IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received May 4, 2022, accepted June 6, 2022, date of publication June 14, 2022, date of current version June 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3183068

FR-DETR: End-to-End Flowchart Recognition
With Precision and Robustness

LIANSHAN SUN™, HANCHAO DU, AND TAO HOU

Shaanxi Joint Laboratory of Artificial Intelligence, School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology,
Xi’an 710021, China

Corresponding author: Lianshan Sun (sunlianshan @sust.edu.cn)

This work was supported by the Scientific Research Program through the Education Department of Shaanxi Provincial Government under
Grant 17JK0087.

ABSTRACT Traditional flowchart recognition methods have difficulties in detecting newly added sym-
bols and distinguishing targets from complex backgrounds like line texture. Existing deep-learning-based
object detectors and line segment detectors are promising in recognizing and distinguishing targets from
texture backgrounds. However, using two separate detectors will inevitably cause unnecessary training and
inference costs. Moreover, the insufficient volume and diversity of currently available dataset limit the
effectiveness of model training. To address these issues, this paper proposes an end-to-end multi-task network
FR-DETR (Flowchart Recognition DEtection TRansformer) and a new dataset for precise and robust
flowchart recognition. FR-DETR comprises a CNN backbone and a shared multi-scale Transformer structure
to perform symbol detection and edge detection using shared feature maps and respective prediction heads
in a coarse-to-fine refinement process. The coarse stage analyzes features with low resolution and suggests
candidate regions that contain potential targets for the fine stage to produce accurate predictions using
features with high resolution. Meanwhile, a new dataset is constructed to provide more symbol types and
complex backgrounds for network training and evaluation. It contains more than 1000 machine-generated
flowchart images, 25K+ symbol instances with nine categories, and 20K+ line segments. The experiments
show that FR-DETR achieves an overall precision and recall of 94.0% and 93.1% on the proposed dataset,
and 98.7% and 98.1% on the CLEF-IP dataset, respectively, which all outperform the prior methods.

INDEX TERMS Flowchart recognition, multi-task learning, multi-scale Transformer, object detection, line

segment detection.

I. INTRODUCTION

Flowchart recognition is an essential sub-task in research
on document analysis and recognition [1]. The critical prob-
lem of flowchart recognition is to recognize and refine the
structural semantics of flowcharts. There are two study areas
for flowchart recognition: handwritten flowchart recognition
and machine-generated flowchart recognition. In the past few
years, many researchers have mainly focused on analyzing
handwritten flowcharts, while machine-generated ones have
been rarely concerned. However, understanding the struc-
tural semantics of machine-generated flowchart images is
crucial for many structural-semantic-based tasks, such as
patent retrieval, automatic code generation, and task-oriented
dialogue systems [2]-[6].
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Existing methods [2], [3], [8]-[10], [23] for recogniz-
ing machine-generated flowchart mainly extract the entire
structure by analyzing the connected components in images
and then identify specific structures using manually chosen
features, which results in their failures of detecting broken
edges and dotted lines. Traditionally, these methods focus
on flowcharts in binary images or images with simple back-
grounds. However, as information technologies advance and
data volumes increase, flowchart images are becoming more
diverse and complex to meet various aesthetic requirements.
In detail, flowchart structures now have more varied and
colorful symbols and more complex backgrounds, leading
to problems such as decrements in recognition accuracy as
well as incompatibility and inflexibility of manually cho-
sen features. Meanwhile, traditional detection methods nor-
mally aim to perform universal detection, which may produce
redundant results and cause models’ inability to separate tar-
gets from interference (e.g., line-shape texture backgrounds).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

64292 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022


https://orcid.org/0000-0002-5738-7862
https://orcid.org/0000-0002-4160-4543
https://orcid.org/0000-0002-5508-1819

L. Sun et al.: FR-DETR: End-to-End Flowchart Recognition With Precision and Robustness

IEEE Access

Different from traditional methods, deep-learning-based
computer vision technologies are capable of focusing on
desired targets, which can be summarized into symbols and
edges in flowcharts. Deep-learning-based object detectors are
currently widely used for detecting objects within images.
Although these approaches perform well in symbol detec-
tion, their bounding box representation makes it difficult to
recognize line segments that are short or nearly parallel to
the axes. Some deep-learning-based line segment detectors
that treat edges as endpoint pairs can be used to achieve
good line segment detection performance. Consequently, the
flowchart recognition task can be divided into recognizing
symbols using object detection and detecting edges using line
segment detection. As shown in Fig. 1, symbols and arrows
are indicated by bounding boxes and edges are indicated by
line segments.
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FIGURE 1. Representation of proposed flowchart recognition method:
bounding boxes localize each symbol and arrow, line segments denote
connecting edges, regardless of texture backgrounds.

Many methods manage these two tasks separately. For
example, some works [11]-[14] handle object detection,
while some others [15]-[19] deal with line segment detection.
Whereas these methods can achieve promising performance,
the sequential processing of these tasks results in high train-
ing and inference costs. Some multi-task models [20]-[22],
[25], [26] achieve competitive performance by combining
different tasks into a model with one shared encoder and
separated decoders. In flowchart recognition, information
processed by different tasks is inherently correlated, such as
symbols are connected by edges and edges are connecting
symbols. We believe a multi-task model is more suitable for
flowchart recognition because (1) it enables information to be
shared between two tasks of object detection and line segment
detection, which can simplify the network structure; and (2)
it reduces the training and analysis process by managing two
tasks simultaneously.

Based on these works, this paper proposes an end-to-
end multi-task network architecture named FR-DETR, the
first deep learning system for machine-generated flowchart
recognition to the best of our knowledge. By fusing
DETR (DEtection TRansformer) [14] and LETR (LinE
segment TRansformers) [19], FR-DETR has a CNN back-
bone and a multi-scale Transformer structure to per-
form fine-grained symbol detection and edge detection
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respectively. In addition, to satisfy the requirements of data
volume and complexity for model training, a new flowchart
dataset is also constructed. Compared with the only publicly
accessible machine-generated flowchart dataset CLEF-IP
(Cross-Language Evaluation Forum Intellectual Property),
which has around 60 images, the new dataset has more than
1000 machine-generated flowchart images, 25K+ symbol
instances with nine categories, and 20K+ line segments.

The main contributions of this paper are:

1) It demonstrates that the machine-generated flowchart
recognition can be accomplished using deep-learning-
based object detection and line segment detection to
handle the increasing symbol diversity and background
complexity of flowchart images.

2) It proposes an end-to-end multi-task learning network
that combines object detection and line segment detec-
tion to reduce the costs caused by separate models. The
model jointly detects symbols and edges in flowcharts
and employs a multi-scale Transformer structure to
improve the recognition accuracy of both tasks.

3) The proposed method achieves a better recognition
accuracy that outperforms the prior machine-generated
flowchart recognition methods.

4) A new machine-generated flowchart dataset is estab-
lished to address data shortages for deep learning model
training.

Il. RELATED WORK
A. FLOWCHART RECOGNITION
Most prior studies of machine-generated flowchart recogni-
tion took place after the CLEF-IP in 2011, which was held by
the Information Retrieval Facility (IFR) and released a public
machine-generated flowchart dataset. Rusifiol et al. [7], [8]
summarized flowcharts as structure layer and text layer, and
then performed recognition after layer separation. The struc-
ture extracted by connected component analysis was used
to distinguish symbols with geometric moments descriptor
and blurred shape model. Morzinger et al. [9] separated
text and diagram before studying the visual features of a
structure at the pixel level. Thean et al. [10] suggested a
symbol recognition method based on text-graphic segmen-
tation, shape-squeezing, and symmetric features. Zhang [23]
proposed a corner-based structural model (CBSM) based on
the analysis of different corners and symbol shapes. The
CBSM recognizes symbols by defining corner classification
and corner-based spatial constraints for each kind of graphic
shapes. These methods mostly rely on the results of connected
component analysis and different manually chosen features.
Over the last decade, research on handwritten flow-
chart recognition has received increasing attention.
Carton et al. [27] fused structural and statistical information
to compute grammatical descriptions for each type of sym-
bol. Lemaitre er al. [28] analyzed flowchart structure based
on the description and modification of segment (DMOS)
and structural information. Bresler et al. [29] solved a
max-sum model optimization task to obtain the best symbol
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description. Schifer er al. [30] proposed Arrow R-CNN to
detect symbols and connecting edges by adding a keypoint
head to Faster R-CNN. The keypoint head is designed to
detect the arrow and tail belonging to a connecting edge as
two keypoints. Arrow R-CNN was the first deep-learning-
based flowchart recognition approach.

B. TRANSFORMER ARCHITECTURE

In recent years, Transformer [32] has become the standard
backbone for many natural language processing (NLP) mod-
els and has achieved remarkable success. Its self-attention
and cross-attention mechanisms can build strong relations
among sequence-format inputs. Recently, Transformer has
attracted more researchers and steps in the fields of computer
vision [34]. Carion et al. [14] introduced a Transformer based
end-to-end object detection network DETR that removed
pre-designed anchor and non-maximum suppression (NMS).
It detects objects using interactions between a fixed num-
ber of queries and encoded image features. Following the
basic query concept of DETR, Xu et al. [19] proposed
a Transformer based line segment detector LETR. Unlike
the prior line segment detection approaches consisting of
heuristics-guided steps, the LETR detector directly regressed
the endpoints of a line segment and achieved state-of-the-art
performance on relative line segment detection datasets.

C. MULTI-TASK APPROACHES

Traditionally, task-oriented networks have been indepen-
dently designed and trained for each task. However,
as humans concurrently solve multiple tasks, many real-world
problems are also multi-modal. This motivates researchers to
study generalized methods that can accomplish all desired
tasks with a single model. Deep-learning-based MTL (multi-
task learning) models aim to improve network generalization
and the capability of jointly learning shared information.
Compared with single-task models, multi-task networks have
advantages such as a reasonable reduction in model size and
increment in inference speeds by sharing inherent parts of
network structure [24]. Vandenhende et al. [25] considered
the importance of task interactions while distilling informa-
tion during multi-task learning. Hu et al. [26] jointly learned
multiple tasks across different domains with a unified Trans-
former. Wu et al. [21] introduced a multi-task network that
can jointly handle object detection, drivable area segmenta-
tion, and lane detection in autonomous driving.

Ill. PROPOSED APPROACH

A. MOTIVATION

Although Arrow R-CNN [30] achieves remarkable results
in handwritten flowcharts recognition, it is not fully appli-
cable for recognizing machine-generated flowcharts. Every
connecting edge detected by Arrow R-CNN must contain
an arrow as a keypoint. However, several connecting edges
within a machine-generated flowchart may share one arrow,
which causes failures in detecting edges and keypoints when
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(b) Errors when edges have a nested layout

FIGURE 2. Due to the complex structure that machine-generated
flowcharts have, errors occur when applying arrow R-CNN. bounding
boxes indicate entire connecting edges, and each red point and blue
point represent the start and tail of belonged edge. (a) shows the
detection errors of box and keypoint when edges have no arrow.

(b) shows the detection errors when edges have a nested layout.

applying Arrow R-CNN. As shown in Fig. 2, although the
representation of connecting edges is adjusted to an entire
connection between two symbols, errors in detecting edges
and keypoints still occur. Based on the structural analysis
of connecting edges, using line segment representation can
better handle the dilemma in which Arrow R-CNN is stuck.
Line segments are not appropriately described with bound-
ing boxes because of their highly variable aspect ratio and
limited choices of anchors. Many works [16]-[18] follow
the procedure of first producing junction proposals and then
converting them into line segments, which causes the perfor-
mance of these methods to rely heavily on junction detection.
However, in a flowchart, junctions appear on both connect-
ing edges and symbols, which brings numerous redundant
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FIGURE 3. FR-DETR architecture. A convolution network is used as backbone to produce two feature maps with different resolutions from an input
flowchart. The coarse encoder-decoder structure first encodes the smaller feature map and then generates the mid-queries with the interactions between
encoded features and the init-queries. The fine encoder-decoder structure encodes the feature map with higher resolution and outputs final-queries
based on the interaction between the corresponding encoded feature and mid-queries. In the end, the final-queries are fed into feed-forward networks

to make the final predictions.

instances when using junction based approaches. In addition,
due to convolution having a fixed respect field, CNN-based
models have limitations in building long-range relations for
targets like long lines. Recently, a Transformer-based line
segment detector LETR [19] suggested a model that directly
regresses the endpoints coordinates of each line segment. The
attention mechanism introduced by Transformer perfectly
meets the need to distinguish line segments between wanted
and unwanted ones.

Inspired by the aforementioned methods, with the aim of
improving the flowchart recognition accuracy and reducing
the costs of using isolated models, this paper modifies LETR
into a multi-task model to jointly accomplish the two detec-
tion tasks. The model selected to perform symbol detection
is DETR. The reasons can be concluded as follows: (1) DETR
has a similar Transformer-based structure to LETR, which
maximizes structure sharing between the two models and the
overall cost reduction. (2) Other CNN-based object detection
models and LETR have few shareable parts, which unavoid-
ably results in insufficient structure sharing and difficulties in
jointly analyzing features.

B. THE FR-DETR MODEL

The overall architecture of FR-DETR is designed based
on a multi-scale Transformer encoder-decoder structure as
depicted in Fig. 3. The proposed flowchart recognition pro-
cess can be divided into four sub-tasks: feature extraction,
feature encoding, feature decoding and target prediction.

1) FEATURE EXTRACTION
FR-DETR uses a CNN backbone to extract a feature
map fy € REH*W from an input image x € R>>*HoxWo,
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The channel dimension of the feature map f; is then reduced
from C to a smaller dimension d to obtain a new feature map
f e REXHEXW by 1 % 1 convolution. To meet the encoder’s
requirement, which expects input in the sequence format,

the feature map f is flattened to create another feature map
ze Rd xH W.

2) FEATURE ENCODING

The Transformer encoder is stacked with multiple encoding
layers. Each layer consists of a multi-head self-attention mod-
ule and a feed-forward network (FFN). The encoding layers
receive processed features from their predecessor layer and
deliver the output features to the corresponding FFN after
learning the pairwise relations between the input and output.
In general, the flattened feature map z € RY*#W is encoded
into a new feature map 7’ € R¥*#W _ The positional encoding
of f is added to guarantee the flattened feature map z not to
lose the spatial relations.

3) FEATURE DECODING

Following the standard architecture of Transformer, the
decoder transforms each N embeddings of symbol and
line segment using the multi-head self-attention and cross-
attention module. Like the positional encoding of the encoder,
the input embeddings are learnable positional information
that is added to the input of each layer and named as target
queries. Each decoding layer receives 7/ € R*#W from the
last encoding layer and two types of target queries b € RV
and [ € RN namely symbol queries and line queries, from
its predecessor decoding layer. Both types of queries are first
processed by the self-attention model, and then, each entity
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in the queries is assigned to different regions of positional
encoding by the cross-attention module. The output of the
decoder is then used to predict the final results using an FFN.

4) TARGET PREDICTION

The final results of symbols and line segments are predicted
by an FFN. Specifically, the coordinates of symbols and line
segments are computed by a multi-layer perceptron (MLP)
with three layers, and the confidence of the predicted targets
is produced by a linear projection layer.

C. COARSE-TO-FINE STRATEGY

The detection of small objects, such as arrows in a flowchart,
empirically needs high resolution feature maps to achieve
better results. However, directly processing high resolution
image features with Transformer incurs a high computation
cost. In contrast to object detection, which mainly focuses
on local and neighborhood regions, line segment detection
needs to consider the fine-grained local features and the
global information. According to previous works [11], [12],
an efficient way to tackle the problem is a sequential two-
stage structure, whose former component produces suggested
regions for the other component to perform exact detection.
Following this idea, FR-DETR performs both the desired
tasks in a refinement process using a coarse-to-fine strategy.
This strategy enables FR-DETR to learn from multi-scale
image features and produce precise predictions. In general,
the model first analyzes the global information to locate pos-
sible targets coarsely and then uses the location information to
examine local features and perform fine-grained recognition.

In the coarse stage, FR-DETR studies a low resolution
feature map to identify potential regions containing symbols
and line segments. The low resolution feature map sent into
the coarse encoder is the output of the ResNet [33] Cs layer,
and its size is 31—2 of the original image resolution. After the
encoding process, the encoded features and init-target queries
are then passed into each decoding layer’s cross-attention
module and self-attention module. The predictions produced
by the coarse stage are considered as potential target regions
and received by fine decoding layers as mid-target queries.
The coarse stage is important for improving the accuracy of
the fine stage and can reduce the computation cast compared
with directly processing high resolution features.

In the fine stage, based on the suggested potential regions,
FR-DETR makes detailed predictions using a feature map
with 11—6 of the original image resolution, which is the output
of the ResNet Cy4 layer and is twice the size of the feature
map used in the coarse stage. In general, fine decoding is
similar to that in the coarse stage. The main difference is
that it processes information with more details and focuses
on the suggested regions to conclude predictions, making
the fine stage crucial for accomplishing precise fine-grained
detection.

While performing prediction, each detection task has one
shared prediction head for the coarse and fine stage to make
predictions precisely and progressively.
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D. TARGET PREDICTION LOSS

In the encoding-decoding system, the multi-scale encoder-
decoder gradually rectifies each N initial queries of symbol
and line segment to achieve final queries in the same amount,
respectively. In the prediction process, each type of final
queries is fed into its corresponding FFN that consists of a
classifier and a regressor to predict the category confidence p
and the coordinates of every target. If a final query belongs to
symbol detection, the coordinates prediction is in the format
of bounding box b = (cx, ¢y, w, h), which denotes the center
point, width and height of the box. Otherwise, a line segment
prediction [ is represented by two endpoints (p1, p2), where
p1 = (1, 1), p2 = (x2, 2).

The set of predictions ¢ has N targets, and the set of ground
truth ¢+ has M elements, normally N > M. To assign a
bipartite matching between the predictions and ground truth,
t is assumed as a set that padded with no object (&) to meet
the size of 7. In this case, an optimization for the bipartite
matching is used to find the permutation with the lowest cost:

N
Ematch(tv ?) = Z]I{Ciig}[)‘lﬁmrgﬂ(ti’ ;&i) - )\217&,«] )
i=1
& = argmin Lopaen(t, 1) (2)
o

where & is the indices of the matched predictions in set 7.
Lomatcn computes the total pair-wise cost of matching the
ground truth #; and prediction f&i. I is an indicator function
used to drop @ when computing L1, c; represents the class
of #;. Liarger denotes the matching cost functions for symbol
detection Lgympo and line segment detection Ljine.

Lymbol(bi, bg,) = A, lbi — bs |l + Aov Lrov (3
Liine(li, ) = Ay |1l — s, 4)

where Lyyupor consists of Ly loss and IoU loss. The L loss
computes the distance between the ground truth and symbol
prediction, and L;,, uses the generalized IoU loss to mea-
sure the similarity between bounding boxes. Likewise, Ljie
represents L thee distance of corresponding end point pair
between two line segments of the ground truth and prediction.

For the two detection tasks, each task loss must also eval-
uate the results of classification. By adding a cross-entropy
loss term, each task loss can be represented as:

N

Lsymbul(bv lA)) = Z AetsLeis(bi, 2&) + £symbol(biv [;6,-) ©)
i=1
N

Liine(l, 1) = Z AetsLers(li, l&,-) + Liine(li, l&,-) (6)
i=1

where [’Esymbol and ﬁzme are each task’s loss term, £, denotes
the cross-entropy loss term for classification. The total loss of
FR-DETR is formulated as:

Etotal = ﬁsymbul + ﬁline @)
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IV. EXPERIMENT AND RESULTS

A. DATASET

(1) CLEF-IP dataset. The original CLEF-IP dataset released
in 2011 contains machine-generated flowchart images and
other structural diagrams. After removing non-flowcharts,
approximately 60 images remain, most of which are provided
by the European Patent Office (EPO) for the patent retrieval
study. These flowcharts have a simple white background, and
their structures are drawn in black. The dataset has three
main symbols: rectangle for processing action, diamond for
decision, and oval for terminator.

TABLE 1. Statistic of the new dataset.

Symbol Class Counts

arrow 13183

rec 7309

diamond 2603

oval 1344
ellipse 244
circle 239

parallel 501

OO0CONC

document 186
hex 157
line 20433

(2) The proposed dataset. To enrich the symbol category and
structural complexity, public flowchart images are collected
through the Internet by using image search engines, such as
Google Image, Bing Image and Baidu Image. After filter-
ing low quality images and removing duplicates, a dataset
containing more than 1,000 images is constructed. The new
dataset includes 25K+ symbol instances and 20K+ line seg-
ments. Statistical details are shown in Table 1. Moreover,
the backgrounds of the images are not all purely white. For
example, some samples have colorful backgrounds with line
textures.

The FR-DETR model is trained on the new dataset, which
is randomly divided into 800 training images and 200 test-
ing images. Data augmentation methods including random
resize, random flip, and random crop, are taken through all
experiments. Usually, applying augmentations [31], such as
copy-pasting, is an effective and efficient way to improve the
detection results of small objects. Due to the arrow class,
the only category of small objects in the dataset, already
has the largest amount, specific augmentation for such class
is unnecessary. The input images are resized to 600 pixels
on the longer side during the training process and at least
600 pixels on the shorter side during the evaluation process.
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Algorithm 1 Task-by-Task Training Strategy

Input:
Target network A with parameters:
0= {gﬁne’ scymbol’ egne’ nymbol’ Qbackbone};
/I ¢ = coarse stage,f = fine stage
Training data set: S;
Preset train epochs:
o= {¢warmupa Pend s Pes ¢f}
Output: Well-trained network: N
1: foriin {c,f} do
2 O < {0],, 04 oy }3 // Initialization
3:  if i = c then
4 O <« OU{Bpackbone}; /! Train backbone in the coarse
stage
end if
Train(N, S) for ¢yarmup epochs;
O « @\{QS’ymbol}; /l Freeze 9;ymbol
Train(\, S) for ¢; epochs;
Q «~0OU {95"),mbul}\{9;me}; // Freeze Glime and activate

i
symbol

10:  Train(\V, S) for ¢; epochs;

11: O« 00U {Glime}; /I Activate all parameters

12:  Train(N, S) for ¢,,q epochs; // Stage i finished
13: end for

14: return Trained Network N

R AN

B. IMPLEMENTATION

1) NETWORK ARCHITECTURE

ResNet-50 and ResNet-101 are used as backbone to generate
feature maps from the input image x € R3*H#0x%o_ The coarse
encoder and fine encoder take the output from the Cs layer
and Cy layer, respectively. The output from Cs layer is a low
resolution feature map f € REXHXW where C = 2048, H =
%, W= % The output from Cy layer is a feature map with
higher resolution and C = 1024, H = %, W= %. Before
being fed into the Transformer encoder, the feature map is
compressed from C channels to 256 by a 1 x 1 convolution.
Then, with a fixed sine/cosine positional encoding, the new
feature map is sent into the Transformer encoder. To process
multi-scale features, the network sets up two independent
encoder-decoder structures. Similar to the standard Trans-
former structure, each encoder and decoder has six encoding
layers and six decoding layers with eight attention heads.
The two tasks share one encoder-decoder structure at each
stage, and use respective prediction heads to produce the final
prediction. The sharing structure can efficiently reduce the
number of network parameters and the cost of learning and
inferring.

2) TRAINING STRATEGY

A single GeForce RTX 3090 GPU is used to train and test
the model through all experiments. The backbone weights are
initialized using the pre-trained model provided by DETR.
To accomplish coarse-to-fine detection, the network first
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TABLE 2. Detection results of symbol and line segment/edge. (Edge is for arrow R-CNN only.)

Stage . Symbol Line Segment/Edge Overall
Network ————— Multi-Decoder

One Two P% R% F1 P% R% F1 P% R% F1

DETR-R101 [14] V4 - 979 973 0976 - - - - - -

LETR-R101 [19] Vv - - - - 98.9 99.1 0.990 - - -
Arrow R-CNN-R101 [30] Vv - 909 837 0872 812 773 0.792 862 80.9 0.836
V4 803 827 0815 772 826 0.798 789 827 0.807
FR-DETR-R50 Vv 876 893 0.884 923 905 0914 89.6 89.8 0.897
Vv 4 89.1 912 0901 936 91.7 0926 91.0 914 0912
v 91.8 91.7 0917 956 933 0944 935 924 0929

FR-DETR-R101

Vv Vv 924 925 0924 961 937 0949 940 93.1 0935

TABLE 3. Comparison of parameter volume and inference time among different models using ResNet50 as backbone.

Task Stage .
Network ##params  seconds per image
Symbol  Line segment One Two
DETR [14] Vv v 41.3M 5.23
41.3M 4.99
LETR [19] Vv v
V4 59.1M 5.06
41.5M 5.26
FR-DETR v v v
v 59.5M 532

Legal | Fulfiment

Customer

(a) Complex structures (b) Texture backgrounds

FIGURE 4. Detection results of FR-DETR on the new dataset. (a) shows the results of recognizing flowcharts with complex structures, dense targets and
broken edges. (b) shows the recognition results of flowcharts with texture backgrounds.

trains only the coarse stage for 500 epochs. Subsequently, the model. The end-to-end training simply trains the entire
all parameters of the coarse encoder-decoder are frozen, and network at once, and the symbol detection and line segment
the fine stage is trained for 300 epochs after being initialized detection are therefore trained jointly. The task-by-task train-
by coarse weights. Different training paradigms, such as end- ing allows the model to focus on one task each time. In detail,

to-end strategy and task-by-task strategy, are applied to train the entire model is first trained for 50 warm-up epochs to
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FIGURE 5. Visualization of FR-DETR’s coarse-to-fine decoding process. The first column shows the input images. The (b) to (d) columns show the
decoding results for symbols, line segments and both at the end of the coarse stage. Likewise, the (e) to (g) columns show the decoding results at the

end of the fine stage. The last column shows detection results.

be roughly convergent. Then, while all the parameters of the
other branch are frozen, each task is trained for 300 epochs in
the coarse stage and 200 epochs in the fine stage. Finally, all
the parameters are unfrozen and trained together for another
100 epochs. The specific training steps are presented in Algo-
rithm 1. In the end-to-end training strategy, the learning rate is
initially set to 0.0001 and multiplied by a factor of 0.1 every
200 epochs in the coarse stage and 120 epochs in the fine
stage. In the task-by-task training strategy, learning rates are
shared between tasks only during the warm-up and jointly
training stage. AdamW is used as the optimizer and the
weight decay is set to 1074,

C. EVALUATION METRIC

As pioneering flowchart recognition works, the evaluation
metric selected in this paper is the F1-Score, which is a
standard metric in flowchart recognition. The F1-Score is the
weighted average of Precision and Recall, where Precision
measures the percentage of correct prediction and Recall
shows the percentage of correctly detected targets.

L. TP
Precision = —— (8)
TP + FP
TP
Recall = —— 9
TP + FN
Precision x Recall
Fl =2x (10)

Precision + Recall

where TP (true positive) denotes correct positive predic-
tions of positive targets, FP (false positive) denotes incorrect
positive predictions of negative targets, FN (false negative)
denotes incorrect negative predictions of positive targets.

D. RESULTS AND COMPARISONS

Regarding the evaluation metric, Table 2 reveals the detection
results of symbols and line segments on the new dataset.
It is clear that the overall performance of FR-DETR is better
than Arrow R-CNN. Table 2 also shows that all two-stage
models achieve better results than the single-stage model,
which means that the two-stage structure can effectively
improve detection accuracy. The effectiveness of multiple

VOLUME 10, 2022

TABLE 4. Comparison of different training strategies.

Symbol Line Segment
Strategy
P% R% F1 P% R% Fl1
End-to-end  87.6 893 0.884 923 905 0914
Task-by-task 874 905 0889 92.8 903 0915

decoders is also tested. In this case, the network structure
still has a shared backbone and encoders, but the decoding
results sent into each prediction head are produced by their
respective decoders. This structure allows each decoding
module to focus on its specific task. The results show that the
multi-decoder does improve the model performance. Com-
pared with DETR and LETR, there is a slight gap between
the results of FR-DETR and the single-task models, while
the multi-task model makes it difficult to find an optimal
global solution for all tasks. As shown in Table 3, using
ResNet50 as the backbone, FR-DETR has an inference time
similar to that of DETR and LETR. However, FR-DETR
can productively reduce the total inference time with a slight
increment in the number of parameters. Generally, FR-DETR
can significantly reduce the time consumption with a small
decrease in accuracy.

The comparison of different training strategies’ perfor-
mance is shown in Table 4. It shows that the two strategies
achieve almost the same results, while the task-by-task train-
ing is slightly better than the end-to-end strategy.

FR-DETR is robust and can handle complex flowchart
images. Unlike the CLEF-IP dataset, the new dataset provides
flowcharts with more complex structures and backgrounds,
enabling FR-DETR to address challenging problems such
as broken edges and misleading line textures. As shown in
Fig. 4, the images on the left have a dense layout of symbols
and broken connecting edges, the images on the right are
flowcharts with texture backgrounds. The detection results
show that FR-DETR can accurately localize each symbol and
line segment regardless of structure complexity, backgrounds
and broken edges.
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TABLE 5. Comparison of FR-DETR and other methods on the CLEF-IP
dataset.

Method P% R% F1
FR-DETR-R50 98.7 98.1 0.984
CVC-UAB [7] 72,5 903  0.804

JOANNEUM [9] 79.8 85.6 0.826
INRIA [10] 89.1 879 0.885
Arrow R-CNN [30] 93.8 883 0910

The demonstration of FR-DETR’s coarse-to-fine decoding
process is shown in Fig. 5. The results of the coarse stage
are produced by the coarse decoder decoding features from
ResNet’s Cs layer. Although the target information is will-
captured, the features with a low resolution limit the model
from making precise predictions. The outputs of the fine stage
are generated by the fine decoder decoding high resolution
features from ResNet’s C4 layer with target queries from the
coarse stage. The overlay of attention heatmaps shows more
detailed relations in the image space, which is the key to the
detector performance.

The overall recognition results on the CLEF-IP dataset,
as shown in Table 5, are improved to 98.7% precision and
98.1% recall by FR-DETR, which indicates that the proposed
method outperforms the prior approaches.

V. CONCLUSION

This paper presents a new method for machine-generated
flowchart recognition, which accomplishes the task by detect-
ing symbols and connecting edges using deep-learning-
based object detectors and line segment detectors. An end-
to-end multi-task model named FR-DETR that contains a
multi-scale Transformer structure is introduced to reduce
the high cost caused by using separate models. Its well-
performed joint detection of symbols and line segments sig-
nificantly simplifies the flowchart recognition task. A new
machine-generated flowchart dataset is also constructed for
practical model training and evaluation.

Although FR-DETR outperforms other flowchart recog-
nition methods, it is not lightweight enough to meet the
requirements of real-time processing and mobile application
development. In addition, recognizing flowcharts and under-
standing the corresponding structural semantics with an end-
to-end model is still a challenge.
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