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ABSTRACT The current roadway monitoring is expensive and not systematic. This paper proposes a
new system able to evaluate the pavement quality of road infrastructure. The embedded system records
and processes the acoustic data of the wheel-road interaction and classifies in real-time roadways’ health
thanks to integrated AI solutions. The measurements to produce the dataset to train a convolutional neural
network (CNN) were collected using a vehicle operating at different cruise speeds in the area of Pisa.
The dataset is composed by acoustic data belonging to several typologies of roads: dirty or grass roads,
high roughness surfaces and roads with cracks or potholes. The raw audio signals were split, labelled, and
converted into images by calculating the Mel spectrogram. Finally, the authors designed a tiny CNN with a
size equal to 18 kB able to classify between four different classes: good quality road, ruined road, silence and
unknown. The CNN architecture achieves an accuracy of about 93% on the original model and 90% on the
quantized one. Quantization permits to convert the final architecture into a suitable form to be deployed on a
low-complex embedded system integrated in the tyre cavity. In addition, a custom board was designed to act
as IoT node thanks to a Bluetooth Low Energy communication towards smartphones and/or car infotainment
systems. These systems, featured with GPS, guarantee to obtain real-time maps service of road quality.
At authors’ knowledge, this is the first real-time and fully integrated solution at the state of the art for road
pavement quality analysis and classification on acoustic data.

INDEX TERMS Road surface classification, convolutional neural network, audio processing, embedded
system, image recognition.

I. INTRODUCTION
Road surface is an essential component of roadways. The
main requirements a roadway should meet are evenness, tyre
road friction, carrying capacity and low noise level. However,
this infrastructure is subject to permanent stress and needs
to be repaired or renewed in order to ensure the substance
and utility value. Maintaining a good road surface quality
is a major challenge for governments around the world [1].
In fact, ruined surfaces are responsible for car accidents, poor
driving quality as well as environmental noise. In addition,
traffic noise and noise caused by motor vehicles are even con-
sidered as a serious health problem today [2], [3]. Nowadays,
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most steps of the evaluation are done manually by an inspec-
tor who drives along the road, collects raw data, identifies the
type of defects and their location, and calculates a specific
index for road surface condition (International Roughness
Index - IRI) [4]. Since the current procedure is a subjective
and labour intensive process, it is an ideal candidate for
automation. The rapid growth of vehicles and traffic accidents
caused by road pavement anomalies highlights the necessity
to invest in finding new systems to evaluate road health. The
profile of a surface can be described by the texture wave-
length λ that illustrates the different lengths of periodical
structures in the profile. Surface texture is the nature of a
surface in terms of lay, roughness and waviness where: lay is
the direction of the predominant surface pattern determined
by the production method used; surface roughness measures
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FIGURE 1. Road surface defects.

the total spaced surface irregularities; waviness is a measure
of surface irregularities with a spacing greater than the one of
surface roughness. It is said microtexture when λ is less than
0.5 mm, macrotexture when it is between 0.5 and 50 mm,
megatexture if the wavelength is from 50 mm to 0.5 m and
unevenness if it is between 0.5 and 50 m [5].

According to the Texas Department of Transporta-
tion (TxDOT) Pavement Management Information System
Rater’s Manual [6], pavement distresses for asphalt sections
are mainly categorized into eight types as shown in Figure 1:
rutting, patching, block, alligator, longitudinal and transverse
cracking, ravelling and potholes. The central importance of a
periodical road surface monitoring and maintenance is due to
the fact that it can increase the life span of roads from 15 up
to more than 30 years [7].

As detailed in Section II-A, the state of the art does not
offer a low-cost and integrated device that performs real-time
classification of road surface anomalies. To overcome this
issue, in this paper we propose a novel system for road quality
classification by implementing a real-time Artificial Intelli-
gence algorithm on a low-complex custom embedded system.
Hereafter, the paper is organized as follows: Section II deals
with state of the art and innovative contributions of this work.
Section III presents data collection and processing, and dis-
cusses the neural network architecture used for road quality

TABLE 1. Comparison of different sensors.

classification. Section III also contains a description of the
firmware and hardware purposely designed for this project.
Section IV shows the experiment results, the implementation
on the final custom board and discusses about the future
works. Conclusions are reported in Section V.

II. STATE OF THE ART AND MISSION OF THE PAPER
A. RELATED WORKS
In the last years, researchers have presented several methods
to address the problem of road anomalies detection. The
number of devices designed for this task is increasing and
mainly includes road profilometers, cameras and inertial sen-
sors. There are also few works based on acoustic sensors
that represent a new research field. Table 1 shows a brief
comparison of different sensors used in the literature for
road quality detection. Each system can be combined with
machine learning or physical model providing different out-
puts, e.g. evaluation index or defect type.

The technologies focused on automated road surface mon-
itoring can be divided into different groups based on the
output [8] as reported below.

• Presence: it answers the question whether a defect exists
in the given data or not.

• Detection: it identifies the exact position of the defect
within the street.

• Measurement: it provides the spatial measurements of
the defect, e.g. width and depth of pothole.

Road profilometers are devices used to calculate parame-
ters, which describe longitudinal and transverse evenness and
the cross fall of a road surface. An example of this application
is proposed by Sjogren et al. in [9] where profilometers are
applied to measure rut depth. Unfortunately, these systems
are very expensive (over 3000 $) and require to be mounted
on special vehicles involving additional costs.

Another method to detect anomalies is based on cameras
and image recognition tools. A camera is placed outside a
vehicle and captures real-time 2D images. Then, these are
elaborated to get information, like the type of defect and
its size, for instance. Balcerek et al. [10] propose a classifier
of road surfaces based on CNN that determines the general
condition of surfaces. The development of new systems is
going in the direction of replacing traditional cameras with
smartphone cameras. This has the main advantages of reduc-
ing costs and facilitating the spreading of the technology.
Also Rateke et al. [11] propose a surface types and quality
classifier based on CNN and present their own dataset col-
lected with a low-cost camera. Varadharajan et al. [12] and
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Tedeschi et al. [13] use a mobile Android device to perform
real-time detection of anomalies, e.g., potholes and cracks.
However, this methodology has some drawbacks, in particu-
lar high costs in exchange for high accuracy and influence of
bad weather, shadow, and light variations on the results. The
cheapest systems for the estimation of road surfaces are based
on inertial sensors. These are mainly implemented in case
of potholes recognition or severe anomalies. An advantage
respect to the use of cameras is that the data obtained with
inertial sensors have a smaller size and are easier to be stored.
Nevertheless, this technology is not yet commonly applied
from governments, and this is due to lack of reliable and
adaptable models. In fact, there are many factors contributing
to the final output of inertial sensors (sensory, vehicular,
driving, and environmental properties) that must be taken into
account. This makes their development really challenging.
A device based on inertial sensors is Pothole Patrol [14]
that was deployed on taxis to detect and report the surface
conditions of roads.

Nowadays, many studies are intended to apply smart-
phone’s inertial sensors because it makes the technology
easily applicable in a widespreadmanner and does not require
additional costs. An example of it is Nericell [15], a sys-
tem thought to be used by people in their normal course to
monitor roads and traffic conditions. The disadvantage is that
it requires a very complicated hardware and software setup
with low final performance. Many studies are available about
the correlation between road surface quality and tyre-road
noise. Close Proximity method (CPX) [16] is the name of
a methodology based on test-tyre rolling on the road with
measuring microphones located close to the tyre surface.
Tyre-road noise is mainly due to the combination of airborne
noise and structure-borne noise. The first causes noise at fre-
quencies higher than 1 kHz and is related to the compression
of the air trapped within the tread of the rolling tyre. The
other is caused by the contact of tyre with surface defects and
covers frequencies lower than 1 kHz. A system that uses this
method to distinguish between wet and dry road surface is
proposed by Alonso et al. [17]. Unfortunately, this has some
downsides, for example, the influence of environmental noise
and the risk of damaging the device for its proximity to the
wheel. Considering that the road texture causes a displace-
ment of the tyre carcass and induces a noise field into the tyre
torus, a different type of acoustic sensor was developed. In the
work presented byMasino et al. [18], a microphone is placed
inside the tyre cavity, and this guarantees great advantages.
In fact, the tyre cavity is a reverberation room and insulates
the mic from external disturbs. The system proposed in this
paper aims to overcome the limitations of what is described in
the state of the art: performing acquisition and classification
in real-time using a low-cost integrated device.

B. OUR CONTRIBUTION
The aim of this work is to develop a road classifier system
capable of providing a real-time assessment of the infrastruc-
ture. The focus of this paper is the development of innovative

artificial intelligence techniques able of autonomously learn-
ing from the acoustic data acquired through an integrated
system. The algorithm is deployed on an electronic board
mounted on the rim flange of a vehicle, linked to a micro-
phone that is installed inside the tyre cavity and equippedwith
components for Bluetooth Low Energy (BLE) data trans-
mission. One of the main differences between the system
proposed by Masino et al. [19] and the system proposed in
this work is that here the classification is executed real-time
directly on the microcontroller. Another innovative aspect is
the employment of a convolution neural network that receives
Mel spectrogram as input and classifies the road health. Based
on the input, the classifier distinguishes the roadway surface
typology, and the detected label is sent via BLE to external
apparatus for further processing. This is a great advantage
respect to devices in which raw data are sent to a server.
It assures higher speed, lower power consumption and safe-
guards from data loss. Other benefits of this methodology are
related to the fact that the acoustic signals recorded inside
the tyre cavity are not influenced by external environmental
noise and the measurements can take place in every light
condition. Moreover, the purposely designed board is tiny
(3 cm × 4 cm) and low-cost (∼50AC per each board proto-
type). This makes the system easily and widely applicable.
Finally, an important contribution of this work is the creation
of a new dataset containing the tyre noise due to the inter-
action between wheel and road surfaces. The set of audios
is mainly acquired with several measurement campaigns and
partly generated by data augmentation. The files are related to
road surface typologies such as: good quality, roads covered
in grass, dirty roads, potholes, and bad quality, e.g., cracks
or high roughness roadways. The main contributions of this
paper are summarized as following:

• a new low-cost device based on CNN for real-time road
defects classification based on acoustic signals;

• a modified condensed microphone sensor placed inside
tyre cavity achieving a perfect insulation from external
noise and weather condition;

• design of different CNN architectures taking into
account the memory footprint and execution constraints
required by the embedded system.

III. MEASUREMENT SYSTEM
The required dataset to train the artificial neural network
model was created in two phases. Firstly, several recordings
were collected. In particular, the road surfaces considered are:
good quality, bad quality, such as cracks or high roughness
streets, potholes, dirty and covered in grass. Then, these
acoustic data were processed with the intention of obtaining
a balanced set.

A. DATA COLLECTION
The acquisition of the signals took place in Pisa province.
To achieve this, it was employed a proto-board based on the
components listed below:
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• CUI Devices cma-4544pf-w electret microphone placed
inside the tyre cavity that was modified for measuring
higher sound pressure values;

• Raspberry Pi 3 model B attached to the tyre rim that
samples and locally stores the data.

The front-end involved in this phase is similar to the one
used in [20] and will be implemented in the final embed-
ded system. The Raspberry Pi 3 board is equipped with
a sound card for single-channel sampling at 44.1 kHz of
the audio signal. To make the model more robust, it was
decided to collect the audio at different constant cruise
speeds:∼ 30, 40, 50 km/h and each was repeated three times
to get further information. Speed of 50 km/h was adopted as a
reasonable maximum speed to perform the inspection of city
streets. The collection of audio signals at several cruise speeds
is useful to generalize the ability of the classifier to detect
anomalies at speeds in a neighbourhood of 40 km/h. In fact,
to keep constant the velocity is not easy when driving on a
busy road. During the campaigns, all done in condition of dry
road surface, a total of about 60 minutes of recordings were
collected. All the equipment needed for the measurements
was mounted on a Mercedes-Benz Vito, used as a mobile
laboratory. Additional sensors were employed: an encoder
to know the exact cruise speed; an auxiliary synchronized
GoPro to film the crossed street. This was important to cor-
rectly link the recorded audio with the relative label. The
labelling stage is crucial and was carefully performed since
a wrong coupling between the signal and the related road
surface would determine bad performance of the final model.

B. DATA PROCESSING
Once the data were collected, a pre-processing phase was
performed: each record was cut to make it 1 second long
and downsampled from 44 kHz to 16 kHz, which is the
sampling frequency used by the microcontroller responsible
for the classification. From the acquired files, a dataset was
created by dividing the tracks into folders where each has the
name of the category the files belong to. The whole dataset
consists of four classes: silence, unknown, including both
dirty and grass road, good quality and ruined roads composed
by bad quality roadways and potholes. For each class, data
augmentation was executed to increase the number of avail-
able records and make the model more robust. In particular,
we applied the time shift by moving each wave track for-
wards and backwards with different time factor. In this way,
it was obtained a balanced dataset: every folder containing the
same number of samples and having the same characteristics.
These operations were performed with both Python scripts
and Audacity. At this point, further audio processing was
conducted to not provide raw data to the model. This has
the main advantages of reducing the time required to train
the model and simplifying the design of the neural network.
In Figure 2, it is shown the spectrum of each considered road
surface. As we can see, the main components of the signals
appear concentrated in a frequency range lower than 1 kHz.

FIGURE 2. FFT spectrum of each considered road surface.

In Figure 2 it is possible to notice a peak at a frequency around
200Hz. This behaviour is consistent with the Equation 1 [21]:

fn = n ∗
c
π
∗

1
Rin + Rout

→ f1 ≈ 215Hz (1)

where:
• n ∈ N is the mode order;
• c = 343 ms−1 is the speed of sound in air at 20◦C;
• R_in = 0.191 m is the inner tyre radius;
• R_out = 0.317 m is the outer tyre radius.
In view of this and of the fact that the application must be

deployed on a microcontroller, it was decided to transform
each acoustic signal into Mel spectrograms. Mel scale is a
technique inspired by the way humans perceive frequency in
sounds based on pitch. Our hearing works in such a way that
we perceive frequencies on a scale that is not linear, paying
more attention to low frequencies than to high ones. This
means that it is easier to detect differences in low frequencies.
This is what Mel scale achieves. It is a logarithmic transfor-
mation of the frequency of a signal in which sounds at the
same distance on the Mel scale are perceived as being at the
same distance by humans. The formula to convert fHertz into
fmel mels is [22]:

fmel = 2595 ∗ log10

(
1+

f
700

)
(2)

Mel spectrograms are actually preferred for dimen-
sion reduction respect different spectrogram representation
achieving nearly identical classification accuracy with less
model memory required [23]. In consideration of this, one
second-length audio was divided into sub-frames that have
short interval (30ms) and then windowed by applying the
Hann window to avoid discontinuities. The Hann window can
be mathematically represented as follows: :

wn = 0.5 ∗
(
1−cos

2πn
N − 1

)
(3)

where N represents the number of samples in each frame.
To compute the Fast Fourier Transform of the frame, it was
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FIGURE 3. Features extraction from audio track.

performed the following operation:

Xi(k) =
N∑
n=1

xi(n) ∗ wn(n) ∗ e−j2πkn/N (4)

where i represents the number of frame and K represents the
length of the FFT. Then, the power spectrum was calculated
as Equation 5:

Pi(k) =
1
N
|Xi(k)|2 (5)

At this point, it was taken the absolute value of the com-
plex Fourier transform, and the result was squared. This
process generates 256 frequency buckets that were averaged
by applying Mel frequency scale and obtaining 40 downsam-
pled buckets as in Equation 2. Thanks to these steps, lower
frequencies were characterized by a higher resolution and this
is coherent with the type of the signals the authors areworking
with. The process was repeated 49 times striding the window
of 20 ms each time as depicted in Figure 3.
The presented steps generate spectrograms with a shape

of 49 rows and 40 columns and appear translated respect to
traditional spectrograms. This methodology has already been
presented in literature [24] and used for other types of audio
applications [25], [26]. In Figure 4, it is depicted the acoustic
wave corresponding to a pothole as it is easy to notice the
pressure peak around the samples 6000. By calculating its
spectrogram, as described above, this translates as an increase
in energy and it is shown in Figure 5 by the red dark color at
row 19.

The extracted spectrograms were treated as images and
thus given input to the neural network that is responsible for
learning their features. The fact of providing to the CNN a
spectrogram instead of raw data has the benefit of reducing
the size of the input from 16000 samples to 1960 correspond-
ing to a matrix with 49 rows and 40 columns.

C. NEURAL NETWORKS DESIGN
In a preliminary phase, two convolutional neural networks
were designed and compared: the first has a lightweight
architecture and is referred to with the term Tiny; the other,
characterized by an architecture more complex, is inspired

FIGURE 4. Acoustic wave generated from to the interaction between a
vehicle’s wheel and a pothole.

FIGURE 5. Spectrogram of the wave reported in Figure 4. This image
evidences the presence of a pothole in correspondence of the 19th row
on y-axes.

by cnn-trad-fpool3 [27]. In this paper, we will refer to the
second architecture with the termConv for the sake of brevity.
The Conv model is composed by two convolutional layers
with 64 filters each, one maxpooling layer and one fully-
connected layer. The presence of the two convolutional and
the maxpooling layers assures very good achievements and
contributes to the regularization of the model and to greater
efficiency in training and evaluation time. Bothmodels accept
as input a 49 × 40 image corresponding to the size of the
spectrogram discussed above. Unfortunately, this involves
that the Conv model has a size of ∼ 30 MB, being infea-
sible the deployment on limited memory embedded devices.
Conversely, the so called Tiny model has only one level of
convolution and is less deep than the Convmodel. This is why
it occupies a memory size of ∼ 18 kB making it a perfect
candidate to be used in conjunction with microcontrollers.
The reduced size is due to the fact that there is just one
convolutional layer and the maxpooling layer is missing.
Moreover, the size of the kernel is reduced, and the stride step
is increased. Once the CNN has been trained and the results
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have been assessed as satisfactory, the classifier is frozen,
converted to a quantized vector and saved in a file ready to be
integrated with MCU firmware. This last step was possible
thanks to the TensorFlow Lite library [28]. Artificial neural
network architectures are shown in Figure 6. It is easy to note
that the cnn-trad-fpool3 is slightly bigger and deeper than
the so called tiny model. Both models have a 1 × 4 vector
as output, which means that they are able to classify between
four different membership classes. The number of classes and
thus the output vector of the classifiers can bemodified during
the design phase and especially in relation to the training
data available. We chose to use categorical cross-entropy loss
function in our study, and it can be computed by using the
following formula:

Loss =
N∑
i=1

(
yi ∗ log(ŷi + (1− yi) ∗ log(1− ŷi)

)
(6)

where the variable ŷ is the neural network’s prediction, and
the variable y is the expected output. The variable N rep-
resents instead the number of elements in the training and
validation set.

D. FIRMWARE
To make the application working on an embedded device,
an ad-hoc firmware was developed. The overall idea is to
acquire the tyre cavity noise due to the interaction road
surface-wheel and to digitize it. Then, to transform the audio
samples into a matrix representing a spectrogram. Such spec-
tra will be provided to a pre-trained AI model that will predict
the output class. Figure 7 shows how microphone, board and
external devices are related.

In particular, the mic is allocated inside the tyre cavity,
and it is connected to the ADC of the MCU. To ensure a
fast sampling rate, the I2S protocol with dedicated DMA
buffers was used. The DMA controller allows for streaming
sample data without requiring the CPU to copy each data
sample. The first block on the Figure 7 is the audio provider
that has the task of allowing the communication between the
device’s mic hardware and the microcontroller. Then, raw
audio data are elaborated by the feature provider that converts
the data into spectrograms. These represent the inputs of the
classifier that was already trained on a computer. In fact,
it would not be possible to train a NN on a microcontroller.
At this point, TF Lite interpreter runs the TF Lite model
making inference. This process consists in the generation of
a set of scores based on the input of the CNN. Each of these
values provides information about how likely the analyzed
sample belongs to a specific class. Considering the fact that
inference is run multiple times per second, the recognizer
commands aggregates the results and determines, on aver-
age, the output of the classification. Averaging the results
of multiple inferences is a useful and common technique
when dealing with time-series data. In fact, the recogniser
calculates the average score for each class over the last three
inferences and decides whether it is high enough to count as a

FIGURE 6. Artificial neural network architectures: (left) cnn-trad-fpool3
model; (right) ‘‘Tiny’’ convolutional model.

detection. Finally, a command responder is used to recognize
the detected label and send it via Bluetooth Low Energy
to an external device. This has many advantages, e.g., it is
not required a continuous audio streaming and additional
operations can be performed with a machine that is more
powerful than a microcontroller. The idea is to develop an app
that receives the label, links it with the current position of the
vehicle and notifies users of the anomaly colouring a map on
a mobile app. Obviously, the data can only be transmitted via
BLE after pairing the smartphone with the embedded system
(as Figure 16). In an experimental phase, a firmware was
tested by providing mocked spectra to the neural network in
order to verify its robustness. Thismade it possible to improve
the architecture without requiring to connect the microphone
to the circuit board. We underline that the firmware was
designed in such a way that it always possible to be modified
and improved to detect more classes or to refer to other noise
indices.
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FIGURE 7. Firmware flowchart.

E. HARDWARE
As regards the hardware components, a proper electronic
board was developed. A block diagram of the components
is depicted in Figure 8. The core of the board is the
ESP32-WROOM-32D module [29], selected because it sup-
ports TensorFlow Lite and most of the libraries used for data
processing. The internal microcontroller is an Xtensa dual-
core microprocessors 32-bit LX6 ultra low power at 40 nm
technology equipped with 520 kB of SRAM, 4 MB of SPI
FLASH memory and onboard antenna. These characteristics
make the ESP32 module particularly suitable for IoT and AI
applications, such as this. The microphone inside the tyre is
connected to the board via an SMA connector.

The acoustic signal from the microphone first passes
through an active second-order Sallen-Key bandpass filter
with a frequency range of 1Hz to 16 kHz. Two single-package
operational amplifiers are employed for this purpose using a
Texas Instruments TL072IDR [30]. Then, the filtered signal
is sampled by the 12-bit SAR ADC internal to the ESP32
chip at 16 kHz sampling rate. Three chips are responsible for
power management. The first is the MAX77757 fromMaxim
Integrated [31], which enables battery charging and control.
This component is connected to a USB-C port and to a LiPo
battery and is configured to deliver a voltage of 4.2-3.5 V.
This voltage is converted by the LDO TPS746-Q1 into 3.3 V
to supply the ESP32 module and the positive rail of the active
filter. Finally, the Linear Technology LT1614 [32] chip is
used to supply a voltage of −9 V. In fact, the cma-4544pf-w

electret microphone requires a negative voltage to measure
high sound pressure of approximately 150 dB with a low total
harmonic distortion as discussed in [20]. In addition, there are
test points, two button switches, LEDs indicators and header
placed on the board. The RESET and BOOT button are used
to reboot or enter the ESP32 in write mode respectively. The
LEDs indicate correct microcontroller power supply, battery
charge status and can be programmed by the user. A serial
connector is present on the board and allows the transfer of the
firmware to the board via an external FTDI module. All these
components are mounted on the two faces of the PCB (as
Figure 8). In particular, on the top face of the board prototype,
it is placed the ESP32 module with buttons, led, connectors
and some ICs; on the bottom face, USB-C connector and the
Department of Information Engineering logo (DII) can be
observed.

IV. IMPLEMENTATION RESULTS
The system was evaluated in three different phases. Firstly,
the two CNNs were trained and compared by observing their
results. Then, it was selected the model that achieved the
best performance, and it was quantized. Furthermore, it was
calculated the model accuracy on both floating point and
quantizedmodel as final comparison. The classifier was lastly
integrated into the embedded firmware and its functioning
was tested by using an Espressif dev board. The application
was then deployed on the specifically designed board to test
the execution on the real hardware.

A. TESTS
The Tiny and Conv CNNs were trained to classify four
different classes: silence, unknown, good quality and ruined
road, a fourth class that contains both potholes and bad qual-
ity roads characterized by cracks and high roughness. The
dataset consists of about 240 audio tracks per class for a total
of about 1000 observations. As explained above, each audio
track must be converted into a spectrogram and thus into a
2D image to be classified. The original dataset was split as
follow: 80% train data, 10%validation data and 10% test data.
The training of the models was carried out by Python and
TensorFlow using Adam as optimiser. For which concern the
hyperparameters, we configured a batch size of 64, a learning
rate of 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon=1e-07,
with the intention of allowing fast convergence of the model.
Figure 10 shows the training process accuracy vs number of
iteration of the Tiny model for both training and validation
sets. Figure 11 shows instead the values of the loss function
again for the Tiny model. The plots of Convmodel’s accuracy
and loss are not presented for the sake of brevity as they are
very similar to those already reported. Indeed, the outcomes
of the CNNs reach a training accuracy of 99 % and a valida-
tion accuracy equal to 92.7 % almost for both models. Addi-
tionally, cross entropy loss function was evaluated to have
information about the quality of the learning. The final loss
score was lower than 0.2 in both models and it is considered
to be satisfactory.
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FIGURE 8. Block diagram of custom electronic board.

FIGURE 9. Top and bottom view of the purposely designed board.

At the end of the training, the models were evaluated
on the test dataset. The confusion matrices for both Conv
and Tiny models are shown in Figure 12 and Figure 13
respectively. Confusion matrix is the most common way to

FIGURE 10. Tiny training accuracy: 99% - Tiny validation accuracy: 92.7%.

evaluate the performance of a prediction or classification
model. As expected, Conv model has an overall accuracy of
94% on test set while the Tiny model achieve the 91%.

For multi-class tasks, recall, precision and F1-score are
also computed [33] and reported in Table 2. Again, the Conv
model generally performs better than the Tiny model. Both
models get 100% on all metrics in the detection of the class
‘‘silence’’ while the Conv model is the most proficient in the
detection of the class ‘‘good_quality’’. Regarding the average
and weighted accuracy each model gets the same value for
each class as the test set is balanced.

However, the Tiny model was selected to be deployed on
the embedded system because it requires less memory space
and achieves reasonable performance. Before to transfer the
model to the microcontroller, it was quantized and its confu-
sion matrix was computed once again to guarantee that the
quantization did not affect the performance. An accuracy of
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FIGURE 11. Tiny training cross entropy: 0.059 - Tiny validation cross
entropy: 0.2.

FIGURE 12. Conv CNN confusion matrix on test set: accuracy of 94%.

91% on the test set was obtained on the quantized model,
confirming the assumptions discussed above.

B. EXPERIMENTS
An Espressif development board was initially employed to
check that the firmware was properly working and transmit-
ting the predicted labels in real-time. Some audio files were
extracted from the test set, converted into quantized vectors
and used as inputs of the model. By observing the classifier
prediction on mocked data input, it was possible to verify the
reliability of the final model on the real hardware. As was
foreseeable, the board processes the data and simultaneously
detects the correct class of the received input vectors. In addi-
tion, we checked the functionality of BLE. As expected,
the BLE application operates as required: in fact, it waits

FIGURE 13. Tiny CNN confusion matrix on test set: accuracy of: 91%.

TABLE 2. Performance metrics on test set.

for pairing request from a client and then, it starts sending
the detected labels to the external apparatus. This stage was
fundamental to proof that the whole system performs the
required tasks and the process can be executedwithout having
issues.

The last phase consists in evaluating the real-time process-
ing by connecting the protoboard to the microphone placed
inside the tyre cavity. To this end, we simulated the interaction
ruined road - wheel by hitting the tyre with a hammer. The
result is consistent with expectations: as the tyre receives
the hammer blow, the label predicted is ‘‘ruined road’’; con-
versely, the label is ‘‘silence’’. In Figure 14, it is shown the
signal acquired by the serial port after the hammer hit. The
plot reports the number of samples, on the x-axis, and the
voltage (in mV), on the y-axis. As we can see, the acquired
signal is in the range of 800-2400 mV. We expect that the
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FIGURE 14. Plot of the hammer blow sampled by the ADC of the custom board.

system can measure sound pressure levels of approximately
161 dB with a total harmonic distortion of −63.4 dB as
demonstrated in [20]. It is worth remembering that the ADC
of the ESP32 module samples in a range of 0-3.3 V and
therefore, the acquired signal is well below the saturation
threshold.

Then, the wheel was mounted on the vehicle and fur-
ther preliminary tests were performed. During the motion,
the board kept the Bluetooth connection with a smartphone
device sending the detected label. In Figure 15, we can
observe the system mounted on the vehicle wheel. Figure 16
shows a smartphone screenshot of the label transmitted via
BLE (it was chosen to use a free smartphone app called ‘‘nRF
Connect for Mobile’’ from Nordic). We underline that the
proposed system is able to communicate with every BLE
equipped devices. So that it would also be possible to transmit
information to a computer or to the car infotainment system
through easy steps: search the list of BT devices, look for
the device with the name ‘‘Surface-ESP32’’ and then click on
‘‘Connect’’. Within the characteristics of the service defined
in the firmware, the current value, in this case ‘‘ruined road’’,
will be visible.

During the experiments, it was measured the execution
time of the application while working in real-time. In partic-
ular, we measured the inference time, which represents the
time spent by the neural network to calculate the classifi-
cation value given an input, and the processing time, which
represents the time needed from the sampling of the signal to
the transmission of the label via BLE. Results are shown in
Table 3. As expected, most of the processing time is required
by the TF Interpreter to generate the classification result: on
average, the inference time is about 208 milliseconds while
the total processing time is just over 216 ms. These metrics

FIGURE 15. Device fixed to the rim.

are calculated approximately out of 100 values, where a low
variability of values is also observed. In fact, in real time,
about 4 inferences are made per second and therefore about
4 packets are transmitted via BLE per second.

Experimental tests were also executed to get information
about the power consumption of the board. The system is
powered by a 3.7VLiPO batterywith a capacity of 3000mAh
housed underneath the board. It drains an average of 90 mA
when in idle state, i.e., without BLE pairing. Conversely,
it draws on average about 115 mA during BLE transmission.
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FIGURE 16. Interface of Surf-ace prototype application: it receives the
label sent by the microcontroller via BLE and matches it with the
smartphone position obtained through its GPS.

TABLE 3. Execution time performance.

We can therefore state that the maximum consumption of
the device is less than 0.45 W, and that a 3000 mAh battery
guarantees packet transmission for more than 26 hours. This
is a great result considering that road monitoring sessions
usually last only a few hours in a day. Moreover, the device
can be easily detached and recharged at the domestic power
supply in short time.

C. FUTURE WORKS
The preliminary obtained results are very encouraging. How-
ever, new acquisition campaigns are necessary to enrich the
dataset and make the convolutional neural network more
robust. The new dataset will consist of audio tracks acquired
directly from the device developed and presented in this work.
As already said, in this study, it was employed a Raspberry
Pi 3 for data acquisition and it is worth noting that its ana-
logue front-end is the same as that used in our custom board.
A retraining phase will be executed on the new dataset, and it

will be also possible to increase the number of classes distin-
guished by the classifier. The accuracy of the system will be
evaluated by collecting the online prediction achieved on the
vehicle in motion. Finally, a distinct smartphone application
will be developed with the idea of acquiring GPS coordinates
as well as road quality. In this way, it will be possible to create
a web platform containing the map of roads and their quality.

V. CONCLUSION
In this work, we have presented an application for real-time
road surface monitoring based on AI tools. The algorithm
is designed to be implemented on a microcontroller board
equipped with a microphone that captures sounds inside the
cavity of a tyre. Preliminary experimental results show that
the device is capable of detecting the quality of the asphalt
with an accuracy of 91% on the test set. This demonstrates
the suitability of the proposed Tiny architecture for this
application and of the Mel inspired spectrogram as input to
detect road health. The presented approach takes advantage of
innovative techniques. In fact, the deployment of AI system
settled on embedded system is a cutting-edge technology,
focus of many current research. The fact of having a light,
low-power and low-cost device is a great advantage respect
to the current state of the art and commercial technologies.
Moreover, the methodology adopted in the present paper is
not susceptible to light condition or environmental noise.
The algorithm has been tested both on Espressif developed
board as well as the purposely designed board. The algorithm
works as expected and performs real-time processing, classi-
fication and BLE communication achieving very promising
preliminary results. The performed experiments allow us to
have high expectations for future steps. In particular, new
acquisition campaigns are planned with the designed device.
In this way, it will be possible to improve the robustness of
the model and expand the membership categories. The final
objective is the development of an app for smartphones and
a web platform containing information on roads location and
their health available as a service.
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