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ABSTRACT Limited flight distance and time is a common problem for multicopters. We propose a method
for finding the optimal speed and sideslip angle of a multicopter flying a given path to achieve either the
longest flight distance or time. Since flight speed and sideslip are often free variables in multicopter path
planning, they can be changed without changing the mission. The proposed method is based on a novel
multivariable extremum seeking controller with adaptive step size, which is inspired by recent work from
the machine learning community on stochastic optimization. Our method (a) does not require a power
consumptionmodel of the vehicle, (b) is computationally efficient and runs on low-cost embedded computers
in real-time, and (c) converges faster than the standard extremum seeking controller with constant step
size. We prove the stability of this approach and validate it through outdoor experiments. The method is
shown to converge with different payloads and in the presence of wind. Compared to flying at the maximum
achievable speed in the experiments with a uniformly selected random sideslip angle, flying at the optimal
range speed and sideslip on average increases the flight range by 14.3% without payload and 19.4% with
a box payload. In addition, compared to hovering, flying at the optimal endurance speed and sideslip
increases the flight time by 7.5% without payload and 14.4% with a box payload. A video can be found
at https://youtu.be/aLds8LVfogk

INDEX TERMS Unmanned aerial vehicles, motion planning, energy consumption, robotics and automation.

I. INTRODUCTION
Multicopters are used in a wide range of applications such
as aerial photography [1], transportation [2], search and
rescue [3], inspection [4], and agriculture [5], thanks to their
low cost, ease of control, and high maneuverability. However,
a primary limitation for current vehicles is their limited flight
endurance and range [6].

One way to improve the limited flight range or endurance
problem is through energy-efficient mechanical design. For
example, in [7] a triangular quadcopter with one large rotor
for lifting and three small rotors for control was proposed,
which has the advantage of combining the energy efficiency
of the large rotor and the fast control response of the

The associate editor coordinating the review of this manuscript and
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small rotors. In [8], the authors designed a quadcopter with
slightly tilted motors which has a better control authority
over the yaw. This results in a lower variance in motor
forces for yaw control. Because a motor’s power is a convex
function of its thrust, this design helps to reduce the total
power consumption of the motors. Hybrid quadcopters which
are able to do both aerial and ground locomotion, were
introduced in [9] and [10]: when the vehicles operate in the
ground locomotion mode on a flat ground, they only need
to overcome the rolling resistance and use much less power
compared to flying. A hybrid power system for multicopters
consisting of a lithium battery, a fuel cell, and a hydrogen
tank was introduced in [11], which enables longer flight time
compared to traditional battery-only power systems, thanks
to the higher specific energy of hydrogen compared with the
lithium battery. In [12], an in-flight battery switching system
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FIGURE 1. A quadcopter with and without a box payload with unknown
aerodynamics effects, as used in our experiments.

was proposed, which enables a small quadcopter to dock an
additional battery to a large quadcopter and increases its flight
time.

Another category of methods focus on developing algo-
rithms to reduce the power consumption of existing multi-
copters. By planning energy-efficient trajectories or by imple-
menting energy-aware control algorithms, these approaches
do not require design changes to existing hardware and
are thus economical to deploy. For example, in [13] the
authors proposed a method for finding the minimum-energy
trajectory between a predefined initial and final state of a
quadcopter, by solving an optimal control problem of the
angular accelerations of the four propellers. This approach
was extended in [14], where the fixed end-time trajectory
optimization was extended to both free and fixed end-time
solved with an indirect projected gradient algorithm to
improve the numerical accuracy. Simulation results were
shown to validate the effectiveness of the methods in both
papers. In [15], the task of reaching a goal in a set of
candidate goals while using the least amount of energy was
investigated. The energy-efficient path planning algorithm
was based on the model predictive control and disturbance
from wind was considered. The authors showed that their
method was able to reach the goal which required the least
amount of energy in simulations and indoor experiments.
In [16] and [17], the authors proposed energy-aware coverage
path planning methods for photogrammetric sensing of large
areas using multicopters. The methods find the optimal speed
along the coverage path to minimize the energy usage during
the mission. Outdoor experiments were conducted to validate
their methods.

A necessary condition for model-based methods to
perform well is accurate power consumption modeling.
Power consumption models of multicopters can be derived
by analyzing their electric and aerodynamic properties.

For example, [18], [19] introduced power consumption
models of the battery, electric speed controller and motor, and
[20, Ch. 5] introduced the aerodynamic power consumption
of the propeller based on the momentum theory. Besides,
some researchers proposed data-driven models by selecting
variables that affect the power consumption (e.g. the vehicle’s
speed and acceleration, wind speed, and payload weight) as
inputs and finding their relationship to power consumption
through experimental data [16], [21].

However, there are often hard-to-model effects on the
vehicle’s power consumption, such as changes in vehicle
components’ performance (e.g. batteries and motors) due
to aging and temperature changes. In addition, the change
in payload size, shape, or weight in applications such as
package delivery and spraying (e.g., pesticides or fertilizer
at farms) often requires reidentification of parameters in
the power consumption model, which is time-consuming.
The imperfections in the energy model could potentially be
compensated using online data-driven methods. For example,
in [22] the authors used an Extended Kalman Filter and
in [23] the authors used Gaussian processes to estimate the
correction terms in the vehicle’s dynamics equations, which
improved the control accuracy of the quadcopters. However,
to the best of our knowledge, no such methods have been
developed for the energy efficient flight of quadcopters yet,
and their effectiveness and computational efficiency are thus
still an open question.

The aforementioned difficulties in quadcopter energy
consumption modeling motivates us to propose, to the best
of our knowledge, the first model-free method for finding
the flight speed and sideslip angle (i.e., angle between the
forward direction of the vehicle and the relative wind) which
achieve the longest flight time (endurance) or flight range
given a predefined path. The method is based on a novel
multivariable extremum seeking controller and does not
require power consumption models of the multicopter.

Extremum seeking control is a model-free adaptive
control technique for finding the local minimizer of a
given, potentially time-varying, cost function by applying a
persistently exciting periodic perturbation to a set of chosen
inputs, and monitoring the corresponding output changes.
A survey of the development of this control method can be
found at [24]. It has applications in areas such as maximizing
the energy generation of wind turbines [25] and photovoltaic
power plants [26], and maximizing the pressure rise in
axial flow compressors [27]. Its applications in robotics can
be found in a literature survey [28]. A common problem
of extremum seeking controllers is their slow convergence
speed, and we propose a novel multivariable extremum
seeking controller with adaptive step size to improve it.
In addition to the flight speed, it could also simultaneously
find the optimal flight sideslip angle to achieve the longest
flight range or endurance (time).

The major contributions of this paper are as follows:
1) We present a model-free adaptive method to find

the flight speed and sideslip angle of multicopters
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that achieve the longest flight range or
endurance.

2) The method is based on a novel multivariable
extremum seeking controller with adaptive step size,
which is computationally efficient and converges faster
than the standard extremum seeking.

3) We give a stability proof for the proposed controller via
averaging and singular perturbation analysis.

4) We validate the effectiveness of the proposed method
in extensive outdoor experiments. The experiments
demonstrate the proposed method’s faster convergence
compared with the standard method, robustness to
payloads and wind disturbances.

This is an evolved paper based on our prior work [29], [30].
In contrast to the prior work, this paper presents:

1) A stability proof of the proposed multivariable
extremum seeking controller with adaptive step size
taking into account the vehicle’s dynamics.

2) Extensive outdoor experiments with practical
real-world sensing instead of the previous work’s
indoor experiments with a motion capture system for
state estimation.

3) Applications of extremum seeking to time optimal
flight in addition to range optimal flight, by searching
for the optimal endurance flight speed and sideslip
angle.

4) Experiments and discussion about the energy cost
from the extremum seeking controller because of
perturbation.

5) Experiments and analysis about the proposed method’s
performance under wind disturbances.

II. PROBLEM STATEMENT
In this work, we propose a method to find the most energy-
efficient flight speed and sideslip angle to mitigate the
common problem of the limited flight range and endurance
of multicopters.

We choose to optimize these two variables because they
affect the vehicle’s power consumption and are typically
additional (redundant) degrees of freedom in a multicopter’s
flight, where the flight missions require the vehicle to track
specified geometric paths. Because the multicopter is usually
not axisymmetric (especially when carrying payloads), flying
with different sideslip angles affects the drag force faced
by the vehicle and leads to different power consumption.
The sideslip angle can be changed by changing the yaw
angle. The flight speed also affects the power consumption
of the vehicle: when the flight speed increases, the power
consumption first decreases and then increases, which can be
explained by momentum theory [20, Ch. 2.14]. This predicts
that the maximum flight endurance is achieved by flying at a
suitable flight speed, rather than hovering.

When our goal is to achieve the longest flight endurance
(time), we want to minimize the consumed energy for a
given time. As a result, the cost function for the optimal
endurance flight is defined as the instantaneous electric power

TABLE 1. Notations used in Section III.

pe. When the goal is to achieve the longest flight range
(distance), we want to minimize the energy consumed for a
given distance. Thus, the cost function for the optimal range
flight is the instantaneous electric power over speed pe/v
(i.e. energy over distance), where v denotes the speed of the
vehicle.

A model-free optimization method is preferable, which
can handle hard-to-model effects (e.g., components aging and
temperature change) and payload changes. This motivates us
to use an extremum seeking controller to find the optimal
flight speed and sideslip angle. The required inputs to the
extremum seeking controller are the instantaneous energy
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FIGURE 2. Block diagram of the adaptive step size multivariable extremum seeking controller (in the dashed rectangle). The goal of the controller is to
find the optimal sideslip rβ and rv to minimize the cost function y = (h ◦ l )(r). The frequencies of the high pass and low pass filters are set, respectively,
to ωhv and ωlv for speed, and ωhβ and ωlβ for sideslip. The scalar kv and kβ are related to the step size of the extremum seeking controller and both of
them should be positive numbers to minimize the cost function. The standard extremum seeking controller with sinusoidal perturbations does not have
the step size adapter and the outputs of the low pass filters directly go to the integrator, while the remaining structure of the algorithm is exactly the
same. The step size adapter is detailed in Section III-A2.

cost and a user-defined geometric path. Its outputs are the
vehicle’s reference speed and sideslip angle commands,
which are then used to convert the geometric path into a
reference trajectory to be tracked by the low-level controllers.

III. MODEL-FREE SPEED AND SIDESLIP ADAPTATION
In this section, we introduce the novel multivariable
extremum seeking controller with adaptive step size. It is able
to achieve faster convergence than the standard extremum
seeking controller with a fixed step size, by taking a smaller
step size when the estimated gradient has a large magnitude
or variance and vice versa. Vector variables and functions
that map to vectors are written in boldface. Notations in this
section are summarized in Table 1.

A. EXTREMUM SEEKING CONTROLLER WITH ADAPTIVE
STEP SIZE
A block diagram of the proposed adaptive-step-size, multi-
variable, extremum seeking controller is shown in Figure 2.
We define the state variables of the multicopter (relevant to
our problem) as x = [v, β]T , where v and β are the speed
and sideslip of the vehicle, respectively. The outputs of the
extremum seeking controller are defined as r = [rv, rβ ]T ,
where rv is the reference flight speed and rβ is the reference
flight sideslip. We assume a smooth control law α(x, r),
so that the closed-loop dynamics of the speed and sideslip
are represented by

ẋ = f (x,α(x, r)). (1)

The cost function is represented by

y = h(x). (2)

Like in [31], we make the following assumptions about the
closed-loop vehicle dynamics and the cost function:
Assumption 1: There exists a smooth function l : R2

→

R2 such that f (x,α(x, r)) = 0 if and only if x = l(r).
Assumption 2: For each reference input r, the controller

ensures that the equilibrium x = l(r) is locally exponentially
stable uniformly in r.

Thus, we assume that we have a control law α(x, r), that
can locally stabilize any of the equilibria that r may produce.
Assumption 3: The cost function (described in Section II)

has a local minimum at r∗ = [r∗v , r
∗
β ]
T , such that

O(h ◦ l)(r∗) = 0, O2(h ◦ l)(r∗) > 0. (3)

1) GRADIENT ESTIMATION
The extremum seeking controller approximates the gradient
of the cost function and integrates the negative of the
estimated gradient to minimize the cost [32]. To approximate
the gradient of the cost function, sinusoidal perturbations

p(t) = [av sin(ωvt), aβ sin(ωβ t)]T (4)

are added to the speed setpoint r̂v and sideslip setpoint r̂β ,
where av and aβ are the speed and sideslip perturbation
magnitudes and the ωv and ωβ are the speed and sideslip
perturbation frequencies.

The cost function’s value y consists of low-frequency
components (ηv and ηβ ) and high-frequency components (y−
ηv and y−ηβ ). The cost is first high pass filtered to remove the
low-frequency components and retain only the cost changes
because of the perturbations. These values are thenmultiplied
elementwise with the demodulation signals

d(t) = [sin(ωvt), sin(ωβ t)]T , (5)

where the demodulation signals’ frequencies wv and wβ are
the same as their corresponding perturbation frequencies.
We denote the results of the multiplications as ξv and ξβ .
If the cost function’s value change is in phase with the
perturbations, which means that the cost value increases as
the inputs’ values increase, ξv and ξβ will be positive. If they
are out of phase, the outputs will be negative. After this,
ξv and ξβ are sent to low pass filters, whose outputs are
approximations of the cost function’s gradient, denoted by qv
and qβ .

2) STEP SIZE ADAPTER
The difference between the proposed extremum seeking
controller and the standard multivariable extremum seeking
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controller [31] is the step size adapters, which are defined as
follows:

ṁv = γv(q2v − mv), ṁβ = γβ (q2β − mβ ), (6)

gv =
qv

√
mv + ε

, gβ =
qβ

√
mβ + ε

, (7)

where mv,mβ are estimates of the second moments of the
output of the low pass filters qv and qβ , and ε is a small
positive constant preventing dividing by zero. Equations in
(6) are essentially first-order low-pass filters for q2v and q2β ,
and γv and γβ denote their cut-off frequencies respectively.
The idea is motivated by the adaptive moment estimation
algorithm (Adam) [33], which is commonly used in the
stochastic optimization of objective functions in machine
learning, such as training neural networks [34], [35].

The adapters take in the output of the low pass filters qv
and qβ (the gradient estimates), and outputs gv and gβ . They
are then passed to the integrators to perform gradient descent.
The effective step size for gradient descent is kvgv/qv for the
speed optimization and kβgβ/qβ for the sideslip optimization,
and the step size adapters change them by changing gv and gβ .
The second moments of the initial outputs from the low pass
filters are used to initialize mv and mβ in (6).
In (7), by dividing qv and qβ with the square root of their

corresponding second moments, the outputs gv and gβ of
the adapters will be approximately bounded by ±1, since

|E[ql]|/
√
E[q2l ] ≤ 1 (E denotes expected value, and ql being

either qv or qβ ). As a result, the descent rates for speed and
slideslip are bounded by kv and kβ . This can be understood
as establishing a trust region around the current parameter
value, beyond which the current gradient estimation can be
inaccurate. In addition, the adapters output small values when
the gradient estimates have large uncertainty (mv and mβ are
large) and vice versa, which makes the controller more robust
to noise.

B. STABILITY ANALYSIS
In this section, we present the stability proof of the novel
multivariable extremum seeking controller with adaptive step
size through averaging and singular perturbation analysis.
A similar methodology was used in [31] to prove the stability
of a single variable standard extremum seeking controller
and was used in [36] to prove the stability of a multivariable
Newton-based extremum seeking controller.

1) SYSTEM DYNAMICS
By substituting the setpoint r with r̂ + p(t), the closed-loop
dynamics of the vehicle in (1) can be rewritten as

ẋ = f (x,α(x, r̂+ p(t))). (8)

The proposed extremum seeking controller’s dynamics in
Figure 2 can be summarized as

˙̂rv = −kv
qv

√
mv + ε

, ˙̂rβ = −kβ
qβ

√
mβ + ε

,

q̇v = −ωlvqv + ωlv(y− ηv) sinwvt,

q̇β = −ωlβqβ + ωlβ (y− ηβ ) sinwβ t,

η̇v = −ωhvηv + ωhvy, η̇β = −ωhβηβ + ωhβy,

ṁv = γv(−mv + q2v), ṁβ = γβ (−mβ + q2β ). (9)

The parameters for the extremum seeking controller are
selected as

ωv = ωω
′
v = O(ω), ωβ = ωω

′
β = O(ω),

ωhv = ωδw′hv = O(ωδ), ωhβ = ωδw′hβ = O(ωδ),
ωlv = ωδw′lv = O(ωδ), ωlβ = ωδw′lβ = O(ωδ),
kv = ωδk ′v = O(ωδ), kβ = ωδk ′β = O(ωδ),
γv = ωδγ

′
v = O(ωδ), γβ = ωδγ

′
β = O(ωδ), (10)

where δ and ω are small positive constants, and ω′v, ω
′
β , ω

′
hv,

ω′hβ ,ω
′
lv,ω

′
lβ , k

′
v, k
′
β , γ
′
v and γ

′
β are positive constants. In addi-

tion, for this multivariable extremum seeking controller to
work for both the speed and the sideslip angle simultaneously,
their perturbation frequencies ωv and ωβ should be distinct.

For the following averaging and singular perturbation
analysis, we use the time scale τ = ωt . In addition, we define

r̃v = r̂v − r∗v , r̃β = r̂β − r∗β ,

η̃v = ηv − (h ◦ l)(r∗), η̃β = ηβ − (h ◦ l)(r∗). (11)

Then, the system dynamics in (8) and (9) with small
perturbations can be rewritten as:

ω
dx
dτ
= f (x,α(x, r∗ + r̃+ p(τ ))), (12)

d
dτ



r̃v
r̃β
qv
qβ
η̃v
η̃β
mv
mβ


= δ



(−k ′vqv)/
√
mv + ε

(−k ′βqβ )/
√
mβ + ε

ω′lv(y− (h ◦ l)(r∗)− η̃v) sinw′vτ − ω
′
lvqv

ω′lβ (y− (h ◦ l)(r∗)− η̃β ) sinw′βτ − ω
′
lβqβ

−ω′hvη̃v + ω
′
hv(y− (h ◦ l)(r∗))

−ω′hβ η̃v + ω
′
hβ (y− (h ◦ l)(r∗))

γ ′v(−mv + q
2
v)

γ ′β (−mβ + q
2
β )


(13)

where r̃ = [r̃v, r̃β ]T , p̄(τ ) = p(t/ω).

2) AVERAGING ANALYSIS
We first freeze the dynamics of the vehicle (8) at its
equilibrium point x = l(r∗ + r̃+ p̄(τ )), substitute it into (13)
and get the reduced system

d
dτ



r̃v
r̃β
qv
qβ
η̃v
η̃β
mv
mβ


= δ



(−k ′vqv)/
√
mv + ε

(−k ′βqβ )/
√
mβ + ε

ω′lv(v(r̃+ p̄(τ ))− η̃v) sinw
′
vτ − ω

′
lvqv

ω′lβ (v(r̃+ p̄(τ ))− η̃β ) sinw
′
βτ − ω

′
lβqβ

−ω′hvη̃v + ω
′
hvv(r̃+ p̄(τ ))

−ω′hβ η̃v + ω
′
hβv(r̃+ p̄(τ ))

γ ′v(−mv + q
2
v)

γ ′β (−mβ + q
2
β )


,

(14)
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FIGURE 3. Control architecture for the model-free adaptive flight range or endurance optimization of a multicopter. The details of the extremum seeking
controller block is shown in the dashed rectangle in Figure 2. The extremum seeking controller runs on the onboard computer (Jetson Nano) while the
low-level controllers and the state estimator run on the Pixracer flight controller.

where v(r̃+ p̄(τ )) = (h ◦ l)(r∗+ r̃+ p̄(τ ))− (h ◦ l)(r∗). From
Assumption 3 we have that:

v(0) = 0, Ov(0) = 0, O2v(0) > 0. (15)

To provide compact notations, we denote O2v(0) = H
for later discussion. The least common period of sinusoidal
functions with frequencies of ω′v and ω′β is defined as 5.
We first prove the stability of the reduced system using
averaging analysis:
Proposition 1: For the reduced system (14), under

Assumption 3, there exists ā and δ̄ such that for all ‖a‖ ∈
(0, ā), δ ∈ (0, δ̄), the reduced system dynamics (14) have a
unique exponentially stable periodic solution of period 5,
which for all τ > 0∣∣r̃5v (τ )

∣∣ ≤ O(δ + ‖a‖2),
∣∣∣r̃5β (τ )

∣∣∣ ≤ O(δ + ‖a‖2),∣∣η̃5v (τ )∣∣ ≤ O(δ + ‖a‖2),
∣∣∣η̃5β (τ )∣∣∣ ≤ O(δ + ‖a‖3),∣∣q5v ∣∣ ≤ O(δ),

∣∣∣q5β ∣∣∣ ≤ O(δ),∣∣m5v ∣∣ ≤ O(δ),
∣∣∣m5β ∣∣∣ ≤ O(δ). (16)

Proof: The proof of Proposition 1 is shown in the
appendix at the end of this paper.
This implies that the error terms r̃5v (τ ) and r̃5β (τ ) converge

to an O(δ + ‖a‖2) neighbourhood of zero. The flight speed
and sideslip found by the extremum seeking controller are
periodic and converge to an O(δ + ‖a‖2) neighbourhood of
their optimal values r∗v and r∗β (i.e. values that minimize the
cost functions defined in Section II).

3) SINGULAR PERTURBATION ANALYSIS
We then analyze the full system (12) and (13). To provide
compact notations, we define the state vector of the extremum
seeking controller as z = [r̃v, r̃β , qv, qβ , η̃v, η̃β ,mv,mβ ]T ,
and write (13) as

dz
dτ
= δE(τ, x, z). (17)

By Proposition 1, there exists an exponentially stable periodic
solution z5(τ ) such that

dz5(τ )
dτ

= δE(τ,L(τ, z5(τ )), z5(τ )). (18)

where L(τ, z5(τ )) = l(r∗ + r̃+ p̄(τ )). To convert the system
(12) and (17) into the standard singular perturbation form,
we shift the state z to get z̃ = z− z5(τ ) such that

ω
dx
dτ
= F̃(τ, x, z̃), (19)

d z̃
dτ
= δẼ(τ, x, z̃). (20)

where

Ẽ(τ, x, z̃) := E(τ, x, z̃+ z5(τ ))

−E(τ,L(τ, z5(τ )), z5(τ ))

F̃(τ, x, z̃) := f (x,α(x, r∗ + r̃+ p(τ ))).

The quasi-steady state is

x = L(τ, z̃+ z5(τ )). (21)

By substituting the quasi-steady state into (20) and we get the
reduced model

d z̃
dτ
= δẼ(τ,L(τ, z̃+ z5(τ )), z̃), (22)

which has an equilibrium at the origin z̃ = 0. The equilibrium
has been shown to be exponentially stable in the proof of
Proposition 1. In addition, we study the stability of the
boundary layer model (in the time scale t = τ/ω)

dxb
dt
= F̃(τ, xb + L(τ, z̃+ z5(τ )), z̃) (23)

= f (xb + l(r),α(xb + l(r), r)). (24)

Since f (l(r),α(l(r), r)) = 0 according to Assumption 1,
xb = 0 is the equilibrium of the boundary layer model (24).
By Assumption 2, this equilibrium is locally exponentially
stable uniformly in r.

Combining the exponential stability of the reduced model
with the exponential stability of the boundary layer model,
and using Tikhonov’s theorem on the infinite interval [37, Ch.
11.3], we can conclude that the solution of (17) isO(ω)-close
to the solution of the reduced model (22). Using the results of
Proposition 1, we can then conclude that the error terms r̃5v (τ )
and r̃5β (τ ) converge to an O(ω+ δ+‖a‖2) neighbourhood of
zero.

In summary, the proposed extremum seeking controller
is locally stable – starting from an initial condition
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near the cost function’s local minimum, it will con-
verge to a neighbourhood around that local minimum if
the perturbation is sufficiently small and slow relative
to the closed-loop dynamics of the vehicle, and if the
Assumptions 1-3 hold.

IV. EXPERIMENTAL RESULTS
Outdoor experiments were conducted to demonstrate the
effectiveness of the extremum seeking controller with
adaptive step size to find the optimal flight speed and
sideslip. The proposed method was shown to have better
convergence speed than the standard extremum seeking
control. It was also able to converge in the present of strong
wind disturbances. An experiment video can be found at
https://youtu.be/aLds8LVfogk.

We want to note the significance of the outdoor experi-
ments in this paper compared to indoor experiments in our
previous work of [29] and [30]:

1) In our previous work, a motion caption system was
used to measure the vehicle’s position and attitude at
very high accuracy (about 1 mm error for position and
1 degree error for attitude) and at 200 Hz frequency.
In contrast, in the outdoor experiments, a GPSwas used
for position estimation, whose accuracy was at meter
level with a much lower frequency (10 Hz). As motion
capture systems are not available in most of the real-
world applications, this new sensor setup with GPS
shows that our proposed method is able to performwell
under much larger state estimation variances compared
with indoor experiments.

2) Because of limited space, the multicopter was only
able to fly a circular path of 2 m radius in previous
indoor experiments. The centripetal force increased
dramatically as the flight speed increased for such
a small radius, contributing largely to the power
consumption. Such an experimental setup is rare
in real-world applications such as package delivery
or surveillance, and made the vehicle’s power con-
sumption increase almost monotonically as the speed
increased. In outdoor experiments, the centripetal
force became much smaller due to much larger
flight radius – a more realistic experiment setup.
We were thus also able to find the speed and sideslip
for optimal endurance flight, as the power as a
function of speed and sideslip has a much deeper
minimum.

3) Experiments were conducted both on light wind and
windy days, to see the effect of wind disturbances on
the proposed method. Such real-world effects were not
possible indoors.

4) We used the standard, off-the-shelf PX4 firmware for
the low-level control and state estimation of the vehicle,
instead of using a custom firmware and control stack
in our previous work. This demonstrates the ability of
the proposed method to be easily deployed on existing
multicopters.

A. EXPERIMENT SETUP
The experiments were performed with a custom-built quad-
copter with and without a box payload (as shown in Figure 1).
The weight of the vehicle without the box payload was
0.9 kg, and the box weighs 0.1 kg and has a size of 180 ×
115 × 80 mm. The distance between the hubs of the two
diagonal motors is 330 mm and the propeller is 203 mm
in diameter. The extremum seeking controller was run on
an onboard computer (Jetson Nano), and an mRo Pixracer
R15 flight controller ran the standard PX4 firmware [38]
including the state estimator and low-level controllers. The
low-level cascaded PID controller (corresponds to α(x, r)
in Assumption 2) stabilizes the vehicle and thus satisfies
Assumption 2 in Section III-A. Other low-level controllers
satisfying Assumption 2 could also be usedwith our proposed
method. The Jetson Nano and the Pixracer communicate
through a UART link using mavros. The main reasons for
running the extremum seeking controller on the onboard
computer are for easier data logging and implementation. The
computational power ofmicro controllers such as the Pixracer
should also be able to run this algorithm, as it only requires
several simple operations as shown in Figure 2. Removing
the onboard computer could further save the energy, at the
cost of not being to log data as easily. The experiments were
conducted at a flat grass field at the Richmond Field Station,
Richmond, CA (37.916588 N, −122.336667 E).

The control architecture for the vehicle is shown in
Figure 3. The extremum seeking controller (with or without
adaptive step size) takes in the desired geometric path and
instantaneous range cost or endurance cost. The power
measurement pe comes from a power module (Holybro PM06
v2) connected to the battery, and the speed measurement
v comes from a state estimator based on a GPS (Zubax
GNSS 2), a range finder for measuring the flight height
(Beneware TFmini-S) and an IMU (Invensense MPU-9250).
The extremum seeking controller outputs the reference
tangential speed rv and sideslip rβ along the desired path,
which are used to parameterize the geometric path into a
reference trajectory. The reference trajectory is then tracked
by the low-level position and attitude controller, which is a
cascaded PID controller.

The range of flight speed was 0-12 m/s when carrying the
box payload and was 0-15 m/s without payload. The sideslip
angle is a periodic variable, whose period is 180◦, due to the
vehicle and payload’s rotational symmetry.

B. EXTREMUM SEEKING PARAMETER SELECTION
The values of parameters of the standard extremum seeking
controller and our proposed adaptive step size extremum
seeking controller used throughout the experiments are
shown in Table 2. The perturbation frequencies (wv and
wβ ), perturbation magnitudes (av and aβ ), gains for the
integrator (kv and kβ ), cutoff frequencies of high-pass (whv
andwhβ ) and low-pass filters (wlv andwlβ ) need to be selected
properly to achieve good performance of the extremum
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FIGURE 4. Ground truth data of the cost functions’ values, with and without an additional box payload. Each square in the heat maps corresponds to
20 seconds’ data collected at 50Hz. The optimal value in each case is encircled with a grey rectangle. (a) The range cost with the box payload reaches
its minimum at about 10 m/s in speed and 100 degrees in sideslip. (b) The endurance cost with the box payload reaches its minimum at about 6 m/s
and 100 degrees in sideslip. (c) The range cost with no box payload reaches its minimum at about 11 m/s and 120 degrees in sideslip. (d) The
endurance cost with no box payload reaches its minimum at about 5 m/s and 100 degrees in sideslip.

seeking controllers. The guidelines for choosing them are
detailed below:

1) PERTURBATION FREQUENCIES
The perturbation frequencies must be slow compared with
the closed-loop dynamics of the quadcopter (ω should be
small as mentioned in the stability analysis), such that they
can be well tracked by the vehicle. Mathematically, the
perturbation frequency could be selected smaller than the
dominant frequency of the vehicle’s closed-loop dynamics.
The perturbation frequencies can be increased to achieve
a faster convergence rate [39], given they can be tracked
well by the vehicle. In addition, the multivariable extremum
seeking control requires distinct perturbation frequencies for
the speed and sideslip angle.

2) PERTURBATION MAGNITUDES AND INTEGRATOR GAINS
Large values for the perturbation magnitudes will be helpful
for faster convergence, but will increase the oscillation
magnitudes. Large values for the integrator gains will also be
helpful for faster convergence, but will make the controller
more sensitive to disturbances. As a result, we can increase
the perturbation magnitudes and integrator gains to obtain
the fastest convergence speed for a permissible amount of
oscillation and sensitivity.

3) CUTOFF FREQUENCIES OF THE HIGH-PASS AND
LOW-PASS FILTERS
The cutoff frequencies of the high-pass and low-pass filters
should be designed based on their corresponding perturbation
frequencies: the cutoff frequency of the high-pass filter
should be set higher than the perturbation frequency (whv ≥
wv and whβ ≥ wv), and the cutoff frequency of the low-pass
filter should be set lower than the perturbation frequency
(wlv ≤ wβ and wlβ ≤ wβ ), to prevent attenuation of
measurements at the perturbation frequency.We set the cutoff
frequencies of the high-pass and low-pass filters to be the
same as their corresponding perturbation frequencies, which

TABLE 2. Values of extremum seeking parameters.

simplified the parameter tuning process and was found to
work well in the experiments.

4) STEP-SIZE ADAPTER CUTOFF FREQUENCY
The two parameters in the step size adapters γv and γβ are
cutoff frequencies for the low-pass filters of the square for
estimated gradient q2v and q

2
β . One could increase their values

as long as the noises are sufficiently attenuated.
In general, the selection of the extremum seeking parame-

ters is a tuning process, but the guidelines above are valuable
for making parameter tuning effectively.

To make a fair comparison between the standard and
the proposed extremum seeking controller, we kept all
parameters for the two different methods to be the same
except kv and kβ , since they have different meanings for
the two methods: the kv and kβ values are the step sizes
for the standard method but are only part of the step sizes
for the adaptive method, as shown in Section III-A2. They
were empirically tuned in experiments for the two different
methods to each achieve the fastest convergence rate in
optimal range speed and sideslip searching when carrying a
box payload 5(a).

C. PERFORMANCE COMPARISON UNDER LIGHT WIND
In the comparison experiments, the quadcopter was com-
manded to fly along a circular path with 30 meters in
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TABLE 3. Optimal range speed and sideslip seeking.

radius and a constant height of 5 meters. The circular path
was chosen for a simple and intuitive comparison, as well
as easy experimental implementation, while our proposed
method is also applicable to sufficiently smooth geometric
paths with more complicated shapes. The experiments were
conducted during good weather to minimize the effect of
wind disturbances.

1) COST VALUE GROUND TRUTH
To verify that the proposed extremum seeking controller is
able to converge close to the optimal speed and sideslip,
we experimentally evaluated the optimal range and optimal
endurance cost functions. When the vehicle is carrying the
box payload, the values of the cost functions at various speed
and sideslip are shown at 4(a) and 4(b), while 4(c) and 4(d)
show the values without box.

The data shows the importance of flying at the energy
efficient speed and sideslip: compared to flying at the
maximum achievable speed in the experiments with a
uniformly selected random sideslip, flying at the optimal
range speed and sideslip on average increases the flight
range by 14.3% without payload and 19.4% with a box
payload. Besides, compared to hovering, flying at the optimal
endurance speed and sideslip increases the flight time by
7.5% without payload and 14.4% with a box payload.

2) CONVERGENCE SPEED COMPARISON AND DISCUSSION
The convergence speed of the standard and the proposed
methods are compared in experiments with/without a box
payload and with different initial conditions. We consider the
extremum seeking controller converges when both the speed
and sideslip settle close to their optimal value. When the goal
is to find the speed and sideslip which achieve the optimal
flight range, the results are compared in 5(a) and 5(b). When
the goal is to find the speed and sideslip which achieve the
optimal flight endurance, the results are compared in 6(a)
and 6(b). The convergence times are summarized in Table 3
for optimal range and in Table 4 for optimal endurance (N/A
represents that the method failed to converge by the end of the
experiment). We can see that the proposed method converged
about twice as fast as the standard method in these tests.

In summary, we can see that the proposed extremum seek-
ing controller with step-size adapter converged about twice as
fast as the standard extremum seeking controller. In addition,
the parameters of the extremum seeking controller were tuned
for optimal range speed and sideslip searching when carrying
a box payload, as mentioned in Section IV-B. The same set of

TABLE 4. Optimal endurance speed and sideslip seeking.

TABLE 5. Optimal cost increase due to perturbation.

parameters still worked well for the other experiment setups
(optimal endurance goal, with and without box payload) for
the proposed method, showing that the method has good
robustness to parameters. However, the standard extremum
seeking method failed to converge in some cases, suggesting
it is less robust.

Like other perturbation-based extremum seeking methods,
the convergence speed of the proposed method is still limited
by the time-scale separation, which requires the changing
of the speed and sideslip setpoints to be slow compared
to the perturbation frequencies. In our experimental tests,
the proposed extremum seeking controller converged within
2 minutes in the majority of cases. We think this would be
a practically useful convergence time considering the flight
time of most multicopters are between 10 to 20 minutes [6].

D. COST OF EXTREMUM SEEKING
Since the perturbations are applied by the extremum seeking
controller, the power consumption of the vehicle will be
higher than the flight at a constant reference without
perturbations. In this subsection, we compare the optimal
values of the cost function without perturbation (i.e., optimal
cost values in Figure 4) with the average cost values
when flying at the same mean speed and sideslip but with
perturbations applied. The increases in cost are summarized
in Table 5.
In summary, the increase in cost was 3.1 - 4.2% because of

the perturbations applied by the extremum seeking controller.
This is less than the power consumption reduction when
flying at the optimal endurance speed compared to hovering,
which is 12.6%with the box payload and 7%without it, so the
advantage of the proposed method outweighs its cost.

To reduce the impact of this increase, the extremum
seeking controller can be enabled only when there is a
model change (e.g., picking up a new payload), and disabled
after convergence. In addition, decreasing the perturbation
magnitude will be helpful for reducing the additional cost of
perturbation, but this will also reduce the convergence speed.
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FIGURE 5. Optimal range speed and sideslip searching performance comparison between the proposed method (red lines) and the standard
method (blue lines). The ground truth values for optimal speed and sideslip are marked as grey dashed lines (values from Figure 4). The results
when carrying an additional box payload are shown in (a) and the results with no additional box payload are shown in (b). Each column in the
subfigures represent a test with a different initial speed and sideslip.

FIGURE 6. Optimal endurance speed and sideslip searching performance comparison between the proposed method (red lines) and the standard
method (blue lines). The ground truth values for optimal speed and sideslip are marked as grey dashed lines and grey shaded regions (values from
Figure 4). The results when carrying an additional box payload are shown in (a) and the results with no additional box payload are shown in (b).
Each column in the subfigures represent a test with a different initial speed and sideslip. In the second test of (a), the optimal sideslip is marked
at both 100 degrees and −80 degrees. This is because the vehicle and payload are rotational symmetric, such that a sideslip offset of 180 degrees
has the same effect on the vehicle’s power consumption. In (b), the optimal speed is marked as a range between 5 - 7 m/s, because the cost
function values are very close in this range with less than 1% difference.

One should take these two factors into account when selecting
the proper perturbation magnitude.

E. PERFORMANCE UNDER STRONG WIND
DISTURBANCES
We further evaluated the performance of the proposed
extremum seeking controller with adaptive step size under
strong wind disturbances. Like the aforementioned experi-
ments, the vehicle was commanded to follow a circular path
with a radius of 30 meters at 5 meters in height. The wind was
measured by a Young 81000 anemometer at 20 Hz with 0.01
m/s resolution, at a height of 2 meters. The extremum seeking

controller’s parameters are the same as the experiments under
light wind in Section IV-C.

The experiments demonstrated that the proposed method
was still able to find the optimal range and endurance
speed and sideslip, as shown in Figure 7 and Figure 8.
The maximum wind magnitude was 7.43 m/s in the optimal
range experiment, and was 4.83 m/s in the optimal endurance
experiment. The proposed method is not very sensitive to
wind disturbances: because of the time-scale separation in
the extremum seeking controller, the change in the speed and
sideslip setpoints by the extremum seeking controller is very
slow compared with the closed-loop dynamics of the vehicle.
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FIGURE 7. Optimal range speed and sideslip seeking under strong wind
disturbances, with the box payload. The optimal values of the speed,
sideslip and cost function are marked as grey dashed lines. The maximum
magnitude of wind disturbances is 7.43 m/s.

FIGURE 8. Optimal endurance speed and sideslip seeking under strong
wind disturbances, without the box payload. The optimal values of the
sideslip and cost function are marked as grey dashed lines. The optimal
value of the speed is marked as a range between 5 - 7 m/s, because the
cost function values are very close in this range, with less than 1%
difference. The maximum magnitude of wind disturbances is 4.83 m/s.

Compared with the tests with the same initial conditions
but under light wind in Section IV-C2, the wind distur-
bances caused larger oscillations in the reference sideslip
(Figure 7 compared with the first column of 5(a)) and
longer convergence time (Figure 8 compared with the second
column of 6(b)).

V. CONCLUSION
An online, adaptive, model-free method for finding the speed
and sideslip that maximize the flight range or endurance of
multicopters is proposed in this work. Not dependent on any
power consumption model of the vehicle, it is able to adapt
to different payloads and is easy to deploy. The proposed
method can mitigate the common problem of limited flight
range and endurance of multicopters. Based on a novel
multivariable extremum seeking controller with adaptive step

size, it is able to achieve faster convergence compared to the
standard extremum seeking controller with fixed step size.

Through realistic outdoor experiments, we show that this
method is able to find the optimal speed and sideslip correctly
under different payloads and under strong wind disturbances.
In addition to multicopters, this method can also be applied
to fixed wing aerial robots to find the optimal flight speed (to
achieve the longest flight time or distance) whose sideslip is
usually not a free degree of freedom in path planning.

APPENDIX
PROOF OF PROPOSITION 1
The reduced system (14) is in the form where the averaging
method is applicable [37, Ch. 10.4] (δ is a small positive
parameter). Its corresponding averaged system dynamics can
be described as follows,

d
dτ



r̃av
r̃aβ
qav
qaβ
η̃av

η̃aβ

η̃aβ

mav
maβ



= δ



(−k ′vq
a
v)/
√
mav + ε

(−k ′βq
a
β )/
√
maβ + ε

ω′lv
1
5

∫ 5

0
(v(r̃a+p̄(σ ))sinω′vσdσ − ω

′
lvq

a
v

ω′lβ
1
5

∫ 5

0
(v(r̃a + p̄(σ )) sinω′βσdσ − ω

′
lβq

a
β

−ω′hvη̃
a
v + ω

′
hv
1
5

∫ 5

0
v(r̃a + p̄(σ ))dσ

−ω′hβ η̃
a
β+ω

′
hβ

1
5

∫ 5

0
v(r̃a + p̄(σ ))dσ

γ ′v(−m
a
v + q

a
v
2)

γ ′β (−m
a
β + q

a
β
2)



,

(25)

where the superscript a denotes the variables of the averaged
system, and 5 is the least common period of sinusoidal
functions with frequencies of ω′v and ω

′
β .

The equilibrium point of the averaged system (25)
is denoted as [r̃a,ev , r̃a,eβ , qa,ev , qa,eβ , η̃a,ev , η̃

a,e
β ,ma,ev ,ma,eβ ]T

which satisfies:

qa,ev = qa,eβ = 0, (26)

ma,ev = ma,eβ = 0, (27)∫ 5

0
(v( ˜ra,e + p̄(σ )) sinω′vσdσ = 0, (28)∫ 5

0
(v( ˜ra,e + p̄(σ )) sinω′βσdσ = 0, (29)

η̃a,ev = η̃
a,e
β =

1
5

∫ 5

0
v( ˜ra,e + p̄(σ ))dσ, (30)

where the superscript e denotes the variables for the
equilibrium point. We consider r̃a,ev and r̃a,eβ as perturbations
with second-order Taylor series expansion over av and aβ ,

r̃a,ev = b1,vav + b2,vaβ
+ b3,va2v + b4,vavaβ + b5,va

2
β + O(‖a‖

3), (31)
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r̃a,eβ = b1,βav + b2,βaβ

+ b3,βa2v + b4,βavaβ + b5,βa
2
β + O(‖a‖

3), (32)

where bi,v and bi,β (i = 1, . . . , 5) are constant numbers.
By substituting (31), (32) into (28), (29), integrating and
equating the like powers of av and aβ , we can find that the
first-order coefficients and second-order coefficients for the
mixing terms are zero, and r̃a,ev and r̃a,eβ can be written as:

r̃a,ev = b3,va2v + b5,va
2
β + O(‖a‖

3), (33)

r̃a,eβ = b3,βa2v + b5,βa
2
β + O(‖a‖

3). (34)

In addition, by substituting (33), (34) into (30) and integrat-
ing, we can get

η̃a,ev = η̃
a,e
β =

1
4
(H11a2v + H22a2β )+ O(‖a‖

3). (35)

At the equilibrium point of the averaged system in (25), the
Hessian Ja,er is a block-diagonal matrix as follows,

Ja,er = δ

[
A 04×4
B −diag(ω′hv, ω

′
hβ , γ

′
v, γ
′
β )

]
, (36)

where A,B ∈ R4×4,

A =


0 0 −k ′v/

√
ε 0

0 0 0 −k ′β/
√
ε

A31 A32 −ω′lv 0
A41 A42 0 −ω′lβ

 , (37)

B =


B11 B12 0 0
B21 B22 0 0
0 0 0 0
0 0 0 0

 , (38)

with expressions of two matrices,[
A31 A32

]T
=
ω′lv

5

∫ 5

0

∂v(r̃a,e + p̄(σ ))
∂ r̃a,e

sinω′vσdσ, (39)

[
A41 A42

]T
=
ω′lβ

5

∫ 5

0

∂v(r̃a,e + p̄(σ ))
∂ r̃a,e

sinω′βσdσ, (40)

[
B11 B12

]T
=
ω′hv

5

∫ 5

0

∂v(r̃a,e + p̄(σ ))
∂ r̃a,e

dσ, (41)

[
B21 B22

]T
=
ω′hβ

5

∫ 5

0

∂v(r̃a,e + p̄(σ ))
∂ r̃a,e

dσ. (42)

Hence, the block-lower-triangular matrix Ja,er in (36) is
Hurwitz if and only if that all diagonal submatrices are
Hurwitz. Since δ, γ ′v , γ

′
β , ω

′
hv and ω

′
hβ are positive constants,

it remains to prove A as Hurwitz for stability.
With a first-order Taylor expansion we can get that[
A31 A32
A41 A42

]
=

1
2

[
ω′lvav 0
0 ω′lβaβ

]
H + O(‖a‖). (43)

The characteristic polynomial ofAwith roots λ can be written
by computing the determinant of λI − A,

det(λI − A)

= det
(
λI
(
λI + δ

[
ω′lv 0
0 ω′lβ

])

+
δ2
√
ε

[
A31 A32
A41 A42

] [
k ′v 0
0 k ′β

])
= det

(
λ2I + λδ

[
ω′lv 0
0 ω′lβ

]
+

δ2

2
√
ε

[
ω′lvav 0
0 ω′lβaβ

]
H
[
k ′v 0
0 k ′β

]
+ O(δ2 ‖a‖)

)
,

(44)

which can be expanded to a 4th order polynomial of λ. Under
the assumptions that ‖a‖ is small and that the Hessian H in
(15) is positive, the roots of this 4th order polynomial can
be shown have negative real parts using the Routh-Hurwitz
criterion [40, Ch. 6.2], implying that A is Hurwitz. Therefore,
Ja,er is proven as Hurwitz. The Hurwitz Jacobian Ja,er
indicates that the equilibrium point of the averaged system
(25) is locally exponentially stable if av and aβ are sufficiently
small. Then according to [37, Ch. 10.4], the theorem is
proved.
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