
Received May 9, 2022, accepted June 4, 2022, date of publication June 13, 2022, date of current version June 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182700

On the Coordination of Charging Demand of
Electric Vehicles in a Network of Dynamic
Wireless Charging Systems
EIMAN ELGHANAM , HAZEM SHARF, YAZAN ODEH, MOHAMED S. HASSAN ,
AND AHMED H. OSMAN , (Senior Member, IEEE)
Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates

Corresponding author: Mohamed S. Hassan (mshassan@aus.edu)

This work was supported in part by the American University of Sharjah through the Smart Cities Research Institute (SCRI) Grant SCRI
18-CEN-10; in part by the Sharjah Research Academy (SRA), Sharjah, United Arab Emirates; and in part by the Open Access Program
from the American University of Sharjah.

ABSTRACT The utilization of dynamic wireless charging (DWC) systems to charge on-the-move EVs
is currently gaining an increasing popularity, as it addresses range and charging downtime issues of EV
users. To ensure optimal utilization of this charging infrastructure, coordination of EV charging demand is
essential to achieve grid load balancing and prevent grid overload. In contrast to offline, day-ahead charging
scheduling, this work proposes an online, mobility-aware, spatial EV allocation algorithm within a DWC
coordination strategy. This strategy allocates EVs requesting charge to the most optimal DWC lanes within
an EV charging network (ECN) in an Internet of EVs (IoEVs). A detailed charging request scenario is
presented to highlight the required communication for authentication between the EVs and the charging
infrastructure, to achieve the desired coordination. Description of the proposed EV allocation algorithm
is then presented and the performance of the algorithm is evaluated using a hypothetical case study of
predicted EV traffic trips in the cities of Dubai and Sharjah, UAE. Upon parameter optimization, results
of the conducted analysis reveal that the proposed EV allocation algorithm achieves an almost flattened load
profile across the DWC lanes that reduces the PAER bymore than 44% in comparisonwith a shortest distance
allocation algorithm, for a maximum 2× increase in trip length, and sufficient received energy to compensate
for the energy consumed during the trip. This acknowledges grid supply limitations, EV traveling velocities
and the maximum service capacity per DWC lane.

INDEX TERMS Electric vehicle charging network, dynamic wireless charging system, charging coordina-
tion, spatial allocation, peak-to-average-energy ratio.

NOMENCLATURE
Abbreviations
CEM Centralized energy management.
DSM Demand side management.
DSRC Dedicated short range communication.
DWC Dynamic wireless charging.
ECN Electric vehicle charging network.
EV Electric vehicle.
G2V Grid-to-vehicle.
PAER Peak-to-average energy ratio.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouloud Denai .

PDN Power distribution network.
RSU Road side unit.
SoC State of Charge.
TCO Total cost of operation.
V2G Vehicle-to-grid.

Sets and Matrices
D Distance matrix between locations of EVs

and charging lanes.
M Number of EVs requesting charge.
N Number of DWC lanes.
T Number of time slots within the scheduling

window.
χj Set of EVs assigned to lane j.
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Indices
i Index of EVs, i ∈ M .
j Index of DWC lanes, j ∈ N .
t Index of time slots, t ∈ T .
Variables
δ Algorithm execution time.
1T Duration of each scheduling time slot.
ηj Power transfer efficiency at lane j.
Bj Available supply of the power bus at the loca-

tion of lane j.
c Average EV energy consumption rate.
C EV battery capacity.
bi Current state-of-charge (SoC) of EV battery.
ei Energy allocated by the algorithm to EV i.
Eavg Average energy supplied by all DWC lanes

within the ECN.
Ej Total energy supplied by DWC lane j.
Gj Available energy supply for DWC lane j.
lj Location of charging lane j.
Lj Length of the charging lane j.
mi Remaining mileage of EV i.
Pj Rated power supply at DWC lane j.
R Maximum EV driving range.
oi Coordinates of the origin of EV i.
di Coordinates of the destination of EV i.
qi Direct trip length between origin and destina-

tion of EV i.
rij Trip length between origin and destination of

EV i through DWC lane j.
Tc,ij Average charging time of EV i on lane j.
XnE Non-EV load schedule.
ui Current traveling velocity of EV i.
vj Recommended traveling velocity on lane j.
xij Binary decision variable of EV allocation.

I. INTRODUCTION
With the increasing concerns on fossil fuel consumption and
global warming, extensive research and development activi-
ties are taking place to encourage large-scale adoption of elec-
tric vehicles (EVs), aiming to reduce pollution and conserve
energy, while ensuring driver satisfaction [1]. Inevitably, this
growing interest in transportation electrification is coupled
with studies into EV charging infrastructure planning, charg-
ing/discharging coordination, EV energy demand manage-
ment, and the integration of renewable energy sources (RES)
to support in addressing the energy requirements of EV charg-
ing networks (ECN) [2]–[4]. These studies aim to motivate
increased adoption of EVs through behaviorally-informed
strategies [5], that: (a) address the range anxiety concerns of
current and potential EV users by optimally deploying the
charging infrastructure to offer ubiquitous charging opportu-
nities, (b) reduce the total cost of operation (TCO) of EVs
through effective energy management models, to compensate
for the higher EV purchase prices compared to their inter-
nal combustion engine (ICE) counterparts, and (c) provide

sufficient incentives and energy pricing subsidies to help
build a community of satisfied EV owners.

Different EV charging solutions are developed to address
the energy availability concerns of potential EV buyers and
meet the charging requirements of current EV owners. The
most widely deployed EV charging system is plug-in charg-
ing, in which EVs are physically connected through charging
inlets to the power buses of the utility power distribution net-
works (PDN). However, with the inconvenience associated
with physical connectivity and the hardware incompatibility
issues of plug-in charging [6], [7], as well as the risks of
electrocution from bare charging wires, wireless EV charging
systems are gaining an increasing popularity. This is because
wireless charging offers increased flexibility and convenience
with minimal electrical contact between the EV and the
charging infrastructure. In these systems, charging power is
transferred wirelessly, typically through resonant inductive
coupling, from a primary charging pad placed on the ground
and connected to the grid, to a secondary receiver pad fitted
at the bottom of the EVs.

The introduction of wireless EV charging systems is
expected to increase EV adoption by at least 15%, accord-
ing to [8], as they improve drivers’ convenience and qual-
ity of experience (QoE). However, stationary EV charging
introduces driving delays because the EVs are not drivable
while they are being charged. It also contributes to range
anxiety, as EV drivers fear running out of charge before reach-
ing their destinations and/or the nearest charging point [9].
Accordingly, dynamic wireless EV charging (DWC) systems
are developed, in which the charging pads are laid on the
roads commuted by the EVs, to enable EVs to recharge
their batteries during their motion [10], [11]. In this way,
charging and driving are decoupled and the charging down-
time is eliminated, which helps reduce the range anxiety of
EV drivers. The deployment of DWC systems also reveals
opportunities for EV battery downsizing which contributes
to reduced EV prices, and reduces the frequency of complete
battery depletion, which improves the lifetime of the EV
batteries [12]. Hence, by optimally planning a network of EV
charging solutions, both stationary and dynamic, wired and
wireless, ubiquitous charging opportunities can be offered to
EVdrivers to address their range concerns, while encouraging
larger EV purchases due to expected long-term savings.

With the implementation of different user-oriented strate-
gies to encourage large-scale EV adoption, the coordination
of EV charging requests becomes essential to ensure effective
and adequate EV demand management while acknowledging
the energy supply capabilities of the electricity grid [13],
[14]. This is because, without coordination and/or charging
scheduling, the EV charging load is anticipated to intro-
duce new peaks to the grid load profile, which increases
the energy supply required to meet this demand. It may
also further amplify existing peaks as home EV charging
patterns may coincide with hours of high residential load
demand. According to [15], [16], a typical EV is reported
to utilize approximately 7 kW of grid power with level-2
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FIGURE 1. Overview of EV charging solutions in an IoEV within a smart city infrastructure.

charging, which is several times higher than the peak demand
of typical residential households. Studies also reveal that
uncoordinated EV charging can cause unacceptable volt-
age variations with as low as 10% EV penetration [17].
Furthermore, as the penetration of EVs increases, simply
shifting the EV load to off-peak hours may introduce new
load peaks during these times, causing what is known as
herding or Avalanche effect [18]. The mobility of EVs also
causes unexpected load variations, due to the spatial distri-
bution of the charging loads across the different EV charg-
ing locations, all of which impact the stability of the grid
supply.

In order to manage this increasing and mobile energy
demand and ensure effective charging coordination, EVs
need to be interconnected with one another and with the
ECNs, forming an Internet of Electric Vehicles (IoEV), anal-
ogous to the general concept of smart, connected vehicles
in an Internet of Vehicles (IoV) [19]–[21]. This is shown in
Figure 1.

Similar to IoVs, EVs in IoEVs are considered as smart
objects that can gather and process data, and securely
exchange information with one another and with the sur-
rounding infrastructure using low latency and high reliability
vehicle-to-everything (V2X) communication. The exchanged
information may include details of the EV location, desti-
nation, traveling speed, potential routes, and energy require-
ments. This helps EVs coordinate their charging requirements
and traveling routes, and achieve charge ubiquity, while

minimizing grid load imbalance [22]–[24]. Nevertheless, suf-
ficient incentives also need to be offered to EV drivers to
motivate them to coordinate their charging time and power,
and hence reschedule their charging activities, for the mutual
benefit of themselves and the grid [25].

Furthermore, to enhance the computational capabilities
of EVs and improve the efficiency of vehicular coordina-
tion, software-defined (SD) IoEV networks are considered,
to enable faster information processing through a more flexi-
ble network architecture in which the control and data planes
are decoupled [26], [27]. Cloud-based SDN further improves
the performance of IoEVs by utilizing edge computing nodes
to aggregate vehicular data and communicate it to centralized
cloud-based SDN controllers, which perform the required
computations for smart routing and energy coordination
tasks [28]. SD-IoEVs can also utilize information-centric
networking (ICN), in which information is distributed among
the EVs via multicast and network caching techniques to
improve the quality, security and speed of disseminating
charging decisions and other details to the EV users [16],
[29]. Hence, while SD-IoEVs enable centralized coordina-
tion on cloud-based SDN controllers, they also allow for
decentralized coordination by utilizing ICN and edge com-
puting nodes, which can be also referred to as EV aggrega-
tors, for performing scheduling and coordination decisions,
to provide groups of co-located EVs with reliable and real
time energy allocation plans. This decentralization helps in
reducing delays in data transmission, as well as reducing the
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computational complexity by managing smaller batches of
vehicular requests at a time.

The scale at which EV charging coordination takes place
may differ depending on the EV penetration levels and the
volumes of EV charging requests received within a certain
time slot. Acknowledging high EV mobility and to leverage
on the eliminated charging downtime when using DWC sys-
tems, this work proposes an online, edge aggregator-based
EV charging coordination strategy that allocates EVs to the
most optimal DWC lane to balance the EV charging load
across the different lanes. The optimal EV-to-lane allocation
is the one which addresses the EV energy demand without
significantly adding to the total traveling distance of the EV,
while achieving an overall load balance across the different
lanes connected to the grid. In essence, the strategy proposed
in this work aims to achieve mutual benefits for both the
EV users and the grid, to reduce the impact of EV load on
the electricity grid while improving the customer’s quality of
experience (QoE).

A. RELATED WORKS
Different objectives are addressed in the literature for
EV charging coordination problems, some of which are
user-oriented while others are grid-oriented. User-oriented
coordination problems aim to address the charging demands
of EV users by allocating them to the most optimal charg-
ing locations while minimizing the overall trip time, as
in [30]–[32], minimizing charging delays, as in [33]–[35],
or maximizing the received energy, as in [36]. These
user-oriented models acknowledge the road traffic condi-
tions and the congestion levels at the different charging
points [30], [32], and propose intelligent EV routing strate-
gies that acknowledge the different drivers’ behaviors [33],
[35], [36].

In order to incorporate uncertainties in user demand and
driving patterns, most user-oriented EV demandmanagement
problems are deployed using online, i.e. real time coordina-
tion approaches. Online coordination is enabled using decen-
tralization, in which coordination strategies are executed on a
set of EV aggregators, also known as edge devices, as in [32],
[37], [38], or on individual EVs in collaborative game-based
models, as in [35], [39], [40]. In aggregator-based coordina-
tion, each edge aggregator handles a group of EVs within a
reasonable communication distance to coordinate the energy
requested per EV in each time slot. Decentralized coordina-
tion overcomes scalability issues, bymotivating EVowners to
execute optimal charging decisions through communication
with nearby EVs and charging units. Furthermore, decen-
tralized coordination also reveals opportunities of utilizing
state-of-the-art blockchain-based energy trading, in order to
facilitate the authentication, billing and transaction verifica-
tion between EVs in a smart ECN [41], [42].

In contrast, grid-related objective are mainly focused on
maintaining grid stability and preventing grid load imbal-
ance, and hence typically involve centralized coordination.
In centralized coordination, a management entity performs

the required optimization and computations to obtain looka-
head schedules for allocating EVs to the most optimal charg-
ing location at the most optimal time [43], [44]. Centralized
coordination typically takes place offline, based on demand
predictions and/or historical data, to efficiently allocate grid
resources among EV- and non-EV loads [45]–[47]. The
authors in [44] aim to schedule EV loads across different
time slots such that the aggregate load profile of a given
area is matched to a target load profile with balanced loads,
through valley-filling. A similar strategy is also proposed by
the authors in [48] to achieve peak shaving and smoothen
the load profile. In addition, spatial distribution of predicted
EV demand among available charging locations is proposed
in [14], to balance the charging load across different electric
power buses.

The key issue with offline coordination is the inher-
ent uncertainty when dealing with on-the-move charging
requests from mobile EVs, for which the allocation deci-
sion needs to be rapidly and optimally performed without
impacting the grid performance. Furthermore, the compu-
tational complexity of centralized coordination increases as
the number of EVs within the IoEV increases, which intro-
duces scalability issues and reduces the efficiency of the
demand management strategy. Communication delays and
information security risks are also inevitable in centralized
coordination, as each EV needs to communicate its details
and required demand with the centralized decision maker.

Two-staged, centralized then decentralized coordination
strategies are proposed in [28], [40], [49] to leverage on
the advantages of both approaches and reduce their draw-
backs. Nevertheless, most literature on the coordination of
EV charging demand assume only public and private plug-in
charging stations are included in ECNs, with minimal refer-
ence to DWC systems. This, as highlighted earlier, can be
resorted to the currently low investments in the deployment
of DWC infrastructure due to fear of failing to achieve the
desired returns. Furthermore, few works have simultaneously
addressed grid-related and user-related objectives [50], [51].
Nevertheless, several deployment optimization strategies are
currently being developed to optimize the deployment of
DWC lanes within the city infrastructure, acknowledging the
return-on-investments (RoI) of the infrastructure owner, the
required coverage of customers’ demand and the locations
of power buses within PDNs [52]–[54]. This motivates the
need to optimize EV charging behaviors to address both user-
and grid-related objectives to maximize the social welfare,
by motivating mass EV adoption, improving EV users’ QoE
and ensuring grid stability against EV charging loads.

B. CONTRIBUTIONS OF THIS WORK
With the high mobility of EVs and the eliminated charging
downtime through DWC, spatial online charging coordina-
tion helps achieve the desired load balancing objectives, and
avoids delays in addressing the charging requirements of the
EV users. This, however, may come at the price of potential
increase in the driving distances and/or re-routing of EVs
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from the shortest-distance path to charge at the most optimal
charging lane. This is because, in an uncoordinated charging
scenario, a closer charging lane has a higher probability of
being selected by the EV user seeking energy. Using spatial
coordination, however, introduces other charging possibilities
for EV drivers, through which the charging load across all
DWC lanes is balanced to achieve better grid stability.

Hence, in this work, an online, edge aggregator-based EV
charging coordination strategy is proposed to achieve opti-
mal allocation of the charging demand of on-the-move EVs
among pre-deployed DWC lanes within the city infrastruc-
ture. The underlying assumption is that an optimal day-ahead
non-EV load schedule is developed according to an efficient
DSM program, as presented in an earlier work in [55], and is
accurately followed. This work then formulates a Mixed Inte-
ger Non Linear Programming (MINLP) model that allocates
EVs among the DWC lanes in an ECN, such that the peak-to-
average energy supply ratio (PAER) of the ECN isminimized.
This shall meet the EV charging requirements, through G2V
energy transfer, while ensuring grid load balancing across
different DWC lanes within the ECN. The discharge of EV
stored energy back to the grid in V2G operation is excluded
from the scope of this work. The proposed MINLP model is
solved using a rule-based algorithm with parametric sweeps,
and the performance is evaluated against shortest-distance-
based EV allocation to assess the enhancement in PAER
offered by the proposed model.

The key contributions of this work can be summarized as
follows:
• This work proposes an online coordination strategy of
on-the-move EVs requesting to charge from DWC lanes
within an ECN to achieve grid- and user-related objec-
tives including grid load balancing andmaximal demand
coverage.

• The proposed strategy incorporates a load-balancing
EV-to-lane allocation algorithm to be executed by an EV
aggregator. The EV aggregator offers edge computing
capabilities to execute the coordination algorithm for
EVs requesting charge within each time slot.

• This work also proposes an effective message exchange
protocol, assuming an underlying low-latency and high-
reliability communication network, to enable efficient
execution of the proposed allocation algorithm.

• The proposed coordination strategy acknowledges the
driving range, driving velocity and remaining mileage
of EVs under consideration to account for vehicular
mobility and arrival time to the DWC lanes.

• This work also develops a hypothetical case study
of an ECN of DWC lanes within main cities in the
United Arab Emirates (UAE), namely Dubai and Shar-
jah, to evaluate the performance of the proposed EV
allocation algorithm.

To the best of the authors’ knowledge, this work is the
first to incorporate on-the-move charging lanes in EV demand
management problems that achieve load balancing objec-
tives. Furthermore, the UAE case study presented in this

FIGURE 2. Different network entities considered in this work.

work is first of a kind, which shall be further expanded as
more empirical EV-related data becomes available. The rest
of this paper is organized as follows: Section II provides
details of the system model under consideration, consisting
of DWC lanes and energy-demanding EVs in a ECN. The
proposed spatial EV coordination strategy is then described
in Section III with the associated message exchange protocol.
Specifications of the EV allocation algorithm are provided in
Section IV. The performance of the coordination strategy and
the proposed algorithm is then evaluated using a UAE-based
case study and the results are reported in Section V. The paper
is finally concluded in Section VI.

II. SYSTEM MODEL
A simplified ECN is modeled in this work, consisting of M
connected EVs and N DWC lanes of length Lj each. Each
DWC lane consists of S charging segments connected in par-
allel to the power bus. The subscripts i and j are used to denote
the indices of the EVs and the charging lanes, respectively,
and the length of each charging segment within lane j, i.e. lsj is
designed that each segment can serve a maximum of one EV
at a time. The ECN includes an EV aggregator that receives
charging requests from different EVs and executes the online
spatial EV allocation algorithm accordingly. A Centralized
Energy Management (CEM) system is also included in the
ECN, and is responsible for registering the different EVs
within the network and for providing the day-ahead schedules
of non-EV loads to the aggregator, based on the communica-
tion between the CEM and the utility provider. An outline of
the different network entities and their corresponding com-
munication links is shown in Figure 2.

As highlighted earlier, scheduling of the non-EV loads is
assumed to take place separately and is not included within
the scope of this work. Hence, the aggregator is an inter-
mediate entity that interacts with the CEM system to obtain
the predetermined consumption schedules and use them to
calculate the energy supply available for EV charging at
each DWC lane during each time slot. The aggregator then
executes the spatial EV allocation algorithm and disseminates
allocation information to the different EVs to address their
charging demand. In this work, theDWC lanes are assumed to
be geographically dispersed within the area of the ECN under
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FIGURE 3. Message exchange sequence during offline authentication
phase.

consideration, although they are all assumed to be electrically
served by the same utility provider. Expectedly, the ECN
also includes public and private plug-in charging stations but
those are not considered in this work. It is assumed that the
EV aggregator considered in this work only handles EVs
requesting to be charged from DWC lanes.

The communication between the EVs and the aggregator
is assumed to take place through low-latency and high-
reliability 5G communication, to account for the high mobil-
ity of EVs and provide secure communication links [21], [56],
[57]. In addition, road side units (RSU) are installed at the
locations of the DWC lanes to enable radio communication
between the EVs and the lanes through Dedicated Short
Range Communication (DSRC), upon successful authentica-
tion with the EV aggregator. This reduces the physical layer
latency and helps avoid interference from adjacent channels,
given the short communication distance between the EVs and
the charging lanes.

III. DWC COORDINATION STRATEGY
A. OFFLINE AUTHENTICATION PHASE
At the beginning of each day, the CEM provides the aggrega-
tor with the non-EV load schedules, XnE , and rated supply at
the power bus to which each DWC lane is connected, Bj (O1).
For simplicity and without loss of generality, each power bus
can only have a maximum of one DWC lane connected to it.

Each EV is pre-registered with the CEM system, and
receives an EV ID, Ii, to be used for the first stage of authenti-
cation upon entering the ECN served by the CEM. The CEM
then assigns a pseudo-identity, pi, to each registered EV to be
used for communication with the EV aggregator (O2). This
ensures privacy of the EV information and reduces instances
of identity theft. A fast, secure and lightweight authentication
scheme is assumed to be employed for EV authentication
to the different entities in the network including the EV
aggregator (O3), following the authors’ earlier work in [21].
A summary of themessage exchange sequencewithmessages
O1, O2 and O3 is shown in Figure 3.

B. CHARGING COORDINATION PHASE
At the beginning of each time slot, t , the EV aggregator pre-
dicts the hourly energy availability at eachDWC lane location
for the current day,Gj(t) where t = 1, 2, 3, . . . , 24 represents
the 24 hours of the day, given the non-EV load profile, XnE (t),

and the rated bus power supply,Bj(t), shared by the CEM. The
rated power supply for each charging lane,Pj, is also provided
by the CEM to the aggregator (S1).

As a pre-registered EV demands energy, it sends a charging
request to the EV aggregator at the beginning of the time
slot (S2). This request message includes the pseudo-identity
of the EV, pi, its current battery state-of-charge (SoC), bti ,
the EV current location, which is also the origin (O) of the
EV trip, oti , the desired EV destination (D), d ti , the current
EV traveling velocity, uti , and its remaining mileage, mti .
The input to the load-balancing EV allocation algorithm
is extracted from the charging request message as, Rti =
{bti , o

t
i , d

t
i , u

t
i ,m

t
i } in <

5. For each incoming request, the
EV aggregator executes the EV-to-lane allocation algorithm,
by evaluating the lengths of all possible routes from the
origin to destination going through the charging lanes, as well
as the current load on each lane and the energy demand
of the requesting EV. The EV aggregator then assigns the
EV to the charging lane such that the load across the lane
is balanced while ensuring that the added distance to go
through the assigned lane is less than the maximum dis-
tance threshold, λ. The algorithm is designed such that the
execution time is significantly low, i.e. few milliseconds,
to avoid delays in EV assignment. Furthermore, the algorithm
is lightweight to allow the EV aggregator to simultaneously
handlemultiple EV requests with its computational capability
as an edge device. In case of multiple EV requests, the EV
aggregator prioritizes the EVs with lower SoC, i.e. lower bti ,
to ensure better demand coverage and improve user satisfac-
tion. Details of the EV-to-lane allocation algorithm are further
detailed in Section IV)(S3). Since this paper particularly
focuses on the spatial coordination of EVs among the avail-
able DWC lanes within a single time slot, the dependence on
time is dropped from all the variables in the rest of this paper.

Upon executing the EV allocation algorithm, the EV aggre-
gator determines the most optimum charging location to each
EV requesting charge. Before communicating the ID of the
assigned lane to each EV, the aggregator send a message (S4)
to each EV, over a secure 5G communication channel, to con-
firm energy availability and provides the expected distance to
be traveled by the EV on the route from its origin to desti-
nation through the assigned lane, rij, given the EV traveling
velocity, ui. The EV aggregator also provides the EV with
the recommended on-lane traveling velocity, vj, to ensure
that the lane can address the energy demand of concurrently-
charging EVs. Upon EV confirmation and approval (S5), the
EV aggregator communicates the respective charger location
and ID, Ij, to the EV over the same channel (S6). A summary
of the message exchange process for this phase is shown in
Figure 4, showing messages S1-S6.

C. CHARGING ACTIVATION & BILLING PHASES
As the EV approaches the specified charging location,
it establishes a secure DSRC communication channel with
the RSU to request the charging service with the specific
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FIGURE 4. Message exchange sequence during charging coordination
phase.

energy level allocated by the aggregator (C1). Upon receiving
the message from the EV, the RSU communicates with the
EV aggregator to confirm the charging request and verify the
identity of the requesting EV along with the allocated energy
level (C2). Upon verification with the aggregator, the RSU
authenticates the EV and authorizes it to receive the charging
service from the assigned DWC lane (C3). After successful
authentication, the RSU sends a charging activation com-
mand to the respective charging lane (C4), and the charging
process is initiated as soon as the EV is on the charging lane.

At the end of the charging process, each charging lane
reports its supplied power and charging duration for each
EV to the RSU (B1), which forwards this information to
the EV aggregator (B2). Each EV also reports its received
energy to the aggregator (B3), which compares both reports
and generates the respective EV bill accordingly (B4). The
message exchange during the charging activation and billing
phases is summarized in Figure 5.

IV. SPATIAL EV ALLOCATION ALGORITHM
In the charging coordination phase shown in Figure 4, the EV
aggregator starts by estimating Pj, then uses EV origin and
destination data, i.e. oi, di, to estimate the length of all pos-
sible routes from the origin to the destination going through
each of the N charging lanes. This takes place by invoking
Google Distance Matrix API [58]. The EV aggregator then
creates a subset of feasible lanes for EV i, Nf ,i ⊆ N , for
which the trip is feasible, i.e. can be completed, given the
current mileage of the EV, mi. Within Nf , the EV aggregator
evaluates the available supply at each feasible lane as well as
the previous EV allocations to each lane within the same time
slot. The aggregator allocates EVs to the most optimal lanes
such that the load balance across the lanes is not disturbed.
Hence, for each incoming EV, the aggregator assigns the
EV to that lane that minimizes the difference between the
peak energy supplied by each DWC lane, Ej, and the average
energy supplied by all the lanes, Eavg, within the given time
slot ts acknowledging previously charged EVs within the
same slot. That is, to minimize the peak-to-average energy
ratio (PAER) supplied by the grid to the DWC lanes, which

can be expressed as,

Minimize
N∑
j=1

|Ej − Eavg|, (1)

where,

Ej =
M∑
i=1

xijηjPjTc,ij, (2)

and,

Eavg =
1
N

N∑
j=1

Ej. (3)

xij is a binary decision variable responsible for the assign-
ment of each EV i to lane j. This is set to 1 if EV i is assigned
to lane j and is 0 otherwise. Pj is the power supply from each
DWC lane j, ηj is the corresponding power transfer efficiency,
and Tc,ij is the effective charging time of EV i on lane j,
which is related to the lane length and the recommended EV
traveling velocity using, Tc,ij = lj/vi. Given the charging lane
length, Lj, its rated power, Pj, and energy availability, Gj, the
EV aggregator estimates the recommended traveling velocity,
vj, on each lane to ensure maximal demand coverage while
achieving the load balancing conditions. A simplified, linear
velocity estimation model is adopted in this work, as,

vj =
LjPj
Gj

. (4)

The following constraints are also applied:
• The route rij from the origin of the trip of EV i, oi,
to its destination, di, through each of the feasible DWC
lanes should be less than the remaining mileage of EV i.
Hence,

N∑
j=1

xijrij < mi, ∀i ∈ M . (5)

• The length of the route including the charging lanes
should not be significantly higher than the original
origin-to-destination route. This is controlled using a
maximum distance threshold, λi, relating the length of
the route through the lane, rij, to the direct O-D dis-
tance, qi, as,

N∑
j=1

xijrij ≤ λiqi, ∀i ∈ M . (6)

• Each EV can only be assigned to a single charger within
the time slot, i.e.

N∑
j=1

xij = 1, ∀i ∈ M . (7)

• The energy supplied by DWC lane j to all EVs within
the time slot should be less than or equal to the total

VOLUME 10, 2022 62885



E. Elghanam et al.: On the Coordination of Charging Demand of Electric Vehicles in a Network

FIGURE 5. Message exchange sequence during charging activation and billing phases.

available energy supply at the location of j, Gj. This
means,

Ej ≤ Gj, ∀j ∈ N . (8)

Furthermore, due to lack of open-access empirical data
on EV charging demand in the UAE and the currently low,
but increasing, EV penetration levels, it is assumed that EVs
demand to be charged with sufficient energy to cover their
current trip from the origin to the destination, going through
the assigned charging lane. Accordingly, the energy deliv-
ered by each lane to address EV demand is modeled as a
constant multiple, α, of the expected energy consumption of
EVs are they traverse through their respective trips between
different O/D pairs, going through the selected charging lane.
Assuming an average linear energy consumption factor of ci
kWh/km for each EV, the energy delivered per EV is modeled
as,

ei ≤
N∑
j=1

xijrijαci, ∀i ∈ M . (9)

This assumption evolves from the main objective of intro-
ducing DWC systems, which is reducing range anxiety by
compensating for the EV energy consumption during trips
while eliminating charging downtime, to ensure reaching the
destination without running out of charge. Hence, the energy
multiplication factor, α, together with the distance threshold,
λ, are used to assess the quality of experience (QoE) offered
by the DWC infrastructure to the EV users by evaluating the
additional distance traveled to charge through the allocated
lane along with the allocated energy for each EV.

The EV-to-lane allocation algorithm is hence executed by
the EV aggregator in real time for each incoming charging
request, without having to perform day ahead predictions of
EV load given the high mobility of EVs. This is shown in
Algorithm 1.

Algorithm 1 Proposed EV Allocation Algorithm Among
DWC Lanes

Given Locations and rated power of the DWC lanes.
Input XnE and Bj, ∀j ∈ N from CEM.
Input r ti = {b

t
i , o

t
i , d

t
i , u

t
i ,m

t
i }.

Output Optimal EV allocation plan, χ∗.
1: for i ∈ M do
2: for j ∈ N do
3: Estimate hourly energy availability at each charging

lane, Gj, using XnE and Bj shared by CEM.
4: Estimate the length of all possible routes from EV

origin to destination through each DWC lane, rij.
5: Determine the subset of feasible routes for each EV,

Nf ,i.
6: Evaluate the current EV load on each lane j from

previous assignments.
7: Within the subset of feasible lanes, assign EV i such

that (1) is achieved subject to (2), (5)-(8), using the
energy demand model in (9) to establish an optimal
allocation plan, χ∗ that achieves load balancing
within each time slot.

8: Use lane energy availability and rated power to
recommend the optimal on-lane traveling velocity,
vj, using (4).

9: end for
10: end for

V. PERFORMANCE EVALUATION: UAE CASE STUDY
In order to evaluate the proposed charging coordination algo-
rithm, DWC lanes are assumed to be optimally deployed on
highly-congested arterial roads connecting the cities of Dubai
and Sharjah, UAE. Heavy congestion is typically observed
during early morning and late afternoon hours in areas sur-
rounding schools and other educational institutions, as well
as at the Sharjah-Dubai borders during employees’ commute
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FIGURE 6. Locations of charging lanes used in the evaluation of the
proposed EV allocation algorithm [60].

FIGURE 7. Regions used in origin-destination analysis to extract data on
vehicular commutes [61].

to and from work. EV charging networks are expected to be
in high demand during these high congestion periods. Since
there are currently no commercial deployments of DWC
lanes within UAE, potential lane locations are used for the
conducted analysis assuming an underlying deployment opti-
mization model from earlier works in [54], [59]. Accordingly,
the presumed-to-be optimal locations of the DWC lanes are
pinned on the location map as shown in Figure 6. It should
be noted that the actual locations of the charging lanes shall
not impact the problem formulation nor the performance of
the proposed allocation algorithm, as they are considered as
inputs to the model.

In order to model the traffic flow of EVs, data on vehicu-
lar commutes between different origins (O) and destinations
(D) within Sharjah and Dubai is first obtained from Tom-
Tom Move O/D Analysis tool [61]. The map is divided into
200 equal-sized regions as shown in Figure 7.
The number of trips between all possible O-D pairs within

the 200 regions is then extracted from the O/DAnalysis portal
for every hour during a working day. The only available data
for the UAE at the time of study is for January 2021. Hourly
trip counts for a working week are extracted and averaged to
obtain the average number of trips on a typical working day.
The announced EV roll-out plans in the UAE state that 30%
EV penetration is expected on UAE roads by 2030 [62]. Since

FIGURE 8. Hourly trip count for trips commuted by EVs in each working
day, sampled from the total hourly count extracted from TomTom Move
O/D Analysis tool [61].

the distribution of EV users is expected to be concentrated
in major cities, namely Abu Dhabi, Dubai and Sharjah, it is
assumed that 60% of the EVs shall utilize the regions studied
in this work covering Dubai and Sharjah. Hence, 18% of
the hourly trip counts is assumed to be commuted by EVs,
and is used to model the EV demand in this work. This is
based on the underlying assumption that driving patterns are
not expected to dramatically change between conventional
ICE vehicles and electric ones, except for the routing through
DWC lanes which is addressed by the allocation algorithm
proposed in this work. Hence, by using empirical O/D trip
data under this assumption, uncertainties in user driving pat-
terns are inherently integrated in the EV demand model.
Furthermore, the hourly resolution reflects actual traffic con-
gestion levels during peak hours and improves the reliability
of the proposed model. The distribution of hourly EV trips is
shown in Figure 8.

In order to evaluate the performance of the proposed algo-
rithm, the algorithm is executed for the EV trips during hours
of highest congestion, i.e. 18:00 to 19:00, and the results
are compared to those obtained with shortest distance based
allocation, with which each EV is allocated to the charging
lane that offers the least increase in the total trip length.
A summary of the model parameters is shown in Table 1.

The proposed rule-based EV-to-lane allocation algorithm
is executed on MATLAB [63], on an Intel core i7, 2.4 GHz
machine. The average execution time for all 4009 requests
is around 2 minutes, which indicates the time efficiency of
the proposed algorithm. Since the algorithm allocates each
incoming EV request independently, the average execution
time per request is 0.0326 seconds. Three performance met-
rics are used to evaluate the performance of the proposed allo-
cation algorithm against shortest distance allocation, namely:
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TABLE 1. Model parameters.

FIGURE 9. PAER of the proposed algorithm for different combinations of
the distance threshold and energy multiplication factor.

PAER, EV blocking rate, and the percentage of energy allo-
cated per EV, relative to the optimal allocation amount cal-
culated using (9) for the given energy multiplication factor.
This is equivalent to the percentage demand coverage per
user, which is a measure of the quality of experience (QoE)
offered to each EV driver. On the other hand, the EV blocking
rate is the percentage of the number of EVs that were not
assigned by the algorithm to any charging lane due to supply
energy restrictions, i.e. because the lane has reached its max-
imum service capacity and has no more energy to address the
demand of EVs.

To optimize the performance of the proposed algorithm,
a parametric sweep is executed on the algorithm for different
combinations of the distance threshold and energy multipli-
cation factor. This is repeated for all EV trips data for the
24-hour span and the three performance metrics are evalu-
ated. This aims to determine the best combination of values
for the two parameters, α and λ, to achieve load balancing
while maximizing the demand coverage per EV user and
minimizing the number of unserved, i.e. blocked EVs. The
results are shown in Figures 9, 10 and 11, respectively.

Based on the results in Figures 9, 10 and 11, the following
conclusions are made:

FIGURE 10. Percentage demand coverage per EV of the proposed
algorithm for different combinations of the distance threshold and
energy multiplication factor.

FIGURE 11. EV blocking rate of the proposed algorithm for different
combinations of the distance threshold and energy multiplication factor.

• The PAER values obtained using the proposed algorithm
are very close to one for 3.5 ≤ λ ≤ 5 for all values of
α, which corresponds to a balanced load profile at DWC
lanes within the IoEV.

• The percentage demand coverage values obtained using
the proposed algorithm are greater than 50% for 1 ≤
λ ≤ 3 when α = 1, and for 1 ≤ λ ≤ 1.5 when α = 1.5.

• The EV blocking rate is less than 10% for 3.5 ≤ λ ≤

5 for all values of α.
• Depending on the desired objectives of the EV coordi-
nation problem, optimal choices of λ and α can be made
by the system operator, i.e. the CEM.

• For this work, the optimal combination values of the
distance threshold and energy compensation factor are
selected to be λ = 2 and α = 1. This ensures that
the allocation algorithm is able to achieve an acceptable
load balancing performance with PAER of 1.55, with
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FIGURE 12. Energy supplied per lane to EVs allocated according to the
proposed DWC coordination algorithm (blue bars) and those allocated
based on shortest distance allocation (orange bars).

FIGURE 13. Number of EVs assigned per lane according to the proposed
DWC coordination algorithm (blue bars) and those assigned based on
shortest distance allocation (orange bars).

reasonable customer satisfaction levels through 64.1%
demand coverage and 24.8% EV blocking rate.

Using λ = 2 translates to a maximum increase in trip
length to be 2× the length of the direct trip between the origin
and destination. On the other hand, α = 1 indicates that the
model ensures that sufficient energy is delivered by the DWC
to each assigned EV to compensate for the energy consumed
to travel the route from origin to destination going through
the assigned charging lane. Using λ = 2 and α = 1, the
PAER and the number of EVs allocated per lane are plotted in
Figures 12 and 13, respectively, in comparison with shortest
distance-based allocation.

As observed in Figures 12 and 13, the DWC load profile is
significantly enhanced using the proposed algorithm in com-
parison to that obtained with shortest distance allocation. The
PAER of the proposed allocation algorithm is around 44%
less than that obtained using shortest distance-based alloca-
tion. This proves that the main objective of EV load balancing

is achieved with the proposed algorithm. Nevertheless, this
comes at the cost of lower energy allocated per EV, with
64.1% demand coverage, calculated using the recommended
EVon-lane traveling velocities obtained by the algorithm. For
shortest distance based allocation, lanes L1, L4 and L5 are
over-utilized, while lanes L9, L10 and L11 are under-utilized.
This introduces significant load imbalance and impacts the
overall stability of the power grid. Furthermore, the energy
supply limitations of the charging lane and the recommended
velocities are not incorporated in shortest distance based
allocation. Hence, the percentage demand coverage and EV
blocking rate cannot be assessed.

A. MODEL LIMITATIONS
In spite of the promising results obtained from the proposed
model, few limitations need to be highlighted for further
improvement in future works. These include:

• The energy demand and energy allocation calculations
assume a linear relationship between the traveling dis-
tance and the energy consumption rate. This needs to
be further expanded to address variations in EV energy
consumption with velocity, driving patterns, etc.

• Constant energy consumption rate is assumed for all
EVs in the presented model. Variations of EV energy
profiles are inevitable and multiple EV models need to
be considered in future analysis.

• The traveling velocity of EVs is calculated on aver-
age, which does not acknowledge the EV acceleration
or deceleration. More accurate velocity models can be
included in future works.

• A constant value is used for the distance threshold for
all EVs under study. This assumption can be eliminated
to allow for different distance thresholds based on EV
driver’s preferences.

In addition, since the EV-to-lane allocation algorithm is
designed to run online, across different time slots and dif-
ferent grid supply profiles, further research can include the
role of coordinated vehicle-to-grid (V2G) energy transfer
to utilize excess energy in EV batteries to compensate for
shortage in grid supply during times of high demand. The
discharging of EVs through DWC lanes also needs to be
further investigated to evaluate the efficiency and needed
incentives for EV drivers to participate in V2G programs.

VI. CONCLUSION
Dynamic wireless charging systems form an integral part of
the EV charging infrastructure, to address the range anxi-
ety of EV drivers due to limited EV battery capacities and
provide a seamless driving experience. In order to maximize
the gains from the deployment of DWC lanes, this work
proposes an effective DWC coordination strategy that assigns
EVs demanding energy to the most optimal lanes, to reduce
the peak-to-average energy ratio (PAER) supplied by the
lanes to cover the demand of on-the-move EVs. This work
presents details of the charging request scenario expected to
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take place between EVs demanding energy and the charging
infrastructure. A spatial EV-to-lane allocation algorithm is
proposed to be executed by an EV aggregator, to stabilize the
energy load profile across the DWC lanes in the EV charging
network under consideration. The objective of the proposed
algorithm is to minimize the load variation from EV charging
across different charging locations within the charging net-
work in the given planning horizon, while ensuring customer
satisfaction through energy demand coverage.

The load-balancing EV allocation algorithm proposed in
this work is proven effective when tested on a large volume
of EV trips, predicted to take place between 18 : 00 and
19 : 00 on a typical working day in Dubai/Sharjah, UAE.
Upon parameter optimization, the proposed algorithm almost
flattens the load profile across the lanes and reduces the
PAER by more than 44% in comparison with a shortest
distance allocation algorithm, for a maximum increase in
trip length to be 2× the length of the direct trip between
the origin and destination, and sufficient received energy to
compensate for the energy consumed to travel the route from
origin to destination going through the assigned charging
lane. Future works shall address the limitations of the current
model and shall expand on the charging network to include
a larger number of DWC lanes, along with stationary wired
andwireless charging points, to effectively coordinate the EV
charging demand across different energy supply points. This
also needs to be integrated with spatio-temporal scheduling
of EV charging demand with the demand of other loads from
residential, commercial and industrial areas within a smart
grid to achieve overall grid load balancing.
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