaction between adjacent spans has a great influence on
the galloping characteristics of ice-covered conductors. The
galloping amplitude increases first and then decreases with
increasing span number.

2) The galloping amplitude of the two-span conduc-
tors with nonequal spans increases with increasing length
between adjacent conductors, and the galloping amplitude

of the two-span conductors with equal spans also increases
with increasing length between each span of conductors.
Keeping the span of the two-span conductors unequal reduces
the amplitude. As the initial tension increases gradually, the
galloping amplitude of the two-span conductors with equal
spans decreases. When the initial tension is large enough,
galloping will not occur.

3) The galloping amplitude of the three-span conduc-
tors with nonequal span or equal span increases first, then
decreases and then continues to increase with the increase in
the length between adjacent spans. Keeping the span of the
three-span conductors consistent can reduce the amplitude.
With increasing initial tension, the galloping amplitude of the
three-span conductors with equal spans decreases.
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