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ABSTRACT The World Health Organization has declared the COVID-19 pandemic, with most countries
being affected by this virus both socially and economically. It thus became necessary to develop solutions
to help monitor and control disease spread by controlling medical workers’ movements and warning them
against approaching infected individuals in isolation rooms. This paper introduces a control system that
uses improved particle swarm optimization (PSO), and artificial neural network (ANN) approaches to
achieve social distancing. The distance between medical workers carrying mobile nodes and the beacon
node (isolation room) was determined using the ZigBee wireless protocol’s received signal strength indicator
(RSSI). Two path loss models were developed to determine the distance from patients with COVID-19: the
first is a log-normal shading model (LNSM), and the second is a polynomial function (POL). The coefficient
values of the POL model were controlled based on PSO to improve model performance. A random-
nonlinear time variation controller-PSO (RNT-PSO) approachwas developed to avoid the local minima of the
conventional PSO. As a result, social distancing for COVID-19 can be accurately determined. The measured
RSSI and the distance were used as ANN inputs, while three control signals (alarming, warning, and closing)
were used as ANN outputs. The results revealed that the hybrid model between POL and RNT-PSO, called
RNT-PSO-POL, improved the system’s performance by reducing the mean absolute error of distance
to 1.433 m, compared to 1.777 m for the LNSM. The results show that the ANN achieves robust performance
in terms of mean squared error.

INDEX TERMS ANN, COVID-19, control system, distance estimation, improved, PSO, RSSI.

I. INTRODUCTION
Since late 2019 COVID-19 has spread widely, disrupting
people’s lives, both socially and economically. The extensive
spread is due, in part, to people’s convergence [1]. Social
distancing can reduce the risk of transmission of the COVID-
19 disease [2]. Governments attempted to employ a range of
social distancing measures during the COVID-19 epidemic,
such as managing borders, limiting travel, closing clubs
and bars, and advising society to keep a distance of 1.6 to
2 meters between them. However, keeping track of the quan-
tity of virus spread and the limitations’ effectiveness poses
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a challenge. People must go out for basic necessities such
as health care, food, and other jobs and duties. As a result,
numerous technology-based solutions [3], [4] and artificial
intelligence-related research [5], [6] have attempted to assist
the health and medical community in coping with COVID-19
challenges and successful social distancing strategies. These
projects range from GPS-based patient tracking and local-
ization to segmentation and crowd surveillance. Therefore,
this paper aims to overcome some of these challenges by
providing a control system that uses improved PSO and ANN
approaches to achieve social distancing.

Thus, distancing between people has become crucial for
controlling the spread of the disease, especially in terms
of controlling the distance between medical workers and
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TABLE 1. List of symbols.

infected patients. Several approaches have been described
in the literature. The most well-known is the received sig-
nal strength indicator (RSSI) used to determine the distance
between isolation rooms and medical workers [7]–[10]. The
RSSI decreases as a transmitter node moves away from a
receiver node and vice versa [11]. Location accuracy can
be improved using artificial intelligence methods such as
fuzzy logic, neural networks, adaptive neuro-fuzzy inference
systems, and particle swarm optimization (PSO) [12].

The RSSI approach is characterized by its simplicity and
low cost, as it does not require additional hardware [13]; this
approach was thus chosen to use in this study. Three factors
affecting RSSI are reflection, diffraction, and scattering.

In a wireless sensor network, the difference in the strength
of the transmitted and received signals is expressed as the
loss factor. Various methods can be used to describe
the relationship between the RSSI and distance, of which
the log-normal shadowing model (LNSM) is one of the most
popular [14]. This technique was chosen in this study due to
its simplicity and low cost [15].

Various previous studies have used the LNSM to inves-
tigate the relationship between the RSSI and distance [16];
however, these models are typically characterized by high
error rates. An alternative approach is the path loss model,
a type of polynomial function (POL) model that can be
obtained using MATLAB curve fitting. Choosing suitable
coefficients is expected to improve the performance of the
proposed POL model. Thus, to improve distance estimation
accuracy between medical workers and the beacon node
(i.e., isolation room), the PSO approach is proposed to
determine the optimum coefficients of the POL model.
However, the issue of the solution being trapped in local
minima remains a major drawback of PSO; thus, an improved
approach is required.

In modern life, optimization is everywhere. Optimization
is a method to find the best solution to problems that cannot
be found by classical approaches [17]. The performance of
an optimization algorithm is classified as good or bad based

on an objective function, which is formulated based on the
application of interest to describe the relationship between
the parameters and constraints. In recent years, there has
been increasing research interest in optimization algorithms
inspired by the social behavior of insects or animals, known
as swarm algorithms, and those based on Darwinian theory,
known as evolutionary algorithms.

Numerous approaches have been identified and applied
to optimization algorithms [18]. As the size of the problem
increases, identifying the best solution becomes difficult.
Optimization has been used in various domains, including
engineering design, commerce, and internet routing. The key
reasons for using optimization algorithms are their ease of
use and the effective solutions provided by these approaches.
Swarm intelligence algorithms address mathematical models
from the perspective of the complex social behaviors of ani-
mals or insects. The main components of these algorithms
are exploration and exploitation; exploration is the ability
of the algorithm to explore the problem’s search space, and
exploitation is the algorithm’s ability to determine the opti-
mum or near-optimum solution [19].

Many algorithms have been described in the existing lit-
erature to address real-world problems, including PSO [20],
ant colony optimization (ACO) [21], the harmony search
algorithm (HSA) [22], and the artificial bee colony (ABC)
approach [23]. PSO mimics the social behavior of fish or
birds’ movements. The ACO technique is inspired by the
searching mechanism of the ants as they seek the optimum
path between food and their colony. The ABC method repre-
sents the mechanism used by bees when searching for food.
Finally, theHSA techniquemimics the behavior of amusician
as they search for better harmony. However, the key drawback
of all these algorithms is the issue of the solution becoming
trapped in local minima. Therefore, to address this limitation,
many alternative algorithms have been introduced, including
the gravitational search algorithm (GSA) [24], cuckoo search
algorithm (CSA) [25], bat search algorithm (BSA) [26], dif-
ferential search algorithm (DSA) [27], and lightning search
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algorithm (LSA) [28]. The GSA is based on the law of gravity
and mass interactions; in this algorithm, the populations are
simulated as a collection of interconnected masses based on
Newtonian gravity laws. The CSA is inspired by the lifestyle
of cuckoo birds, specifically, their egg-laying behavior. The
DSA mimics the social behavior involved in the migration of
different organisms when searching for food and resources.
The LSA technique was inspired by the natural phenomenon
of lightning; in this approach, the populations are proposed
based on step leader propagation.

However, not all optimization algorithms provide supe-
rior solutions for all engineering problems. Accord-
ingly, new algorithms must be introduced in addition to
continued efforts to improve existing algorithms. This
study proposes a random-nonlinear time variation controller
(RNT-PSO) approach. The RNT-PSO is a new concept-based
technique formulated to solve single and multimodal opti-
mization problems. Therefore, the utilization of the RNT
approach is expected to improve the PSO’s performance. The
system is modeled in MATLAB to demonstrate the perfor-
mance of the proposed algorithm. The RNT-PSO is used
to improve the performance of the PLO model. Finally, the
developed ANN is used as a control system to provide alarms,
warnings, and closing control signals. The key contributions
of this study can be summarized as follows:
• The LNSM estimates the distance between medical
workers and isolation rooms.

• RNT is proposed as a new concept to escape from local
minima in conventional PSO.

• The proposed RNT-PSO approach is compared with
related works.

• A path loss model is proposed using MATLAB curve
fitting.

• The proposed POL model is hybridized with the
improved PSO (RNT-PSO) to improve the distance esti-
mation accuracy between medical workers and isolation
rooms.

• Statistical analysis based on the mean absolute error
is used to compare the proposed model with related
studies.

• The ANN is proposed as a control system to pro-
vide three control signals, i.e., alarming, warning, and
closing.

This paper includes seven sections. Section II describes the
related works; the proposed social distancing system has been
described in section III. Section IV describes the proposed
RNT-PSO method. Section V contains the RNT-PSO-POL
algorithm, and the discussion of results has been presented
in section VI. Finally, the conclusion has been mentioned
in section VII.

II. RELATED WORKS
Variousmethods have been described in the existing literature
to measure the distance between mobile nodes and beacons.
In [29], the distance was estimated based on ZigBee mod-
ules. This study computed the path loss model based on the

trilateration method, with the RSSI signals for the mobile
node evaluated using the MATLAB environment. However,
the study’s results showed instability in terms of their distance
estimation. Mounir et al. introduced an improved flood or
emergency system [30], where RSSI signals are collected
based on the measurement method. Furthermore, the distance
in this study is measured between the mobile nodes using
two angles based on the trilateration method. The results
showed how the signal strength decreases as the distance
between the two nodes increases. The Kalman filter was used
in [31] to estimate the distance between the access point and
beacon, with this filter applied to eliminate noise. This study
demonstrated a performance improvement of 8% when using
the LNSM model. In [32], a proposed system was presented
based on two Kalman filters to reduce the error. In this study,
six beacons were utilized to calculate the distance based on
RSSI signals, with an error of 1.77 m.

In [33], the authors suggested a method to estimate the
distance between a user node and access point (AP) based
on the RSSI. Ten APs and one user node were utilized in
this system. The error was greater than 2 m when no AP
was within 5 m, while the error was 0.7 m if three APs
surrounded the user node. The authors in [34] proposed
a system based on maximum likelihood localization. The
concept of this system assumes that the error increases as
distance increases. The error factor amount is a new concept
outlined in this study. A hybrid system based on PSO and
ANNwas proposed for error reduction in [35]. The ANNwas
trained using the collected RSSI signals, with results showing
the superiority of the proposed method over the traditional
method. In [36], a path loss model was generated based on the
collected RSSI signals. Different statistics, such as the mov-
ing average and median, filtered the collected RSSI signals.
Twomodel environments were investigated (line-of-sight and
non-line-of-sight), with two tests applied to both environ-
ments (Shapiro–Wilk and chi-square). The results demon-
strate that the error is 1.09 m when the distance varies
between 1 m and 9 m, while the error increases to 1.75 m
if the distance is between 1 m and 20 m. In [37], the sub-
ject’s location was determined based on theMinMax method.
Four methods were used and evaluated in this study, namely,
MinMax, ring overlapping circle RSSI, k-nearest neighbor
(kNN), and maximum likelihood approaches. The MinMax
method achieved the best results among these methods, with
an error of 1.2 m.

Uradzinski et al. used the ZigBee fingerprint to evaluate
the performance of their proposed positioning system [38].
The authors first established the fingerprint data and then
estimated the mobile node’s position based on RSSI sig-
nals. Furthermore, the performance of the proposed algo-
rithm was improved using a filtering algorithm. Finally, the
position was computed based on the Bayesian and weighted
nearest algorithms. The average error value obtained in this
study was equal to 0.81 m. Various fingerprint methods are
described in [39], such as the nearest fingerprint (NF), affine
Wasserstein combination (AWC), and k-nearest fingerprint
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combination (kNF) approaches. The results revealed that the
average errors are 1.91 m and 1.908 m using the AWC and
kNF methods. In [40], the authors used a quasi-structured
method for location estimation. The system was conducted
based on a multilayer perceptron network over an experimen-
tal area of 5 m × 5 m with 55 points. The average error was
found to be 2 m.

Artificial intelligence approaches such as fuzzy logic, arti-
ficial neural networks, and optimization algorithms have
been used in various applications. In [41], a hybrid system
based on PSO and ANN enhanced localization system per-
formance. The PSO-ANN method was compared with the
back-propagation artificial neural network (BP-ANN) and
kNN; superior results were achieved based on PSO-ANN,
with an error of 1.893 m. In [42], a system based on PSO and
the POL method was proposed in the context of Alzheimer’s
disease. The POL method was modeled based on collected
RSSI signals. The PSO-POL approach was compared with
the LNSMmethod, with an improvement of 20% in the mean
absolute error achieved based on the PSO-PLO method. The
mean absolute error (MAE) values were 1.6 m and 2 m based
on the PSO-POL and LNSM approaches. In [43], location
estimation was proposed based on the butterfly optimization
algorithm. Different numbers of nodes were used in this study
from 25 to 150 nodes. The performance of the butterfly opti-
mization algorithm was compared with that of the PSO and
firefly algorithms, with the butterfly optimization approach
found to outperform other algorithms.

Estimating the distance with high accuracy between med-
ical workers and those infected with Covid-19 is extremely
important. Therefore, a new concept to escape from local
minima in PSO is introduced based on random-nonlinear
time variation (RNT-PSO). This concept aims to enhance
the exploration and exploitation ability of conventional PSO
by guiding the local and global swarms. Two models have
been developed to estimate the distance: LNSM and POL.
The POL model needs to be optimize. Thus the proposed
RNT-PSO approach is used to improve the performance of the
proposed POL model. Finally, a developed ANN is proposed
to provide three control signals (alarming, warning, and clos-
ing) to establish social distancing between medical workers
and isolation rooms.

III. THE PROPOSED SOCIAL DISTANCING SYSTEM
Implementation of the social distancing system betweenmed-
ical workers and isolation rooms begins first with the design
of the wireless model, then the design of the distance esti-
mation system, and finally the design of the proposed control
system, as explained in the following sub-sections.

A. WIRELESS MODEL CONFIGURATION
Controlling the movement of the medical workers is an essen-
tial issue for establishing social distancing between each
other and isolation rooms. Medical workers who are not
allowed to approach isolation rooms need several warning
levels as they approach these rooms. A design is proposed to

track and locate workers based on improved PSO and ANN.
The experiment was carried out in the Electrical Engineering
Technical College using two ZigBee devices, as shown in
Fig. 1(a). The first ZigBee is carried by the worker (mobile
node), and the second ZigBee is the beacon node, which is
installed at the height of 1.2 m, as shown in Fig.1(b). The
RSSI signal was measured in different locations to estimate
the distance between the worker and the isolation room. The
mobile node was connected to a laptop to collect the RSSI
signal using X-CTU software. The RSSI was collected every
1 m until the end of the study area was reached at a 27 m.
A total of 30 RSSI samples were read in each of the 27 loca-
tions, i.e., a total of 810 samples. Fig. 2 shows the average
of 30 RSSI samples versus distance; the power decreases as
the distance increases and vice versa.

FIGURE 1. (a) Tested area and (b) experimental hardware.

B. DISTANCE ESTIMATION
Two loss path models were used in this study — LNSM
and POL. LNSM is one of the most popular models used
to describe the relationship between RSSI and distance [10].
Statistical and experimental methods are typically used,
where statistical models are based on measured values, while
the experimental model is based on curve fitting. Therefore,
the expression to define the LNSM model is represented
below:

Pdis = Pdisoo + 10γ log10(dis/diso)+ σ. (1)

where Pdis is the path loss of power at a distance (dis). The
values of dis in this work range from 1 to 27 m. Pdisoo is
the path loss power at diso = 1 m. γ and σ are the path
loss exponent and standard deviation, respectively, which are
usually determined based on curve fitting. The RSSI signal
of the mobile node carried by the workers is calculated as the
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FIGURE 2. Average RSSI samples for the experiment.

difference between the transmitted power (Pt ) andPdis, which
is defined as [44], [45]:

RSSI = Pt − Pdis. (2)

Therefore, the RSSI can be determined by substituting (1)
into (2) as follows [46], [47]:

RSSI = Pt − Pdisoo + 10γ log10(dis/diso)+ σ. (3)

This section aims to estimate the distance (dise) which is
determined by rearranging (3), as defined below:

disLNSMe = 10−(RSSI−Pt+P
diso
o −σ )/(10γ ). (4)

He second path loss model is based on the curve-fitting
tool provided by MATLAB. Many functions are provided
by curve fitting. However, the POL is the most suitable for
the current study, where the RSSI decreases with increas-
ing distance. The POL model for calculating the distance
(disPOLe ) between the workers and beacon node is expressed
as:

disPOLe = aRSSI3 + bRSSI2 + cRSSI3 + d . (5)

The four coefficients (a, b, c, and d) need to be optimized
to improve the performance of the POL model for distance
estimation. For this purpose, PSO is the most popular algo-
rithm used across a range of applications; however, the main
drawback of PSO is trapping in local minima. Accordingly,
improving PSO remains a challenge.

C. THE PROPOSED CONTROL SYSTEM BASED ON ANN
The main objective of this study is to ensure social distanc-
ing between medical workers and isolation rooms, which
some staff for infection control purposes should not enter.
Given the inherently high infectiousness and rapid spread of
COVID-19 resulting from mixing healthy and sick people,
an ANN-based control system is proposed. A three-level con-
trol system is proposed, comprising alarming, warning, and
closing signals, as shown in Fig. 3. The first level (alarming)
is implemented using a red light, the second level (warning)
is implemented using sound, and the third level is a control
signal to close the door of the isolation room. As noted

FIGURE 3. The Proposed control system based on ANN.

above, the maximum distance used in the experimental tests
was 27 m. The first control level is set at 20 m, mean-
ing that when a worker reaches a distance of 20 m, the
first control level (alarming) is activated. The second level
(warning) is activated when the worker reaches 25 m. If the
worker does not respond to the first and second levels and
reaches a distance of 27 m, the last level will be acti-
vated, which is a control signal to close the isolation room
door.

A neural network is a computational process that uses
training to predict the output of a complex system [48].
Recently, ANNs have been used in various applicationswhere
they have achieved considerable success, resulting in their
increasingly widespread use [49]. The ANN mimics biolog-
ical neural activity. The ANN consists of three layers, i.e.,
input, hidden, and output, where each layer contains several
neurons. The neurons connect with each other through links
called weights. In previous literature, various algorithms have
been introduced to train ANNs such that they can optimally
perform the tasks assigned to them. One of the most popular
algorithms is the back-propagation (BP) algorithm, which has
achieved the lowest error rates [50].

The BP-ANN involves three phases, namely, forward,
backward, and update weights [51]. The number of neurons
in the input and output layers represents the number of inputs
and outputs, which cannot be changed. However, the number
of neurons in the hidden layer is one of the most critical
factors affecting ANN performance. The proposed ANN in
this work consists of two inputs which are distance and RSSI.
The output layer consists of three outputs which are the
control signal for alarming, the control signal for warning
and the control signal for closing. Increasing the number
of neurons in the hidden layer increases the accuracy of
the ANN performance. To develop a high-accuracy control
system, the number of neurons in the hidden layer was cho-
sen by training four different ANN architectures, ranging
from 5 to 20 neurons. After extensive study, the number of
neurons in the hidden layer was chosen as 20, as depicted
in Fig. 4.

IV. THE PROPOSED RNT-PSO METHOD
The optimization approach is starting to solve many prob-
lems of variable complexity across a range of fields of
study. Therefore, introducing new optimization algorithms
or improving existing ones is an essential aspect of ongoing
work in this area.
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FIGURE 4. The Architecture of the proposed ANN.

A. CONVENTIONAL PSO METHOD
The most popular swarm intelligent optimization algo-
rithm is PSO, introduced by Eberhart and Kennedy [20].
This approach mimics the social behavior of fish or birds.
The candidates of the solution (swarms) move within the
search space to find the global optimum solution. Each swarm
updates its position according to two types of experience.

The first experience is a local experience, controlled by
the C1 parameter, and the second experience is a global
experience, controlled by C2. Accordingly, some of the most
critical parameters in PSO are the acceleration coefficients
(C1 andC2), which are set to a value of 2 in conventional PSO,
as shown in Fig. 5. The main drawback of PSO is the issue
of trapping in local solutions where the swarms try to follow
the global swarm despite the global swarm not achieving the
global solution.

FIGURE 5. Conventional forms of (a) cognitive and (b) social coefficients.

Since the acceleration coefficients (C1 and C2) are nec-
essary to guide the movement of the swarms, many studies
have introduced approaches to enhance PSO performance
by finding suitable C1 and C2 values during the iteration
process. The nonlinear time variation (NT-PSO) movement
approach of C1 and C2 is one of the solutions described in

FIGURE 6. Nonlinear forms of (a) cognitive and (b) social coefficients.

the literature [52]. This variation of C1 and C2 is shown
in Fig. 6.

B. THE PROPOSED RNT-PSO
The main drawback of PSO is the clustering of the swarms
around local minima during earlier iterations, limiting the
PSO’s ability to explore the search space. Therefore, giv-
ing the local swarms the chance to move and explore the
search space is vital to increase PSO efficiency. Furthermore,
exploitation is usually enhanced by encouraging the swarms
to move around the global solution at later iterations.

This work introduces a method to enhance the explo-
ration and exploitation ability of conventional PSO. The pro-
posed RNT-PSO achieves a balance between global and local
swarms. The coefficient responsible for guiding local swarms
is the cognitive coefficient (C1), and the social coefficient(C2)
is responsible for guiding the global swarms. The proposed
RNT-PSO controls these coefficients; at earlier iterations, the
proposed approach gives higher weighting to (C1), which
then exponentially decreases. To improve the exploration
ability of the proposed RNT-PSO, this exponential move-
ment is mixed with a random value. The random-nonlinear
variation enhances the ability of the PSO to investigate the
entire search spacewhile also reducing the likelihood of being
trapped in local solutions. The proposed (C1) is defined as:

C1 = (Cb
1 − C

e
1)e
−(4t/τ )2rand + Ce

1 . (6)

where Cb
1 is the initial value of C1, which is set to 2.5, Ce

1 is
the final value of the C1, which is set to 0.5, t is the current
iteration, τ is the maximum iteration, and rand is a random
value varying from zero to one.

The exploitation ability is enhanced in the proposed
RNT-PSO through social coefficient C2, which is set to
gradually increase to encourage the swarms to move toward
the global solution. This increase in C2 is modeled using
random-nonlinear movement analogous to C1, as follows:

C2 = (Cb
2 − C

e
2)e
−(4tτ )2rand + Ce

2 . (7)

where Cb
2 is the initial value of the C2, which is set to 0.5,

Ce
2 is the final value of the C2, which is set to 2.5, t is the

current iteration, and τ is the maximum iteration.
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FIGURE 7. The proposed random-nonlinear forms of (a) cognitive and
(b) social coefficients.

The movements of the proposed C1 and C2 coefficients are
shown in Fig. 7. The velocity is defined as [20]:

Vt (k + 1) = wVt (k)+ C1[Pbestt (k)− St (k)]

+C2[gbest (k)− St (k)]. (8)

where w is the inertia, therefore, the new position for the
swarms is defined as [20]:

St (k + 1) = St (k)+ Vt (k + 1). (9)

The overall procedure of the proposed RNT-PSO is shown
in Fig. 8.

C. VERIFICATION OF THE PROPOSED RNT-PSO METHOD
To verify the reliability and efficiency of any new or improved
optimization algorithm, benchmark functions should be car-
ried out. Many benchmark functions have been described in
the literature [53], [54]. A range of characteristics has been
identified to describe the functions, such as linear, nonlinear,
and modality. The most important term in optimization is the
modality [55], which refers to the number of peaks in the
benchmark function. Two types of modality have been found,
which are unimodal and multimodal benchmark functions.
The benchmark function is considered unimodal if it has one
peak; otherwise, it is consideredmultimodal. If the function is
multimodal, trapping in local minima may occur during the
search for the global solution. Accordingly, the multimodal
benchmark function is considered more complex than the
unimodal function. Thus, testing the improved optimization
algorithm using unimodal and multimodal benchmark func-
tions is particularly important. Another important term is the
dimension of the problem (n), which refers to the number
of variables for which the optimization algorithm is trying
to solve and usually varies from 2 to 30 [55]. Increasing the
dimension makes the problem more difficult when trying to
find the global solution [56]; accordingly, it is vital to increase
the dimension when testing any algorithm.

To evaluate the efficiency of the proposed RNT-PSO, a uni-
modal test was carried out. The proposed RNT-PSO is sub-
jected to a rotated hyper-ellipsoid benchmark function (f1)
to seek the global solution. Fig. 9. shows that (f1) has one

FIGURE 8. The proposed RNT-PSO method.

peak only; accordingly, it is a unimodal function [57]. The
function (f1) is defined as:

f1(x) =
n∑
i=1

i∑
j=1

x2j . (10)

As noted above, the difficulty of solving any problem will
increase with increasing dimension. Therefore, the dimension
(n) was set as 30. The lower and upper bounds are -65 and 65,
respectively, and the optimum value of (f1) is 0.
To further evaluate the efficiency of the proposed

RNT-PSO, the alpine benchmark function (f2) was used.
As shown in Fig. 10, this is a multimodal function with more
than one peak. Performing a multimodal test is important in
testing the improved optimization algorithm. In particular, the
multimodal function (f2) tests the ability of the optimization
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FIGURE 9. Surface of the rotated hyper-ellipsoid benchmark function (f1).

FIGURE 10. Surface of the alpine benchmark function (f2).

algorithm to escape from local minima and move toward the
global optimum. The alpine benchmark function (f2) is given
by [58]:

f2(x) =
n∑
i=1

|xisin(xi)+ 0.1xi|. (11)

As the dimensionality is significantly important, the
dimension of the problem (n) was set to 30. The lower
bound, upper bound, and optimum solution are -10, 10, and 0,
respectively.

V. RNT-PSO-POL ALGORITHM
TheRNT-PSO is suggested to improve the performance of the
POL model for distance estimation. Therefore, the problem
must be formulated. Then the RNT-PSO algorithm is imple-
mented. Further details are below.

A. PROBLEM FORMULATION
An optimization algorithm requires three crucial elements
to perform the task entrusted to it, namely, the dimension

of the problem, a fitness function, and problem constraints.
The optimization algorithm is developed to find the optimal
values within the dimension of the problem by evaluating the
elements using the fitness function, taking into account the
problem’s constraints.

The first step is to define the dimension of the problem (d),
which refers to the number of elements to be optimized. The
dimension of the problem can be expressed as [17]:

Bi,j = [B1i,jB
2
i,j . . .B

d
i,j]. (12)

where Bi,j are the jth solution in the population during the
ith iteration, andBki,j is the k

th element ofBi,j. The d parameter
represents the total number of elements.

One of the most important aspects of optimization is devel-
oping a suitable fitness function to evaluate the candidates of
solution (Bi,j). The fitness function is formulated in such a
way as to generate the optimum solution. The fitness function
that was developed in this study is the MAE, which is defined
as [42]:

MAE = (
m∑
i=1

|disr − dise|)/n. (13)

where m is the number of locations (i.e., 27 locations).
The third element of implementing the optimization algo-

rithm is applying constraints to find the optimum element
values. The constraints mean the borders of each element,
where each element should have an upper and lower border.
During the iteration process, any element may move away
from its borders. In this case, the element must be regenerated
within its borders.

B. IMPLEMENTATION OF RNT-PSO-BASED OPTIMUM
POL ALGORITHM
As the RNT-PSO achieved the best solution among the other
algorithms, this approach was developed to optimize the POL
model. The RNT-PSO based optimum POL (RNT-PSO-POL)
approach began by defining the relevant parameters, namely
the number of iterations (τ ) and the number of swarms (N ).
The values of τ andN were set to 10,000 and 20, respectively.
The goal of implementing the RNT-PSO-based POL was
to determine the optimal values of elements a, b, c, and d
in (5); accordingly, the dimension of the problem (d) is 4.
The inertia (w) was set to 0.75.

The first step in the RNT-PSO-POL algorithm is the gen-
eration of initial swarms, which are encoded using (12). The
initial swarms are evaluated based on the developed fitness
function described in (13). The cognitive coefficient (C1) is
calculated using (6); the social coefficient (C2) is then calcu-
lated using (7). The RNT-PSO-POL algorithm then calculates
velocities using (8).

The last step in the swarm update process is updating their
positions, which is implemented according to (9). If the RNT-
PSO-POL reaches the maximum number of iterations, the
optimum a, b, c, and d values are obtained. Fig. 11 depicts
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FIGURE 11. RNT-PSO implementation.

the overall process of the implementation of the RNT-PSO-
POL algorithm.

VI. RESULTS AND DISCUSSION
The RNT has been used to improve the PSO algorithm. Two
models are used for distance estimation, which is LNSM
and POL. The proposed RNT-PSO has been used to improve
the performance of the POL model. The main objective of
this study is to ensure social distancing between medical
workers and isolation rooms which is implemented using an
ANN-based control system. The results are described below
in detail.

A. RNT-PSO RESULTS
To evaluate the performance of the proposed RNT-PSO
algorithm, two benchmark functions were considered,

namely the rotated hyper-ellipsoid and alpine benchmark
functions.

1) TUNING OF THE ALGORITHMS
Numerous parameters should be set before evaluating the
proposed algorithm (RNT-PSO) and comparing it with the
other algorithms. The main algorithm parameters are defined
in Table 2.

TABLE 2. The main algorithm parameters.

2) BENCHMARK FUNCTION RESULTS
Two benchmark functions were considered to evaluate the
proposed RNT-PSO algorithm: the rotated hyper-ellipsoid
function (unimodal) and the alpine function (multimodal).
The proposed RNT-PSO was compared with nonlinear time
variation PSO (NT-PSO), and conventional PSO approaches.
Furthermore, two well-known algorithms (GSA and HSA)
were considered for further evaluation. Fig. 12 shows the
convergence characteristics of the rotated hyper-ellipsoid
function. The proposed RNT-PSO exhibits clearly supe-
rior characteristics compared to the other algorithms, with
faster performance and the ability to successfully explore
and move toward the global minima. This means that the
RNT-PSO also avoids the issue of becoming trapped in local
minima. Furthermore, the RNT-PSO achieved a value of
1.459 × 10−26, which is the best result of any of the algo-
rithms. These results demonstrate that the exploitation ability
of the proposed RNT-PSO is significantly better than that of
the other algorithms.

Fig. 13 shows the response of the alpine function based
on RNT-PSO, NT-PSO, PSO, GSA and HSA algorithms.
This figure also shows that the proposed RNT-PSO algorithm
achieved better performance than the other algorithms. The
exploration of the RNT-PSO is improved, and the conver-
gence of the RNT-PSO approach is also faster than that
of the other algorithms. Furthermore, exploitation is also
improved based on RNT-PSO, with a minimum result of
0.000125 achieved by the RNT-PSO. This finding indicates
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FIGURE 12. Convergence characteristics of the rotated hyper-ellipsoid
function.

FIGURE 13. Convergence characteristics of the alpine function.

that the proposed algorithm can effectively handle different
types of functions; thus, the proposed algorithm has been
implemented successfully.

B. LNSM RESULTS
The results of the distance estimation based on the LNSM
model are described in this section. The RSSI signals were
measured at 27 locations. At each location, 30 samples were
measured. These samples were then averaged, with the rela-
tionship between the average samples and distance shown in
Fig. 14. This figure shows the mathematical model, standard
deviation, and path loss exponent using a linear fit line. The
linear fit line is based on RSSI, estimated distance (dise), and
a diso of 1 m between the mobile nodes and beacon and can
be written as:

RSSI = −22.309 log10(dise)− 38.412. (14)

Accordingly, the distance estimation between the medical
worker carrying the mobile node and the isolation rooms was
measured based on RSSI, which is defined as:

dise = 10−(RSSI+38.412)/22.309. (15)

FIGURE 14. LNSM model based on curve fitting.

To evaluate the performance of the LNSM model, the
absolute error was calculated, i.e., the difference between the
real distance (disr ) and estimated distance dise, as defined
below:

Error = |disr − dise|. (16)

The error was computed as depicted in Fig. 15. Distance
from 0–27 m is shown on the x-axis, and the error is shown
on the y-axis. The error value was plotted as a vertical bar per
sample. The figure shows that the error varies from 0 to 5m.
The mean absolute error (MAE) was also calculated for all
27 locations; theMAEwas found to be 1.777 m and is plotted
as a dotted blue line in Fig. 15.

FIGURE 15. The error of the LNSM algorithm.

C. RNT-PSO-POL RESULTS
To improve the POL model, the proposed RTN-PSO was
used to determine the optimum coefficients (a, b, c, and d).
The convergence characteristics of the RTN-PSO-based PLO
model are shown in Fig. 16. The number of the iterations was
set to 10,000, with stability achieved after iteration number
6,000, meaning that saturation is reached and the error rate
cannot be subsequently reduced further. After completing the
implementation of the RTN-PSO-POL algorithm, the MAE
was found to be 1.433 m. The final outputs of the RTN-PSO
are the optimum values of POL coefficients a, b, c, and d ,
whose values were found to be −0.00073013, −0.0866,
−3.4837, and −45.3558, respectively. Therefore, the
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TABLE 3. Performance comparison of the proposed method with recent studies.

FIGURE 16. Convergence characteristics of the RNT-PSO-POL algorithm.

RTN-PSO-POL model is expressed as:

disRTN−PSOe(POL) = −0.00073013 RSSI3 − 0.0866 RSSI2

− 3.4837 RSSI − 45.3558. (17)

D. ERROR ESTIMATION
To evaluate the performance of the proposed RNT-PSO-POL
and LNSM models according to distance estimation, the
MAE between the medical workers and isolation rooms was
utilized, as shown in Fig. 17. The absolute error per sample
based on the RNT-PSO-POL model appears as a red bar, and
the MAE based on RNT-PSO-POL appears as a dotted red
line. The error results relating to the absolute error per sample
andMAEbased on LNSMare plotted as a dotted blue line and
a blue bar. The absolute error based on the RNT-PSO-POL
model varies from 0.001846997 to 4.095806577, while the
absolute error based on LNSM ranges from 0.058329574 to
5.067167926. Furthermore, the MAE of distance estimation
between the medical workers and isolation rooms based
on RNT-PSO-POL and LNSM were found to be 1.433 m
and 1.777 m. These results clearly show that the proposed
RNT-PSO-POLmodel achieved better results than the LNSM
model, with the RNT-PSO-POL model achieving high accu-
racy and successfully reducing the error in distance estima-
tion by 19% compared with the LNSM model.
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FIGURE 17. The error of the RNT-PSO-POL and LNSM algorithms.

E. BP-ANN RESULTS
The results of the BP-ANN approach are presented in this
section. Four ANN were tested, i.e., 2-5-3, 2-10-3, 2-15-3,
and 2-20-3. The BP-ANN was trained to perform as a control
systemwith high accuracy. The performance of the BP-ANN,
as measured in terms of mean square error (MSE), is shown
in Fig. 18. The number of the iterations was set to 1,000.
Fig. 18 demonstrates that the best performance was achieved
based on 20 neurons in the hidden layer. The MSE value
of the 2-20-3 BP-ANN configuration was 1.0695 × 10−12.
This obtained MSE value shows that the proposed control
system successfully achieved a very convincing result, thus
demonstrating that the ANN can be used with high efficiency
in the proposed control system.

FIGURE 18. Performance of the different ANN architectures.

To verify the sensitivity of the proposed control system,
each ANN topology (2-5-3, 2-10-3, 2-15-3, 2-20-3) has been
run 30 times. The goal has been set to 1×10-10. The sensitiv-
ity was found to 87%, 70%, 57% and 43% for 2-20-3, 2-15-3,
2-10-3, 2-5-3, respectively.

F. COMPARISON RESULTS
The two proposed models (RNT-PSO-POL and LNSM) were
compared with various previous studies of medical worker
estimation distance. This comparison was achieved based on
several factors: the technology used, the adopted method, and
the tested area, as shown in Table 3. A comparison was also
achieved based on the MAE for all studies. Table 3 clearly

TABLE 4. Comparison results of the RNT-PSO, NT-PSO, GSA, HAS and PSO
approaches.

demonstrates that the proposed RNT-PSO-POL algorithm
achieved superior results compared to the other algorithms,
with an MAE value of 1.433 m. These results show the accu-
racy of the proposed algorithm in locating medical workers;
thus, it can be used with high accuracy to warn workers when
approaching isolation rooms. Table 4 shows the results of the
proposed RNT-PSO approach along with those of the PSO,
NT-PSO, GSA andHSAmethods. The comparison was based
on the rotated hyper-ellipsoid and alpine benchmark func-
tions described above. Table 4 clearly shows the superiority of
the proposed RNT-PSO algorithm over the other algorithms
concerning both benchmark functions.

VII. CONCLUSION
A control system to establish social distancing between med-
ical workers and isolation rooms was presented in this work.
The experiments were conducted at the Electrical Engineer-
ing Technical College, with a maximum experimental dis-
tance of 27 m. Two models (LNSM and POL) were utilized
to estimate the distance between medical workers and the
isolation room. First, the distance was measured based on
the LNSM model. The second model (POL) was based on
the relationship between the received RSSI and the distance.
However, the coefficients of the POL model need to be opti-
mized. One of themost well-known algorithms for coefficient
optimization is PSO; however, one of its key drawbacks is the
issue of the solution becoming trapped in local minima. This
paper introduces a new concept to escape from local minima
in PSO using random-nonlinear time variation (RNT-PSO).

The essential motivation of this improvement is the
random-non-linear movement of coefficients C1 and C2.
The movement of these coefficients was modeled using
an exponential model. The RNT-PSO has some critical
differences from other algorithms, chief among which is
the simple application of RNT-PSO to various problems.
Furthermore, the solutions of RNT-PSO are focused on the
balance between global and local swarms, with local swarms
given greater opportunities to explore at earlier iterations. The
RNT-PSO is compared with conventional PSO and nonlinear
time variation-PSO (NT-PSO). Furthermore, the RNT-PSO
is compared with two well-known algorithms: gravitational
search algorithm and harmony search algorithm.

The RNT-PSO showed superior performance relative to
other algorithms; therefore, RNT-PSO was used to improve
the POL model (RNT-PSO-POL). The MAE of the RNT-
PSO-POL is 1.433 m compared to an MAE of 1.777 m for
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the LNSM approach. The study outcomes indicate that the
RNT-PSO-POL achieves superior results, with a 19% better
MAE than the LNSM approach. The final step of the study
was to develop an ANN for controlling three signals (alarm-
ing, warning and closing), which achieved very convincing
results. These findings demonstrate that the ANN can be used
successfully for control systems to establish distance between
medical workers and isolation rooms. As future work, this
research can be expanded by using other optimization algo-
rithms and other artificial intelligence methods.
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