
Received 21 May 2022, accepted 8 June 2022, date of publication 13 June 2022, date of current version 7 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182802

LayerLSH: Rebuilding Locality-Sensitive Hashing
Indices by Exploring Density of Hash Values
JIWEN DING, ZHUOJIN LIU, YANFENG ZHANG , (Member, IEEE), SHUFENG GONG ,
AND GE YU , (Senior Member, IEEE)
School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

Corresponding author: Yanfeng Zhang (zhangyf@mail.neu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62072082, in part by the Key Research
and Development Program of Liaoning Province under Grant 2020JH2/10100037, and in part by the Fundamental Research Funds for the
Central Universities under Grant N2216015.

ABSTRACT Locality-sensitive hashing (LSH) has attracted extensive research efforts for approximate
nearest neighbors (NN) search. However, most of these LSH-based index structures fail to take data
distribution into account. They perform well in a uniform data distribution setting but exhibit unstable
performance when the data are skewed. As known, most real life data are skewed, which makes LSH suffer.
In this paper, we observe that the skewness of hash values resulted from skewed data is a potential reason
for performance degradation. To address this problem, we propose to rebuild LSH indices by exploring the
density of hash values. The hash values in dense/sparse ranges are carefully reorganized using amulti-layered
structure, so that more efforts are put into indexing the dense hash values. We further discuss the benefit in
distributed computing. Extensive experiments are conducted to show the effectiveness and efficiency of the
reconstructed LSH indices.

INDEX TERMS LSH, nearest neighbors search, multi-layered structure, data skewness.

I. INTRODUCTION
The nearest neighbors (NN) search problem aims to find
objects that are close to the given query, which is the basic and
important problem in a wide range of applications [1]–[5].
Due to the difficulty in finding an efficient method for exact
NN search in high-dimensional space, many researchers
have focused on approximate nearest neighbors search as an
alternative approach. Locality sensitive hashing (LSH) [6]
is known as one of the most promising indexing methods
for approximate nearest neighbors search, where the locality
sensitive hash function has the property that points that are
closer to each other have a higher probability of colliding than
points that are farther apart. To improve the hashing effect,
m randomly chosen LSH functions are utilized together to
generate a compound hash key for each object o. In compen-
sation for the loss of candidate points because of importing
compound hash key, a large number l of hash tables are
constructed.

Many LSH variants have been proposed in recent years.
E2LSH [7] is a typical table-based LSH which proposes a

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif Naeem .

hash function used in Euclidean space. The data points with
the same hash value or the same concatenating hash values
are placed in the same bucket, which implies that they are
close to each other. The approximate NN search is achieved
by returning the data in the same bucket as which the query
falls in.

However, most of these LSH index structures fail to take
data distribution into account. They performwell in a uniform
data distribution setting, but exhibit instable performance
when the data are skewed. As known, most real life data are
skewed, which makes LSH suffer from poor search quality.
Based on our observation, the skewed data distribution leads
to skewed hash values and, as a result, leads to a skewed index
structure. This is the potential reason for the performance
degradation.

The Euclidean-based LSH function [7] projects high-
dimensional data points to a real number line and partitions
the line into fixed-length intervals. As a result, the hash
values exhibit skewed distribution as long as the original
data are skewed. The points with the same hash values are
assigned to the same bucket, so the bucket sizes vary greatly.
Figure 1a shows the skewed bucket size distribution for the
KDD dataset (Table 1). Intuitively, LSH-based kNN search

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 69851

https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0001-6785-7875

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

FIGURE 1. (a) The density of hash values for KDD dataset (in log scale).
Each bar represents the number of points in a bucket. (b) Density of hash
values vs. query accuracy and query cost (KDD). Smaller error ratio
indicates higher accuracy, which is defined in Equation (12).

displays higher accuracy for dense queries1 while lower
accuracy for sparse queries. This is because the distances
from query q to its kNNs are small (or large) in a dense
(or sparse) region, so that they are likely (or unlikely) to be
hashed to the same bucket. On the other hand, due to the
large bucket size, it displays higher cost (evaluated by the
number of distance measurements) for dense queries than
sparse queries. This phenomenon is illustrated in Figure 1b.
If we randomly return k points in the bucket rather than
returning the exactly k nearest points, it may lead to much
lower accuracy. Specifically, for the kNN applications with a
small k (e.g., top 1 query at extreme), if we randomly return
1 point in the dense bucket, the error problemwill be enlarged
and will significantly impact the user experience.

In this paper, we propose to rebuild LSH index structures
by exploring the density of hash values. The hash values in
dense ranges are rehashed to make them distributed more
evenly, so as to reduce the query cost. The hash values in
sparse ranges are merged to be returned together during query
processing, so as to improve the search quality. Therefore,
the rebuilt LSH indices become more targeted in terms of
data distribution, and a multi-layered structure is constructed.
Comparing with the simple rehashing method, the multi-
layered approach will still guarantee the search quality by
carefully choosing the number of groups and hash functions,
which is a nice property for applicationswith restrict accuracy
requirement.

A. DIFFERENCE TO DATA SENSITIVE HASHING
The recently proposed data sensitive hashing, e.g., DSH [8]
and selective hashing [9], also leverages data distributions.
DSH [8] chooses themost suitable hashing family by learning
data distributions. Selective hashing [9] creates multiple LSH
indices with different granularities (i.e., radii) and locates
each point only in one suitable LSH index according to data
densities. These data sensitive hashing techniques learn the
appropriate hash families from the data, and accordingly have
the ability to create relatively balanced indexing structures.
Our approach is orthogonal to them since we rely on the
density of hash values and directly rebuild the existing index

1A query falling in a dense bucket/range is referred to as a dense query,
and vice versa.

structures. Moreover, our rebuilding scheme can also be used
as a postprocessing step for these data sensitive hashing
techniques to further improve performance. We will rebuild
DSH index to illustrate the possibility.

B. CONTRIBUTIONS
We list our contributions as follows.

• We rebuild the basic LSH structure and design
LayerLSH (Section III). The points in overloaded
bucket are recursively rehashed to multiple groups of
smaller buckets, forming amulti-layered index structure.
Thus, the query is more efficient since a less number
of more accurate NN candidates are returned. Further,
by carefully choosing the new set of rehashing LSH
parameters, the collision probability can be guaranteed.
We also propose a stream processing approach to adapt
streaming data.

• We demonstrate the benefits of our approach in dis-
tributed computing (Section IV). We also present a use
case on supporting distributed all-pairs computation,
i.e., point density evaluation.

• We conduct extensive experiments on real datasets to
verify the effectiveness and efficiency of the proposed
multi-layered structures. LayerLSH can reach the same
search quality as LSH with only 5%-20% query cost.
LayerLSH also exhibits much better performance on
distributed point density approximation (Section V).

We survey the related work in Section VI. Finally, we con-
clude our work in Section VII.

II. PRELIMINARIES
A. PROBLEM SETTING
The problem of nearest neighbors search refers to finding
objects that are similar to the query object. The typical kNN
search problem is formally defined as follows.
Definition 1 (kNN): Given an object q, a dataset O and an

integer k (k < |O|), the kNN query returns a set of k objects
from O denoted as KNN(q,O), such that ∀o ∈ KNN(q,O),
∀o′ ∈ O − KNN(q,O), |q, o| ≤ |q, o′|, where |·, ·| denotes
the distance between two objects.

In this paper, we focus on answering approximate kNN
queries for high-dimensional data in the Euclidean space.
That is, we aim to find k objects whose distances are within a
small factor (1+ε) of the exact k-nearest neighbors’ distances
and minimize ε. Our goal is to design an indexing scheme for
approximate kNN queries with both high search quality and
high efficiency.

B. LOCALITY-SENSITIVE HASHING
The Locality-Sensitive Hashing (LSH) function has the prop-
erty that points that are closer to each other have a higher
probability of colliding than points that are farther apart [6].
Let O be the dataset of n data objects in d-dimensional
Euclidean space Rd and let ||o1, o2|| denote the Euclidean

69852 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

distance between two objects o1 and o2, o1, o2 ∈ O. LSH is
formally defined as follows.
Definition 2 (Locality Sensitive Hashing): Given a dis-

tance r , an approximation ratio c and two probability val-
ues P1 and P2, a hash function h : Rd

→ U is called
(r, cr,P1,P2)-sensitive if for any o1, o2 ∈ O
• If ||o1, o2|| ≤ r then Pr[h(o1) = h(o2)] ≥ P1,
• If ||o1, o2|| > cr then Pr[h(o1) = h(o2)] ≤ P2,
We pick c > 1 and P1 ≥ P2. With these choices, nearby

objects (i.e. those within distance r) have a greater chance of
being hashed to the same value than points that are far apart,
i.e. those at a distance greater than cr away.
The commonly used LSH family for Euclidean distance

consists of LSH functions in the following form [7]:

h(o) =
⌊
a · o+ b

w

⌋
(1)

where a is a d-dimensional random vector, each entry of
which is chosen independently from standard Gaussian dis-
tributionN (0, 1) [10], b is a real number chosen from [0,w],
and w is also a real number representing the partition width
of the LSH function.

For two data objects o1 and o2, let s = ||o1, o2||. The
probability that o1 and o2 collide under a randomly chosen
hash function h, denoted as p(s,w), can be computed as
follows [7].

p(s,w) = Pr[h(o1) = h(o2)]

=

∫ w

0

1
s
f2(
t
s
)(1−

t
w
)dt

= 1− 2norm(−
w
s
)−

2s
√
2πw

(1− e−
w2

2s2), (2)

where f2(x) is the density function of a Gaussian distribu-

tion [7], i.e., f2(x) = 2
√
2π
e−

w2

2s2 , and norm(·) represents the

cumulative distribution function for a random variable that is
distributed as Gaussian distribution. The collision probability
p(s,w) decreases monotonically when s increases but grows
monotonically when w rises.
The locality-preserving property of LSH allows us to par-

tition the set of objects based on their hash values. If two
points o1 and o2 are hashed to the same bucket, o1 and
o2 are close to each other with certain confidence. However,
it is possible that two distant points happen to be hashed
to the same bucket according to Equation (1). To reduce
such false positives, a group of m hash functions G(·) =
{h1(·), h2(·), . . . , hm(·)} are employed. That is, only points
sharing all the m hash values are placed in the same bucket.
Thus, each object o is labeled with a compound hash key
G(o) = {h1(o), h2(o), . . . , hm(o)}, which is considered as the
bucket key. The probability that two objects collide is reduced
as shown in Equation (3).

Pr[G(o1) = G(o2)] =
m∏
i=1

Pr[hi(o1) = hi(o2)]

= p(s,w)m (3)

FIGURE 2. An illustrative example of LayerLSH structure (a bucket with
more than 5 objects is considered as an overloaded bucket).

However, the probability p(s,w)m may be very small when
m is large, which may lead to a large number of false neg-
atives. In order to reduce the loss of false negatives, mul-
tiple hash tables are used. That is, a set of l hash groups
{G1(·),G2(·), . . . ,Gl(·)} are employed and l hash tables are
constructed (i.e., each object has l copies in l hash tables),
hoping that the close points collide at least on one hash table.
The final collision probability P is shown in Equation (4).

P = 1−
l∏
i=1

{
1− Pr[Gi(o1) = Gi(o2)]

}
= 1− [1− p(s,w)m]l (4)

III. LayerLSH: REBUILD BASIC LSH
As illustrated in Section I, the query falling in dense buckets
tends to result in high cost, while the query falling in sparse
buckets tends to result in low accuracy. Our idea is to split the
dense buckets and merge the sparse buckets, which is simple
but empirically shown to be effective (Section V). Suppose
we have a set of 2-D data objects distributed as shown in the
top of Figure 2. They are hashed to different buckets in two
hash tables. Some of the buckets are lightly loaded, while
some are heavily loaded. LayerLSH will rehash the objects
residing in an overloaded bucket to a new set of hash tables,
such that the overloaded bucket is rehashed into multiple
groups of smaller buckets where each group corresponds
to a new hash table. The overloaded buckets are rehashed
recursively until no overloaded one exists. At meanwhile, the
underloaded bucket will not be further processed but only
be marked. When a query falls into the underloaded bucket,
the query algorithm will simply expand the search scope and
search the ‘‘nearby’’ buckets to improve the accuracy.

It is notable that since limiting bucket size will reduce
the accuracy from probability theory’s point of view. The
objects in the overloaded bucket should be copied to more
than one hash tables to compensate for the reduced accu-
racy. This is for sustaining the expected accuracy P as
depicted in Equation (4), which will be described in detail
in Section III-A. Since the overloaded buckets are rehashed
recursively, multiple layers of LSH tables are constructed.

VOLUME 10, 2022 69853

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

The root level (level 0) of the LayerLSH is exactly the same
as the original LSH. The hash tables in higher levels are the
new generated LSH tables for the rehashed buckets. Figure 2
shows an illustrative example of the multi-layered tree-like
structure.

A. BUILDING LayerLSH
We rebuild the original hash tables in terms of two factors, the
user specified expected recall and precision. Let KNN(q,O)
denote the set of kNNs of q. Given a query q and a set of
objects O, an approximate kNN query algorithm returns a set

of candidates C. We have the recall α = |C∩KNN(q,O)|
|KNN(q,O)| , which

implies the accuracy, and the precision β = |C∩KNN(q,O)|
|C| ,

which implies the efficiency. Given α and β, we study the
lower/upper bound size of each bucket.
Proposition 1 (Bucket Size Constraints): When using

LSH with l hash tables to answer kNN query, with an
expected recall α and an expected precision β, the bucket
size S of each hash table has the following constraints:

k · (1− l√1− α) ≤ S ≤
k
β · l

. (5)

Proof: Suppose the LSH parameters are {l,m,w}.
In each of the l hash table, the expected size of the bucket
that q falls in is S =

∑
o∈O p(|q, o|,w)

m where p(s,w)m is
defined in Equation (2) and (3). Let s(q,k) denote the distance
from q to its kth NN. Then we have

S =
∑
o∈O

p(|q, o|,w)m ≥
∑

o∈KNN(q,O)

p(|q, o|,w)m

≥ k · p(s(q,k),w)m

≥ k · (1− l√1− α), (6)

The first ‘‘≥’’ is true because the candidates for summation
is reduced from O to KNN(q,O). The second ‘‘≥’’ is true
because for any |q, o| ≤ s(q,k) we have p(|q, o|,w) ≥
p(s(q,k),w) according to Equation (2). The third ‘‘≥’’ is true
because in order to achieve the overall recall α over l hash
tables, the probability that q and any of its kNNs collide
in a specific hash table should be no less than 1 − l

√
1− α

according to Equation (4). If we can make p(s(q,k),w)m ≥
1− l
√
1− α for q’s kth NN, it is also true for any other kNNs.

Thus, the bucket size S should satisfy S ≥ k · (1− l
√
1− α).

When all of q’s kNNs are contained in the returned can-
didates set, i.e., KNN(q,O) ⊂ C, |C| can be as large as k

β
to

satisfy the expected precision, otherwise |C| has to be smaller.
Thus, k

β
is the upper bound of |C|. Since there are l hash

tables, the candidates are retrieved from l buckets. Let us
assume the candidates are collected evenly from l hash tables.
Thus, the bucket size S should satisfy S ≤ k

β·l .
Note that, satisfying the above constraints does not neces-

sarily guarantee the expected recall and precision but helps
us identify the underloaded and overloaded buckets.

Given the constraints of the bucket size, we propose
Algorithm 1 to recursively rehash the overloaded buckets
to build LayerLSH index. The input includes the original

Algorithm 1: Building LayerLSH
input : LSH hash tables HT = {HT1, . . . ,HTl},

LSH parameters {l,m,w}, k , R = α, P = β
output: LayerLSH hash tables set

1 Function RecursSplit(HT , {l,m,w}, R, P):
2 R′ = 1− l

√
1− R, P′ = P · l;

3 Tl = k · R′, Tu = k
P′ ;

4 foreach HTi in HT do
5 foreach bucket b in HTi do
6 S ← size of b;
7 if S > Tu then
8 {lc,mc,wc} ←FindParam ({l,m,w}, S,

P′);
9 HTchild ←LSH (b, {lc,mc,wc});
10 RecursSplit(HTchild , {lc,mc,wc}, R′, P′);
11 end
12 if S < Tl then
13 mark b as underloaded;
14 end
15 end
16 end
17 end

LSH tables (i.e., level-0 hash tables), the LSH parameters set
{l,m,w}, the number of returned NNs k , the expected recall
R = α, and the expected precision P = β. With respect to
each hash table, the recall is relaxed to R′ = 1 − l

√
1− R,

and the precision is tightened to P′ = P · l (Line 2). Then,
we have the lower bound size (Tl = k · R′) and upper bound
size (Tu = k

P′) for each bucket (Line 3). We check the size of
each bucket of each hash table. For the overloaded bucket that
contains more than Tu objects (Line 7), we first determine a
new set of child LSH parameters (Line 8), based on which
the objects in that bucket are rehashed into a new set of
hash tables (Line 9). The overloaded buckets are rehashed
by recursively invoking this process until no bucket is over-
loaded (Line 10). For the underloaded bucket that contains
fewer than k·α

l objects (Line 11), we mark it for future use in
query processing (Line 12).

In Algorithm 1, we refer to the to-be-rehashed bucket as
parent bucket and the new LSH for this bucket as child LSH.
The core of bucket rehashing is to choose a proper new set of
child LSH parameters, such that the bucket size is reduced
(for efficiency) but at the same time the probability that a
query and its kNNs collide in the same bucket is not reduced
(for accuracy). We fix the LSH width parameter w (We will
explain the reason later). Let {lp,mp,w} denote the set of
parent LSH parameters, and {lc,mc,w} denote the set of child
LSH parameters. We use the following propositions to guide
the selection of child LSH parameters.
Proposition 2 (For Accuracy): Let s(q,k) denote the dis-

tance from a query q to its kth NN. Suppose we can find a
r∗ such that r∗ ≥ s(q,k) for any q. In order to guarantee the

69854 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

expected recall, the child LSH parameters {lc,mc} should be
chosen to satisfy:

1− (1− pmp+mc)lc = pmp , (7)

where p = p(r∗,w) is defined in Equation (2).
Proof: Given the definition of r∗, we have ∀q, r∗ ≥

s(q,k) and further have p(r∗,w)mp ≤ p(s(q,k),w)mp . That is, the
probability that any query q and its kth NN collide in the same
bucket is no less than p(r∗,w)mp . If the probability p(r∗,w)mp

could be sustained after bucket rehashing, the probability that
q and any of its kNNs fall in the same bucket will not reduce,
so that the expected recall α is guaranteed. Accordingly,
in terms of Equation (4), the child LSH parameters {lc,mc,w}
should be chosen such that 1 − [1 − p(r∗,w)mp+mc]lc ≥
p(r∗,w)mp . Further, since all the objects in child hash tables
are originated from the parent bucket, the collision probabil-
ity in child hash tables will never be greater than p(r∗,w)mp .
Therefore, we aim to make 1 − [1 − p(r∗,w)mp+mc]lc =
p(r∗,w)mp .

In practice, r∗ can be approximately estimated by sam-
pling. A number of sample objects are randomly selected to
calculate their exact kNNs. The median of their kth NNs’
distances is used to estimate r∗.
Proposition 3 (For Efficiency): Let S denote the size of the

overloaded bucket that q falls in. In order to approximately
satisfy the precision constraint, the child LSH parameter mc
and lc should be chosen as follows:

mc =
⌈
logp

(k
S · β · lp

)⌉
,

lc ≤
⌊ k
S∗c · β · lp

⌋
, (8)

where p = p(r∗,w) is defined in Equation (2), β is the
expected precision, and S∗c is the biggest bucket size among
all child hash tables.

Proof: The expected size of the bucket that q falls in is
S =

∑
o∈O p(|q, o|,w)

mp . From this equation, we learn that
the actual bucket size relates to two factors, 1) the number of
‘‘close’’ objects to q and 2) the probability that these ‘‘close’’
objects fall in q’s bucket (determined bymp andw). The more
‘‘close’’ objects to q, the more likely S is larger. The largermp
is, the more likely S is smaller. Let X = {o : |q, o| ≤ r∗}
denote the set of objects within a range of r∗, which are
considered as ‘‘close’’ objects. In other words, |X | implies q’s
density. Then we assume that the bucket size S is proportional
to |X |, i.e., S ∝ |X |. On the other hand, to simplify the
analysis and obtain an approximate answer, we assume that
the probability for all objects in X falling in q’s bucket is
proportional to p(r∗,w)mp that is fixed for all objects inX , i.e.,
S ∝ pmp where p = p(r∗,w). Thus, we have S ∝ |X | · pmp .
In order to satisfy the efficiency constraint k

S·lp
≥ β,

the bucket size S should be reduced to less than k
β·lp

. Since

S ∝ |X | · pmp , |X | · pmp should be correspondingly reduced to
|X | · pmp+mc . Therefore, we should choose mc to satisfy the

following equation:
S
k
β·lp

=
|X | · pmp

|X | · pmp+mc
. (9)

Since mc should be an integer, we choose the result of the
ceiling function, i.e., mc =

⌈
logp

(k
S·β·lp

)⌉
to sustain the

inequality of precision constraint.
On the other hand, after rehashing we also need to limit the

number of child hash tables in order to satisfy the efficiency
constraint. Suppose S(q,i) is the size of a query q’s bucket (or
multiple child buckets if it points to child hash tables) in child
hash table i, we need to make sure

∑lc
i=1 S(q,i) ≤

k
β·lp

. Further,

suppose S∗c is the biggest bucket size among all child hash
tables, we have

∑lc
i=1 S(q,i) ≤ lc ∗ S∗c . Thus, by making lc ∗

S∗c ≤
k
β·lp

, i.e., lc ≤
⌊ k
S∗c ·β·lp

⌋
(since lc should be an integer),

we can satisfy the efficiency requirement.
By combining Proposition 2 and Proposition 3, we can

obtain the available child LSH parameters mc and lc, which
are used during bucket rehashing (Line 8 in Algorithm 1).
However, there probably is no solution since the recall and
precision requirements cannot be satisfied at the same time
(i.e., lc’s lower bound is greater than its upper bound). Fur-
thermore, S∗c in Equation (8) is even unknown before bucket
rehashing. In such a case, we first choose mc according to
Equation (8), ignore the upper bound of lc, and generate
enough more child hash tables to sustain accuracy constraint
according to Equation (7). We will further satisfy the effi-
ciency constraint during the query processing.

In the original LSH, it is required to set {l,m,w}, while
in LayerLSH we use the expected recall R and the expected
precision P in place of {l,m,w}. This is because R and P
should be more user-friendly since the effectiveness of real
LSH applications is usually evaluated by the expected recall
and precision. In addition, the reason why we perform the
analysis by fixing w is explained as follows. Given a query
q, for any point, its probability (shown in Equation 2) to
collide with q depends on its distance to q (i.e., s) and the
partition width w. If adjusting w is allowed, regarding a
particular point, its probability to collide with qwould change
after rehashing. The new probability p(s,w) depends on a
variable s since s is variant for different points. That means,
the analysis in Proposition 2 or 3 should also consider s, the
distance from a point to a query. Obviously, s is unknown
in prior since query is unknown in prior. This will bring big
challenges in analyzing accuracy and efficiency. Therefore,
we propose to fix w.

B. QUERY PROCESSING
There are two kinds of buckets in LayerLSH, which should
be differentiated during query processing. One kind that
contains similar data objects, which are referred to as data
buckets. Another kind contains the pointers to child hash
tables, which are referred to as pointer buckets.

To answer a kNN query, we use Algorithm 2 to retrieve the
candidates set from multi-layered hash tables. We first read

VOLUME 10, 2022 69855

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

Algorithm 2: Query Processing in LayerLSH

input : query q,LSH tables HT = {HT1, . . . ,HTl}, k ,
R = α, P = β

output: kNN candidates set C

1 Function LayerLSHQuery (q, HT , R, P, C):
2 {l,m,w} ← load LSH parameters for HT ;
3 R′ = 1− l

√
1− R, P′ = P · l;

4 Tl = k · R′, Tu = k
P′ ;

5 foreach HTi in HT do
6 b← locate bucket with hash key

{h1(q), . . . , hm(q)};
7 if b is a pointer bucket then
8 HTchild ← locate the child hash tables b

points to;
9 LayerLSHQuery (q, HTchild , R′, P′, C);
10 end
11 else if b is a data bucket then
12 if b is underloaded then
13 B← b;
14 while |B| < Tl do
15 b′ find ‘‘nearby’’ bucket from b;
16 B← B ∪ b′;
17 end
18 C ← C ∪ B;
19 end
20 else
21 if R is primary then C ← C ∪ b;
22 else if P is primary then C ← C ∪ b′ s.t.

|b′| ≤ Tu;

23 else C ← C ∪ b′ s.t. |b′| ≤ Tu+
∑l
i |b(q,i)|
l

2 ;
24 end
25 end
26 end
27 end

the LayerLSH parameters {l,m,w} from the input LayerLSH
tables (Line 2). With respect to each hash table, the recall is
relaxed to R′, and the precision is tightened to P′ (Line 3).
Then, we have the lower bound size (Tl = k · R′) and
upper bound size (Tu = k

P′) for each bucket (Line 4). Given
a query q, we first compute its compound hash keys and
project q to the bucket in a particular hash table (Line 6).
If the positioned bucket is a pointer bucket, the query q is
rehashed in multiple child hash tables along with the bucket-
based R′ and P′ (Line 8), and the query algorithm is invoked
recursively (Line 9).

If the positioned bucket is a data bucket and this bucket
is underloaded (Line 11), we will expand the search scope
and search the ‘‘nearby’’ buckets whose compound hash
keys are slightly different. This searching scope is expanded
to more and more buckets as soon as enough objects (Tl)
are returned (Line 12-16). The idea of merging ‘‘nearby’’

sparse buckets is similar to multi-probe LSH [11]. Given the
property of LSH, if an object is close to a query q but not
hashed to the same bucket, it is likely to be in a bucket that is
‘‘close by’’ (i.e., the hash keys of the two buckets only differ
slightly). LayerLSH also designates the ‘‘close by’’ buckets
by applying a hash perturbation vector1 = {δ1, δ2, . . . , δm}
(e.g., {+1, 0, . . . , 0} or {0,−1, . . . , 0}) on the original com-
pound hash keyG(q) = {h1(q), h2(q), . . . , hm(q)} and obtains
the nearby bucket G(q)+1.
If the data bucket is not underloaded, the objects in

that bucket are conditionally put into the candidates set C
(Line 17). Recall that, it is possible that the specified recall
and precision are in conflict with each other. It is required to
return all candidates from all hash tables in order to satisfy
the recall requirement, but also required to return at most Tu
candidates from only a few hash tables to satisfy the precision
requirement. LayerLSH will let users specify one primary
choice, the expected recall α or the expected precision β.
Then the query processing algorithm will correspondingly
include all the objects in bucket to satisfy recall requirement
(Line 18) or limit the number of returned candidates to satisfy
precision requirement (Line 19). If both or none of recall
and precision is primarily selected, LayerLSH balances these

two factors and return at most
Tu+

∑l
i |b(q,i)|
l

2 candidates, where

Tu is for precision requirement and
∑l

i |b(q,i)|
l is for recall

requirement (where b(q,i) is q’s bucket in the ith child hash
table).

It is noticeable that the query might expand to more and
more buckets as it goes deeper in the LayerLSH tree. How-
ever, the large number of checked buckets does not neces-
sarily lead to large number of candidates since the checked
buckets are much smaller. With regard to the dense buckets,
LayerLSH narrows the search scope, as a result the search
is more efficient. Rather than using a large number of hash
tables to achieve high search quality, we can achieve the same
search quality with a smaller number of level-0 hash tables.
More hash tables are only created for the dense buckets. The
hashing is more targeted in terms of data distribution.

C. STREAM DATA PROCESSING
To deal with dynamic data, LayerLSH needs to support con-
tinuous point insertions and deletions. A naive implementa-
tion could be letting LayerLSH check the bucket size after
each insertion or deletion. However, this may result in too
many unnecessary bucket splits. For instance, an insertion
to a nearly full bucket followed by multiple deletions may
result in unnecessary bucket split. To alleviate this problem,
we introduce the time window concept and buffer these inser-
tions/deletions within a time window range. In a time win-
dow, if the bucket size does not exceed a predefinedmaximum
tolerance (1 + εm) · Tu, it will not be split, where εm >

0 and Tu is the original bucket size upper bound. Otherwise,
it will still be split. The maximum tolerance of bucket size
implies the effect of buffering. The bigger the εm is, the more

69856 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

Algorithm 3: Stream Insertions Processing in LayerLSH
input : newly arrived point p, LayerLSH tables

HT = {HT1, . . . ,HTl}, maximum tolerance
param εm, caching tolerance param εc,
time window W

output: updated LayerLSH tables HT

1 while true do
2 blockread(p);
3 tc← obtain current time;
4 if tc − tl ≥ W then
5 split the buckets in HT whose sizes are

bigger than the relaxed upper bound
(1+ εc) · Tu;

6 tl ← obtain current time;
7 end
8 status←StreamInsert (p, HT);
9 if status == overloaded then

10 HTchild ← split the overloaded bucket and
create child hash tables;

11 Let b point to HTchild ;
12 end
13 end

14 Function StreamInsert (p, HT):
15 foreach HTi in HT do
16 b← locate bucket with hash key

{h1(p), . . . , hm(p)};
17 if b is a pointer bucket then
18 HTchild ← locate the child hash tables b

points to;
19 status←StreamInsert (p, HTchild);
20 if status == overloaded then
21 resplit HTchild based on the updated

bucket size;
22 end
23 end
24 else if b is a data bucket then
25 if |b| > (1+ εm) · Tu then
26 return overloaded ;
27 end
28 end
29 end
30 return success;
31 end

insertions can be buffered. Note that, if the overloaded bucket
is already in a child hash tables, we will resplit the child
hash tables based on the newly updated bucket size instead of
recursively splitting the overloaded bucket. This is because,
if the recursive split is used, the continuous insertions might
result in very deep search path in terms of LayerLSH’s tree-
like structure, which could degrade the query performance.

At the end of each time window, all the buckets are
evaluated to be determined whether they should be split by

comparing their sizes to a caching tolerance (1 + εc) · Tu,
where 0 < εc < εm. We introduce the caching toler-
ance for avoiding unnecessary bucket splits after each time
window. By introducing the time window based buffering,
a large number of unnecessary bucket splits can be avoided
so that the processing throughput is expected to be higher,
at the expanse that the query cost can be increased due to
the delayed bucket splits. The tradeoff between processing
throughput and query cost can be adjusted by tuning themaxi-
mum tolerance parameter εm and caching tolerance parameter
εc.

D. INDEX MAINTENANCE
In addition, LayerLSH can be implemented as a disk-based
index for maintaining large data sets. Since the basic structure
in LayerLSH is tree-like, it is straightforward to store the
index using a tree structure. The internal nodes storing the
child LSH parameters as well as the pointers to child buckets
are maintained in an index file, and the leaf nodes storing the
data points are maintained in a data file. Note that, a leaf node
that stores a large bucket is written to multiple file blocks,
and multiple leaf nodes storing multiple small buckets are
written to a single file block to save space. Similar buckets
are stored continuously in a file block to support ‘‘nearby’’
bucket search.

When answering queries, the internal nodes maintained in
index file are loaded into memory for fast access, or part of
them for large index. After the data buckets are positioned, the
file blocks storing the candidate buckets are loaded intomem-
ory for distance measurements, followed by returning the
approximate kNNs. To support insertion of a point, we first
locate the file blocks that store the hashed buckets and then
append the point data. Note that, request of a new file block
might be needed if the returned file block is full. To support
deletion of a point, we first locate the file blocks and label
this point indicating its invalidation. A periodical recycling
process is executed offline to recycle the file blocks where no
valid data is contained.

IV. DISTRIBUTED IMPLEMENTATION
A. DISTRIBUTED LSH
The approach of supporting distributed NN search
with both LSH and LayerLSH is straightforward. We
use Hadoop MapReduce to implement distributed Lay-
erLSH. The map() function invocation on a point
oi computes l hash keys G1(oi),G2(oi), . . . ,Gl(oi) to
obtain the intermediate key-value pair of point oi,
〈G1(oi), oi〉, 〈G2(oi), oi〉, . . . , 〈Gl(oi), oi〉. According to these
intermediate key-value pairs, we can have l different parti-
tion results (see Section II-B), i.e., l Hash tables. We then
send the buckets in these hash tables to the corresponding
reducers, so that each reduce() will receive a subset of points
(i.e. a bucket) under a specific LSH partition layout. Next,
we judge whether the size of the bucket exceeds the threshold.
If so, at the reducer, we recursively split until the predefined

VOLUME 10, 2022 69857

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

conditions are met. After the map/reduce operations, we can
obtain the LayerLSH index. During the query phase, for each
query point, we retrieve from multiple distributed reducers
to obtain its l approximate KNN candidate sets. We then
aggregate these candidate sets in a second MapReduce job,
and finally select the top k as its nearest k neighbors at the
single reducer.

Suppose we have n workers. A bucket with key bk is
assigned to worker H (bk)

n where H (·) is any hash function
that maps a bucket key to an integer. As a query q arrives, its
multiple hash values G1(q),G2(q), . . . ,Gl(q) corresponding
to multiple hash tables are first calculated. The query is
then sent to multiple workers H (Gj(q))

n , 1 ≤ j ≤ l for local
computation. The candidates obtained by local NN search
are refined before being merged as a global candidate list,
where the refining method could be extracting only the top
k nearest neighbors. Due to the skewed data distribution, hot
spots might exist in distributed LSH, while LayerLSH has the
advantage of alleviating hot spot contention.

B. ALL-PAIRS COMPUTATION
All-pairs computation is a common preprocessing step in
many applications, e.g., retrieving similarity matrix for learn-
ing data correlations [12], pruning distant neighbors for
abstracting a graph structure [13], evaluating implicit proper-
ties for each data point [14], and so on. All-pairs computation
is known as a computation intensive task, which requires
N 2 distance measurements. This is extremely costly for large
volume and high dimensional data. Since the all-pairs compu-
tation is often performed only based on the nearest neighbors
in these applications, LSH is an ideal approximation method
to optimize all-pairs computation. Furthermore, using dis-
tributed machines can further speedup the computation inten-
sive task. The LSH buckets are distributed among multiple
workers, where the all-pairs computation is performed locally
within each bucket.

However, distributed LSH-based all-pairs computation
suffers from the drawback of skewed bucket size distribu-
tion. The workers with dense buckets can be the stragglers,
which can significantly slow down the whole process. Fortu-
nately, LayerLSH can alleviate this impact by bounding the
bucket size, while at the same time guaranteeing the accuracy.
Moreover, we merge similar small buckets in order to not
only improve the accuracy but also reduce the number of
distributed tasks.

C. CASE STUDY: POINT DENSITY EVALUATION
We take point density evaluation as a use case for illustration.
A point pi’s density ρi is defined as the number of neighbors
within a radius R, i.e., ρi = |{pj|∀j, |pi, pj| ≤ R}|. In this
problem, the computation of ρi only depends on its near-
est neighbors with distance to pi less than R. Suppose the
approximated density is ρ̂i. By using LSH, the probability
Pr(ρ̂i = ρi) can be studied as follows.

Lemma 1: Given a point pi and an LSH function h(pi) =
b
a·pi+b
w c, the probability that pi and its nearest neighbors set

{pj|∀j, |pi, pj| ≤ R} are hashed to the same bucket is:

Pr
[
h(pi) = h(pj)|∀j, |pi, pj| ≤ R] ≥ 1−

4R
√
2πw

. (10)

Proof: Let us consider a number line, where each point
is a real number. yi = a · pi + b is a point on the number
line. By floor dividing w, the number line is divided into a
sequence of w-width slots. According to the LSH function,
all the points in the same w-width slot share the the same
hash key. The points that are close to pi are all hashed to the
positions close to yi on the number line. The position of yi
is important. If yi is close to the center of the slot, it is more
likely that all R-length neighbors of pi are in the same slot.
According to the definition of p-stable distribution [7],

given a d-dimensional random vector a each entry of which
is chosen independently from a standard gaussian distribution
N (0, 1), for two points pi and pj, the distance between their
projections |a · pi− a · pj| (here | · |means the absolute value)
is distributed as |pi, pj| · x, where x is the absolute value of
a standard gaussian random variable. Therefore, for any pj
where |pi, pj| < R, we have maxj |yi− yj| = maxj |a · pi− a ·
pj| < R · x.
Moreover, yi = a · pi + b is uniformly distributed in a

certain slot. To ensure that yi and all its R-length neighbors
are in the same slot, yi has to be located in the interval of
[αw + Rx, (α + 1)w − Rx) for some α. The probability that
yi resides in such an interval is w−2Rx

w = 1− 2Rx
w . It is worth

noting that the random variable a for mapping the query yi is
the same as the random variable for mapping all its R-length
neighbors. The probability density function of the absolute

value of the standard gaussian distribution is fp(x) = 2e−x
2/2

√
2π

,

where x ≥ 0. Therefore, the probability becomes 1− 2Rx
w =∫

∞

0 (1− 2Rx
w)fp(x)dx, and a further calculation shows that the

probability is 1− 4R
√
2πw

.

By applying the LSH properties described in Equation (3)
and Equation (4), we have the following theorem.
Theorem 1: With l groups of m hash functions, the proba-

bility is finally enlarged as

Pr[ρ̂i = ρi] ≥ 1−
[
1−

(
1−

4R
√
2πw

)m]l
. (11)

Proof: After applying l groups of m hash functions,
we will obtain l ρ̂gi values (1 ≤ g ≤ l). According to the
definition of ρi, we have ρ̂gi ≤ maxg ρ̂

g
i ≤ ρ̂i. If maxg ρ̂

g
i 6=

ρi, then ρ̂
g
i 6= ρi for all 1 ≤ g ≤ l.

From Lemma 1, under a single hash function the proba-
bility that pi and all its R-length neighbors are hashed to the
same bucket is at least 1 − 4R

√
2πw

. With a group of m LSH

functions G = (h1, h2, . . . , hm) applied on each point, only
points sharing all the m hash values are placed in the same
partition. Suppose ρ̂gi is the approximated density value for
a specific hash function group Gg(pi). Due to the fact that

69858 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

TABLE 1. Datasets used in the experiments.

each LSH function is independently and randomly selected,
we have:

Pr[ρ̂gi = ρi] = Pr
[
Gg(pi) = Gg(pj)|∀j, ||pi, pj|| ≤ R

]
=

m∏
t=1

Pr
[
ht (pi) = ht (pj)|∀j, ||pi, pj|| ≤ R

]
≥

(
1−

4R
√
2πw

)m
Further, since the l groups of hash functions Gg(1 ≤ g ≤ l)
is independently and randomly generated, we have the
following:

Pr[ρ̂i = ρi] = 1−
l∏

g=1

(
1− Pr

[
ρ̂
g
i = ρi

])
≥ 1−

[
1−

(
1−

4R
√
2πw

)m]l
Therefore, users are allowed to specify an expected accu-

racy in density approximation. However, the unbalanced
buckets allocation brings troubles in distributed computing.
As shown in Section V-F), one or two stragglers signifi-
cantly slow down the whole process. LayerLSH rehashes
the overloaded buckets to alleviate this problem. Meanwhile,
the theoretical accuracy can be guaranteed by choosing child
LSH parameters in terms of Proposition 2.

V. EXPERIMENTS
The experiments were performed on a Ubuntu system
equipped with one Intel(R) Xeon(R) 2.60GHz CPU, 32GB
of memory.
Datasets and Queries: We evaluate our approach using

five real datasets, includingKDD,2 Forest,3 Color,4 Audio,5

andMnist.6 Properties of these five datasets are summarized
in Table 1. We also generate five sets of queries from each
dataset. We first evaluate the density of each point, which is
the number of neighbors in a given radius, then extract the
top 2% highest density points as dense queries, the top 2%
lowest density points as sparse queries, and the randomly
sampled 2% points as random queries.
Query Accuracy: Query accuracy is measured by error

ratio. Given a query q, let o∗1, o
∗

2, . . . , o
∗
k be the kNNs with

2http://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
3http://archive.ics.uci.edu/ml/datasets/Covertype
4http://kdd.ics.uci.edu/databases/CorelFeatures/
5http://www.cs.princeton.edu/cass/audio.tar.gz
6http://yann.lecun.com/exdb/mnist/

respect to q. The approximated kNNs are o1, o2, . . . , ok . The
approximate error ratio is computed as

ratio(q) =
1
k

k∑
i=1

||q, oi||
||q, o∗i ||

. (12)

So a small ratio implies high query accuracy. An average of
the error ratios from all queries is used for evaluation.
Query Cost: We evaluate the query cost in terms of

the number of candidates to be checked for distance
measurement.
Parameters Setting: The original LSH indices for these

datasets are first built with parameters l = 3,m = 3 (The
effect of different l and m will be shown in Sec. V-D). w
is set to satisfy a predefined accuracy which is different for
different experiments. The number of returned NNs k is set to
20 unless particularly mentioned. r∗ is estimated by sampling
1% data points as discussed in Section III-A, which differs
with respect to k and dataset. The LayerLSH parameters are
set as α = 0.9, β = 0.005 unless particularly mentioned.
And none of these two parameters are primarily chosen,
so that the algorithmwill perform query processing by ‘‘aver-
aging’’ these two requirements as discussed in Section III-B.

A. OVERALL PERFORMANCE
Generally speaking, more query cost will result in high accu-
racy and vice versa. It does not make too much sense if
comparing query cost or query accuracy independently, so we
will show the query cost result and accuracy result in the
same figure. We are trying to answer the question, which
method results in the highest accuracy with the same query
cost, or which method requires the lowest cost to achieve the
same accuracy. We first build multiple LSH indices for these
datasets by using different accuracy requirement parameters.
By using different LSH indices, we expect to obtain various
(cost, accuracy) pairs when answering kNN queries, which
correspond to the multiple points in an (x, y)-plot. We then
reconstruct the LSH indices and build their layered versions.
By tuning the expected recall α and expected precision β,
we can also create multiple layered indices with various
(query cost, query accuracy) pairs.

We show the results of LSH and LayerLSH when answer-
ing different types of queries in Figure 3. All the results
are obtained by averaging 3 trials. The error ratio is lower
with more query cost as expected. We can see that the
query accuracy (reflected by error ratio) and the query cost
(reflected by the number of candidates or distance measure-
ments) vary a lot for different types of queries. With respect
to the sparse queries, less accurate kNNs are returned and less
number of distance measurements is required.With respect to
the dense queries, more accurate kNNs are returned and more
query cost is required. This is true for both LSH and Lay-
erLSH. Figure 3 also shows the comparison results between
LSH and LayerLSH. To consider both query accuracy and
query cost, a curve that corresponds to an LSH index and
a specific query type exhibits better performance when it

VOLUME 10, 2022 69859

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

FIGURE 3. LSH vs. LayerLSH.

FIGURE 4. Average cost and runtime comparison.

is close to the bottom left corner. We can see that, for all
types of queries, LayerLSH requires much less query cost
(say 5%-20% of that of LSH) to achieve the same error ratio.

In addition, to further verify the superiority of our proposed
method on average query performance, we show the average
query time and query cost of LSH and LayerLSH in Figure 4.
We vary the parameters to have multiple <ratio, query cost>
pairs and <ratio, query time> pairs for LSH and LayerLSH,
and draw four curves, each corresponding to LSH-cost, LSH-
time, LayerLSH-cost, or LayerLSH-time. A curve exhibits
better performance when it is close to the bottom left corner.
As can be seen from these figures, LayerLSH can always
achieve the same error rate with less time and cost than LSH.

B. SPACE CONSUMPTION
The space consumption is the size of the index file which is
used to store the index. The space consumption of the basic
LSH index and the LayerLSH index are listed in Table 2,
where l = 3,m = 3, α = 0.9 for both LSH and LayerLSH.
Since the dense buckets are rehashed in extra hash tables and
more copies of dense buckets exist, LayerLSH needs more
space to store the extra indices. In LSH, using fewer hash
tables is supposed to take up less space, but this is not true for
LayerLSH. This is because that more overloaded buckets and
much denser buckets could exist when using a small number
of LSH tables.

In LayerLSH, the space consumption highly depends on
the expected precision parameter β, which indicates the
threshold for overloaded bucket. The bigger the β is, the
smaller bucket is preferred. Thus, a larger number of small
buckets and more child hash tables are expected to be created,
so that more space for indexing these buckets and hash
tables are required. As shown in Table 2, the index size is
not increased too much which is acceptable. As will be seen

TABLE 2. Space consumption for LSH and LayerLSH.

TABLE 3. Rebuilding time for LayerLSH.

later in Section V-D, we can achieve good enough accuracy
and efficiency when setting β = 0.5%

C. REBUILDING TIME
Rebuilding LSH indices is not free. We need extra time for
building LayerLSH index. We measure the rebuilding time
for LayerLSH in this experiment. The amount of rebuilding
effort is highly related to the parameter β, which indicates
the threshold for overloaded bucket. A smaller β implies that
higher query cost is tolerable, so that it is possible that only
a small number of highly overloaded buckets are rehashed.
In contrast, a bigger β implies that a large number of buckets
are probably recognized as overloaded buckets and great
efforts can be put on rehashing. Accordingly, the rebuilding
time increases as β is increased.

69860 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

FIGURE 5. Effect of parameters in LayerLSH (KDD).

We show the rebuilding time when β = 0.1%, 0.2%, 0.5%
in Table 3. The LSH building time includes the data loading
time and the index building time. The LayerLSH rebuilding
time includes the LSH index loading time and the index
rebuilding time. As can be seen, comparing to the original
LSH indexing time, LayerLSH needs reasonable more time
for rebuilding index for most datasets when β is small. It is
expected to require longer rebuilding time when β is bigger.
But as shown in the next experiment, by setting β = 0.5%
the accuracy and efficiency can be both good enough.

D. PARAMETER STUDIES
In this study, we investigate the parameters that poten-
tially affect the performance of LayerLSH. These parameters
include k , the expected recall α which implies the accuracy,
and the expected precision β which implies the efficiency.
The experiments are launched on KDD dataset, In order to
comparably show the effects of these parameters, we show
the error ratio and query cost in the same scale in Figure 5a,
Figure 5b, and Figure 5c. Figure 5d shows recall rather than
error ratio.

We first study the effect of k by varying k from 5 to
100 and fixing α = 0.9, β = 0.005. Figure 5a shows
the results. In general, the error ratio drops slightly when
k increases, and the query cost increases when k increases.
This is under expectation since we fix the expected precision
β = 0.005 and the query cost will increase as k increases.
We next study the effect of α by varying α from 0.1 to

0.95 and fixing k = 20, β = 0.005. Figure 5b shows the
results. The error ratio drops significantly, and the query cost
increases slightly when α increases.

We also study the effect of β by varying β from 0.0001 to
0.1 and fixing k = 20, α = 0.9. Figure 5c shows the results.
The query cost drops dramatically when β increases. At the
same time, the error ratio also increases as expected. We can
learn that it is not suggested to set β too small when expecting
a lower error ratio, since it is not worth due to the significant
query cost.

In addition, α is known as the user-specified expected
recall. In order to see its effect on the real recall, we set α
as the primary parameter (see Section III-B) and measure
the recall rates when varying α. As shown in Figure 5d,

TABLE 4. Effect of different l and m.

LayerLSH can successfully guarantee the expected recall but
at the expense of higher query cost.

In addition, we evaluate the effect of different l and m
when comparing LSH and LayerLSH on the KDD dataset.
The error ratio (abbrv. r) and query cost (abbrv. c) results
are shown in Table 4. We can see that LayerLSH constantly
outperforms LSH on both query accuracy and query cost
when varying l and m. After bucket split, a large number
of sparse buckets come up, which will trigger more nearby
bucket search operations. This helps reduce the error ratio
a lot.

E. HANDLING STREAM DATA
To illustrate LayerLSH’s ability for handling stream data,
we prepare a sequence of points from the KDD and Forest
datasets and process these points one by one. The size of the
initial dataset is randomly selected from the entire original
dataset, whose size is 25% of that of the entire dataset. The
maximum tolerance parameter εm = 0.6 and the caching
tolerance parameter εc = 0.2. The time window W is set
as 0.5s. We measure the processing throughput every 50ms
time unit. Note that, the overloaded bucket will be split during
this process, and the throughput could be affected. At the
same time, we use another thread to query a specific point’s
kNNs after each insertion and record the number of returned
candidates for distance measurements, which is considered as
query cost.

The processing throughput and query cost results are
shown in Figure 6, where Throughput w.DBS and Cost
w.DBS are the throughput and query cost recorded. We can
see that the processing throughput is reduced drastically after

VOLUME 10, 2022 69861

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

FIGURE 6. The processing throughput and query cost for a sequence of
insertions.

each time window (0.5s) since many overloaded buckets
will be split at that time. Note that, the throughput may
also drop within a time window since some buckets might
be seriously overloaded (i.e., the bucket size is larger than
(1 + εm) · Tu) and cannot wait for the time window to
end. The query cost for a specific point will be contin-
uously increased until some of its host buckets are split.
From this figure, this happens after the first time window
(0.5s). It is probably because one of the query’s host buckets
is split. In addition, the throughput should be affected by
εm and εc. We run a series of experiments and see that
the throughput is increased when increasing εm. For εm =
{0.2, 0.4, 0.6, 0.8, 1}, the average throughput results on KDD
dataset are {1.25, 1.49, 1.66, 1.77, 2.28}× 103 pts/s.

To verify the effect of delay bucket split optimiza-
tion, we turn off this optimization and show the results
(i.e., Throughput w/o.DBS and Cost w/o.DBS) for compar-
ison in Figure 6. As can be seen from these two figures, the
query cost without delay bucket split optimization is reduced,
but the throughput is getting lower more significantly, even
0 throughput during a few periods, e.g., 0.5-0.65 second
period for KDD dataset.

F. DISTRIBUTED ALL-PAIRS COMPUTATION
In Section IV, we introduce a use case of distributed all-pairs
computation, i.e., point density evaluation. We conduct
experiments to show the benefit of our proposed multi-
layered LSH structure in distributed computing. The exper-
iment is performed in a large distributed cluster which
contains 64 m1.medium Amazon EC2 instances. Each
instance is equipped with 1 vCPU, 3.75GB memory, and
410GB disk. We utilize LSH and LayerLSH to partition the
BigCross dataset, which contains 11,620,300 instances with
57 attributes for each, and compute the approximate point
densities by using Hadoop MapReduce. The MapReduce
implementation involves two jobs. The first performs LSH
partition and all-pairs computation locally. The second job
aggregates the local results. The LSH parameters are set as
l = 3,m = 3. The expected accuracy is set to 0.95 such
that w can be computed based on Equation (4), since the
radius for evaluating point density is given. In LayerLSH,
the bucket size limit is set as 10000 rather than being set
according to precision rate, since this is not a kNN query
application. In addition, similar sparse buckets are merged to

FIGURE 7. The distribution of bucket size in LSH and LayerLSH (BigCross).

FIGURE 8. The runtime of point density evaluation using Hadoop
(BigCross).

further improve accuracy and to reduce number of partitions.
The lower bound of bucket size is set as 1000. The number of
reduce tasks is set as 256.

By applying LSH and LayerLSH, the bucket size dis-
tributions are depicted in Figure 7. The dense buckets are
rehashed and the sparse buckets are merged in LayerLSH,
so that the skewed buckets are balanced. As known, workload
balance is crucial for distributed computing, which could
bring significant performance gain especially in a very large
scale distributed environment.

The runtime of reduce tasks are shown in Figure 8. Each
color bar represents a reduce task, which performs local all-
pairs computation. Each worker is assigned with multiple
reduce tasks. The skewed distribution of bucket sizes leads
to the skewed runtime of reduce tasks. We can see that
the runtime of reduce tasks is seriously skewed when using
LSH. While the runtime of reduce tasks in LayerLSH is
more balanced. Accordingly, LSH-based point density eval-
uation requires much longer runtime than LayerLSH-based
approach (20h58m2s vs. 1h36m38s). Since the rehashing
strategy of LayerLSH does not reduce accuracy and the sparse
buckets are merged, the accuracy is even higher by using
LayerLSH.7

VI. RELATED WORK
A. LSH VARIANTS
The LSH functions based on Euclidean space are proposed by
Datar et at. [7]. Since then, a large number of LSH variants
were proposed for improving accuracy and reducing I/O cost,

7Because we cannot obtain the exact density values of all points in a
reasonable time, we only show the sum of density values. In terms of point
density’s definition, the larger density should be more accurate.

69862 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

including table-based LSH such as multi-probe LSH [11],
entropy LSH [15], C2LSH [16], and tree-based LSH such
as LSB-tree [17], LSH Forest [18], SK-LSH [19]. Besides
them, numerous excellent works are proposed in recent years.
LazyLSH [20] is able to answer approximate NN queries for
multiple lp metrics. It uses a single base index to support the
computations in multiple lp spaces. QALSH [21] introduces
a novel concept of query-aware bucket partition which uses
a given query as the anchor for bucket partition. SRS [22]
requires only a single tiny index to answer approximate NN
queries with theoretical guarantees. I-LSH [23] proposes an
I/O efficient random hash based method, which obtains a
good trade-off between search accuracy and I/O efficiency
by using an incremental, rather than exponentially expand-
ing, search strategy. SL-ALSH and S2-ALSH [24] support
efficient approximate nearest neighbor search for multiple
weighted distance functions with respect to the l2 distance.
Each of them introduce an asymmetric LSH family on top
of E2LSH [7], and the asymmetric LSH families allow them
to process each nearest neighbor query flexibly according
to the weight vector attached to the query. PM-LSH [25]
uses PM-Trees to index the data and improve the query
processing time by using a tunable confidence interval to
offer a higher accuracy of the results. Instead of using one-
dimensional projections, R2LSH [26] uses two-dimensional
projections and indexes the data by using B+-Trees, in the
query processing phase, R2LSH [26] uses a query-centric ball
to search the neighboring areas of the query and saves I/O
costs. VHP [27] introduces the concept of virtual hypersphere
partitioning and combines B-tree index to improve the search
efficiency of unbounded and irregular space. LCCS-LSH [28]
proposes a novel LSH scheme based on the Longest Circu-
lar Co-Substring (LCCS) search framework, which supports
c-ANNS with different distance metrics. The LCCS search
framework canmake data objects that are closer together have
longer LCCS than the far-apart ones. It is worth to mention
another work that is called Layered LSH [29], which aims to
distribute the hash buckets such that the search is likely to
be performed on the same physical machine (hence network
efficiency). It has different goal from us though has similar
name.

B. DISTRIBUTED LSH
A set of research works focus on design efficient dis-
tributed LSH indices for supporting large data sets [30]–[32].
Zhang et al. utilize the locality preserving property of
z-values and perform z-value based partition join in MapRe-
duce to approximate the kNN joins [33]. Haghani et al.
propose mappings from the multi-dimensional LSH bucket
space to the linearly ordered set of peers that jointly maintain
the indexed data, so that buckets likely to hold similar data are
stored on the same or neighboring peers in a P2P system [34].
Bahmani et al. propose a distributed Entropy LSH implemen-
tation and prove that it exponentially decreases the network
cost, whilemaintaining a good load balance between different
machines [29]. PLSH [35] is a parallel LSH that supports

high-throughput streaming of new data, which exploits an
insert-optimized hash table structure and efficient data expi-
ration algorithm for streaming data.

C. DATA DEPENDENT HASHING
As discussed in Section I, the recently proposed data sensitive
hashing, e.g., DSH [8], selective hashing [9], ANN soft-
max [36], leverage data distributions. However, rather than
learning the optimal hash functions from the skewed data, our
approach relies on postprocessing and leverages the density
of hash values to reorganize the existing structures. It is
orthogonal to the data sensitive hashing. HashFile [37] also
proposes to recursively partition the dense buckets. However,
we use a multi-layered structure to organize the points as a
general strategy that also benefits the tree-like LSH indices,
which differs from it. OSimJoin [38] also proposes a recursive
partitioning strategy, but its main purpose is to use locality-
sensitive hashing to minimize the number of I/O operations
between external memory and internal memory. Our goal is to
improve the performance of locality-sensitive hashing itself
by exploring the density of hash values. Second, OSimJoin
needs to rehash each bucket to split the problem into sub-
problems that fit into internal memory, while LayerLSH only
rehashes dense buckets for dealing with skewed data. More-
over, OSimJoin only uses one hash function (m=1) to rehash
each bucket, while LayerLSH uses multiple hash functions to
rehash a dense bucket multiple times (the number of rehash
times is not fixed but dynamic according to the data distribu-
tion) to ensure accuracy. The NSH [39] and our work share
the same intuition that the limited hash bits should be used to
better distinguish nearby items instead of capturing the dis-
tances among far apart items. However, NSH aims to devise
a new hashing mechanism to achieve this goal, while we
propose to reconstruct the existing LSH index structures as
a postprocessing step. Learning-based hashing [40]–[42] has
recently attracted many research efforts, which uses machine
learning techniques to learn hash functions from a specific
dataset so that the nearest neighbor search result in the hash
coding space is as close as possible to the search result in the
original space. Our LayerLSH is also significantly different
from LSH Forest [18]: (1) LSH forest contains a set of
LSH trees with different {l,m} parameters, and each one is
a logical prefix tree for the set of all labels, with each leaf
corresponding to a point. While our LayerLSH is maintained
in a single tree, where each node is either a data bucket
containing a set of points or a pointer bucket containing the
pointers to child hash tables. (2) Different from the LSH
forest which contains multiple trees each with different {l,m}
parameters, LayerLSH is a single tree where the child nodes
with the same parent node are a set of LSH buckets with
different {l,m} parameters.

VII. CONCLUSION
In this paper, we present the layered version of LSH variants
by exploring the density of hash values. The dense buckets
are rehashed and the sparse buckets are merged in order to

VOLUME 10, 2022 69863

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

make the hashing more targeted in terms of data distribution.
We also discuss the possibilities of rebuilding other LSH
variants and demonstrate the benefit in distributed computing.
The experiment results have shown their effectiveness and
efficiency. Specifically, LayerLSH can reach the same search
quality as LSH with only 5%-20% query cost.

REFERENCES
[1] Z. Ren, Y. Gu, C. Li, F. Li, and G. Yu, ‘‘GPU-based dynamic hyperspace

hash with full concurrency,’’ Data Sci. Eng., vol. 6, no. 3, pp. 1–15, 2021.
[2] G. Du, L. Zhou, Y. Yang, K. Lü, and L. Wang, ‘‘Deep multiple auto-

encoder-based multi-view clustering,’’ Data Sci. Eng., vol. 6, no. 3,
pp. 1–16, 2021.

[3] Y. Zhang, S. Cheny, and Y. Ge, ‘‘Efficient distributed density peaks for
clustering large data sets in MapReduce,’’ in Proc. IEEE 33rd Int. Conf.
Data Eng. (ICDE), 2017, pp. 67–68.

[4] A. Mondal, A. Kakkar, N. Padhariya, and M. Mohania, ‘‘Efficient
indexing of top-k entities in systems of engagement with extensions
for geo-tagged entities,’’ Data Sci. Eng., vol. 6, no. 4, pp. 411–433,
Dec. 2021.

[5] P. Liu, M. Wang, J. Cui, and H. Li, ‘‘Top-k competitive location selec-
tion over moving objects,’’ Data Sci. Eng., vol. 6, no. 4, pp. 392–401,
Dec. 2021.

[6] P. Indyk and R. Motwani, ‘‘Approximate nearest neighbors: Towards
removing the curse of dimensionality,’’ in Proc. 13th Annu. ACM Symp.
Theory Comput., 1998, pp. 604–613.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, ‘‘Locality-sensitive
hashing scheme based on p-stable distributions,’’ inProc. 20th Annu. Symp.
Comput. Geometry, 2004, pp. 253–262.

[8] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, ‘‘DSH: Data sensitive
hashing for high-dimensional k-nnsearch,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Jun. 2014, pp. 1127–1138.

[9] J. Gao, H. V. Jagadish, B. C. Ooi, and S. Wang, ‘‘Selective hashing:
Closing the gap between radius search and k-NN search,’’ in Proc. 21st
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2015,
pp. 349–358.

[10] V. M. Zolotarev, ‘‘One-dimensional stable distributions,’’ in Translations
of Mathematical Monographs, vol. 65. Providence, RI, USA: American
Mathematical Society, 1986.

[11] Q. Lv,W. Josephson, Z.Wang, M. Charikar, and K. Li, ‘‘Multi-probe LSH:
Efficient indexing for high-dimensional similarity search,’’ in Proc. 33rd
Int. Conf. Very Large Data Bases, 2007, pp. 950–961.

[12] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, ‘‘Overview of the face recognition
grand challenge,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, Jun. 2005, pp. 947–954.

[13] B. J. Frey and D. Dueck, ‘‘Clustering by passing messages between data
points,’’ Science, vol. 315, pp. 972—976, Feb. 2007.

[14] R. McConville, X. Cao, W. Liu, and P. Miller, ‘‘Accelerating large scale
centroid-based clustering with locality sensitive hashing,’’ in Proc. IEEE
32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 649–660.

[15] R. Panigrahy, ‘‘Entropy based nearest neighbor search in high dimen-
sions,’’ in Proc. 17th Annu. ACM-SIAM Symp. Discrete Algorithm, 2006,
pp. 1186–1195.

[16] J. Gan, J. Feng, Q. Fang, and W. Ng, ‘‘Locality-sensitive hashing scheme
based on dynamic collision counting,’’ in Proc. Int. Conf. Manage. Data,
2012, pp. 541–552.

[17] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, ‘‘Quality and efficiency in high
dimensional nearest neighbor search,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Jun. 2009, pp. 563–576.

[18] M. Bawa, T. Condie, and P. Ganesan, ‘‘LSH forest: Self-tuning indexes
for similarity search,’’ in Proc. 14th Int. Conf. World Wide Web, 2005,
pp. 651–660.

[19] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen, ‘‘SK-LSH: An efficient
index structure for approximate nearest neighbor search,’’ Proc. VLDB
Endowment, vol. 7, no. 9, pp. 745–756, May 2014. [Online]. Available:
http://www.vldb.org/pvldb/vol7/p745-liu.pdf

[20] Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu, ‘‘LazyLSH: Approx-
imate nearest neighbor search for multiple distance functions with
a single index,’’ in Proc. Int. Conf. Manage. Data, Jun. 2016,
pp. 2023–2037.

[21] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, ‘‘query-aware locality-
sensitive hashing for approximate nearest neighbor search,’’ Proc. VLDB
Endowment, vol. 9, no. 1, pp. 1–12, Sep. 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p1-huang.pdf

[22] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, ‘‘SRS: Solving c
-approximate nearest neighbor queries in high dimensional Euclidean
space with a tiny index,’’ Proc. VLDB Endowment, vol. 8, no. 1, pp. 1–12,
Sep. 2014. [Online]. Available: http://www.vldb.org/pvldb/vol8/p1-
sun.pdf

[23] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin, ‘‘I-LSH: I/O efficient c-
approximate nearest neighbor search in high-dimensional space,’’ in Proc.
IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019, pp. 1670–1673.

[24] Y. Lei, Q. Huang, M. Kankanhalli, and A. Tung, ‘‘Sublinear time nearest
neighbor search over generalized weighted space,’’ in Proc. Int. Conf.
Mach. Learn., 2019, pp. 3773–3781.

[25] B. Zheng, X. Zhao, L.Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen, ‘‘PM-
LSH: A fast and accurate LSH framework for high-dimensional approxi-
mate NN search,’’ Proc. VLDB Endowment, vol. 13, no. 5, pp. 643–655,
Jan. 2020. [Online]. Available: http://www.vldb.org/pvldb/vol13/p643-
zheng.pdf

[26] K. Lu and M. Kudo, ‘‘R2LSH: A nearest neighbor search scheme based
on two-dimensional projected spaces,’’ in Proc. IEEE 36th Int. Conf. Data
Eng. (ICDE), Apr. 2020, pp. 1045–1056.

[27] K. Lu, H. Wang, W. Wang, and M. Kudo, ‘‘VHP: Approximate near-
est neighbor search via virtual hypersphere partitioning,’’ Proc. VLDB
Endowment, vol. 13, no. 9, pp. 1443–1455, May 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p1443-lu.pdf

[28] Y. Lei, Q. Huang, M. Kankanhalli, and A. K. H. Tung, ‘‘Locality-sensitive
hashing scheme based on longest circular co-substring,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 2589–2599.

[29] B. Bahmani, A. Goel, and R. Shinde, ‘‘Efficient distributed locality sensi-
tive hashing,’’ in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM),
2012, pp. 2174–2178.

[30] J. Wu, L. Shen, and L. Liu, ‘‘LSH-based distributed similarity indexing
with load balancing in high-dimensional space,’’ J. Supercomput., vol. 76,
no. 1, pp. 636–665, Jan. 2020.

[31] P. Zhang, H. Pan, Z. Li, P. Cui, R. Jia, P. He, Z. Zhang, G. Tyson,
and G. Xie, ‘‘NetSHa: In-network acceleration of LSH-based distributed
search,’’ IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 9, pp. 2213–2229,
Sep. 2022.

[32] P. Zhang, H. Pan, Z. Li, P. He, Z. Zhang, G. Tyson, and G. Xie, ‘‘Accelerat-
ing LSH-based distributed search with in-network computation,’’ in Proc.
IEEE Conf. Comput. Commun. (IEEE INFOCOM), May 2021, pp. 1–10.

[33] C. Zhang, F. Li, and J. Jestes, ‘‘Efficient parallel kNN joins for large data in
MapReduce,’’ in Proc. 15th Int. Conf. Extending Database Technol., 2012,
pp. 38–49.

[34] P. Haghani, S. Michel, and K. Aberer, ‘‘Distributed similarity search in
high dimensions using locality sensitive hashing,’’ in Proc. 12th Int. Conf.
Extending Database Technol. Adv. Database Technol., 2009, pp. 744–755.

[35] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk,
S. Madden, and P. Dubey, ‘‘Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing,’’ Proc. VLDB Endowment,
vol. 6, no. 14, pp. 1930–1941, Sep. 2013.

[36] K. Zhao, L. Song, Y. Zhang, P. Pan, Y. Xu, and R. Jin, ‘‘ANN
softmax: Acceleration of extreme classification training,’’ Proc. VLDB
Endowment, vol. 15, no. 1, pp. 1–10, Sep. 2021. [Online]. Available:
http://www.vldb.org/pvldb/vol15/p1-zhao.pdf

[37] D. Zhang, D. Agrawal, G. Chen, and A. K. H. Tung, ‘‘HashFile: An effi-
cient index structure for multimedia data,’’ in Proc. IEEE 27th Int. Conf.
Data Eng., Apr. 2011, pp. 1103–1114.

[38] R. Pagh, N. Pham, F. Silvestri, and M. Stöckel, ‘‘I/O-efficient similarity
join,’’ Algorithmica, vol. 78, no. 4, pp. 1263–1283, Aug. 2017.

[39] Y. Park, M. Cafarella, and B. Mozafari, ‘‘Neighbor-sensitive hashing,’’
Proc. VLDB Endowment, vol. 9, no. 3, pp. 144–155, Nov. 2015. [Online].
Available: http://www.vldb.org/pvldb/vol9/p144-park.pdf

[40] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, ‘‘A survey on
learning to hash,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 769–790, Apr. 2018.

[41] Q. Tan, N. Liu, X. Zhao, H. Yang, J. Zhou, and X. Hu, ‘‘Learning to
hash with graph neural networks for recommender systems,’’ in Proc. Web
Conf., Apr. 2020, pp. 1988–1998.

[42] P. Li, L. Han, X. Tao, X. Zhang, C. Grecos, A. Plaza, and P. Ren, ‘‘Hashing
nets for hashing: A quantized deep learning to hash framework for remote
sensing image retrieval,’’ IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 10, pp. 7331–7345, Oct. 2020.

69864 VOLUME 10, 2022

J. Ding et al.: LayerLSH: Rebuilding LSH Indices by Exploring Density of Hash Values

JIWEN DING received the bachelor’s andmaster’s
degrees in computer science from Northeastern
University, China, where he is currently pursuing
the Ph.D. degree. His research interests include big
data management and data mining.

ZHUOJIN LIU is currently pursuing the master’s
degree with Northeastern University, China. Her
research interests include data mining, data man-
agement, and GPU acceleration.

YANFENG ZHANG (Member, IEEE) received the
Ph.D. degree in computer science from Northeast-
ern University, China, in 2012. He is currently an
Associate Professor with Northeastern University.
His research interests include distributed systems
and big data processing. He has published many
articles in the above areas. His paper in Socc
2011was honoredwith the ‘‘Paper of Distinction.’’

SHUFENG GONG received the Ph.D. degree in
computer science from Northeastern University,
China. He is currently a Lecturer at Northeast-
ern University. His research interests include dis-
tributed systems and graph processing.

GE YU (Senior Member, IEEE) received the
Ph.D. degree in computer science from Kyushu
University, Japan, in 1996. He is currently a
Professor with Northeastern University, China.
He has published more than 200 papers in refer-
eed journals and conferences. His current research
interests include distributed and parallel systems,
cloud computing and big data management, and
blockchain techniques and systems. He is a fellow
of CCF and a member of ACM.

VOLUME 10, 2022 69865

