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ABSTRACT This paper presents a Transformer-based Visual Exploration Network (TVENet) that capably
serves as a solution for active perception problems, especially the visual exploration problem: How could
a robot that is equipped with a camera explore an unknown 3D environment? The TVENet consists of
a Mapper, a Global Policy and a Local Policy. The mapper is trained by supervised learning to take the
visual observation as input and generate an occupancy grid map for the explored environment. The Global
Policy and the Local Policy are trained by reinforcement learning in order to make navigation decision.
Most state-of-the-art methods in visual exploration domain use ResNet as feature extractor, and few of them
pay attention to the extraction capability of the extractor. Therefore, this paper focuses on enhancing the
extraction capability, and proposes a Transformer-based Feature Pyramid Module (TFPM). Moreover, two
tricks for training process are introduced to improve the performance (M.F. and Aux.) Our experiments
in photo-realistic simulated environment (Habitat) demonstrate the higher-accuracy mapping of TVENet.
Experimental results prove that the TFPM and tricks have positive impacts on the mapping accuracy of
the visual exploration and increase it by 5.31% compared with the state-of-the-art. Most importantly, the
TVENet is deployed on a real robot (NVIDIA Jetbot) to prove the feasibility of Embodied AI approaches.
To the authors’ knowledge, this paper is the first one that proves the viability of the Embodied AI style
approach for visual exploration tasks and deploys the pre-trained model on the NVIDIA Jetson robot.

INDEX TERMS Active perception, embodied AI, learning for navigation, visual exploration, visual
navigation.

I. INTRODUCTION
Visual exploration is a stem in active perception, which
is actively capturing the necessary visual observations [1].
As pointed out by Chaplot et al. [2], the purpose of explo-
ration is to efficiently visit as much of the environment as
possible on a limited time budget. Ramakrishnan et al. [3]
define this task as learning to look around: How can an agent
learn to acquire informative visual observation skills? Visual
exploration is an important part of navigation since it can
actively gather useful information in the new environment
for unspecified downstream tasks [1]. These tasks could
be PointGoal Navigation, ObjectGoal Navigation, AreaGoal
Navigation [4], Visual-Language Navigation [5], etc.
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The traditional methods of visual exploration could be
traced back to the 1980s [6], [7]. Traditional methods of
visual exploration attempt to utilize purely geometric repre-
sentations, such as simultaneous localization and mapping
(SLAM) [8], visual odometry [9], visual landmark [10],
appearance-based methods [11], and optical flow [12].
However, they entirely ignore the semantic information [13].
Using the ORB-SLAM3 [8] as an example, VSLAM focuses
on keyframe and point matching, updating, and tracking.
Furthermore, these methods mainly rely on sensors’ readings
to build maps and localize them, making them highly
susceptible to measurement noise [14] and need more
computational resources [9].

Therefore, traditional methods are generally hard to
accomplish embodied AI tasks such as Navigation from
Dialog History (NDH) [15], Visual Language Navigation
(VLN) [16], Embodied Question Answering (EQA) [17],
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Interactive Question Answering (IQA) [18], Scenario Ori-
ented Object Navigation (SOON) [19], and etc. As computer
vision technology has improved in recent years, visual
exploration approaches have altered drastically, particularly
with the appearance of the CVPR Embodied AI workshop in
2020.1 We called the method of deploying the learning-based
model, which was trained in a photo-realistic simulation
environment, on a real robot as the ‘‘Embodied AI style
approach.’’

Under these conditions, learning-based methods stand out
and catch the attention of the researchers [20]. Firstly, they
argue that the optimization of the overall navigation system
is more important than intermediate task goals like accurate
localization and metric maps [21]. Secondly, they require
much cheaper sensors like cameras, not the expensive Lidars
or depth sensors [5], [22]. Thirdly, they extract the semantic
information for navigation [23]. Finally, they can generalize
robustly in previously unseen environments [24], [25].
Savva et al. [26] demonstrate that learning-based approaches
outperform classic approaches (ORB-SLAM2 [27]) when the
agent has more learning steps and data. A representative
work of this style is conducted by Ramakrishnan et al. [28]
in Facebook AI Research. Therefore, our TVENet follows
their research path. Compared with their work, this paper
enhanced the ability to perceive visual information and
deployed TVENet on a real robot to prove the feasibility of
the Embodied AI style approaches. Fig. 1 depicts a bird view
of our work.

The learning-based methods operate directly on pixels
and/or depth as input [28]. It could be an end-to-end
paradigm or a modular architecture paradigm. The end-to-
end paradigm means designing a network which directly
maps the observation into action without any internal feature
space for representing the environment (e.g., [22], [29]).
The modular architecture paradigm means using several
modules to perceive the environment from observation and
then compute the action (e.g., [25], [30]). Our TVENet is
categorized as a modular architecture paradigm.

Most researchers use ResNet [31] as the basic visual fea-
ture encoder for visual exploration. They pay more attention
to the post-processing of the extracted features, but tend to
ignore the extraction capability of the visual encoder. In this
situation, the Visual Transformer technology [32] attracted
our attention with its strong representation capabilities.

Therefore, this paper proposes a novel Transformer-based
Feature Pyramid Module (TFPM) that takes advantage
of Transformer [33] to enhance the extraction capability.
Inspired by the work of Gordon et al. [34], this paper
introduces two tricks: Training Mapper First (TMF) and
Auxiliary Task (Aux) for the training process. This paper
validates our TVENet, TMF, and Aux on Habitat with Gibson
datasets [35] and Materport3D datasets [36]. Habitat is a
photo-realistic simulator introduced by Savva et al. [26] to
render photo-realistic observation of an agent in it.

1https://embodied-ai.org/

Our main contributions are as follows:

1) Proved the viability of the Embodied AI style approach
for visual exploration tasks. This manuscript success-
fully deployed the learning-based perception-decision
model (TVENet), whichwas trained in a photo-realistic
simulation environment, on a monocular real robot.

2) Proposed a novel module (TFPM) to enhance the
ability to perceive visual information. TFPM combines
Transformer in the NLP task and FPN in the CV
task to extract and merge the multi-scale features.
Compared with the SOTA method [28], the proposed
TFPM increases mapping accuracy by +5.31%.

3) Introduced two efficient training tricks that signifi-
cantly improve training performance. The mapping
accuracy is improved by +9.66% with these tricks.

4) Conduct a practice-oriented discussion for the embod-
ied AI style approach. Based on the experiments in the
simulation environment and the real world, this paper
carefully discusses the things that would be helpful for
practicability and the potential future work direction.

II. RELATED WORKS
A. VISUAL EXPLORATION
Navigation has been well studied in classical robotics,
and exploration is a basic part of navigation, especially
exploring in new and unknown environments. Practically,
the robot (agent) only obtains a partial observation of the
environment at a certain time step. As a result, researchers
define exploration as a partially observed Markov Decision
Process (POMDP) [1]. The purpose of POMDP is to figure
out the distribution of probability over each action at the
current observation. This distribution is also called ‘‘policy.’’
Chen et al. [13] formulate the estimation of optimal policy
π∗as a learning problem. The policy π is trained on a
set of environments εtrain and tested on a held-out set of
environments εtest . Li et al. [37] design aDeepReinforcement
Learning method to automatically explore an unknown
environment, but they use laser and odometry data as
input. Luong et al. [38] use range finder laser sensors and
online deep reinforcement learning to generate the navigation
policy. However, their inputs are sensitive to the noise of
sensors’ readings.

In this context, computer vision plays a more important
role [39]. Some researchers focus on the functional compo-
nents of exploration, like obstacle avoidance. Ren et al. [40]
formulate the motion planning problem of an AGV with
static and dynamic obstacles as a nonlinear optimal control
problem (OCP). Zhang et al. [41] create an actively
obstacle-avoiding algorithm for aircraft swarmswhile explor-
ing. Narayan et al. [42] propose a dynamic color perception
system for visual exploration on an unmarked road.

However, they utilize the color information and ignore
the other visual information like semantic and category
information. Moreover, their method only works well in a
structured environment like a road.
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FIGURE 1. Exploration task and the bird view of the work in this paper. The proposed network takes a sequence of RGB images as the input and outputs
the predicted map. The proposed network is trained in a simulation environment and deployed on a real robot to test in a real-world environment. The
simulation is based on a photo-realistic simulator (Habitat) and several 3D environment datasets (Gibson-v2 and Matterport3D). The real robot is
equipped with a powerful processor (Jetson nano) and a camera. The light (dark) gray area in ‘‘Layout’’ is the explored (unexplored) region of the unseen
environment. The colored line in ‘‘Layout’’ represents the path of the robot.

Differently, Chaplot et al. [43] combine the classic pro-
cessing pipeline and a learning-basedmethod for amore com-
plex environment, and propose an Active Neural Network
(ANS). Their method won the AI Habitat challenge at CVPR
2019 across all tracks. Ramakrishnan et al. [28] formulate
the exploration task as a pixel-wise classification task and
add anticipation mechanism. They won the 2020 Habitat
PointNav Challenge. Our TVENet is compared with the work
by Ramakrishnan et al. [28].

B. RESNET AND TRANSFORMER
ResNet is an excellent backbone for extracting multi-scale
features in the computer vision domain [31]. It is the
dominant visual encoder in the visual exploration domain.
Zhu et al. [25] utilize pretrained ResNet-50 as a main
part of their actor-critic model. Savinov et al. [44] use
ResNet-18 in their retrieval network to process the two input

observations. Gupta et al. [45] use ResNet-50 to extract
features for their Cognitive Mapping and Planning (CMP)
network. Chaplot et al. [46] use shared ResNet-18 to encode
a source image and a goal image. Anderson et al. [16]
use ResNet-152 to extract a mean-pooled feature for each
image observation. Chen et al. [13] use ResNet-18 to
process the RGB images and train the exploration policy.
Henriques et al. [47] use ResNet-50 to design their MapNet.
Their method outperforms a learned LSTM policy without
a map in previously unseen environments. Li et al. [48]
encode visual information through ResNet-18 for their meta-
learning.

In addition to ResNet, Transformer is another choice for
extracting the visual feature. Transformer is a type of deep
neural network mainly based on the self-attention mechanism
and pose embedding method [32]. At first, it is applied to
the field of natural language processing (NLP). Recently,
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researchers applied the Transformer to computer vision tasks
and got state-of-the-art performance.

III. EMBODIED TASK SETUP
The exploration task could be formulated as the objective to
maximize the coverage on a fixed time budget, as proposed by
Chen et al. [13]. This paper follows the definition of coverage
proposed by Chaplot et al. [43] where the coverage is the total
area of the map known to be traversable. The main purpose
of TVENet is to train a navigation policy that takes visual
observation ot and pose pt at time step t from the statement
st of an unseen environment and outputs a navigational action
at to maximize the coverage.

A. PROBLEM FORMULATION
Mathematically, the navigation task in an unseen environment
could be formulated as a Partially Observable Markov
Decision Process (POMDP):

{S,A(st ),O,P(st+1|st , at ),R(st , at )} (1)

where S represents the state space of the surrounding
environment and the agent, A(st ) represents action space, O
represents the information space that the agent could observe,
P(st+1|st , at ) represents the state transition probabilities,
and R(st , at ) represents the received reward after taking
action at ∈ A(st ) at state st ∈ S. The policy π is
a mapping from states to probabilities of selecting each
possible action [49]. A neural network with parameters θ
is typically used to represent the navigation policy, which
predicts the distribution πθ (·|ot , pt ) over action at ∈ A(st )
for the observation (ot , pt ) ∈ O along the policy πθ .
And the training process is to find the optimal policy
π∗ so as to maximize the cumulative expected future
reward:

π∗ = argmax
π

E[R(τ )|π ]

= argmax
π

E

[
∞∑
t=0

γ tR(st , at )|π

]
, (2)

where τ = (s0, a0, s1, a1, . . .) is a sequence of states
and actions. It is also frequently called ‘‘trajectory’’ or
‘‘rollouts.’’ Return R(τ ) represents the cumulative reward
over a trajectory τ . The st ∈ S is the state of the environment
at time t . The γ is the discount factor. The action at ∈ A
is determined by the policy π with parameters θ : at ∼
πθ (·|ot , pt ). The next state st+1 follows the dynamics of the
environment: st+1 ∼ P(·|st , at ).

The On-Policy Value Function V πφ (s), the On-Policy
Action-Value Function Qπφ (s, a), and the advantage
Aπ (st , at ) in our training process are defined as
follows:

V πφ (s) .= E
τ∼πφ

[R(τ )|s0 = s] (3)

Qπφ (s, a) .= E
τ∼πφ

[R(τ )|s0 = s, a0 = a.] (4)

Aπ (st , at )
.
= Qπ (st , at )− V π (st ). (5)

Our objective is to design a network π with a param-
eter θ, φ to represent the distribution πθ (·|ot , pt ) and
the On-Policy value V πφ , respectively. Then, training the
network to approximate optimal policy π∗ in (2). Finally,
mapping the observation into an accurate occupancy gridmap
based on the optimized networks.

B. ACTION SPACE
The action space A consists of four actions: FORWARD:
move forward by 25cm; TURN-RIGHT: on the spot rotation
clockwise by 10 degrees; TURN-LEFT: on the spot rotation
counter-clockwise by 10 degrees; STOP: task completed.
These configurations are the same as in the work by
Ramakrishnan et al. [28], so the comparison is meaningful.
It can also be set to any value in the simulation environment.
The state space S consists all of the information about
the surrounding environment, such as semantic information,
geometric information, and so on. This paper denotes ot ∈ O
as the visual observation, especially the RGB frame, and
denote pt ∈ O as the pose of the agent, where O is the
observation space.

C. REPRESENTATION OF THE ENVIRONMENT
To represent the environment, this paper uses an allocentric
metric map mt . The spatial map mt is a 2 × M × M matrix
whereM represents themap’s size. The first channel ofmt is a
2D map (M ×M ) that provides the probability of an obstacle
in each grid. The second channel contains the probability of
the grids being explored or not. The allocentric metric map is
updated by the egocentric map megot ∈ [0, 1]2×V×V at time t ,
where V is the vision range.

There are three main coordinate systems: the world
coordinate system, the allocentric map coordinate system,
and the egocentric map coordinate system. The allocentric
map coordinate system is the discretization of the world
coordinate system. The egocentric map coordinate system
could be viewed as the body’s coordinate system. This
paper uses the mark (′) to represent the egocentric map
coordinate.

Considering the observation noise and the action noise,
this paper uses the Pose Estimator fPE (·) in the Mapper
to correct the sensors’ reading value of the pose. The
noisy value of pose in the world coordinate system at
time t is represented as pt = [x, y, θ], where (x, y) ∈
R2, θ ∈ (−π, π). This paper denotes p̂t as the corrected
value of pt which approximates the true value of the
pose p̃t :

p̃t ≈ p̂t = fPE (m
ego
t ,megot−1, pt , pt−1). (6)

The camera’s shaking is not taken into account in this
paper. We consider that using physical dampening (e.g.,
gimbals) rather than limited computer resources to solve the
vibration problem is more economical.
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FIGURE 2. Model overview. Our TVENet incorporates two adjacent observations (ot ,pt ,ot−1,pt−1) of the environment to learn a grid representation
(mt ) of the environment and two policy for deciding an action (at ). Based on these perceptions (St ,Mt ), the agent decides the action to maximize
coverage of the explored area on a fixed time budget. The Global Policy figures out a long-term goal (gl

t ) on the allocentric map coordinate system based
on the estimated pose (p̂t ) and grid map (mt ). The gl

t is then processed into a short-term goal (allocentric coordinate: gs
t , egocentric coordinate: g′st ) and

fed into the Local Policy, which determines the motion action (at ) and action-value (vt = Qπ (st ,at )).

IV. METHODS
A. NETWORK ARCHITECTURE
The overview of the model is shown in Fig.2. Inspired by
Chaplot et al. [43], our TVENet consists of three main parts:
Mapper, Global Policy, and Local Policy.

The Mapper takes current observations (ot , pt ) and mem-
ory Mt = (ot−1, pt−1,mt−1) as input and updates the new
map mt and the corrected pose p̂t :

mt , p̂t = fM (ot , pt , ot−1, pt−1,mt−1), (7)

where the Mapper network fM = {fVE , fPE , fMR} contains
a visual encoder fVE , a pose estimator fPE and a map
register fMR. As shown in Fig.3, the observation is fed
into fVE (feature extractor, neck, and task head) to get the
egocentric map megot . Similar to Chaplot et al. [43], the
Spatial Transformation (affine transformation) is applied to
the last egocentric map megot−1 with the sensors reading pose
(pt , pt−1) as the input, i.e., m̃egot−1 = fST (m

ego
t−1, pt , pt−1).

Then, the estimated pose p̂t is calculted by fPE , i.e., p̂t =
fPE (m̃

ego
t−1,m

ego
t ). Finally, the allocentric map mt−1 would be

updated by the Map Register with p̂t and m
ego
t .

The Global Policy takes the spatial map mt , the current
position p̂t , and visited locations as inputs ht to learn
a policy (network) π l with parameters θ and predict an
On-Policy Value v̄t = V π

l
φ (st ) with parameters φ. The

long-term goal (glt ) is sampled based on the distribution
π lθ (ht ): g

l
t ∼ π lθ (·|ht ). This Global Policy is an actor-critic

model with multi-convolution layers [25]. The actor part
and the critic part consist of five convolution layers with
parameters θ and φ respectively.

The Planner calculates a short-term goal gst based on the
long-term goal glt , the current map mt , and an estimated
pose x̂t . It uses the A-star algorithm to figure out the
shortest path based on current observation instead of the fast-
marching [51] used in [43]. The unexplored area is considered
free space. A short-term goal gst is sampled with a fixed length
from the planned path between the current position and the
goal gst .
The Local Policy takes an observation ot and a short-term

goal gst as inputs and predicts an action at ∼ π sθ (·|ot , g
s
t ),

where θ is the parameter of the Local Policy. To begin,
ResNet-18 is used to encode the RGB (D) of the observation
ot into 256-dimensional features Frgb. The word embedding
method is used to embed the scalars of position ρ,angle ϕ, and
time t into 32-dimensional features Fρ , Fϕ , and Ft . Then, the
concatenation of these features is fed into the Gate Recurrent
Unit (GRU) [52]. Finally, the outputs of GRU are divided into
two parts: the action distribution π sθ (·|ot , g

s
t ) and the expected

return vt = V π
s
φ (st ).

One trick for training is Training Mapper First (TMF),
which is inspired by the fact that decision-making is
meaningful only when it is based on an accurate map. This
paper implements TMF by changing the training epoch size
based on the loss of the Mapper. At the beginning, the
epoch size is set largely, say 400. Then, it decreases with the
reduction of the Mapper loss.

As pointed out by Zhu et al. [5], the auxiliary task would
enhance the performance and increase the generalization
ability. Inspired by Gordon et al. [34], this paper introduces
one trick called the Auxiliary Task (Aux) before the training
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FIGURE 3. Mapper. The mapper takes the RGB frames as input and figures out the representation mt of
environment. In the pipeline of processing the visual information, the Visual Encoder (feature extractor,
neck and task head) plays an important role. The auxiliary task (classification and segmentation) is
applied on the Feature Extractor with the ImageNet [50] as the datasets to initialize the distribution of
the initial parameters. The pose of agent is corrected by the pose estimator with egocentric map
(mego

t ,mego
t−1) and sensors reading pose (pt ,pt−1). Finally, the allocentric map mt−1 is updated.

process to enable the visual encoder with the ability to extract
semantic information. During the task, the parameters of
the Global Policy and the Local Policy would be frozen.
Intuitively, Aux could be viewed as a method to initialize the
parameters of the network before formal training.

B. VISUAL ENCODER: TFPM
Compared to others, this paper pays more attention to
the capability of extracting visual information. This paper
presents our Transformer-based Feature Pyramid Mod-
ule (TFPM) to apply Transformer technology in the visual
encoder to extract semantic and geometric information from
RGB images. Our TFPM consists of a feature extractor,
a neck, and a task head. The experiments show that the TFPM
outperforms the ResNet-based visual encoder by a significant
margin.

1) FEATURE EXTRACTOR
The feature extractor is based on ResT [33], the current state-
of-the-art network in the image recognition domain. It is
an efficient multi-scale vision Transformer that can serve as
a general-purpose backbone to extract multi-scale features.
There are twomainmodifications to the standard ResT for the
exploration task as shown in Fig.4. Firstly, this paper removes
the classifier layer (the last pooling layer and fully-connected

layer) because it is designed for the image classification task.
Secondly, this paper uses multi-scale features from different
stages, as inspired by Feature Pyramid Network (FPN) [53]
and U-Net [54]. Compared with the standard Transformer
network, the feature extractor is only the encoder part of the
Transformer.

The stem and patch embed layer in Fig.4 are used to
decrease the spatial resolution and increase the channel
dimension. Here this paper uses several convolution layers
with stride 2 to achieve this purpose.

The position encoding exploits the order of the sequence.
Here, this paper utilizes dot-product attention since it is much
faster and more space-efficient than additive attention [55].
This paper follows the work by Zhang et al. [33] and apply a
depth-wise convolution operation to compute the weight for
each element of the features:

y = x · DWConv(x). (8)

In the Block part, to reduce computation and compress
memory, the depth-wise convolution layers with stride 2 are
used to down-sample input feature x ∈ Rw×h×dm into x ′ ∈
R

w
s ×

h
s×dm , where s is the scale factor. In Efficient Multi-

Head Self-Attention (EMSA), x and x ′ are flattened into
x1 ∈ Rn×dm , x ′1 ∈ Rn′×dm respectively, where n = w× h and
n′ = w

s ×
h
s . Natural Language Processing (NLP) considers

x1 to be n features of dimension dm. The Linear layers map
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FIGURE 4. TFPM Feature Extractor. As with ResNet, there are four stages to extract four features with different scales. This network uses a self-attention
mechanism to merge the information from the different channels. The input (RGB or features) is embedded by convolution layers. To encode the position
of different channels, a convolution layer is used to compute the weight of each element of the input feature. For simplification, normalization layers and
active layers are not drawn.

x1 to k query matrix Q : Q ∈ Rn× dm
k , where k is the number

of EMSA heads. Similarly, x ′1 is translated into k key-value

pairs (K ,V ) ∈ Rn′× dm
k . The output of EMSA is a weighted

sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the
corresponding key:

EMSA(Q,K ,V ) = Softmax(Conv(
QKT
√
dk

))V , (9)

where, Conv(·) is a 1× 1 convolution layer used to combine
information from multiple attention heads. For each block in
the Feature Extractor, the output y is as follows:{

y = y′ + FFN (LN (y′))
y′ = x + EMSA(LN (x)),

(10)

where LN (·) represents the Layer Normalization [56], and
FFN (x) = σ (xW1 + b1)W2 + b2 is the Feed-Forward
Network(FFN). The W1 ∈ Rdm×df , W1 ∈ Rdf×dm , b1 ∈ Rdf

and b1 ∈ Rdm are the parameters of the Linear layers in FFN.
The σ (·) is the activation layer GELU [57].

2) NECK
As illustrated in Fig.3, The Neck is intended to progressively
merge the multi-scale features in order to enhance the
lower-level features using the higher-level semantic infor-
mation, as inspired by the decoder of the U-Net [54]. The
multi-scale features {f1, f2, f3, f4} are extracted by the Feature
Extractor in corresponding stages. The highest resolution

of the feature f1 contains more detailed pixel level (low-
level) information (e.g., edges and corners), while the lowest
resolution of the feature f4 contains more semantic level
(high-level) information (e.g., categories).

During the merging process, function U (·) up-samples the
higher level feature fi+1 to the same resolution as another
feature fi:

u(fi, fi+1) = Conv(Conc(fi,U (fi+1))), i = 1, 2, 3 (11)

whereConc(·) is the concatenate layer andConv(·) represents
the convolution layers with stride 1. This process is shown at
the bottom of Fig.3.

3) TASK HEAD
Inspired by the detection head in the object detection domain,
this paper adds the task head after the neck to accomplish a
certain task. The purpose of TFPM in the exploration task is
to figure out the egocentric map megot . Thus, the task head is
designed to map the merged feature fm into megot . The task
head in this case is made up of two 3× 3 convolution layers
with stride 1 to compress the 32-dimensional feature fm into
2-dimensional map megot :

megot = σ (Convs(U (fm))) (12)

where Convs(·) represents convolution layers, σ (·) represents
the Sigmoid function, and U (·) represents the up-sampled
function to extend the resolution.
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FIGURE 5. Training details. There are three groups of parameters that need to be optimized: the Mapper, the Global Policy (GP), and the Local Policy (LP).
The Mapper is trained by the standard supervised learning. The GP and the LP are optimized by the Proximal Policy Optimization (PPO). Thus, three
Rollouts are used to gather sufficient input (and rewards) for training. One time step denotes a single interaction with the environment (take action at
and get the feedback observation ot+1). The LP, Mapper, and GP are updated every 25, 100 and 500 time steps, respectively. Each episode, which begins
with a random scene and location, contains 1000 time steps for training.

C. TRAINING DETAILS
The training and the evaluation process are under the platform
with 2 GPUs, GeForce RTX 3090 and GeForce GTX 1080.
The memory capacity is 24 GB and 8 GB, respectively.
The former is used to load the network and optimize the
parameters. The latter is used to render the environmental
characteristics which are fed into the network.

The training details are shown in Fig. 5. There are
three loops to gather the training data for the Mapper, the
Global Policy, and the Local Policy. Each loop outputs
a rollout τ , a sequence of states and actions: τ =

(s0, a0, s1, a1, . . . sT , aT ).

1) REINFORCEMENT LEARNING
The first loop is for updating the Local Policy, as indicated by
the red dot line in Fig.5. Here this paper sets the length of the
local policy trajectory to 25 (NUM_LOCAL_STEPS~$=$T
= 25), which means updating Local Policy every 25 time
steps. The reward rst of the action just taken (at ) is defined
as follows:

rst = Dist(gst−1, p̂t−1)− Dist(g
s
t−1, p̂t )+ C0

+Fsucc
l

max(l, p)
+ [Fcollision · C1], (13)

where C0 is the slack rewards (time information) for the local
policy, which means the rewards that are given to an agent as
time goes on. C1 represents the collision reward, and Fcollision
represents a binary indicator of collision (1 for colliding and
0 otherwise). This paper lets C0 = −0.3,C1 = −1.0 in our
TVENet network. The Dist(gst , p̂t ) is the shortest path length

in the egocentric map megot between the short-term goal gst
and currently estimated pose p̂t . This path is computed by the
A-star algorithm. The Fsucc l

max(l,p) is the Success weighted
by Path Length (SPL), where l is the shortest derivable path
length from the starting point to gst in this trajectory. p is the
length of the actual path. Fsucc is a binary indicator of success
(1 for reaching the short-term goal gst−1 and 0 otherwise).
The second loop is for updating the Global Pol-

icy, as indicated by the green dot line in Fig.5. This
paper sets the global policy trajectory length to 20
(NUM_GLOBAL_STEPS~$=$T = 20). The Global Policy
trajectory is collected only when Local Policy finishes one
updating process. Thus, Global Policy is updated every
500 time steps. The reward r lt of the action just taken (at ) is
defined as follows:

r lt = C2 ·
∑

mgtt , (14)

whereC2 is the coefficient,m
gt
t is the ground truth visitedmap

at time t (1 for being visited and 0 otherwise). This reward r lt
represents the coverage area of exploration.

Considering the fact that the rewards obtained before
taking an action have no bearing on how good that
action was, this paper uses the infinite-horizon discounted
reward-to-go~returnR̂t (τ ) to replace R(τ ) in (2):

R̂t (τ ) = γ T−tvT +
T−1∑
t ′=t

γ t
′
−trt ′ , t ∈ [0,T − 1], (15)

where vT = V πφ (sT ) represents On-Policy Value at state sT
for the policy π with parameters φ. This paper uses the R̂t (τ )
to approximate the On-Policy Action-Value Qπφ (st , at ).
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The advantage Aπφ (st , at ) is estimated based on (15), (5),
and the output vt of the network:

Aπφ (st , at )
.
= Qπφ (st , at )− V πφ (st ) ≈ Ât = R̂t (τ )− vt .

(16)

Following the work of Schulman et al. [58], this paper
optimizes the policy π in (2) by loss L at (θ ):

L at (θ ) = −min
(
πθ (at |ot , pt )
πθ ′ (at |ot , pt )

Ât ,

f 1+ε1−ε

(
πθ (at |ot , pt )
πθ ′ (at |ot , pt )

)
Ât

)
, (17)

where πθ ′ (at |ot , pt ) denotes the probability of action at at
state (ot , pt ) following the old policy πθ ′ . It comes from
rollouts and stays still during the training process. The
πθ (at |ot , pt ) is a new probability under the new policy π with
parameters θ . The πθ is updated once during one training
epoch. It is possible to demonstrate that E [−L at (θ )] and (2)
have the same gradient [58].

The output vt (v̄t ) of the Local Policy (Global Policy) is
intended to estimate theOn-Policy Value of current state. As a
result, this paper includes a squared-error loss L VF (φ):

L VF
=

(
vt − V π

φ

(st )
)2
≈

(
vt − R̂t (τ )

)2
, (18)

where R̂t (τ ) is calculated using (15) from the collected
data in rollouts. It should be noted that calculating the
value of V π

φ
(st ) from the collected data is difficult and

impractical. Achiam et al. [59] demonstrated that V π
∗

(s) =
maxa Qπ

∗

(s, a). Thus, in (18), this paper uses R̂t (τ ) to
approximate the V π

φ
(st ).

To decrease the uncertainty of the predicted distribution
πθ (·|ot , pt ), this paper adds an entropy loss L πθ (st ):

L πθ (st ) = − E
at∈A(st )

[πθ (at |ot , pt )log (πθ (at |ot , pt ))] . (19)

Summarily, loss for policy π (Global Policy π l or Local
Policy π s) with parameters θ is defined based on (17), (18),
and (19):

LLP(θ, t) = L at (θ )+ c1L VF (θ )+ c2L π (st |θ ), (20)

where c1, c2 are coefficients, say c1 = 0.5, c2 = 0.001.

2) SUPERVISED LEARNING
The Mapper is optimized by supervised learning every
100 time steps. The ground truth is generated from the depth
information provided by the virtual environment. Firstly, the
world coordinate (x, y, z) of a point is computed from the
depth image using the standard camera model. The agent is at
the origin of this coordinate system, facing the z axis with x
axis leftward. The y axis represents the height. Secondly, the
ground truth egocentric map mego_gtt is generated by:

m[x ′, y′] =


2, ∃y s.t. H > y > L if x = x ′, z = y′

1, ∃y s.t. L > y if x = x ′, z = y′

0, otherwise

mego_gtt [x ′, y′] = stack
{
m[x ′, y′] = 2,m[x ′, y′] > 0

}
where H and L are the thresholds of the observation height,
say H = 1.5,L = 0.2. It should be noted that the
computed world coordinates (x, y, z) describe the observed
surface of obstacles.m[x ′, y′] = 2means the grid (x ′, y′) in an
egocentric map is occupied by obstacles.m[x ′, y′] = 1 means
the free area. Thus, them[x ′, y′] > 0means the explored area.
Finally, mego_gtt [x ′, y′] consists of two channels, one for the
occupied area and the other for the explored area.

This paper uses Binary Cross Entropy (BCE) loss for
training the Mapper, as Ramakrishnan et al. [28]:

LM =
1
‖mt‖

∑
x∈mty∈m

gt
t

[y · log(x)+ (1− y) · log(1− x)] .

D. TRANSFERRING THE TRAINED MODEL ONTO THE
REAL ROBOT
To examine the performance of the proposed network on a
real robot, this paper took three steps: 1) train the model with
the observation height set to 21cm (the height of the camera
on the real robot); 2) build the same network on the Jetson
Nano (the microprocessor unit of the real robot) and load the
trained model; 3) run the customized code to make use of the
loaded network and control the real robot to move.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
1) DATASETS
This paper uses the Habitat [26] simulator along with
Gibson [35] datasets and Materport3D datasets [36]. Gibson
contains large-scale photo-realistic 3D indoor environments
and simulates the first-person observations and actions
of a robotic agent embodied in these environments. Our
observation space consists of a 128×128 RGB-D observation
(considering the real-time performance) and a position sen-
sor. The sensor reading denotes the change in the agents’ pose
x, y, θ . This paper simulates noisy action and sensor reading
for realistic evaluation, as with Ramakrishnan et al. [28]
and Chaplot et al. [43]. The datasets consist of 72 scenes
with 4,932,479 episodes. The evaluation datasets contain
944 episodes. This paper used 495 test episodes from
Matterport3D datasets. Note that the scenes in Matterport3D
did not appear during the training procedure.

2) METRICS
This paper uses Intersection over Union (IoU) as the main
metric to measure exploration performance. The Mapper
outputs an occupancy grid map. Each grid cell has three
states: unknown, free (passable) and occupied. Thus, this
paper uses free IoU to measure the accuracy of the free area,
occupied IoU to measure that of the occupied area, and mean
IoU to measure overall performance. Note that the unknown
area is not included in the computation. For the experiment
that is conducted in the real world, there is no layout of
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FIGURE 6. Experiment illustration for Nvidia-Jetbot. It should be noted that the value in the red box is the probability distribution of the action, and the
final action is sampled based on that. This would be helpful for the algorithm to balance exploration and exploitation.

the environment and no ground truth for the global map.
Thus, this paper shows the time consumption of the inference
procedure on the real robot.

3) ROBOT
This paper used Nvidia Jetbot2 to deploy the proposed
TVENet. The Jetbot is a kind of crawler robot with one RGB
camera. The process unit is the Nvidia Jetson nano developer
kit.3 It has 4GB of RAM and is enough for TVENet.
The architecture of the Jetson nano is ARMv8-AArch64,
so installing the Pytorch with CUDA support would take
some effort. The system information of the Jetbot is
illustrated on the right side of Fig. 6.

B. BASELINES
This paper defines baselines based on prior work. None of
these baselines conducted experiments on a real robot to
prove the feasibility of the Embodied AI approach.

- OccAnt-re: the baseline that is reported in the
paper [28]. It is the winning entry in the 2020 Habitat
PointNav Challenge.4

- OccAnt-ckpt: the baseline network that is evaluated
with the released pre-trained checkpoint [28]. This is
to analyze the impact of a hardware platform on the
evaluation procedure.

This paper implements the baseline on top of the ANS [43]
framework, which is the same as Ramakrishnan et al. [28].
Our goal is to show the impact of our TVENet model while
fixing the policy learning approach across methods for a fair
comparison. This paper considers two new trained models:

- TVENet: our model based on the backbone of TFPM.
- OccAnt-train: the model that is trained on our hardware
platform with the architecture and training datasets the

2https://www.nvidia.cn/autonomous-machines/embedded-
systems/jetbot-ai-robot-kit/

3https://www.nvidia.cn/autonomous-machines/embedded-
systems/jetson-nano/

4https://aihabitat.org/challenge/2020/

TABLE 1. The time consumption for the real world experiment.

same as Ramakrishnan et al. [28]. This is to analyze
the impact of a hardware platform and training scale on
training procedure.

C. EXPERIMENTAL RESULTS
1) SIMULATION EXPERIMENT: PROPOSED NETWORK
WORKS
The evaluation of the proposed network is conducted
in a simulation environment. The results are shown in
Fig. 7. The TVENet takes a sequence of RGB images as
inputs and outputs predicted maps. These predicted maps
include the egocentric map and the allocentric map. The
findings demonstrate that the TVENet can extract geometry
information from RGB images and make decisions based on
the current observation and navigation history.

2) REAL WORLD EXPERIMENT: EMBODIED AI METHOD
WORKS
To prove the feasibility of the Embodied AI approach, this
paper deployed the TVENet on a real robot. The illustration
of an experiment conducted in the real environment is shown
in Fig. 6. The robot captures the RGB image as the current
observation ot , feeds the current statement st into TVENet,
samples the action at based on the probability distribution
of the action space π sθ (·|ot , g

s
t ), and conducts the action.

The statements st contains two images ot , ot−1 and the last
action at−1. The experimental results are shown in Fig. 8.
The first column shows the RGB input at time t , the second
column shows the egocentric map predicted by the on-board
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FIGURE 7. An illustration of the updating process of the predicted map. As time goes by, the predicted
map is updated by the last allocentric map mt−1 and the current egocentric map mego

t . The processing
flow is shown in Fig. 3.
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FIGURE 8. Experimental results in the real world. Each experiment
conducted 500 time steps (one time step is about 1.5 seconds, which is
the processing time of the TVENet on the robot.) This figure shows five
time steps in different experiments.

TVENet, and the third column shows the current output of
the TVENet. The tuple (x, y, th) represents the estimated
position (x, y) in the world coordinate system and the relative
orientation θ with respect to the initial orientation. The tuple
(m, n) represents the estimated position in the map coordinate
system. This network (TVENet) is trained in a photo-realistic
simulation environment and tested in real world scenarios
that the network has never seen before. The results prove the
feasibility of deploying a learning-based perception-decision
network on a real robot for exploration tasks. The time
consumption is listed in Table.1.

3) PERFORMANCE COMPARISON: TVENet IS BETTER
The comparison between the baselines and the trainedmodels
is shown in Table 2. The length of each episode for training
and evaluation are set to 1000 time steps (T_EXP=1000) and
500 time steps, respectively. The comparison illustrates that
our TVENet achieves higher-precision mapping performance
than the baselines.

When comparing the performance of OccAnt-ckpt and
OccAnt-train, this paper founds that the performance

could be better despite using less training scale (nearly
40% of the replay size, mapper batch size, and process
number). They have the same network architecture and
training process. The only differences are training scale
and platform characteristics (version of GPUs and third-
party libraries). From the Table 4, this paper notices that
too few training scales would destroy the performance
of OccAnt-train. Thus, this paper thinks that the training
scale of OccAnt-train in Table 2 is enough for training
the network to achieve similar performance to the baseline.
The platform characteristic further increases performance a
little.

Therefore, better network architecture plays a more
important role than larger training scale (or GPU memory
capability) to further improve the performance.

When comparing the performance of OccAnt-ckpt and
TVENet, this paper discovered that the proposed network,
TVENet, could outperform the baseline by 5.31%(+0.032).
Even compared with OccAnt-train, our TVENet could
enhance the performance and predict a more accurate map.

The qualitative comparison of TVENet, OccAnt-train, and
OccAnt-ckpt is shown in Fig.9. Notice that they are evaluated
over the full evaluation episodes (944) on the same hardware
platform. Some snapshots of experimental results are shown
in Fig.10. Similar to the configuration mentioned above,
Fig. 10 shows the RGB inputs, the ground truth environment
layout with the robot trajectory (visited point sequence, not
the rollout mentioned above), and the predicted global maps.
Note that scenes in Matterport3D are much larger than in
Gibson, and the layout in the figure is scaled to the same size
for display.

4) EXCHANGE STUDY: TFPM IS EFFECTIVE
The exchange study was conducted to analyze the impact
of the proposed TFPM, which is the main part of Mapper.
As was mentioned above, there are three group parameters:
Global Policy, Local Policy, and Mapper. They are trained
simultaneously, so exchange study is significant. This paper
exchanges the Mapper part of OccAnt-ckpt and TVENet to
getMix 1 andMix 2. These four networks are evaluated on the
same evaluation datasets and the results are listed in Table 3.
The qualitative comparison of the TFPM is shown in Fig.11.
To illustrate clearly, Fig. 11 shows the IoU of 50 (first 50 of
944 episodes) episodes on the bottom. They are enough for
case analysis. At the top of the Fig.11, each row represents
an episode which is tested by four models. They are selected
to illustrate the fact that each model has its benefits, and the
essential differences are marked in a red circle. The mean IoU
of each model is ranked and listed on the right side of each
episode (each row).

Comparing the performance of Mix 1 and OccAnt-ckpt,
this paper finds that TFPM could enhance the map accuracy
by 9.55% (+0.063). Intuitively, equipped with the proposed
TFPM, the network could perceive a more precise boundary
of the obstacle as shown in the first row in Fig.11. The only
difference between these two methods is the Mapper. That
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TABLE 2. Performance comparison. The first three rows are the baselines reported by Ramakrishnan et al. [28]. The OccAnt-train is trained on our
platform with the architecture staying still. The TVENet is our new proposed model. Training details include: size of the episode for training (T_EXP), replay
size (RS), Mapper batch size (MBS), and process number (PN).

FIGURE 9. The Mean Intersection over Union (IoU) of the maps that are generated by TVENet, OccAnt-train, and OccAnt-ckpt. The horizontal ordinate
represents the index of the test episode. The initial location is different in each test episode to evaluate the performance of the network. The yellow (red)
circles mark the hard (easy) test episode. They occurred because of the randomized initial location. TVENet has the largest mean IoU of all marked
episodes. Therefore, the performance of OccAnt-train is worse than our TVENet and better than OccAnt-ckpt.

TABLE 3. Exchange study. Quantitative analysis of the TFPM in TVENet.

means the proposed TFPM is effective for visual exploration.
This conclusion is consistent when comparing TVENet and
Mix 2.

From Fig.11, this paper found that the rank of performance
for these four methods varies among different episodes.
Certainly, the rank of average performance for these methods
is: Mix1 > TVENet > OccAnt-ckpt >Mix 2.

5) ABLATION STUDY: TRICKS ARE USEFUL
The ablation study was conducted to analyze the impact
of tricks (Training Mapper First (TMF) and Auxiliary

Task (Aux)). There are three versions of OccAnt-train
and TVENet. Each model is trained to get more than
11 checkpoints. Each checkpoint is evaluated over the same
evaluation datasets. The best result of each version is listed in
Table 4.

Comparing three versions of OccAnt-train, this paper finds
that a larger training scale leads to better performance.
In particular, Process Number (PN) enhances the accuracy of
the map by a large margin. For example, PN = 16 means that
there are 16 processes on the GPU. Each process conducts a
different environment rendering mission. Therefore, there are
16 visual observations fed into the network at the same time.
Abundant samples reduce the random error during gradient
computation.

Comparing three versions of TVENet, this paper finds
that tricks (TMF and Aux) both have a positive impact
on the performance. They enhance the accuracy by 9.66%
(+0.56). Our Auxiliary Task provides the model with the
ability to perceive semantic information. The results of this
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FIGURE 10. Experimental results of TVENet in the photo-realistic simulation environment.

TABLE 4. Ablation study. The best results are marked in bold. It shows that Training Mapper First (TMF) and Auxiliary Task (Aux) both improve the
performance of TVENet. The bottom three rows demonstrate that increasing the Replay Size(RS), Mapper Batch Size (MBS), and Processes Number (PN)
results in better performance.

experiment illustrate that semantic information enhances
visual exploration performance.

VI. DISCUSSION AND FUTURE WORK
The auxiliary task only enables the TVENet with the ability
of semantic information perception. The depth information
is also important. Therefore, the future work is to add more
auxiliary tasks to enable the TVENet with more ability.
Current excellent work in monocular depth estimation could
be the key.

The proposed TVENet is trained in indoor environments.
The ground truth is generated based on the distance to
the walls. However, this paradigm has potential. Using
other approaches to generate the ground truth in outdoor
environments, the trained model may have the ability to work
in an unstructured field environment.

Besides the combination of multi-scale features, the Trans-
former technology may also work well with the combination
of multi-temporal features. TVENet used GRU based on the
visual observation ot and the old memory (hidden recurrent
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FIGURE 11. Exchange study. Qualitative analysis of the TFPM in TVENet.

states) HSt at time step t to achieve the new memory HSt+1.
Besides the hidden recurrent states, the memory could also be
represented by a list of observations that contains more raw
information. These multi-temporal features could be handled
by Transformer.

From simulation into reality is the main direction of our
future work. This paper finds the OccAnt, ANS, and TVENet
are all sensitive to the height of the camera. Thus, this
paper needs to train the model at the corresponding height
before deploying it on a real robot. If there is a network
that is insensitive to the height of the camera, or if there
is a height-invariant visual feature, the deployment will be
simplified.

VII. CONCLUSION
This paper proposes a modular network (TVENet) for visual
exploration of mobile robots. The novel module (TFPM)
in TVENet leverages the strength of Transformer-based
architecture and self-attention mechanism. It improves
robotic perception ability and generates a more accurate
occupancy grid map in visual exploration. Moreover, this
paper introduces two tricks for the training process: Training
Mapper First (TMF) and Auxiliary Task (Aux). Through
these two tricks, the TVENet increases the accuracy of
the occupancy map by a large margin. The benefits and
effectiveness of TVENet, as well as two training tricks, are
clearly demonstrated in our three experiments.
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