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ABSTRACT Accurate obstacle detection and proper behavior planning are key factors in the success of
transmission line inspection robots. To achieve the autonomous location and identification of line obstacles
in the operation of transmission line inspection robots, we propose a method in which information from
various sensors is used to control a robot such that it can reliably and stably approach, locate, and identify
obstacles. The accuracy and real-time requirements of obstacle information in the autonomous operation
of the inspection robot are analyzed, a multi-sensor integrated structure for line obstacle location and
identification is proposed, and an obstacle location and identification algorithm is designed for each stage.
The principle of monocular vision ranging is used to control the robot such that it approaches obstacles
and enters the short-range location stage, where the reliable location of obstacles is achieved via collision-
encoder-current sensor data fusion. Obstacles are identified and the identification results are combined with
those of the approaching rolling phase. The robot state vector is constructed according to the obstacle
detection information and information measured by the robot sensors. Based on the current state vector,
combined with the robot obstacle surmounting process, an obstacle surmounting behavior planning method
based on multi-sensor fusion is implemented. Experiments were conducted using laboratory-simulated lines
to verify the effectiveness of the proposed method for obstacle detection and behavior planning during
transmission line inspection.

INDEX TERMS Inspection robot, identification, location, multi-sensor fusion, planning.

I. INTRODUCTION
Power transmission lines must be scrutinized because the
failure of these systems leads to serious consequences. The
means of inspection and maintenance must evolve to address
grid operator challenges such as aging assets, stricter reg-
ulations, and high reliability standards. Power line robots
are promising for the advancement of maintenance prac-
tices [1]–[4]. Generally, a power transmission line environ-
ment can be described as a semi-structured environment in
which the autonomous motion control of inspection robots is
difficult to achieve [5].

During the inspection of power transmission lines, electric
power fittings such as vibration dampers, suspension clamps,
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and tension clamps increase the difficulty for navigating on
the line efficiently and stably. Obstacle recognition and local-
ization become important development directions for power
transmission line inspection robots. Obstacle identification
and localization methods based on a global positioning sys-
tem and prior line knowledge can provide global information
regarding the line environment [6]. Rui et al. proposed a
novel mobile robot prototype for the inspection of overhead
transmission lines [7]. It can roll over certain obstacles (com-
pression splices, vibration dampers, etc.). The robot can clear
other types of obstacles (spacers, suspension clamps, etc.).
Zhu et al. proposed a gibbon-like crawling inspection robot
using the bionic design method and analyzed the climbing
behavior of gibbons [8]. This robot can swing a cantilever
on a high-voltage transmission line to realize crossing of the
drain line. A one-wheel-drive low-cost power line inspection
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robot called ‘‘ROSETLineBot’’ was developed in 2019 [9].
It is crucial to detect and diagnose possible problems on lines
before they develop?. Zhu et al. designed an inspection and
foreign body removal robot walking on twin bundle conduc-
tors that can move over spacers and counterweights directly
and quickly [10]. A novel crawler-type robot was presented in
Ref. [11]. This robot is composed of three arms and a balance
mechanism, which are all joined together through a base.
The crawler-type inspection robot is an attempt to develop
a novel robot structure for high-voltage power transmission
line inspection.

Reference [6] presented the characterization of a laser
range finder applied to obstacle detection in power line con-
ductors. Methods based on ranging sensors can recognize
obstacles and their initial positions in a local environment.
However, they cannot realize the location and recognition
of obstacles in a global environment. Le et al. proposed
a novel method based on binocular vision to extract the
feature points of images and reconstruct three-dimensional
scenes [12], [13]. Li Zhenhui et al. developed a structure-
constrained obstacle recognition algorithm using machine
vision sensors [14]. Vision sensors provide a large amount
of environmental information, but their algorithms generally
have a large amount of data and complex operations, and it
is challenging to ensure real-time performance. Heng et al.
proposed a method for obstacle detection and location based
on multisource information and behavior [15].

The reliable location and identification of line obstacles
is key to ensuring the safe operation of inspection robots
and realizing autonomous obstacle crossing. Obtaining com-
prehensive and accurate environmental information using a
single sensor is difficult. Therefore, multi-sensor fusion tech-
nology plays an important role in improving the ability of
inspection robots to locate and identify obstacles.

The Canadian Hydro-Quebec Research Institute [16],
[17] designed the LineScout robot, which utilizes a
mode-operation strategy and joint sensor information. Based
on the restriction that the configurations at the beginning and
end of movement should correspond exactly, control diffi-
culty lies not only in moving the arm frame to an appropriate
thread-catching position, but also in making the two arms
simultaneously and reliably grasp a thread. To avoid complex
kinematic equations, Hibot Corporation [18] designed an
Expliner robot to read information from each joint sensor.
The difficulty of control lies in reliably lifting the walking
wheel for obstacle avoidance and the requirement for a single
walking wheel must be satisfied. The entire robot must be
balanced when the wheel is on a power line. Wuhan Uni-
versity [19] established a robot collision avoidance model
based on known obstacle information in which obstacles
were identified and local attitude adjustments were planned
through electromagnetic sensor groups. The Shenyang Insti-
tute of Automation of the Chinese Academy of Sciences [20],
[21] studiedmotion-planningmethods for a distributed expert
system and a generative system for two types of inspection
robots. Additionally, the Federal University of Uberlandia

and the Institute of Automation of the Chinese Academy of
Sciences [16], [17] designed corresponding force-planning
methods for the robots they developed. In general, current
motion-planning methods for inspection robots are aimed at
different types of mechanisms and combined with kinematic
models or joint sensor information to solve the obstacle-
crossing problem. There is no universal and unified force-
planning method.

The supervisory control theory of discrete-event dynamic
systems (DEDS), which was first introduced by Ramadge
and Wonham, is based on the automata concept. Given a
process, the objective of this theory is to design a supervisor
such that the process coupled with the supervisor behaves
according to various constraints [22]. In Refs. [23], [24],
a DEDS monitoring theory based on automata was proposed
and the interaction and evolutionary relationships between
events and states were studied. Yifeng et al. studied the
behavior planning of a repair robot based on vision [25].
Huang Le et al. proposed a finite-state machine (FSM) model
for a robot autonomous behavior control method [13]. This
FSM easily links a planning method based on sensors and
expert system to realize automatic control.

The goal of obstacle-crossing planning for inspection
robots is to describe complex obstacle-crossing motions uni-
formly and obtain a formal expression to realize the auto-
matic reasoning and automatic obstacle crossing of robots.
An appropriate movement mode is selected according to
the environmental conditions and obstacle type, and obsta-
cle crossing is completed. Robots must automatically adapt
to changes in environmental factors using sensory infor-
mation and evaluate their security status. According to the
robot’s external sensors, including vision and pose sensors,
the advantages and disadvantages of obstacle categories and
environmental conditions in the environment are determined
and a motion mode is selected.

This study focused on obstacle-crossing planning for
inspection robots based on multi-sensor fusion. Section II
reviews the operational context inherent to power utilities,
mechanical structure of the target robot, and multi-sensor
system. Section III presents the algorithm used to locate and
distinguish obstacles. Section IV presents different aspects of
obstacle-crossing planning based on a Finite State Machine
(FSM). The behaviors of the robot are analyzed and mod-
eled using FSM. The details are given and the simulation is
conducted. Section V presents an experimental test, which
verifies the correctness of the proposed recognition algorithm
and feasibility of obstacle-crossing planning. Section VI con-
cludes this paper and discusses future research work

II. TECHNOLOGY DESIGN
A. TYPES AND SEQUENCES OF OBSTACLES
A general schematic of an overhead transmission line is pre-
sented in Figure 1. According to the inspection task require-
ments for power transmission lines, the robot must roll on the
overhead ground wire (OGW), navigate obstacles, and carry
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FIGURE 1. Environment of a 110 kV transmission line.

a visible-light camera and an infrared camera to accomplish
inspection tasks. The OGW is suspended from a suspension
tower using a suspension clamp that is connected to a strain
tower by a stain clamp. Vibration dampers installed near
towers have various shapes and sizes. Numerous other types
of obstaclesmay also be present in a given network. Obstacles
are mounted on the OGW in sequences at certain distances
that separate one obstacle from the next.

To accomplish inspection tasks, the robot must be able
to navigate around obstacles near the suspension towers and
strain towers. Current robots navigate obstacles by imitating
the cantilevered climbing maneuvers of apes. The efficiency
of this obstacle-crossing method is generally low. In this
study, a bridge track was added to the two ends of the tension
tower and linear tower, connecting the ground wires at both
ends. The rolling wheel was designed to be sufficiently large
to roll directly over the damper during the design process.
Therefore, the robot has an unobstructed ground wire road
structure and the efficient and safe inspection of the entire
line can be realized.

B. MECHANICAL DESIGN
Figure 2 presents a structural schematic of the robot. An aerial
earth wire? is used as a support. The wheels of the robot allow
it to move quickly and efficiently along a power line and roll
over obstacles (compression splices and vibration dampers).
The robot consists of three independent assembly units (Fig-
ure. 2(a)), i.e. two locomotion mechanism units including one
motorized rubber wheel called the ‘‘rolling mechanism’’ and
two passive nylon pulleys called the ‘‘clamping mechanism’’;
a center unit, which connect the first two units and allow them
to slide and pivot; and box units.

As shown in Figure 2(b), a brushless DCmotor (1) coupled
to a planetary flanged-output gearbox directly supports the
traction wheel (2). The gripper plate (4) is connected to a nut
(3) on the trapezoidal screw and it is possible to move the

FIGURE 2. Structure of the robot.

grippers (5) vertically by rotating the trapezoidal screw using
the motor (6). When an obstacle is reached, the grippers are
moved to the bottom such that the traction wheel can roll over
the obstacle.

The center unit supports 50% of the total weight while
providing both translational and rotational degrees of free-
dom. As shown in Fig. 2(c), two locomotion mechanism units
are mounted on two machined plates (10 and 11) and can be
locked using a sector of the two-way trapezoidal screw (11)
actuated by a DC motor (9). The robot can roll on a curve
after the locomotion mechanism units are unlocked. The
screw nuts (8 and 13) are mounted on a two-way trapezoidal
screw (14) andmoved by aDCmotor (7). Because the left and
right sides of the two-way trapezoidal screw have different
rotation directions, the screw nut meshes on different sides of
the two-way trapezoidal screw. Therefore, translations occur
in opposite directions.

C. MULTI-SENSOR SYSTEM
The inspection robot’s multi-sensor system consists of inter-
nal sensors (encoders, current sensors, temperature sensors,
limit sensors, inclination sensors, battery-power sensors, etc.)
that indicate the state of the robot and external sensors (vision
and contact sensors) that sense the environment. An encoder,
a current sensor, a temperature sensor, and a limit sensor
are installed at each joint motor to determine the state of
each joint of the robot. The inclination sensor feeds back
the overall inclination angle of the robot. A battery power
sensor is used to detect and estimate the remaining battery
power of the robot. Contact sensors are installed at the front
and rear ends of the gripper. The vision sensor includes a
pan-tilt-zoom (PTZ) camera (15) installed at the front of the
robot and a pinhole camera (16, 17) under the two locomotion
mechanisms. The PTZ, pinhole, and contact sensors are used
for the location and recognition of the environment in front
of the robot.
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FIGURE 3. Robot multi-sensor system.

In this study, a multi-sensor system structure presented in
Figure 3. was designed to satisfy the requirements of sensor
perception range, accuracy, and real-time performance for
the location and identification of obstacles by the inspection
robot. The target task planning layer plans the current target
task of the robot according to its environment and state.
The target tasks mainly include rolling without obstacles,
approaching rolling with obstacles, locating obstacles at a
close range, and identifying obstacles. The sensor coordi-
nation manager coordinates sensors according to the tar-
get task. The sensor data processing and fusion layers are
responsible for sensor information collection, preprocessing,
and the fusion and transmission of asynchronous information
between subsystems. The environment description layer is
responsible for converting the sensor fusion results into envi-
ronmental parameters and passing them to the robot target
planning layer.

When the robot is running at a high speed, grayscale
segmentation is applied to the front-end camera images to
extract areas where there may be obstacles. If there are no
suspicious obstacles in the current field of view, the robot
performs the task of rolling without obstacles. Otherwise, the
robot performs a rolling task with obstacles. The approach-
ing rolling task is performed when the robot approaches an
obstacle and it uses the pan-tilt camera monocular vision
ranging method to determine the distance to the obstacle area.
Its movement speed is controlled according to the distance
such that it approaches the obstacle area stably. When the
distance reaches a specific value, the robot triggers a low-
speed and short-distance obstacle location task and performs
feature extraction on the current obstacle area. In the low-
speed and short-distance obstacle location task, the robot
uses the encoder, current sensor, and contact sensor fusion
information to locate obstacles accurately. After the touch
sensor is triggered, the obstacle is in the field of view of the
pinhole camera under the forearm. The current obstacle is
recognized based on the wavelet-invariant moment features

of the pinhole camera images. The results are fused with the
decision to identify the current obstacle to determine the next
obstacle-surmounting strategy.

III. OBSTACLE LOCATION AND RECOGNITION
A. OBSTACLE LOCATION ALGORITHM
In robot inspection, it is necessary to extract features and
measure distances for areas that may contain obstacles. In the
task of rolling without obstacles, the environmental infor-
mation required for the robot’s decision making is simply
whether there are obstacles in front of the robot, necessitating
real-time performance with low precision. In the task of
approaching rolling with obstacles, the environmental infor-
mation required for robot decision making is the distance
between the robot and obstacle, which requires real-time
performance and high accuracy.

Monocular vision geometric optics ranging is used to mea-
sure the distance to the target in an image according to the
perspective principle and focal length of the image acqui-
sition equipment. Monocular ranging uses the feature that
the camera and measured point are in the same plane. The
camera parameters and set transformation are defined in this
plane and the transformation relationship between the image
pixel coordinates and actual coordinates is calculated. The
horizontal distance from the suspicious area of the obstacle
to the robot end with the PTZ camera is defined as the
obstacle location distance. As shown in Fig. 4, the optical
axis of the camera passing through lens O intersects with
the power line. The horizontal and vertical distances between
the anti-vibration hammer and the camera are denoted as D
and H , respectively. According to the principle of pinhole
imaging, we obtain{

tanα = x/f
tan(α + β) = H/D

. (1)

When the robot rolls forward by 1D, (1) is transformed
into {

tanα′ = x ′/f
tan(α′ + β) = H/(D−1D)

, (2)

where x and x ′ represent the pixel offsets and β represents
the horizontal angle of the camera. From (1) and (2), the
horizontal and vertical distances from the current obstacle
area areD –1D andH , respectively. The rolling speed of the
robot can be controlled by D – 1D to approach the obstacle
smoothly. The feature values (area, aspect ratio, etc.) of the
obstacle are calculated as the robot approaches the obstacle
and are used for the fusion of decisions.

When a robot performs the task of short-range obstacle
location, the obstacle location algorithm requires high preci-
sion and good real-time performance. In this task, detection
results are obtained through the fusion of different types
of sensor information to locate obstacles. For the proximity
location of obstacles, the fusion of data from contact sensors,
encoders, and current sensors is adopted. The data collection
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FIGURE 4. Camera imaging diagram.

and processing speeds of these three sensors are high, which
ensures the real-time performance of the algorithm, and the
fusion of data from multiple sensors increases location accu-
racy. Contact sensors are installed at both ends of the walking
wheel and can identify collisions between the robot and line
obstacles. An encoder is installed on the rolling motor shaft
of the walking wheel to detect the speed of the motor in real
time. The motor current sensor detects the rolling current
of the walking wheel. When the walking wheel in front of
the robot touches an obstacle, the outer contact sensor of the
front wheel is triggered first. Then, based on the resistance of
the traveling wheel, the motor torque of the traveling wheel
increases and the motor speed decreases.

When the robot encounters an obstacle, the contact sensor
is triggered in real time. However, in a field environment,
the contact sensor may be falsely triggered by jitter, defor-
mation points, and line protrusions. Therefore, a method of
continuous detection is adopted to prevent false detections.
The average output value for i consecutive detections after
the touch sensor is triggered for the first time is defined as
follows:

Ai = A (1) · A (2) · . . . · A (i) , (3)

whereA (i)=
{
true The ithdetection sensor is triggered
false The ithdetection sensor is not triggered

This method overcomes the false detections caused by
shaking of the robot. Considering the changing laws of the
current and rotational speed of the rolling motor of the walk-
ing wheel when the robot encounters an obstacle, three dif-
ferent types of sensor data can be fused to locate the obstacle
accurately.

The comprehensive value of the encoder sensor for i con-
secutive detections after Bi triggering is given by

Bi = B (1) · B (2) · . . . · B (i) (4)

where B (i) =
{
true v (i)− v (i− 1) < −vref
false else

, with v(i)

representing the motor speed at the ith detection.
The average value of the current sensor for i consecutive

detections after Ai triggering is given as

C (i) = [Ci (1)+ Ci (2)+ . . .+ Ci (n)] /n (5)

where Ci (n) represents the nth detection value of the sensor.
The comprehensive output state value of the current sensor is
expressed as

Ci =

{
true C (i)− C (i− 1) > Cref
false else

(6)

where Xi represents the detection status. The fusion result is

Xi = Ai · Bi · Ci.

When Xi = true, it can be judged that the obstacle is in
contact with the walking wheel of the robot.

B. OBSTACLE RECOGNITION
When the robot performs obstacle recognition, obstacle clas-
sification can be conducted using the image features of the
pinhole camera under the arm. The most common obstacles
in line environments are clamps and vibration dampers. The
wavelet moment features of image edges were used in this
study to classify obstacles. The wavelet moment invariant of
image edges has the characteristics of translation, rotation,
and scale factor invariance, and can be used to obtain the
global and local features of an image simultaneously. There-
fore, it has a high recognition rate for similar objects. The
primary identification methods are defined as follows.
1) Preprocess the images collected by the pinhole camera.
2) Extract edges from the image using the Canny operator.
3) The optimal wavelet moment features of the edge

images are extracted and a classifier is designed for
classification and recognition.

We introduce a set of wavelet moment invariants for classify-
ing objects, which are defined as follows:∥∥Fm,n,q∥∥ = ∥∥∥∥∫ ∫

f (r, θ) ϕm,n (r) ejqθ rdrdθ

∥∥∥∥ (7)

where q = 0, 1, 2 . . ., m = 0, 1, 2 . . ., and n =

0, 1, . . . , 2m+1. Different m, n, and q values can be selected
to obtain image features at different scales. The polar coordi-
nates of the image function f (x, y) are expressed as f (r, θ).

To obtain rotation-invariant moments, the following gener-
alized expression is typically used:

ϕa,b (r) =
1
√
a
ϕ

(
r − b
a

)
(8)

where a is a dilation parameter and b is a shifting parameter.
Themother wavelet ϕ(r) of the cubic B-spline in theGaussian
approximation form is

ϕ (r) =
4an+1

√
2π (n+ 1)

σw cos (2π f0 (2r − 1))

exp

(
−
(2r − 1)2

2σ 2 (n+ 1)

)
(9)

Because the image size is always restricted to a domain
{r< 1), both a and b are set to 0.5 and the domains for m and
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FIGURE 5. Damper navigation sequence.

n are restricted as follows:
a = 0.5m,
b = 0.5 · n · 0.5m,
m = 0, 1, 2, 3
n = 0, 1, . . . , 2m+1.

(10)

Then, the wavelet defined along a radial axis in any orien-
tation is denoted as

ϕm,n (r) = 2
m
2 ϕ
(
2mr − 0.5n

)
(11)

The extracted wavelet moment features at different scales
are selected using the l-r method in the suboptimal search
algorithm and the n best wavelet moment eigenvalues are
selected and normalized as the classifier input.

Obstacle classification and recognition fuse classification
results based on the area and aspect ratio features of the
PTZ camera and classification results of the wavelet-invariant
moment features of the obstacle edges from the pinhole cam-
era under the arm in the trigger stage of the contact sensor to
increase obstacle recognition accuracy. The similarity mea-
sure between sample x and Ci is expressed as follows:

σi =
1

‖x − Ci‖
=

1√∑(
xj − cj

)2 (12)

where xi and ci represent the jth eigenvalues of samples x and
c, respectively.

The probability that sample x belongs to class Ci is

p(x/Ci) =
σi

σ1 + σ2 + σ3
(13)

Considering the obstacle area and its aspect ratio as
the feature values of the PTZ camera, the probability that
sample x belongs to class Ci is ps(x/Ci). Considering the
wavelet-invariant moments of the obstacle edges from the
pinhole camera under the arm as feature values, the proba-
bility that sample x belongs to class Ci is pf (x/Ci). Then, the
probability that sample x belongs to class Ci is defined as

pe(x/Ci) =
√
ps(x/Ci) ∗ pf (x/Ci) (14)

FIGURE 6. Auxiliary rail mounted on the tension tower.

If pe(x/Ci) >
∑
j6=i
pe(x/Cj), then sample x belongs to

class Ci.

IV. BEHAVIOR PLANNING
A. STRATEGY FOR NAVIGATING OBSTACLES
1) NAVIGATING A DAMPER
The robot decelerates when the counterweight on a damper
is detected by the vision system of the robot control sys-
tem and stops when the approximate switch mounted on
the front locomotion mechanism is triggered, as shown
in Figure 5(a). The clamping mechanism is then driven
to the home position, as shown in Figure 5(b). Addition-
ally, the rolling mechanism of the locomotion mechanism
drives the robot forward and the robot navigates the damper
directly. The robot continues rolling until the approximate
switch mounted on the rear locomotion mechanism is trig-
gered, as shown in Figure 5(c). Subsequently, the front
clamping mechanism clamps the ground line. Thereafter,
the rear clamping mechanism moves to its home position,
as shown in Figure 5(d). The robot starts to move forward,
which enables the rear locomotion mechanism of the robot
to navigate the damper directly, as shown in Figure 5(e).
The rear clamping mechanism then clamps the ground line
and the robot finishes navigating the damper, as shown in
Figure 5(f).
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FIGURE 7. Procedure for navigating segment A of the rail.

2) NAVIGATING A TENSION TOWER
The inspection robot can navigate a tension tower with the aid
of an auxiliary rail, which is manually mounted on the ground
line. The rail is composed of several segments connected by
joints. Both ends of the rail are fixed to the ground line and the
joints are fixed to the tension tower using brackets, as shown
in Fig. 6. Each segment is equipped with two barriers to
trigger the sensor.

The auxiliary rail consists of three segments and the actions
taken to navigate segment B are similar to those taken to
navigate a damper. Clearly, the sequence for navigating seg-
ment A is similar to that for navigating segment C. Therefore,
the sequence for navigating segment A is considered as an
example, as shown in Figure 6.

The robot travels along the ground line and stops when the
approximate switch mounted on the front locomotion mech-
anism is triggered by the flipper located on segment A of the
rail, as shown in Figure 7(a). Subsequently, the front locomo-
tion mechanism is released by rolling the locking mechanism
and the front clamping mechanism returns to its home posi-
tion, as shown in Figure 7(b). The robot resumes rolling and
navigates the junction of the auxiliary rail and ground line,
and it stops when the barrier is detected by the approximate
switch mounted on the rear locomotion mechanism, as shown

in Figure 7(c). Subsequently, the front clamping mechanism
clamps the ground line and the rear clamping mechanism
returns to its home position. The rear locking mechanism is
then released and the front locking mechanism locks the front
locomotion mechanism. Figure 7(d) presents the state of the
robot at this point. The robot moves forward until the approx-
imate switch on the front locomotion mechanism is triggered
by the barrier mounted on segment B of the rail, as shown in
Figure 7(e). Finally, the rear clamping mechanism clamps the
ground line and the robot finishes navigating segment A, and
is ready to navigate segment B of the auxiliary rail, as shown
in Figure 7(f).

B. BEHAVIOR PLANNING FOR THE ROBOT
1) BEHAVIOR OF THE ROBOT
The actions taken by the robot depend on the outputs of
the sensors, meaning there is tight coupling between sensing
and acting. Behavior-based robotics are useful for ensuring
robustness under uncertain circumstances. During its opera-
tion, the inspection robot constantly executes behaviors such
as ‘‘drive the front clampingmechanism to its home position’’
or ‘‘release the front locomotion mechanism.’’ In this study,
an FSM was used to sequence these behaviors.
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TABLE 1. Basic behaviors.

FIGURE 8. Sketch diagram of BB_FC_Clamping.

The behaviors of the inspection robot can be divided
into simple and complex states, and they can be modeled
as basic and combinational behaviors. Basic behaviors are
related to execution mechanisms and can be considered as
actions. Table 1 lists the basic behaviors of the inspection
robot.

The basic behavior can be expressed using port automata
[26] as follows:

Basic Behavior := [behavior name:<name>,

input port list:(<iplist>),

ouput port list:(<oplist>),

parameter list:(<paralist>),

behavior body(<body>)]

where behavior name is necessary and other parameters in the
parentheses are optional.

Some basic behaviors are related to specific parameters
while others are not. For example, BB_FC_Clamping, which
is used to clamping the ground line for the front clamping
mechanism, has three parameters, two input ports and two
output ports. Ith is the threshold current for the front clamping
mechanism to clamp the ground line, Qth is the threshold
incremental value of the encoder mounted on the motor and
Tth is the time when a timeout event occurs. Ir is the actual
current obtained by the driver of the motor and Qr is the
incremental value of the encoder when the front clamping
mechanism is clamping the ground line. Uo is the voltage of
the motor and Ro is result of the behavior.

When the front clamping mechanism starts to act, the
current of the driver of the motor is obtained every 10ms.
The behavior is successful if Ir is larger than Ith for a given
time and ifQr is larger thanQth. The behavior is unsuccessful

FIGURE 9. FSM for the behavior of navigating a damper.

if the execution time is larger than Tth, which means some
exceptions happen and human interference is needed. The
exceptions may due to mechanical error or sensor error and
Ro can be used to diagnose the exceptions of the behavior. Ith,
Qth and Tth are determined by conducting experiments.

Combinational behavior is composed of several basic
behaviors and inferences. An inference refers to a decision
based on sensor information and the current state of the robot.
The combinational behaviors of the robot include navigating
the damper and tension tower through an auxiliary rail and
can be modeled using an FSM, which can be expressed as
follows:

M = {Q, 6, δ, q0,F} (15)

Here, Q is a non-empty set of states, qi ∈ Q is a state, q0 ∈ Q
is the default state, 6 is a finite set of input events, σi ∈ 6 is
an input event of M , δ is a transition function, and F is a set
of final states ofM (F ⊆ Q).

The combination behavior is also related to some parame-
ters as exceptions may happen in the field, and the parameter
is helpful for the operator to diagnose the error if an exception
occurs.

2) BEHAVIOR PLANNING FOR NAVIGATING A DAMPER
When the approximate switch mounted on the front clamping
mechanism encounters a damper, the vision system takes
photographs using a camera and then begins to recognize
the obstacle. After the damper is recognized, the robot takes
several steps to navigate it, as shown in Figure 8. For safety
purposes, at least one clamping mechanism should clamp the
ground line at all times. The basic states are listed in Table 2.

The behavior for navigating a damper can be modeled
using an FSM, as shown in Figure 9. The events generated
by the sensor inputs and control system are listed in Table 3.
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TABLE 2. Basic states related to navigating a damper.

TABLE 3. Events of the behavior for navigating a damper.

FIGURE 10. FSM of the behavior for navigating the first segment of a rail.

3) BEHAVIOR PLANNING FOR NAVIGATING A TENSION
TOWER
The behavior of the robot for navigating a tension tower is far
more complex than that for navigating a damper. However,
the process of navigating a tension tower is similar to that
of navigating a damper. There are two main differences. The
robot navigates a tension tower by repeating the process for
navigating a damper three times. The locking mechanism
should act as an auxiliary rail, which is not straight. The first
segment is considered as an example. Table 4 lists the basic
behaviors related to the navigation of a tension tower.

The behavior for navigating the first segment of a rail was
modeled using an FSM, as shown in Figure 10. The events
generated by the sensor inputs and control system are listed
in Table 5.

4) EXCEPTION HANDLING MECHANISM
The ground line on which the robot travels is very com-
plicated in the field and some unexpected exceptions may
happen. Thus, the supervision of an operator is necessary to
ensure the safety of the robot. For example, when the basic
behavior is running, mechanical error or sensor error may

FIGURE 11. Behavior planning model for the inspection robot.

happen, which results to a failure of the basic behavior. Thus
the robot is not able to navigate the obstacle automatically.
The exception handling mechanism is designed to deal with
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TABLE 4. Basic states related to navigating a tension tower.

TABLE 5. Events of the behavior for navigating the first segment of a rail.

FIGURE 12. Design of the navigating damper state.

such occasions. The robot would stop and control system of
the robot would give some prompts. The operator would deal
with the error.

The robot may be in exception under other conditions
such as the slope of the actual ground line. The slope of
the ground line is larger near the tower, where a damper is
mounted. Two measures are taken to decrease the possibility
of exceptions. Firstly, the mechanical structure is carefully
designed and some experiments are conducted to ensure a
reliable climbing of the slope. Secondly, there are some
extra parameters related to basic behaviors and combinational

FIGURE 13. Simulation of the model.

behaviors, which is helpful for diagnosing the exceptions and
errors.

The behaviors are gradually improved by experience and
experiments. Human inference is proved to be an effective
way to deal with the exceptions.

5) BEHAVIOR PLANNING MODEL AND SIMULATION
The robot system is event driven and the behavior of the sys-
tem was modeled by describing it in terms of the transitions
among robot states using MATLAB/Simulink, as shown in
Figure 11. Several constant modules and manual switches
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FIGURE 14. Results of the field experiments.

FIGURE 15. Data fusion results.

were used to generate edge-triggered input events to simulate
the approximate switches, commands, and outputs of the
vision system. Additionally, several logic were used to gener-
ate logic input events. Several output signals were simulated
to monitor the state of the model.

The key module of the system is the FSM. The robot has
four states: idle, normal traveling, navigating damper, and
navigating tension tower. The idle state is the default state
after the power is turned on and the normal traveling state is
a simple state. The robot transitions to a combinational state
if a damper or auxiliary rail is detected by the vision system
and sensors.

Figure 12 presents the details of the navigating damper
state, which is composed of five states and several events.
As mentioned previously, the robot takes six steps to navigate
a damper. Several MATLAB functions were used to simulate
the basic behavior of the robot, such as rolling the front
clamping mechanism to its home position.

A simulation was conducted and a diagnostic view was
used to monitor the running state of the model, as shown in
Figure 13. The outputs of the diagnostic viewer match the
normal procedure of the robot for navigating obstacles well,
which validates the model.

V. EXPERIMENT
Experiments were conducted in an environment with
a mountainous line from a linear tower to a ten-
sion tower. The distribution of obstacles along the line
was as follows: damper-suspension, clamp-damper-long-
distance, ground wire-damper-tension clamp (transition
guide rail).

FIGURE 16. Samples and their wavelet moment characteristic
distributions.

A. OBSTACLE RECOGNITION TEST
A PTZ camera was installed in front of the robot box and
directly below the power line when the robot was rolling.
The grayscale information on the line environment in the
camera images was used to extract areas suspected of con-
taining obstacles. The images were binarized according to
the grayscale features of the wire, suspicious areas were
identified through cluster analysis, and suspicious areas were
merged, expanded, and shrunk to extract the position of the
an obstacle in an image accurately.

Figure 14 presents the results of the field experiments.
As shown in Figure 14(a), when the robot PTZ camera
detected that the line was unobstructed, the robot rolled for-
ward at high speed (15 m/min). As shown in Figure 14(b),
when the robot PTZ camera detected that the distance from
the obstacle was 480 cm, the robot began to roll at a speed of
v = vmax × D/500(D ≥ 100 cm). As shown in Figure 14(c),
when the PTZ camera detected that the robot was 323 cm
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FIGURE 17. Process of vibration damper navigation.

from the obstacle, its rolling speed was reduced to 9.7 m/min.
As shown in Figure 14(d), when the PTZ camera detected that
the robot was 323 cm from the obstacle, its rolling speed was
reduced to 7.6 m/min.

When the robot was<100 cm from the obstacle, it rolled at
a low speed and the data from the contact sensor, encoder, and
current sensor were fused to detect and locate the obstacle.
The robot automatically stopped rolling after contact with
the clamp, as shown in Figure 15(a). Figure 15(b) presents
the results of data fusion detection with low-speed obstacle
location. Area ‘‘t1’’ indicates that class 3 of the sensors had
no action. Area ‘‘t2’’ indicates the malfunction of the colli-
sion sensor. Area ‘‘t4’’ indicates the occurrence of obstacle
collision. Area ‘‘t5’’ indicates that the robot stopped mov-
ing after detecting an obstacle and the contact sensor did
not pop up.

In the experiment, 30 images (Figure 16(a)) of each obsta-
cle were captured using a pinhole camera after the obstacles
(wires, clamps, and anti-vibration dampers) were located.
Figure 16(b) presents the distributions of the wavelet moment
features for the three types of obstacles. The distributions
of the wavelet moment eigenvalues of the edge images dif-
fer significantly between the three obstacles. However, the
distribution of eigenvalues for the same type of obstacle is
relatively concentrated. Therefore, the three obstacles can be
classified and identified.

B. AUTONOMOUS OBSTACLE NAVIGATION EXPERIMENT
Experiments were conducted to verify the effectiveness of
the proposed modeling method for navigating obstacles.
As shown in Figure 17, the inspection robot navigated the
vibration damper automatically. The time required for auto-
matic navigation of the damper was 2 min. The experi-

mental results indicate that the robot can efficiently and
automatically navigate typical obstacles in transmission line
environments.

VI. CONCLUSION
A novel mobile robot for power transmission line inspection
was developed according to the requirements of inspection
tasks and characteristics of obstacles on power lines. A pro-
totype was tested and validated under laboratory conditions.
According to the requirements for obstacle information accu-
racy and real-time performance in each stage of autonomous
line inspection, a multi-sensor integrated structure for line
obstacle location and recognition was proposed. Obstacle
location and recognition algorithms for each stage were intro-
duced. According to the characteristics of the obstacles, the
current state of the robot was determined by integrating the
obstacle detection results and sensor information. Based on
the obstacle-crossing process, the state transfer function of
each stage was established and behavior planning was com-
pleted through state transfers.
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