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ABSTRACT Fingerprint-based indoor positioning systems (F-IPS) may provide inexpensive solutions to
GPS-denied environments. Most F-IPSs adopt traditional machine learning for position prediction, resulting
in low accuracy. Deep neural networks (DNN) were recently employed for F-IPSs to minimize positioning
errors. Nevertheless, a DNN-IPS fails to guarantee high accuracy in dynamic environments as it is sensitive
to changes in the input data. A convolutional neural network (CNN) is recommended to replace DNN
due to its capability to learn the overall topology of fingerprinting images and capture highly abstract
features. Due to the convolution process and image representation, CNN-IPS incurs prohibitive storage
and computational requirement for implementation on resource-limited devices. This paper incorporates
knowledge distillation (KD) into CNN-IPS to distil knowledge from large deep CNNs into small CNNs. The
pre-trained teacher network uses the soft probability output where the score vector from the trained network
is converted into a probability distribution, which is softened by the temperature hyperparameter, leading
to a more simplified model. Based on the numerical results, KD-CNN-IPS manifests better localization
performance where 79.84% of the positioning errors are within 2 meters while its testing time is only 79.68%
of that of the teacher model. Compared to the CNN-IPS, KD-CNN-IPS with precisely the same architecture
and size could achieve a performance improvement of 13.65% in terms of the average positioning error.

INDEX TERMS Indoor positioning, fingerprint, received signal strength indicators, knowledge distillation,
convolutional neural networks.

I. INTRODUCTION
The proliferation of smartphones and intelligent wearable
devices in the last decade has led to the emergence of
location-aware computing (LAC) and location-based services
(LBS), which have immensely transformed human lifestyles.
LAC and LBS are value-added platforms or systems that
acquire the users’ geographical locations using an indoor
positioning algorithm and provide the related services
based on their location information. Due to its social and
commercial values [1], [2], indoor positioning technology
has recently attracted much attention from industry and
academia, with the market size estimated to skyrocket from
USD 7 billion in 2021 to about USD 20 billion in 2026 [3].
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Unlike outdoor localization, the indoor environment is often
more complicated and complex, usually characterized by
the existence of many obstacles, non-line-of-sight (NLoS)
of reference objects, severe signal variation and fluctuation,
presence of ambient noise, frequent environmental and layout
changes, etc. Despite such a complex indoor environment,
high positioning accuracy is still anticipated to ensure
satisfactory LAC and LBS.

A. RELATED WORKS
Traditional indoor localization system (IPS) employs tri-
lateration [4] and triangulation [5] approaches, which
strictly necessitate line-of-sight (LoS) wireless signals for
accurate position estimation [6]. These positioning schemes
do not perform effectively and precisely indoors, with
many obstacles or objects preventing LoS transmission.
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To solve this NLoS issue, fingerprint-based IPS [6]–[10] is a
promising alternative that can be used to provide satisfactory
localization accuracy in a complex indoor environment.
In general, fingerprinting is a process of accumulating
wireless signals at different reference points (RPs) from
multiple access points (APs) and associating the signals
with indoor locations. A target’s position is specifically
characterized by the measured signal patterns such as a vector
of received signal strength indicators (RSSIs) from multiple
APs located at different places. Compared to trilateration
and triangulation, fingerprint-based IPS guarantees high
feasibility for indoor deployment as it requires neither the
exact AP locations nor angle and distance measurements.
Among various wireless signals, WiFi [11] and Bluetooth
signals [12] are the most prevalent fingerprinting choice
as WiFi APs are ubiquitous and Bluetooth transceiver is
available cheaply on every smartphone.

Additionally, the advancement of WiFi and Bluetooth
technologies, leading to the development of WiFi 6 [13]
and Bluetooth 5 [14], has ensured more stable signals
and broader coverage which can indirectly improve the
performance of indoor positioning. Compared toWiFi access
points, BLE beacons are inexpensive and easy to deploy.
In this work, we will focus on Bluetooth fingerprinting,
where the Bluetooth signals are generated by Bluetooth Low
Energy (BLE) beacons, which will be collected as the vectors
of BLE RSSI.

Bluetooth fingerprinting is conducted in two phases: 1) an
offline phase (site survey); 2) an online phase (instant
query) [15]. Firstly, a site survey is performed by gathering
the vectors of RSSIs of all the detectable BLE signals
at many distinct RPs of known locations where each RP
is denoted by its own fingerprint. The collected RSSI
vectors are then stored at a central database for online
query later. Secondly, in the online phase, a target sample
(the measured RSSI vector) at a location is fed back to
the database for RSSI similarity inspection to estimate the
target’s position based on the most similar vectors where
the set of RPs whose fingerprints closely correlate with the
target’s RSSI. Many conventional indoor positioning systems
adopt traditional machine learningmethods such asK -nearest
neighbor (KNN) [16], support vector machine (SVM) [17],
and random forest [18] to estimate the target’s position based
on the measured RSSI in the online phase. Although these
approaches are simple for implementation, they lack the
ability to entirely gain from the training data to retain the
complex features [19], leading to low positioning accuracy.

Recently, a deep neural network (DNN) [20] has been
proposed for indoor positioning to minimize the positioning
error. A DNN model is capable of analyzing the RSSI values
of the target area collected in the offline stage along with its
corresponding location with one label. Subsequently, a user’s
actual location is learned based on this trained model. During
the training phase of the DNN-based indoor positioning, the
weight and bias value of each node of the hidden layers and
output layer are adjusted using a backpropagation algorithm

to characterize the input-output relationship. Nevertheless,
recent studies have shown that DNN has encountered hurdles
in guaranteeing high positioning accuracy in some dynamic
environments as DNN is sensitive to changes in the input
data [21] and requires sufficient input training data [22] for
satisfactory positioning performance.

Convolutional neural network (CNN) based classifiers
have been recommended for indoor positioning technology
because CNN ismore robust to the fluctuation of received sig-
nals caused by multipath effects [21]. The work in [21]–[23]
has adopted a CNN model to improve the performance of the
WiFi fingerprinting for indoor localization by addressing the
drawbacks encountered by theDNN technique. The empirical
results presented in [21] have manifested that the proposed
CNN-based indoor positioning system is capable of attaining
an improvement of 2.52% in terms of positioning accuracy
compared to the DNN model. The superior performance of
the CNN model is mainly due to the capability of CNN to
learn the overall topology of an image of a radio map of
fingerprints and highly abstract features [21] of the image
compared to DNN that merely considers the RSSI vectors.
Moreover, a CNN has deep feed-forward architecture and has
an incredible ability to generalize better than networks with
fully connected layers [24].

B. MOTIVATIONS AND CONTRIBUTIONS
Although CNN is more robust than DNN for indoor position-
ing, there are still some challenges to deploying such a system
for real-time application, especially on wearable devices with
minimal resources. Furthermore, the convolution process in
CNN might require higher computational power, leading to
higher training and testing time. The prohibitive compu-
tational requirement has deterred the motivation to adopt
CNN for indoor positioning. To address this issue, some
forms of model compression or acceleration techniques can
be incorporated into the CNN-based IPS to reinforce the
efficiency of the deep learning model. Among those model
compression techniques, knowledge distillation (KD) [25] is
a viable approach to distill knowledge learned from a more
extensive deep neural network into a small neural network so
that the distilled network is less computationally demanding.

Most of the existing works done on KD focus on
compressing DNNs. A survey [26] on KD has been
extensively carried out, showing that the distilled student
network can be deployed in many applications such as
visual recognition, speech recognition, and natural language
processing (NLP). Additionally, KD is also applicable to
other tasks, including adversarial attacks, data augmentation,
and data privacy and security. Another review on various
KD architectures can be found in [27], which summarizes
the performance of KD incorporated onto different CNN
variances in terms of their complexity and performance loss.
Recently, KD has been adopted to compress deep CNN to
enable its application on embedded devices with limited
computation, power, and memory resources [28]. In [29],
a KD with a higher-dimensional hint layer is introduced to
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learn from a complex deep CNNmodel for multi-class object
detection. To the best of our knowledge, there is no prior work
on KD for IPS and CNN-based IPS.

In this work, a CNN-based IPS is developed in which the
offline phase utilizes the BLE-generated fingerprints, which
are transformed into fingerprint images for CNN training
and testing. The developed CNN model is used as a teacher
model, while the simplified CNN model with a smaller
filter size in the convolution layers is considered a student
model. A novel KD framework is proposed in this work to
distill the knowledge gained from the teacher model to the
student model. To show the importance and benefit of using
KD, the positioning errors of the student models with and
without the proposed KD are compared. It is noticed that the
proposed knowledge-distilled CNN-based IPS (KD-CNN-
IPS) can achieve much better positioning accuracy compared
with the one without KD while achieving marginal loss in
terms of positioning accuracy as compared the teacher model
(CNN-IPS). In summary, the contributions of this paper are
summarized as follows:

1. A CNN-based IPS (CNN-IPS) is developed where the
RSSI vectors are converted to fingerprint images before
inputting them into the CNN model. This model is
considered as the teacher model without any model
compression. The developed CNN model is simplified
by reducing the number of epochs and the filter size
in the convolution layers to minimize the testing time.
This simplified CNN model is treated as a student
model. In this work, we will consider two simplified
student models with different numbers of epochs and
filter sizes.

2. A novel KD framework is proposed to distill knowl-
edge from the teacher model to the student model.
In the proposed KD-CNN-IPS framework, the soft
probability output is used by the pre-trained teacher
network, where a vector of scores is produced by the
trained neural network, which is then converted into a
probability distribution. The temperature hyperparam-
eter is introduced in this framework to soften the prob-
ability distribution, which might not be informative for
the student network.

3. A comprehensive investigation is conducted to analyze
the performance of the proposed KD-CNN-IPS (stu-
dent model with KD) as compared to the CNN-IPS
(teacher model) in terms of their 2D and 3D positioning
errors, testing loss, and testing time. Besides, the
proposed KD-CNN-IPS is also compared with the
student model without KD to highlight the importance
and benefit of using KD.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. In Section II,
the CNN architecture for IPS is described where the
teacher and student models are established. A novel KD
framework is proposed in Section III, and the mechanism for
distilling knowledge from the teacher model to the student

models is also demonstrated. Section IV describes the dataset
preparation and presents a comprehensive investigation
of the proposed KD-CNN-IPS from various aspects. The
comparative results to highlight the benefit of using KD on
IPS are also shown in Section IV. The paper ends with some
insightful concluding remarks in Section V.

II. CONVOLUTIONAL NEURAL NETWORK-BASED INDOOR
POSITIONING SYSTEM
This section provides a brief review of the CNN-based indoor
positioning system (CNN-IPS) considered in this study.
Figure 1 depicts the architecture of CNN-IPS, which consists
of an input layer, convolutional layers, leaky ReLu activation
layer, max-pooling layers, a flatten layer, and a dense layer.
The CNN-IPS works as follows. Let {rn |n = 1, 2, . . . ,N }
and {yn |n = 1, 2, . . . ,N } denote the input RSSI and the
corresponding ground-truth label datasets of N samples,

respectively. More explicitly, N =

M∑
m=1

gm, where M

represents the total number of distinct location classes and
gm is the total number of samples in the mth location. The
nth input sample of the CNN-IPS is a one-dimensional (1D)
RSSI vector which can be expressed as

rn =
[
rn1 rn2 · · · rnK

]
(1)

where rnk , k = 1, 2, . . .K , and K denotes the RSSI of the
kth access point for the nth sample and the total number of
access points used for positioning, respectively. Next rn will
be converted to a two-dimensional (2D) fingerprint image
Xn by reshaping rn into a square matrix of size Q1 × Q1.
As such, each of the RSSI values in rn corresponds to a
pixel in Xn. If K 6= c2, where c is an integer, rn will be
padded with zeroes before it is transformed to 2D fingerprint
image. The 2D fingerprint image serves as an input to the
convolutional layer, followed by an activation layer and a
pooling layer. The output of the pooling layer will then be
processed by the second convolutional layer. Subsequently,
the images produced by the second convolutional layer will
be flattened and sent to the dense network. Finally, in the last
layer of the dense network, a predicted output vector ŷn of
size 1×M , which can be written as

ŷn =
[
ŷn1 ŷn2 · · · ŷnM

]
(2)

will be generated. In the following, the working principle of
each of the layers will be explained in detail.

A. CONVOLUTIONAL LAYERS
The role of the convolutional layers is to perform feature
extraction. To accomplish this, a set of learnable filters,
also known as kernels, are applied to convolve the input
fingerprint images in parallel. This process results in a set of
outputs known as feature maps. More explicitly, the kernels
function as a sliding window that learns the local features of
the fingerprint image by convolving with the entire region
of the input image with an overlapping distance. The key
hyperparameters of this layer are the convolutional kernel
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FIGURE 1. The general structure of CNN-IPS.

size, the number of filters, stride, and fillings which would
determine the size of the output. The size of the kernels has
to be smaller than that of the input image [30].

On the other hand, the stride is the number of element shifts
that the kernel moves over an input along a particular axis,
and it could be deployed to control the density of convolving.
To capture the maximum number of features, a stride of
1 could be used as it provides the maximum overlapping
between the kernel and the input. As the stride increases,
the receptive field overlap reduces because the kernel would
shift over the input with larger step size, and this results in
a smaller feature map. Also, the choice of stride value has
a significant impact on the computational complexity of the
network during both the training and testing phases. To avoid
the convolutional operation from inducing information loss
on the border of the image, the same padding could be
employed by inserting zero values to the outer frame of the
input image.

Mathematically, the (i, j) element of the feature map S can
be expressed as [30]

S(i, j) = (H ∗ V )(i, j)

=

∑
a

∑
b

V (i+ a, j+ b)H(a, b) (3)

where ∗ denotes the 2D convolution operator, V (a, b) and
H(a, b) represent the (a, b) elements of the input image V
and convolution kernel H , respectively.

B. ACTIVATION LAYER
To enable the CNN-IPS to capture the complex nonlinear
relationship between 2D fingerprint input and the output
location, various types of nonlinear activation functions could
be harnessed. Conventional activation functions such as
logistic sigmoid and hyperbolic tangent functions suffer from

gradient vanishing, which makes the network parameters of
deep CNN difficult to be trained effectively as the slopes of
the functions tend to be zero when the input of the activation
function x is too small or too large. To mitigate this issue,
rectified linear unit (ReLU) activation function could be
employed. Mathematically, ReLU is defined as

fReLU(x) =

{
x if x ≥ 0
0 otherwise

(4)

where x is the input of the activation function. The function
returns zero value when the input is negative, and it produces
exactly the same value as the input when the input is positive.
Compared to the logistic sigmoid and hyperbolic tangent
functions, ReLU could achieve a much faster computing rate.
This is due to the fact that division is necessitated to compute
the derivatives for the logistic sigmoid and hyperbolic tangent
functions as the functions involve exponential operation
while the gradient of ReLU is a constant. However, ReLU
suffers from a dead neuron, i.e., the neuronwill be deactivated
when the input is negative, causing some neurons to be
untrained during the entire training phase. To address this
problem, a leaky ReLU (LReLU) activation function, which
is one of the variants of ReLU, is utilized in this study. The
LReLU function could be written as

fLReLU(x) =

{
x if x ≥ 0
αx otherwise

(5)

Unlike the ReLU function, the LReLU function assigns a
small positive gradient α for negative input.

C. POOLING LAYER
Pooling is a pivotal step in CNN-IPS that enhances the
efficiency of the training process. In the convolutional layers,
a large number of feature maps would be produced. To reduce
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the computational cost in training the network, a pooling
function could be adopted to downsample the feature maps
of the previous convolutional layer by preserving useful
details and discarding irrelevant information. By doing so,
the spatial dimension of the feature maps could be effectively
reduced. Besides that, pooling could also reduce the risks of
the network from being overfitted and enhance invariance
to small shifts and distortions on the inputs. The most
widely adopted pooling operation is max pooling, which
extracts patches from the input feature maps and selects
the maximum value in each patch. Mathematically, the max
pooling operation [31] could be expressed as

σuij = max
(p,q)∈Rij

xupq (6)

where σuij denotes the output of pooling operator for the
uth feature map and xupq refers to the (p, q) element that
is within the pooling window Rij, which represents a local
neighborhood around the position (i, j).

D. FULLY CONNECTED LAYER
The layers mentioned above are responsible for extracting
valuable features for positioning. To classify the location,
the feature maps generated by the final convolution layer
flattened and connected to the fully connected layers (a.k.a.
dense layers). In the fully connected layers, each of the
neurons is linked to all the neurons in adjacent layers. Besides
that, each neuron in the fully connected layer is followed by
an activation function. For the last fully connected layer, it has
the same number of neurons as the number of location classes,
and the softmax activation function is utilized to compute the
probability for each of the classes. The softmax activation
could be computed as follows:

fsoftmax
(
xj
)
=

exj

L∑
l=1

exl
(7)

where xj indicates logit of the jth neuron, l = 1, 2, . . . ,L, and
L is the total number of neurons for the fully connected layer
considered. Specifically, the softmax activation function
maps the features learned by the last fully-connected layer to
a set of probability values that range from 0 to 1, and the sum
of all the outputs in this layer is 1. The predicted location can
then be obtained by selecting the output class with the highest
probability.

To train the CNN-IPS, an adaptive moment estimation
(Adam) optimizer is employed to minimize the cross-entropy
loss between the predicted output and the ground truth label,
which can be computed as

LCE
(
zn, yn

)
= H

(
fsoftmax(zn), yn

)
= −

M∑
k=1

fsoftmax(znk ) log
(
ynk
)

(8)

where H (ψ, ξ ) = −

M∑
k=1

ψk log (ξk) refers to the

cross-entropy loss function and zn =
[
zn1 zn2 · · · znM

]
is a vector of logits produced by the last fully connected layer
for the nth input sample. One salient feature of Adam is that it
utilizes adaptive learning rates for each network weight. The
iterative update rules for Adam [32] are given as follows:

w(i+1)
j = w(i)

j − λ×

θ
(i)
j

1−γ1√
ω
(i)
j

1−γ2
+ ε

(9)

where w(i)
j denotes the jth weight at iteration i, λ signifies

the learning rate, γ1 and γ2 represent the hyperparameters
for the optimizer, ε is an extremely small constant value
used to avoid division by zero, θ (i)j and ω(i)

j are the first and
second gradient moments of the past gradients, respectively.
Specifically, θ (i)j and ω(i)

j can be formulated as

θ
(i)
j = γ1 × θ

(i−1)
j + (1− γ1)× δ

(i)
j (10)

and

ω
(i)
j = γ2 × ω

(i−1)
j + (1− γ2)×

(
δ
(i)
j

)2
, (11)

respectively, where δ(i)j is the gradient of the cost function
with respect to the weight.

III. KNOWLEDGE DISTILLATION BASED INDOOR
POSITIONING SYSTEM
In this section, the proposed methodology is introduced.
Although CNN-IPS possesses a powerful learning capability,
it is too complex to be deployed on edge-computing systems.
To overcome this challenge, in this paper, we aim to
leverage response-based knowledge distillation (KD) scheme
developed in [33] to effectively transfer useful knowledge
learned by a pre-trained complex CNN-IPS which is also
known as teacher model and abbreviated as CNN-IPS
(Teacher), to a lightweight CNN-IPS structure termed as
student model and abbreviated as CNN-IPS (Student) so
that better control over the compression-performance tradeoff
could be achieved.

Figure 2 depicts the block diagram of the proposed
knowledge distillation framework for indoor positioning.
As illustrated in the figure, firstly, the 1D input RSSI
vectors are transformed into 2D fingerprint images. Next, the
pre-optimized teacher model maps the 2D input fingerprint
images to z = [z1z2 · · · zM ] on the last fully connected layer.
Then, the temperature-scaled softmax activation function is
applied on the logits to generate soft labels ρi, which can be
formulated as

ρi = fTS−Softmax (zi) =
e
zi
T

M∑
j=1

e
zj
T

(12)

where T ≥ 1 represents the temperature parameter. Note that
fTS−Softmax(zi) = fsoftmax(zi) when T = 1. In this case, the
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FIGURE 2. Block diagram of the proposed knowledge distillation framework for indoor positioning.

output of the softmax function that corresponds to the correct
class will have a very high probability, while the probabilities
for all other classes will be small. As a result, the information
gained will be limited, and it might not be useful to train
the student model. To address this issue, the logits of the
teacher model could be scaled by a temperature parameter to
enhance the relativeness of the outputs of different neurons in
the last fully connected layer. Generally, higher temperatures
will result in a softer probability distribution which makes the
inter-class relationships become more detectable.

The same 2D input fingerprint images are also fed to the
student network in parallel. Then, the student network will
produce both the hard and soft outputs using (7) and (12),
respectively. It is also important to highlight that the same set
of temperature parameters will be used for both the teacher
and student models to generate the soft labels. To train the
student network, the following loss function [34] is adopted:

L = αLCE
(
zns , y

n)
+ βLKD

(
zns , z

n
t
)

(13)

where LCE
(
zns , y

n
)
represents the student loss (crossentropy

loss between the predicted output and the ground truth
label), LKD

(
zns , z

n
t
)
is the distillation loss, α and β signify

the user-defined weight factors that are utilized to control
the importance of LCE

(
zns , y

n
)
in relation to LKD

(
zns , z

n
t
)
.

Mathematically, LKD
(
zns , z

n
t
)
can be formulated as

LKD
(
zns , z

n
t
)
= T 2DKL

(
fTS−Softmax

(
zns
)
, fTS−Softmax

(
znt
))
(14)

where DKL(ψ, ξ ) =

M∑
k=1

ψk log (ψk/ξk) is the

Kullback-Leibler (KL) divergence, zns and znt are the output
logit vectors of the teacher and student models for the nth
input sample, respectively. In this work, the weighted average
between LCE

(
zns , y

n
)
and LKD

(
zns , z

n
t
)
is used, i.e., α is

configured as 1 − β and α ∈ [0, 1], and these weights
could e set by the distillation designers based on their
system’s equirements. Since the objective function used to

train the udent model is composed of a weighted average of
LCE

(
zns , y

n
)
and LKD

(
zns , z

n
t
)
, this enables the student model

to mimic the teacher’s softened outputs while benefitting
from the ground truth labels to achieve better accuracy.

IV. EXPERIMENTAL ENVIRONMENTS AND DATASETS
To evaluate the effectiveness and the applicability of the
proposed scheme in multi-floor environments, an indoor
positioning testbed was set up, and an extensive fingerprint
measurement campaign was carried out at the second and
third floors of Wing B of the Faculty of Engineering
(FOE), Multimedia University, on its campus in Cyberjaya,
Malaysia. In what follows, this dataset will be abbreviated
as the MMU-FOE dataset. Figures 3 and 4 show the
floor layouts and the example pictures of the evaluation
site, respectively. The dimension for each of the floors is
53.67 m × 10.36 m, and thus the total area of the evaluation
site is approximately around 1112m2. The spatial distribution
of the pre-determined reference points is also illustrated in
Figure 3. In total, 253 reference points were chosen for BLE
fingerprint data collection, and the grid spacing between two
adjacent reference points was 1 m. More specifically, the
total number of reference points on the second and third
floors are 125 and 128, respectively. At each reference spot,
50 fingerprint measurements were collected to capture the
full variation of detectable RSSIs.

In this work, all the BLE beacons used were Sensoro
SmartBeacon-4AA Pro. As shown in Figure 3, a total of
16 BLE beacons were employed, with 8 BLE beacons were
placed on each floor. All the BLE beacons were attached to
the wall with a placement height of 2m from the floor in order
to minimize the impact of the multipath. The transmission
power and the advertising interval of the BLE beacons were
configured as 4 dBm and 100 ms, respectively.

Measurement of the fingerprint was performed using a
smart mobile device equipped with the Sensoro application.
During the fingerprint measurement, the smartphone was
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FIGURE 3. Layouts of the experimental environments (a) 2nd floor of
MMU FOE building and (b) 3rd floor of MMU FOE building. The red dots
indicate the reference points for the location fingerprints.

FIGURE 4. Example pictures of the experimental environments.

always held at the same orientation and maintained at the
height of 1.5 m from the floor to follow the typical height
and orientation when an indoor positioning user holds the
smartphone in front of his/her chest. Besides that, for the sake
of consistency, in order to reduce the people presence effect,
measurements were conducted during holiday time.

The fingerprint database has 20 attributes, which consists
of the measured RSSIs collected from 16 BLE beacons,
the corresponding floor number and coordinates (x̃n, ỹn, z̃n).
To be more specific, z̃n is the relative height of the reference
point from the second floor. Since the floor-to-floor height
from the second floor to the third floor is 4.01 m, the values
of z̃n for all the reference points in the second and third floors
are set as 0 and 4.01, respectively.

Figure 5 illustrates the example of input fingerprint images
and the images produced by a different layer of CNN-IPS.
The pixel’s brightness depends on the recorded RSSI values,
and a higher RSSI value will result in a brighter pixel.

V. RESULTS AND ANALYSIS
In this section, the performance of the proposed scheme is
extensively evaluated and benchmarked with those of the
teacher and student counterparts by utilizing the MMU-FOE
dataset as described in Section IV.

FIGURE 5. Example images of the fingerprint data.

A. SIMULATION SETTING
The simulations are performed using Python 3.7.12. To estab-
lish the deep learning models, the powerful Keras 2.7.0 is
adopted. The measured RSSIs of the MMU-FOE dataset
range from −100 dBm to −57 dBm, and these RSSI
values are normalized before they are processed by the
machine learning-based positioning techniques. Throughout
our simulations, the dataset is randomly split into 70% for
training, and the remaining data is used for testing. A complex
model of CNN-IPS is employed as a teacher model, and it
is termed CNN-IPS (TM). Besides that, we also consider
another two compact models of CNN-IPS of different sizes
that are abbreviated as CNN-IPS (M1) and CNN-IPS (M2).
To evaluate the performance of the proposed KD-CNN-IPS,
two knowledge distilled CNN models that are trained
under the supervision of CNN-IPS (TM) are considered,
namely the KD-CNN-IPS (M1) and KD-CNN-IPS (M2).
In Table 1, the detailed configuration of the hyperparameters
for various techniques considered are summarized. Note that
the architecture and configuration of KD-CNN-IPS (M1) and
KD-CNN-IPS (M2) are precisely the same as those of the
CNN-IPS (M1) and CNN-IPS (M2), respectively.

To provide a comprehensive analysis, the following
evaluation metrics are used to quantify the performance of
various machine learning techniques considered:

accuracy =
TP+ TN

TP+ TN + FN + FP
(15)

precision =
TP

TP+ FP
(16)

recall =
TP

TP+ FN
(17)

where TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative, respectively. Since
the proposed IPS is a multi-class problem, TP, TN, FP, and
FN are calculated using the average over all possible classes.

In addition, both the execution time and the average
positioning error will also be examined. Execution time is
an essential consideration when designing data-driven indoor
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TABLE 1. Configuration of various models considered.

TABLE 2. Localization performance comparison of CNN-IPS and the
conventional indoor positioning methods during the testing phase.

positioning approaches as it will affect user experience, and
fast response time is desired to provide real-time indoor
localization. The average positioning errors are measured
using the Euclidean distance between the estimated location
and the ground truth. More explicitly, two types of average
positioning errors are considered, namely the 3D and the
2D average positioning errors, defined by (18) and (19),
respectively.

e3D =
1
N1

N1∑
η=1

√(
x̃η − x̂η

)2
+
(
ỹη − ŷη

)2
+
(
z̃η − ẑh

)2
(18)

e2D =
1
D

D∑
d=1

√(
x̃d − x̂d

)2
+
(
ỹd − ŷd

)2 (19)

where N1 is the total number of test samples,D represents the
total number of test samples in which both the building and
floor are correctly predicted, (x̃i, ỹi, z̃i) and

(
x̂i, ŷi, ẑi

)
are the

ith actual and predicted coordinates, respectively.

B. SIMULATION RESULTS AND DISCUSSION
Table 2 shows the localization performance of CNN-IPS
and the conventional indoor positioning schemes during
the testing phase. Three conventional indoor positioning
techniques are used for performance benchmarking, namely
the Gaussian Naive Bayes, decision tree, and K-nearest
neighbor (KNN). As anticipated, CNN-IPS exhibits higher
accuracy and lower positioning errors compared to the
conventional approaches due to its capability to exploit the
overall topology of fingerprinting images and disentangle
highly abstract features. It is also evident in [21]–[23] that
CNN-IPS also attains higher positioning accuracy compared
to DNN-based IPS.

In terms of storage, the KNN technique imposes high
storage requirements for the testing phase as it needs to
store the entire training dataset in order to predict the user’s
location. Thus, it is impractical to implementmemory-hungry
KNN on resource-limited mobile and embedded devices.
On the other hand, for all the non-lazy learners considered
(Gaussian Naive Bayes, decision tree, and CNN), the
execution storage space required is much smaller than that
of the training as only the learnable parameters need to be
stored once the machine learning models are trained. More
specifically, the strict minimum memory requirement for the
Gaussian Naive Bayes is to store the prior probability and
probability distributions of features for each class, while the
decision tree needs to keep the threshold information. As for
the convolutional neural network, the weights and the biases
of the network will be stored. This comparison shows that
CNN-IPS is excellent in terms of positioning accuracy, but
its complex architecture may be the main hurdle for practical
implementation on resource-constrained portable devices.
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TABLE 3. Classification performance comparison of CNN-IPS (TM),
CNN-IPS (M1) and CNN-IPS (M2).

Table 3 provides an insight into the performance of
the CNN-IPS (TM), CNN-IPS (M1), and CNN-IPS (M2)
in terms of accuracy, loss, precision, recall, and execu-
tion time. As anticipated, the size and structure of CNN
significantly influence the localization performance. More
precisely, in terms of accuracy, precision, recall, CNN-IPS
(TM) is the best performer while CNN-IPS (M2) attains
the worst performance. For instance, in comparison with
the CNN-IPS (TM), the accuracy for CNN-IPS (M1) and
CNN-IPS (M2) degrades by 22.22% and 48.21%, respec-
tively. These performance trends could be explained as
follows. Since the three techniques considered here are based
on CNN, as long as the models are not overfitted, the models
which are equipped with a more complex network structure
not only tend to possess a better ability to disentangle the
underlying complex nonlinear relationship between the input
RSSIs of the BLE signals and the user positions, but also
they would generally have a better capability to progressively
capture a higher-level representation of the input RSSIs.
As a result, CNN-IPS (TM) attains the lowest training and
testing losses. However, the excellent performance of a
more complex CNN model is achieved at the expense of
higher computational complexity and longer execution time.
As evident in Table 3, CNN-IPS (TM) has the longest training
and testing time, while CNN-IPS (M2) attains the shortest
execution time for both the training and testing phases.

Having studied the impacts of the network size of the
CNN on the localization performance, in the following,
we investigate the effects of the hyperparameters on the
proposed KD-CNN-IPS scheme. Figures 6 and 7 present
the 3D and 2D positioning errors for various techniques
under investigation during the testing phase as a function of
temperature, respectively. More explicitly, the temperature of
the distilled student networks is varied from 2 to 20 and α is
set as 0.1. From the figures, it is observed that the techniques
under consideration exhibit the following increasing order
of 3D and 2D average positioning errors: CNN-IPS (TM),
KD-CNN-IPS (M1), CNN-IPS (M1), KD-CNN-IPS (M2),
and CNN-IPS (M2). Besides that, as expected, the average
positioning errors of CNN-IPS (TM), CNN-IPS (M1), and
CNN-IPS (M2) are independent of the temperature, and

FIGURE 6. 3D average positioning error of CNN-IPS (TM), KD-CNN-IPS
(M1), CNN-IPS (M1), KD-CNN-IPS (M2), and CNN-IPS (M2) during the
testing phase with varying temperature and α = 0.1 used on the distilled
student network.

FIGURE 7. 2D average positioning error of CNN-IPS (TM), KD-CNN-IPS
(M1), CNN-IPS (M1), KD-CNN-IPS (M2), and CNN-IPS (M2) during the
testing phase with varying temperature and α = 0.1 used on the distilled
student network.

the distilled student networks outperform their counterparts
without KD. Quantitatively, KD-CNN-IPS (M1) achieves
a performance improvement of 13.54% and 13.65% over
the CNN-IPS (M1) counterpart in terms of the 3D and 2D
average positioning errors, respectively. On the other hand,
the reductions in terms of the 3D and 2D positioning errors
for the KD-CNN-IPS (M2) over that of the CNN-IPS (M2)
counterpart are 22.62% and 20.86%, respectively. The
performance advantage of the proposed KD-CNN-IPS over
the CNN-IPS with identical architecture and size in terms
of average positioning error is due to the reason that
KD-CNN-IPS is trained by both the ground truths and the
teacher model, while the CNN-IPS counterpart is only trained
by the ground truth.

In addition, it is also noteworthy that the performance
of the proposed KD-CNN-IPS scheme is insensitive to
the temperature when the temperature is varied from 2 to
20 as only a minimal variation in terms of the average
positioning errors is noticed. As can be seen from the figures,
KD-CNN-IPS (M1) and KD-CNN-IPS (M2) attain the best
results when the temperature is configured as 4 and 20,
respectively, as these settings could provide the best tradeoff
between the relativeness and distinctiveness of the network
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FIGURE 8. 3D average positioning error of CNN-IPS (TM), KD-CNN-IPS
(M1), CNN-IPS (M1), KD-CNN-IPS (M2), and CNN-IPS (M2) for T = 4 and
different α during the testing phase.

FIGURE 9. 2D average positioning error of CNN-IPS (TM), KD-CNN-IPS
(M1), CNN-IPS (M1), KD-CNN-IPS (M2), and CNN-IPS (M2) for T = 4 and
different α during the testing phase.

outputs. To bemore precise, a higher value of T could provide
more helpful information on the inter-class relations at the
expense of the distinctiveness of the outputs and vice versa.

To gain further insight into the performance of the knowl-
edge distilled student network, Figures 8 and 9 characterize
the 3D and 2D average positioning errors during the testing
phase for varying values of α, respectively. To ease the
comparison to the baseline models, the performance of CNN-
IPS (TM), CNN-IPS (M1), and CNN-IPS (M2) are included
as well. A detailed examination on Figures 8 and 9 reveals
that the schemes under consideration demonstrate similar
performance trends as those observed in Figures 6 and 7, i.e.,
both the 3D and 2D average positioning errors increases in
the following order: CNN-IPS (TM), KD-CNN-IPS (M1),
CNN-IPS (M1), KD-CNN-IPS (M2) and CNN-IPS (M2).
Besides that, it is also observed that there is a substantial
improvement in terms of the 3D and 2D average positioning
errors of KD-CNN-IPS (M1) and KD-CNN-IPS (M2) when
α is increased from 0 to 0.1. This is because L = LKD

(
zns , z

n
t
)

when α = 0. In this case, both the KD-CNN-IPS (M1)
and KD-CNN-IPS (M2) are only trained using distillation
loss, but they fail to exploit useful information gained from
student loss. On the other hand, α does not have a noticeable

FIGURE 10. Accuracy of CNN-IPS (TM), KD-CNN-IPS (M1), CNN-IPS (M1),
KD-CNN-IPS (M2), and CNN-IPS (M2) for both the training and testing
phases.

impact on the 3D and 2D average positioning errors of
the proposed KD-CNN-IPS schemes when α is varied from
0.1 to 1 as only a slight variation of performance is noticed.
From the figures, KD-CNN-IPS (M1) and KD-CNN-IPS
(M2) attain the best performance when α is set as 0.1 and
0.6, respectively, because these settings could effectively
strike a balance between the contribution of LCE

(
zns , y

n
)
and

LKD
(
zns , z

n
t
)
. Therefore, the aforementioned setting of α will

be used for KD-CNN-IPS (M1) and KD-CNN-IPS (M2) in
the following simulations.

Figure 10 illustrates the accuracy of various schemes
considered for both the training and testing phases. From the
figure, it is apparent that the highest accuracy is obtained by
the CNN-IPS (TM), in which its accuracy for the training
and testing phases are 69.76% and 58.88%, respectively.
As expected, the accuracies of CNN-IPS (M1) and CNN-
IPS (M2) are lower as compared to that of CNN-IPS (TM).
When CNN-IPS (M1) and CNN-IPS (M2) are trained under
the guidance of CNN-IPS (TM) via KD, an improvement in
terms of accuracy is observed in comparison to the student
counterparts. More precisely, for both the training and testing
phases, the accuracy of KD-CNN-IPS (M1) is around 4%
higher than that of the CNN-IPS (M1). On the other hand,
it is observed that KD-CNN-IPS (M2) could attain around
6% of increment in terms of accuracy over CNN-IPS (M2) for
both the training and testing phases. The good performance
of KD-CNN-IPS (M1) and KD-CNN-IPS (M2) is due to
their capability to preserve the high-quality performance of
the complex teacher model by leveraging on the informative
dark knowledge, i.e., softened probabilities gained from the
teacher network.

As shown in Figure 11, the trends of the 3D and 2D average
positioning errors for all compared techniques in both the
training and testing phases are in good agreement with the
observations in Figure 10. Since all the techniques considered
here are based on classification predictive modeling, good
accuracy in predicting the location class will lower average
positioning error. Importantly, it is observed that the 3D and
2D average positioning errors of the proposed KD-CNN-IPS
(M1) and KD-CNN-IPS (M2) are approximately 15.81% and
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FIGURE 11. 3D and 2D average positioning errors for CNN-IPS (TM),
KD-CNN-IPS (M1), CNN-IPS (M1), KD-CNN-IPS (M2), and CNN-IPS (M2)
during the testing phase.

FIGURE 12. CDF of 2D positioning error for CNN-IPS (TM),
KD-CNN-IPS (M1), and CNN-IPS (M1) during the testing phase.

26.35% lower than their student counterparts. Besides that,
it is worth mentioning that the proposed KD-CNN-IPS (M1)
only suffers from slight performance degradation in terms
of average positioning errors as compared to the CNN-IPS
(TM) as its 3D and 2D average positioning errors are only
0.25 m and 0.246 m higher than those of the CNN-IPS (TM).
On the other hand, compared to the CNN-IPS (TM), the 3D
and 2D average positioning of CNN-IPS (M1) is 0.4849 m
and 0.481 m higher.

Figures 12-15 shed lights on distribution of the positioning
errors for all compared methods using the cumulative dis-
tribution function (CDF). Generally, the results demonstrate
that the proposed approach can achieve a higher probability
of better localization than its counterpart without KD.
Quantitatively, from Figures 12 and 13, it is noticed that the
probability of positioning errors within 2 m by the proposed
KD-CNN-IPS (M1) is 0.7984. In contrast, the ones for the
cases of CNN-IPS (TM) and CNN-IPS (M1) are 0.8318 and
0.7709, respectively. Besides that, we can also observe from
Figures 12 and 13 that nearly 89.47% of the positioning
errors of KD-CNN-IPS (M1) are within 4 m. On the other
hand, as can be seen from Figures 14 and 15, the probability
of attaining less than 2 m of average positioning error by

FIGURE 13. CDF of the 3D positioning error for CNN-IPS (TM),
KD-CNN-IPS (M1), and CNN-IPS (M1) during the testing phase.

FIGURE 14. CDF of 2D positioning error for CNN-IPS (TM), KD-CNN-IPS
(M2), and CNN-IPS (M2) during the testing phase.

FIGURE 15. CDF of 3D positioning error for CNN-IPS (TM), KD-CNN-IPS
(M2), and CNN-IPS (M2) during the testing phase.

KD-CNN-IPS (M2) is 70.26%, which is 6.36% higher than
that of the CNN-IPS (M2).

Figures 16 shows the average testing time for various
techniques considered. As evident in Figure 16, the average
testing time of the proposed distilled student networks is
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FIGURE 16. Testing time of CNN-IPS (TM), CNN-IPS (M1), KD-CNN-IPS
(M1), CNN-IPS (M2) and KD-CNN-IPS (M2).

shorter than that of the teacher network. This is because
the testing time incurred by the CNN is dictated by the
structure and complexity of the model. To be more precise,
a more complex CNN model will result in a longer testing
time and vice versa. Quantitatively, the average testing time
associatedwith theKD-CNN-IPS (M1) is only 79.68%of that
of the CNN-IPS (TM), while for the KD-CNN-IPS (M2), the
average testing time is 71.53% of that of the CNN-IPS (TM).

VI. CONCLUSION
In this work, a novel fast indoor localization scheme based
on a convolutional neural network is proposed. By leveraging
on the knowledge distillation, the intricate mapping between
the input RSSIs and location information, which has been
disentangled and learned by the complex and powerful
pre-trained teacher network, could be effectively distilled
to a lightweight and low-complexity student model for
positioning. To assess the effectiveness and practicality of
the proposed method, an indoor localization testbed has been
set up to collect a multi-floor indoor positioning dataset, and
extensive simulations have been carried out. Further, an in-
depth study of the effects of hyperparameters of proposed
KD-CNN-IPS has also been presented. Numerical results
reveal that the proposed KD-CNN-IPS is capable of attaining
significant improvement in localization performance viz a viz
the CNN with identical architecture and size while achieving
a substantial reduction in testing time as compared to the
complicated teacher network. Essentially, for KD-CNN-IPS
(M1), 79.84% of the positioning errors are within 2 m, and
its average testing time is only 79.68% of that of the teacher
model. Compared to the student counterpart, the average
positioning error of KD-CNN-IPS (M1) is approximately
15.81% lower. With these remarkable benefits, it can be
concluded that the proposed KD-CNN-IPS is an appealing
indoor positioning approach for real-time deployment on
resource-constrained devices. The possible future direction
of research may include investigating the performance of
the KD-CNN-IPS in complex environments and extending
KD-CNN-IPS to semi-supervised learning to fully exploit
both the labeled and unlabeled location fingerprint data.

REFERENCES
[1] S. Tomažič, ‘‘Indoor positioning and navigation,’’ Sensors, vol. 21, no. 14,

pp. 1–4, Jul. 2021, doi: 10.3390/s21144793.
[2] P. Mahida, S. Shahrestani, and H. Cheung, ‘‘Deep learning-based

positioning of visually impaired people in indoor environments,’’ Sensors,
vol. 20, no. 21, pp. 2–17, Oct. 2020, doi: 10.3390/s20216238.

[3] The Global Indoor Location Market Size to Grow From USD 7.0
Billion in 2021 to USD 19.7 Billion by 2026, at a Compound
Annual Growth Rate (CAGR) of 22.9%. Globe Newswire. Accessed:
Nov. 7, 2021. [Online]. Available: https://www.globenewswire.com/news-
release/2021/10/13/2313337/0/en/The-global-Indoor-location-market-
size-to-grow-from-USD-7-0-billion-in-2021-to-USD-19-7-billion-by-
2026-at-a-Compound-Annual-Growth-Rate-CAGR-of-22-9.html

[4] Y. Liu, Z. Yang, X. Wang, and L. Jian, ‘‘Location, localization, and
localizability,’’ J. Comput. Sci. Technol., vol. 25, no. 2, pp. 274–297, 2010,
doi: 10.1007/s11390-010-9324-2.

[5] C. Gentile, N. Alsindi, R. Raulefs, and C. Teolis, Geolocation Techniques:
Principles and Applications, New York, NY, USA: Springer, 2013.

[6] A. Poulose, J. Kim, and D. S. Han, ‘‘A sensor fusion framework for indoor
localization using smartphone sensors and Wi-Fi RSSI measurements,’’
Appl. Sci., vol. 9, no. 20, pp. 4–17, Oct. 2019, doi: 10.3390/app9204379.

[7] A. Poulose and D. S. Han, ‘‘Performance analysis of fingerprint
matching algorithms for indoor localization,’’ in Proc. Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC), Feb. 2020, pp. 661–665, doi: 10.1109/
ICAIIC48513.2020.9065220.

[8] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye, ‘‘Push
the limit of WiFi based localization for smartphones,’’ in Proc. 18th Annu.
Int. Conf. Mobile Comput. Netw. (Mobicom), 2012, pp. 305–316, doi:
10.1145/2348543.2348581.

[9] W. Sun, J. Liu, C. Wu, Z. Yang, X. Zhang, and Y. Liu, ‘‘MoLoc: On
distinguishing fingerprint twins,’’ in Proc. IEEE 33rd Int. Conf. Distrib.
Comput. Syst., Jul. 2013, pp. 226–235, doi: 10.1109/ICDCS.2013.41.

[10] Z. Xiao, H. Wen, A. Markham, N. Trigoni, P. Blunsom, and J. Frolik,
‘‘Non-line-of-sight identification and mitigation using received signal
strength,’’ IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1689–1702,
Mar. 2015, doi: 10.1109/TWC.2014.2372341.

[11] L. M. Ni, Y. Liu, Y. Cho Lau, and A. P. Patil, ‘‘LANDMARC: Indoor
location sensing using active RFID,’’ in Proc. 1st IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom)., Mar. 2003, pp. 407–415, doi:
10.1109/PERCOM.2003.1192765.

[12] N. Swangmuang and P. Krishnamurthy, ‘‘Location fingerprint analyses
toward efficient indoor positioning,’’ in Proc. 6th Annu. IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom), Mar. 2008, pp. 100–109, doi:
10.1109/PERCOM.2008.33.

[13] IEEE 802.11ax: The Sixth Generation of WiFi White Paper. CISCO.
Accessed: Oct. 17, 2021. [Online]. Available: https://www.cisco.com/c/
en/us/products/collateral/wireless/white-paper-c11-740788.html

[14] E. Au, ‘‘Bluetooth 5.0 and beyond [standards],’’ IEEE Veh. Technol. Mag.,
vol. 14, no. 2, pp. 119–120, Jun. 2019, doi: 10.1109/MVT.2019.2905520.

[15] M. Azizyan, I. Constandache, and R. Roy Choudhury, ‘‘SurroundSense:
Mobile phone localization via ambience fingerprinting,’’ in Proc. 15th
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2009, pp. 261–272,
doi: 10.1145/1614320.1614350.

[16] P. Torteeka and X. Chundi, ‘‘Indoor positioning based on Wi-Fi
fingerprint technique using fuzzy K-nearest neighbor,’’ in Proc. 11th
Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST) Islamabad, Pakistan,
14th 18th January, Jan. 2014, pp. 461–465, doi: 10.1109/IBCAST.2014.
6778188.

[17] C. Figuera, J. L. Rojo-Álvarez, M. Wilby, I. Mora-Jiménez, and
A. J. Caamaño, ‘‘Advanced support vector machines for 802.11 indoor
location,’’ Signal Process., vol. 92, no. 9, pp. 2126–2136, Sep. 2012, doi:
10.1016/j.sigpro.2012.01.026.

[18] X. Guo, N. Ansari, L. Li, and H. Li, ‘‘Indoor localization by fusing a
group of fingerprints based on random forests,’’ IEEE Internet Things
J., vol. 5, no. 6, pp. 4686–4698, Dec. 2018, doi: 10.1109/JIOT.2018.
2810601.

[19] M. Ibrahim, M. Torki, and M. ElNainay, ‘‘CNN based indoor localization
using RSS time-series,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2018, pp. 1044–1049, doi: 10.1109/ISCC.2018.8538530.

[20] H. Lu, G. Xingli, L. Shuang, Z. Heng, L. Yaning, and Z. Ruihui,
‘‘Indoor positioning technology based on deep neural networks,’’ in
Proc. Ubiquitous Positioning, Indoor Navigat. Location-Based Services
(UPINLBS), Mar. 2018, pp. 1–6, doi: 10.1109/UPINLBS.2018.8559721.

VOLUME 10, 2022 65337

http://dx.doi.org/10.3390/s21144793
http://dx.doi.org/10.3390/s20216238
http://dx.doi.org/10.1007/s11390-010-9324-2
http://dx.doi.org/10.3390/app9204379
http://dx.doi.org/10.1109/ICAIIC48513.2020.9065220
http://dx.doi.org/10.1109/ICAIIC48513.2020.9065220
http://dx.doi.org/10.1145/2348543.2348581
http://dx.doi.org/10.1109/ICDCS.2013.41
http://dx.doi.org/10.1109/TWC.2014.2372341
http://dx.doi.org/10.1109/PERCOM.2003.1192765
http://dx.doi.org/10.1109/PERCOM.2008.33
http://dx.doi.org/10.1109/MVT.2019.2905520
http://dx.doi.org/10.1145/1614320.1614350
http://dx.doi.org/10.1109/IBCAST.2014.6778188
http://dx.doi.org/10.1109/IBCAST.2014.6778188
http://dx.doi.org/10.1016/j.sigpro.2012.01.026
http://dx.doi.org/10.1109/JIOT.2018.2810601
http://dx.doi.org/10.1109/JIOT.2018.2810601
http://dx.doi.org/10.1109/ISCC.2018.8538530
http://dx.doi.org/10.1109/UPINLBS.2018.8559721


A. B. Mazlan et al.: Fast Indoor Positioning Using a KD-CNN

[21] J.-W. Jang and S.-N. Hong, ‘‘Indoor localization with WiFi fin-
gerprinting using convolutional neural network,’’ in Proc. 10th Int.
Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2018, pp. 753–758, doi:
10.1109/ICUFN.2018.8436598.

[22] X. Song, X. Fan, X. He, C. Xiang, Q. Ye, X. Huang, G. Fang,
L. L. Chen, J. Qin, and Z. Wang, ‘‘CNNLoc: Deep-learning based
indoor localization with WiFi fingerprinting,’’ in Proc. IEEE SmartWorld,
Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput.
Commun., Cloud Big Data Comput., Internet People Smart City Innov.
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2019,
pp. 589–595, doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-
SCI.2019.00139.

[23] A. Mittal, S. Tiku, and S. Pasricha, ‘‘Adapting convolutional neural
networks for indoor localization with smart mobile devices,’’ in Proc.
Great Lakes Symp. (VLSI), May 2018, pp. 117–122, doi: 10.1145/
3194554.3194594.

[24] S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, ‘‘Conceptual under-
standing of convolutional neural network—A deep learning approach,’’
Proc. Comput. Sci., vol. 132, pp. 679–688, Jan. 2018, doi: 10.1016/
j.procs.2018.05.069.

[25] A. Alkhulaifi, F. Alsahli, and I. Ahmad, ‘‘Knowledge distillation in deep
learning and its applications,’’ Peer J. Comput. Sci., vol. 7, no. 474,
pp. 1–24, Apr. 2021, doi: 10.7717/peerj-cs.474.

[26] J. Gou, B. Yu, S. J. Maybank, and D. Tao, ‘‘Knowledge distil-lation: A
survey,’’ Int. J. Comput. Vis., vol. 129, pp. 1789–1817, Mar. 2021, doi:
10.1007/s11263-021-01453-z.

[27] P. Chen, S. Liu, H. Zhao, and J. Jia, ‘‘Distilling knowledge via knowledge
review,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 5006–5015, doi: 10.1109/CVPR46437.2021.00497.

[28] W. Ahmed, A. Zunino, P. Morerio, and V. Murino, ‘‘Compact CNN
structure learning by knowledge distillation,’’ in Proc. 25th Int. Conf.
Pattern Recognit. (ICPR), Jan. 2021, pp. 6554–6561, doi: 10.1109/
ICPR48806.2021.9413006.

[29] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, ‘‘Learning efficient
object detection models with knowledge distillation,’’ in Proc. 31st Int.
Conf. Neural Inf. Process (NIPS), Long Beach, CA, USA, Dec. 2017,
pp. 742–751.

[30] D. Sun, E. Wei, L. Yang, and S. Xu, ‘‘Improving fingerprint indoor
localization using convolutional neural networks,’’ IEEE Access, vol. 8,
pp. 193396–193411, 2020, doi: 10.1109/ACCESS.2020.3033312.

[31] D. Yu, H. Wang, P. Chen, and Z. Wei, ‘‘Mixed pooling for convolutional
neural networks,’’ in Proc. Int. Conf. Rough Sets Knowl. Technol.,
Oct. 2014, pp. 364–375, doi: 10.1007/978-3-319-11740-9_34.

[32] W. Njima, I. Ahriz, R. Zayani, M. Terre, and R. Bouallegue, ‘‘Deep CNN
for indoor localization in IoT-sensor systems,’’ Sensors, vol. 19, no. 14,
pp. 1–20, Jul. 2019, doi: 10.3390/s19143127.

[33] G. Hinton, O. Vinyals, and J. Deans, ‘‘Distilling the knowledge in a neural
network,’’ in Proc. Deep. Learn. Represent. Learn. Workshop (NIPS),
2015, pp. 1–9.

[34] A. Ozerov and N. Q. K. Duong, ‘‘Inplace knowledge distillation with
teacher assistant for improved training of flexible deep neural networks,’’
in Proc. 29th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2021,
pp. 1356–1360, doi: 10.23919/EUSIPCO54536.2021.9616244.

AQILAH BINTI MAZLAN was born in Perak,
Malaysia, in 1999. She is currently pursuing the
degree in electronics engineering with the Faculty
of Engineering, Multimedia University, Malaysia.
Her research interests include machine learning
and indoor positioning.

YIN HOE NG received the B.Eng. degree (Hons.)
in electronics engineering, the M.Eng.Sc. and
Ph.D. degrees from Multimedia University in
2004, 2008, and 2013, respectively. He is currently
a Senior Lecturer with the Faculty of Engineering,
Multimedia University. He is also a Chartered
Engineer (C.Eng.) and a Professional Technologist
(P.Tech.) registered with the Engineering Council
United Kingdom and the Malaysia Board of
Technologists, respectively. His current research

interests include advanced signal processing techniques for digital commu-
nication systems, machine learning, and indoor positioning.

CHEE KEONG TAN (Member, IEEE) received the
B.Eng. degree in electronics (telecommunication),
the M.Eng.Sc. degree in information, communi-
cation and technology and the Ph.D. degree in
information, communication and technology from
Multimedia University, Malaysia. He is currently
a Senior Lecturer with the School of Information
Technology, Monash University Malaysia. He has
carried out projects for telecommunication com-
panies and cellular service providers, which led to

the development of a few patents on wireless algorithm and protocol design.
He is the main contributing authors to more than 20 international journal
articles. His current research interests include radio resource management,
5G networks, indoor positioning scheme, game theory, machine learning,
and artificial intelligence.

65338 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICUFN.2018.8436598
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
http://dx.doi.org/10.1145/3194554.3194594
http://dx.doi.org/10.1145/3194554.3194594
http://dx.doi.org/10.1016/j.procs.2018.05.069
http://dx.doi.org/10.1016/j.procs.2018.05.069
http://dx.doi.org/10.7717/peerj-cs.474
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1109/CVPR46437.2021.00497
http://dx.doi.org/10.1109/ICPR48806.2021.9413006
http://dx.doi.org/10.1109/ICPR48806.2021.9413006
http://dx.doi.org/10.1109/ACCESS.2020.3033312
http://dx.doi.org/10.1007/978-3-319-11740-9_34
http://dx.doi.org/10.3390/s19143127
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616244

