
Received May 6, 2022, accepted June 2, 2022, date of publication June 13, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182703

Iteration Causes, Impact, and Timing in Software
Development Lifecycle: An SLR
MAMOONA MUMTAZ 1, NAVEED AHMAD 2, M. USMAN ASHRAF 3,
AHMED MOHAMMED ALGHAMDI 4, ADEL A. BAHADDAD 5,
AND KHALID ALI ALMARHABI 6
1Department of Software Engineering, University of Management and Technology, Sialkot 53310, Pakistan
2Faculty of Computing, National University of Computer and Emerging Sciences (FAST), Islamabad 44000, Pakistan
3Department of Computer Science, GC Women University Sialkot, Sialkot 51310, Pakistan
4Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21493, Saudi Arabia
5Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6Department of Computer Science, College of Computing in Al-Qunfudah, Umm Al-Qura University, Makkah 24381, Saudi Arabia

Corresponding authors: Mamoona Mumtaz (mamona.mumtaz@skt.umt.edu.pk) and M. Usman Ashraf (usman.ashraf@gcwus.edu.pk)

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia,
under Grant RG-11-611-43.

ABSTRACT Context: Iteration—performing an activity once it has already been done—is unavoidable and
omnipresent during software development. Management of iteration is a challenging task due to the lack
of detailed analysis and use of different terms for the iteration at different places in software engineering.
Objective: In order tomanage iteration in a better way during software development processes, we investigate
different iterative situations, the causes, the stages at which it can occur during the development, and its
impacts. Method: We use the systematic literature review (SLR) method to search using six bibliographic
databases. The SLR includes 153 primary studies published from 2007 to February 2017. Results: We
identify twenty-two leading causes, five stages, and positive and negative impacts of iteration. Then,
we develop a lucid taxonomy of iteration perspectives based on the causes and timing at which it occurs
during the software development lifecycle. Conclusions: The frequently reported causes of iteration are
defects, code smell, and conflicts, whereas the least referenced causes are poor management and different
methods followed by teams. The most cited phase at which iteration occurs during the software development
is maintenance. The most cited positive consequence of iteration is quality improvement, whereas the
negative impacts of iteration are increasing time, effort, and cost. Our study provides a framework to
understand the nature of iteration, what sources can lead to which iterative perspective, a particular iterative
situation can have what kind of impacts on project milestones, and also provide research directions.

INDEX TERMS Artificial intelligence, iteration, software engineering, software development lifecycle,
impact, causes, taxonomy.

I. INTRODUCTION
Software engineering is about translating user needs into
a software product. It involves converting user needs into
requirements, interpreting the requirements into design, cod-
ing, and testing the code to make the software function
according to a user’s demands [1]. These activities do not
move linearly during software development. Deviation from
a linear movement of activities is unavoidable during soft-
ware development and is defined as iteration [2]. Most of
the problems that occur during software development are
complex and involve many contradictory goals that require

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

iteration to make a compromise [3]. sometimes, We plan to
work in increments during software development as we do
in agile and iterative software development [4], [5]. Iteration
can also be spontaneous, i.e., unplanned. When we compare
the planned iteration with the spontaneous one, the random
unplanned iterations are expensive and may influence project
results [6].

There are numerous causes that lead to unplanned itera-
tion, like defects [7]–[9], complexity [10], ambiguity [11],
[12], user feedback [4], conflicts [11]–[13], and requirement
changes [14], [15]. According to a study, unaligned plans of
different participants, poor management, frequent changes,
and defects cause delays and iteration [16]. Sometimes,
wrong priority assignment leads to rework [17]. Iterative

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65355

https://orcid.org/0000-0001-6026-0267
https://orcid.org/0000-0002-6656-3362
https://orcid.org/0000-0001-7341-8625
https://orcid.org/0000-0001-7644-5039
https://orcid.org/0000-0001-5137-5054
https://orcid.org/0000-0002-3104-209X
https://orcid.org/0000-0003-3264-185X


M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

prototyping is a prime activity during user-centered software
development [18]. Different design options are explored at
the start of the project and during architectural design during
software development. For example, the negotiated decisions
are considered better with different stakeholders’ concerns
and alternative choices [17]. Whenever a change occurs due
to any reason, it causes iteration linkedwith delays, extra cost,
additional efforts, and risks. The reason for redoing can be
defects, unexpected errors, or ambiguous user requirement
specifications. Another study suggests that in the embedded
system development, adjustment of the requirement is made
in later phases. It causes unplanned and expensive iterations
for making many adjustments to deal with defects at this
stage [19].

Detailed studies of iteration exist in product develop-
ment [20]–[23], construction [24], design [25]–[29], and
engineering disciplines [25], [28], [30], [31], whereas very
few authors discuss them from software development view-
point [6]. A study contribute by gathering and summarizing
insights into iteration. They also create a comprehensive tax-
onomy of iteration in design and development discipline with
the selection of a few articles from software engineering lit-
erature [29]. Another study contribute by modeling iteration
in software engineering and simulating its impact on project
completion time but it lacks detailed analysis of different
iterative situation [6].

Iteration is unavoidable and part of the software devel-
opment process. Despite the iterative nature of the software
development life cycle, the least attention is paid to the
detailed iteration analysis in software engineering. Research
literature addresses different benefits and weaknesses of iter-
ation that are ambiguous for the readers. For project managers
and researchers, it is often impossible to understand the con-
text. The problem gets complex by using vague terms to refer
to iteration, sources, and impacts at different places. In this
way, themanagement of iteration becomes a challenging task.
Though iteration is ubiquitous during software development,
a detailed analysis does not exist. Therefore, the management
of iteration is a difficult task.

This article analyzes current knowledge about iteration in
the software development discipline to understand iteration
by conducting an SLR. We investigate the sources of iter-
ation, impacts of an iterative situation, and timings of the
development cycle at which it can occur. The contribution of
this study is the development of a lucid taxonomy of iteration
in software engineering, which describes that the different
perspectives on iteration have different sources, timings of
occurrence, and impacts. Furthermore, this study also demon-
strates how taxonomy can be based on literature and used to
map present studies. It is a step toward analyzing iteration in
software engineering to understand different iterative situa-
tions that highlight new research directions.

The remainder of this paper continues in eight sections.
Section II presents the research goal, questions, methodol-
ogy to conduct SLR, and quality assessment of the studies.
Next, statistical findings from selected primary studies are

described in Section III. Section IV discusses the different
sources that lead to iteration during software development.
Stages at which iteration occurs during SDLC are discussed
in Section V. Section VI presents the positive and negative
consequences of iteration which exist in the software engi-
neering literature. In section VII, we explain the proposed
iteration taxonomy and its validation based on the finding of
SLR. Threats to this review are explained in Section VIII.
Finally, conclusions and future directions are presented in
Section IX.

II. RESEARCH METHODOLOGY
The research was conducted through a systematic literature
review. According to the guidelines, the SLR process com-
prises of three core phases, i.e., planning, conducting, and
reporting [32]. The methodology followed, and the activities
performed in each phase of the SLR process are shown in
Figure 1.

FIGURE 1. Systematic Literature Review (SLR) methodology adapted
from [32].

The first step in the methodology (Figure 1) is describing
the need for the SLR. This SLR was driven by the lack
of a detailed analysis of iteration in software engineering.
Iteration is omnipresent during software development [2],
[17], [33]–[36]. Despite the iterative nature of software devel-
opment, very little attention is paid to iteration in software
engineering. None of the publications in software engineering
has treated iteration as the main subject. The use of diverse
terms to refer to iteration at different places in the literature
also contributes to this SLR’s need.

We searched ACM, IEEE, Science Direct, Scopus, Google
Scholar, and Springer digital libraries in September 2016.
In the retrieved studies, the authors do not explicitly mention
different iteration perspectives. A detailed, in-depth analysis
was conducted to get insights into iteration.

A. RESEARCH QUESTIONS
This SLR aims to investigate the different perspectives of
iteration that exist in software engineering. In order to define
different perspectives and create a taxonomy of iteration
in the software engineering discipline, the stage at which
iteration can occur, the cause or source of iteration, and its

65356 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 1. Research questions.

impacts in the development cycle need to be determined.
This is reflected in one primary and four secondary research
questions described in Table 1 (Step2, Figure 1).

B. SEARCH STRATEGY
In developing the review protocol (Step 3, Figure 1), the
search strategy is defined to include related studies and
exclude unrelated ones. The strategy involved an automatic
search using a string validated by the authors of the present
article. Search in digital libraries was performed using search
string. The string was specified using keywords derived from
research questions. We identified alternative spellings and
synonyms for the keyword to compose the search string. Our
search string comprised of three parts: iteration, software
development, and lifecycle. Keywords are connected through
ANDoperator and synonyms are connected throughORoper-
ator.

Automatic searches consisted of the web search of themost
relevant indexed databases. The digital libraries searched and
results returned are given in Table 2. We refined the search
string through a pilot study and omitted the synonyms, which
did not influence the paper returned via searches. We come to
the following string after refining the string through several
iterations.

C. INCLUSION AND EXCLUSION CRITERIA
For a study to be included in the review as a primary study,
it must fulfill the inclusion criteria summarized in Table 3,
and it must not meet exclusion criteria presented in Table 4.
We were concerned only in primary studies, between 2007 to
February 2017, which are on software development lifecycle
or any phase of the development process and present some
contribution on the iteration during development. Validation
of the review protocol (Step4, Figure 1) is performed by the
authors of the article.

TABLE 2. Electronic sources used for literature search.

TABLE 3. Inclusion criteria.

TABLE 4. Exclusion criteria.

D. STUDIES SELECTION PROCESS
Primary studies were selected by following four stages pro-
cess presented in Figure 2. Each stage of the study selection
process is described in the following paragraphs.

In stage 1, automatic search using search string was per-
formed to obtain studies from digital libraries. A total of
2072 search results were received, among which Google
scholar returned 425 studies, IEEE Xplore 507, Scopus 185,
Science Direct 678, ACM 172, and Springer Link 105 results.

Out of 2072 studies, 1391 studies were discarded at
stage 2. At this stage, the exclusion of unrelated studies was
performed based on title, abstract, publication venue, and
keywords analysis. If there was a doubt about any study,
including or excluding, it was added for later considera-
tion. After this stage, 681 studies remained, which were
downloaded and organized.

Selected studies from the last stage were revised by reading
the introduction, conclusion, and discarded book chapters,
newsletters, dissertations, short papers with a length of fewer

VOLUME 10, 2022 65357



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

FIGURE 2. Study selection process.

TABLE 5. Data extraction form.

than three pages, and symposiums. This stage excluded
179 studies leaving 502 studies in the selection.

Three hundred forty-nine studies were discarded in the last
stage by applying detailed inclusion-exclusion criteria and
reading the full text. Afterward, 158 studies were obtained
in the selection, which was then subjected to quality assess-
ment. Five studies having low-quality scores were discarded,
leaving 153 primary studies.

E. DATA EXTRACTION AND SYNTHESIS
We included just journal articles and conference papers in
this study. The selected primary studies were categorized into
quantitative evaluation or validation, qualitative evaluation
or validation, solution proposal, and experience or opinion
study. A data extraction form shown in Table 5 was used
to record details about the study overview and to answer
the research questions. To extract information presented in
Table 5 a detailed analysis of all the 153 selected primary
studies has been conducted. A spreadsheet editor (Microsoft
Excel) was used to record all the extracted data.

Data extraction involved all of the authors of the present
article. One of the authors extracted the data, and others
reviewed it based on convenience. There were disagree-
ments related to some studies, which were resolved by
discussion.

According to a study
Data synthesis involves collating and summarizing
the results of the included primary studies [32].

During the data synthesis, we extracted and normalized the
terms used to refer to iteration, its source, the stage at which
it occurs, and its consequences during software development.
We built a comprehensive taxonomy of iteration based on its
cause and stage of occurrence.

F. QUALITY ASSESSMENT
Quality assessment (QA) is critical in SLR [32]. The selected
studies were evaluated against a set of 30 quality criteria given
in Table 6.
To assess the quality of primary studies, we categorized

the 153 studies into four categories. The four categories are
Quantitative evaluation/validation (Qnt), Qualitative evalua-
tion/validation (Qlt), Solution (Sol), and Experience/opinion
(Exp/Op) studies. Each study was assessed against different
quality criteria based on the category it belongs to. We used
16 quality assessment questions for Qlt papers, 19 for Qnt,
9 for Sol, and 6 for Exp/Op studies as presented in Table 6
and proposed by previous studies [32], [37]–[41].

Each question is graded on the scale of three optional
answers: yes=1, no=0, or partial=0.5. Thus, a quality score
for a study is calculated by adding the scores of all the

65358 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 6. Quality assessment criteria for primary studies.

answers to quality criteria questions. The quality assessment
scores for all the primary studies are presented in Table 12.

III. STATISTICAL FINDINGS
This section presents and summarizes this systematic review.
In total, we selected the 153 primary studies, and we extracted
data from these studies using Table 5. In the following sub-
sections, we start by presenting quality assessment results and
an overview of selected primary studies. The answers to each
research question are described in the later sections.

A. QUALITY ASSESSMENT RESULTS
The selected studies fall into four categories, i.e., qualitative,
quantitative, solution proposal, and experience/opinion. Dif-
ferent types of studies cannot be assessed according to the
same criteria [32], [37]. So, we formulated different assess-
ment questions for each study type by following guidelines
of [37], [38], [40], [41]. Table 12 presents the quality assess-
ment score for all the selected primary studies based on the
quality assessment checklist given in Table 6. The average

FIGURE 3. Studies included in SLR by year of publication.

overall quality of the selected primary studies is 80.56, which
is quite reasonable.

B. STUDIES OVERVIEW
Our SLR included the studies published from 2007 to Feb
2017. Temporal and geographical view of the selected pri-
mary studies are shown in Figure 3 and 4 respectively.

VOLUME 10, 2022 65359



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 7. Study types.

FIGURE 4. Geographical view of the studies included in SLR.

We grouped the selected primary studies into four categories
demarcated by [37]. Table 7 describes the research types of
selected studies.

The majority of the studies are in the solution category
with 83 studies (54.25%) followed by the quantitative evalua-
tion/validation category with 53 studies (34.64%), qualitative
evaluation/validation category with 34 studies (22.22%), and
12 studies (7.84%) in experience/opinion category.

IV. SOURCES OF ITERATION
This question aims to find the reasons that lead towards iter-
ation during software development. We answer this research
question by reading 153 studies returned by our SLR, given
in Table 12. Sources of iteration gained from literature
are summarized in Table 8 and explained in the following
paragraphs.

The authors are not explicitly mentioning the causes of
iteration in these primary studies. From a detailed analy-
sis of these articles, we extracted different sources for the
iteration. Due to many extracted causes, we grouped those
into 22 leading causes. The most cited causes are conflicts,
defects, and code smells, whereas the least referenced causes
are poormanagement and different developmentmethods fol-
lowed by teams. Conflicts, referenced in 21 studies (13.56%),
28(18.06 %) studies cited errors/defects/faults cause for the
iteration, code and design smell referenced by 23 studies
(14.08 %), while 1 study (0.65%) cited poor management

and 2 studies (1.29%) cited different methods followed by
different teams cause.

A. CONCEPTUAL GAPS AND AMBIGUITIES
During software development, conceptual gaps and ambigui-
ties become a reason to iterate. It includes vague and unclear
requirements, imprecise and incomplete information, large
and poorly defined features, missing the detailed require-
ment, ambiguity, and assumptions. Due to any one of the rea-
sons mentioned above, either an enhancement occurs, leading
to reattempting the task.

B. CONFLICTS
Conflict includes confusion due to the disparate industrial
background of teams, contradictory requirements, conflicting
requirements, different views and opinions of different stake-
holders, mismatching goals, different levels of understanding
of team members, uncertain and contradictory goals, and
multiple quality objectives. Whenever there is any conflict
during development, iteration occurs to resolve that conflict
and get a mutual agreement.

C. UNCERTAIN DECISIONS
Uncertainty and inconsistency in early decisions lead to bad
decisions, e.g., taking poor or incorrect architecture structure
as a blueprint, reassessments, and recalculating schedules.
During software development, an uncertain and lousy deci-
sion is a source to perform a task again.

D. ERRORS, FAULTS, DEFECTS
Iteration occurs during software engineering processes due
to unexpected errors, faults, misunderstandings, developers’
mistakes, unclear specifications, problems discovered in the
later phases, errors, defects. Cognitive bias leads to reason-
ing errors and becomes a cause of iteration. Defects in the
requirement lead to incomplete, inconsistent, inadequate, and
ambiguous requirements, which become a source of iteration.

E. COSMETIC CHANGES AND ENHANCEMENTS
When software development products are of aesthetic appeal
or assessment criteria are subjective, there are lots of cosmetic
changes that occur during development. These cosmetic

65360 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 8. Sources of iteration.

changes, e.g., format, alignment, comment, are a source
of iteration—code changes due to removal, refactoring,
or extension of code cause iteration during software devel-
opment. Enhancement to add a new feature, accommodate
changes, and enhance existing features is also a reason to
iterate.

F. POOR MANAGEMENT
Insufficient planning, continuous changes in requirements,
configuration problems, defects, and critical stakeholders
being overlooked are consequences of poor management,
leading to performing work again.

G. LIMITED RESOURCES, UNKNOWN RISKS, SCOPE
ADJUSTMENTS
Scope adjustments to meet schedule, multiple people
involved in a decision and limited budget, different priority
levels, unknown and risky conditions, unfordable and infea-
sible requirements, unforeseen events, and limited resources
occur during software development and are the reason for
iteration.

H. BUGS
Iteration in the software development lifecycle can be due
to bugs that occur due to miscommunication, programming
errors, and continuous changes.

I. CODE AND DESIGN SMELLS
Whenever there are bad smells in code or design, it becomes
rigid and challenging to modify. Iteration occurs to remove
bad smells and enhance the code and design flexibility. Code
erosion, duplicated code, lazy—large, complex, unwieldy,
and less cohesive– classes, coding style violation, design

anomalies, and flaws, evolving code, non-compliance to
design principles, extreme metric values, antiquated code,
unstructured code, clones, rigidity and immobility in design,
weak attributes in coding, and deteriorated code are all the
different forms or reasons of bad smells which are the source
of iteration during development and maintenance. Time pres-
sure leads to a higher workload which also becomes a reason
to introduce bad smells by developers.

J. TECHNICAL DEBT
During development, it is the situation when there is a need
to take a shortcut. An advantage of technical debt is that
it accelerates development but has to repay it later in the
development lifecycle. Technical debt due to lack of trace
structure, unimplemented features, outdated documentation,
poorly organized logic creates iteration. Deferred technical
debt during development creates much rework.

K. USER FEEDBACK
Maintenance requests, feedback discussions, late customer
feedback, lack of user involvement, documentation unavail-
ability, user feedback on prototypes, and usability evaluation
of user interface are different causes of iteration in software
development.

L. NON-DEFECT CORRECTIONS
It includes perfective and preventive changes, which cause
refinements.

M. ENVIRONMENTAL ISSUES
Changes in technology, business context, market trends, poli-
cies and legislation, commercial strategies, technical renova-

VOLUME 10, 2022 65361



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 9. Stages of development cycle at which iteration occurs.

TABLE 10. Impacts of iteration.

tion, outdated requirements, and plans are reasons to perform
work again during software development projects.

N. INACCURATE ASSUMPTIONS BASED
IMPLEMENTATION
Iteration during software development can be partial imple-
mentation, incorrect implementation, inaccurate assump-
tions, ignorance, not exploring all possible solution options,
and development order violations.

O. REQUIREMENT EVOLVEMENT
Requirements evolve during development which in turn leads
to performing a work again. There are many reasons for
requirement evolvement; some of those are changes in the
environment in which software is situated, external changes
by the company context, stakeholders cannot envision at the
start, clients change their minds later, and deeper exploration
of technology.

P. ABSTRACTION
Whenever there is a lack of clarity or detailed initial design,
it needs to transform from abstract to concrete specification,
which requires the iteration of the initial one.

Q. ENORMOUS DESIGN SPACE
When there is the involvement of multiple factors in selecting
variants against a set of objectives, then, to avoid local opti-
mization and select the best option, evolve the initial ideas
that require iteration.

R. VIOLATION OF STANDARDS
Lack of standards and guidelines, violation of heuristics,
and lousy programming techniques are some of the causes
of performing work again during a software development
project.

65362 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

S. CORRECTIVE AND NON-CORRECTIVE CHANGES
Change can be corrective due to defects, perfective due to
enhancement or expansion, adaptive due to modification,
and preventive due to malfunctions. Requirement change due
to error, modifications of original requirements, change of
operational purpose, or support user request leads to require-
ment instability, volatility, and creep, which generates
rework. Some iteration occurs to implement any changes–
corrective, non-corrective, or adaptive. When changes occur
in a non-negotiable scope, it requires many adjustments.

T. DIFFERENT DEVELOPMENT METHODS FOLLOWED IN
TEAMS
Unaligned agendas of different stakeholders and different
methods followed by the teams, e.g., front end team follow
agile and back end team follow plan-driven methodologies,
lead to the iteration during software development.

U. COMPLEXITY
Wicked (underspecified and open-ended) problems, highly
complex code, and volatile environment are reasons to per-
form a task again, develop a prototype to explore require-
ments, and refine initial ideas.

V. POOR UNDERSTANDING
Language differences, miscommunication, time zone differ-
ences lead to ambiguity in requirements and misunderstand-
ing of design intent. The poor understanding causes much
rework during software development.

V. STAGES AT WHICH ITERATIONS OCCUR
Iteration occurs during the whole software development life-
cycle in different forms and at each stage has different
impacts. Iteration occurs during requirement engineering to
get a clear understanding and mutual agreements. Iteration
invents an innovative and straightforward, less complex solu-
tion in the design phase, and making changes is easier later.

When products have aesthetic appeal, iteration occurs dur-
ing user interface design for quality enhancement of initial
one and perfection. During implementation and maintenance,
iteration removes the bad smells and improves code quality.
Iteration occurs to remove the defects during the whole soft-
ware development lifecycle.

Stages at which iteration can occur during software devel-
opment lifecycle from the extracted data against selected pri-
mary studies that cite these stages are summarized in Table 9.

VI. IMPACTS OF ITERATION
In software engineering, iteration has both positive and
negative consequences. Impacts of iteration extracted from
selected primary studies are summarized in Table 10 and
explained in the following paragraphs.

A. ITERATION POSITIVELY IMPACT ON QUALITY
Enhancement of quality by iteration is referenced by 21 stud-
ies, whereas three studies write negative about iteration

impacts on quality, as given in Table 10. Selected view-
points of different authors about iteration impacts on quality
are: refactoring improves code and software quality [33],
[51], negotiation during requirement engineering improves
requirements quality [116], refactoring improves quality by
removing code smells [3], iteration enhances the various char-
acteristics of the software quality [53], [165], iteration results
in improving internal quality of the system while preserving
its functionality [103]. In system evolvement, refactoring is
performed to improve the code quality, but the analysis shows
that some refactoring techniques improve whereas others
depreciate the quality [122]. Iteration caused by wild require-
ments changes may damage the quality of the software [49].

B. ITERATION ENHANCES UNDERSTANDABILITY
The literature highlighted that iteration increases concep-
tual clarity and understandability. The positive impacts
of iteration on understandability and clarity are cited by
17 studies, whereas none of the studies discuss its nega-
tive impacts on understanding. Iteration progressively refines
the genuinely dubious objectives into precise requirements.
Iteration enhances program understanding [128], helps the
stakeholders to understand the requirements before they sign
off [54], code gets simpler and easier to understandable after
iteration [19].

C. ITERATION INCREASES PRODUCTIVITY
According to [44] and [61], iteration during development
has a positive impact on productivity and quality. Refac-
toring leads to higher development productivity and assists
developers in programming speed. Furthermore, intricate and
intertwined code is harder to oversee and maintain than refac-
tored code. Consequently, when maintenance is complex,
development productivity will show a diminishing tendency
after some time [167].

D. ITERATION MAKES MAINTENANCE EASIER
Iterations make the software easy to maintain and modify
from the product and process perspective, i.e., make it scal-
able. Iteration enhances extensibility, makes it simpler to
include new elements, and enhances maintainability. Fifteen
studies cite the positive impact of iteration on maintenance,
but none referenced its adverse impacts on maintainability.
Iteration progressively refines the genuinely dubious objec-
tives into clear requirements. [7] write that code clones are
the one reason that makes maintenance difficult. Refactoring
can remove code clones and enhance flexibility, although
it may not always be a good option. Iteration makes the
software adaptable, and adding new functions becomes less
demanding [128].

E. COMPLEXITY REDUCES AS A RESULT OF ITERATION
Thirteen studies cite the positive impact of iteration on
complexity, as shown in Table 10. None of the selected studies
referenced the negative impacts of iteration on complexity.
Studies have highlighted that iteration lessens the multi-

VOLUME 10, 2022 65363



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

faceted nature of code, design, and general framework; fur-
thermore, it diminishes the size of the code and reduces the
complexity [60], [76], [142], [166], [168].

F. ITERATION HELPS IN MAKING CORRECT DECISIONS
Iteration leads to the right decisions by removing ambiguities
and making realistic estimations [10]. None of the studies
cited the negative impact of iteration on decision making,
whereas 8 studies referenced better decision making as a
result of iteration. It results in the selection of the best among
multiple options for the defined criteria [104].When conflicts
of interest exist among multiple stakeholders’ goals, iteration
helps in making trade-offs and building consensus [13].

G. ITERATION LEADS TO INNOVATIVE PRODUCTS
Creativity is thinking of new thoughts, and innovation puts
those thoughts into a practical project. It can be new thoughts
on the best way to build up a superior product, a better design,
or better processes for development. Iterations lead towards
innovation, creativity, and secure upper hands through feature
separation [148].

H. ITERATION HELPS IN REMOVING DEFECTS
Increment in the defects by iteration is referenced by 6 stud-
ies, while 14 studies write that iteration results in remov-
ing defects, as can see in Table 10. Iteration removes
ambiguities and results in complete and less ambiguous
requirements [11]. Iteration fixes bad design practices [76].
Sometimes, while repairing defects, iteration results in the
introduction of new defects [3].

I. ITERATION INCREASES COST, WHILE, IT IS COST
EFFECTIVE IN LONG RUN
From selected primary studies, 8 studies highlighted that iter-
ation increases the cost of the development, while 10 studies
cited that iterations are cost-effective in the long run. Iteration
during software development lessens maintenance costs by
improving internal structure [103]. Refactoring reduces the
cost of making changes to the system [60].

J. DEVELOPMENT TIME INCREASES
Delays in development as a result of iteration is referenced
by 7 studies, although 8 write that early iteration minimizes
late rework and reduces development time. For instance, [16]
write that iteration caused by poor management results in
project delays. Code refactoring leads to rapid develop-
ment [48]. According to [61], iteration results in reducing the
time and cost of the project.

K. EFFORT
Iteration impacts negatively on the effort required to develop
a software, as shown in Table 10, 5 studies cited that whenever
there is an iteration effort required to complete a project
increases, but, 2 studies also referenced a decline in the
overall effort. Rework increases cost for customers and effort

by developers [152]. According to another study, refactor-
ing results in achieving the best outcome with the least
effort [167].

VII. TAXONOMY OF ITERATION
The taxonomy classifies different iterative situations based
on the source and timings of the development cycle at which
it occurs. Iteration has different perspectives during software
development because different iterative situations may orig-
inate from diverse sources, at different timings, and have
impacts. So to handle different perspectives, different ways
can be used. Four distinctive iterative perspectives are identi-
fied: Rework; Refinement; Exploration; Negotiation. Differ-
ent perspectives of iteration defined based on source, stage,
and impacts are described in the following subsections, and
the taxonomy of iteration is presented in Figure 5.

A. REFINEMENT
Refinement is the enhancement of initial specification. It has
subtypes in terms of its impacts. One of those is refactor-
ing, which has minimal impact. This type of refinement is
done when sufficient time is available or where products
have aesthetic appeal or assessment criteria is subjective.
It portrays a situation in which essential requirements have
been satisfied and experience further iterations to upgrade
optional qualities, such as enhancing style or diminishing
cost. In general, refinement is the process of removing impu-
rities and improving something by making small changes,
e.g., refactoring. Refactoring is the way to change a software
system not to modify the code’s outer behavior but to enhance
its interior structure.

B. REWORK
Rework is one of the iteration’s perspectives that seem most
regularly in literature. It is reattempting a work in the same
manner as before due to changed information or supposi-
tions. Rework requires the reiteration of an assignment since
it has initially endeavored with incorrect data and suppo-
sitions. An example of rework in software development
is a change in requirements, or simply requirements mis-
understood. Rework may be produced because a procedure
is unpredictable, so it is impossible to recognize the most
productive order of work execution beforehand. It may be
because of issues that appeared during analysis or require-
ment changes. If the timing constraints require starting it
with incomplete information, it is impossible to eliminate
rework because of changed input information later. Rework
is adverse because of the increase in time and cost without
any increase in software performance and quality.

C. EXPLORATION
Dynamics of exploration involve an iterative process of
seeing different alternatives, assessing those solutions, and
selecting the optimal one. It incorporates the investigation
of new thoughts to tackle an emerging issue and iterative
convergence to a solution.

65364 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

FIGURE 5. Iteration taxonomy.

D. NEGOTIATION
Negotiation is an iteration perspective that describes the cir-
cumstance in which the trade-off between various members’
objectives and constraints is made by understanding and
negotiating their conflicting goals. Negotiation is utilized to
consolidate the commitment from variousmembers who have
little information about each-other’s work, and they regularly
have clashing targets. When too many conflicting param-
eters are involved, negotiation turns out to be excessively
troublesome.

The taxonomy shown in Figure 5 presents four different
perspectives of iteration that consistently exist in the software
engineering literature. The objective is a detailed analysis
of iteration, and the taxonomy will explain different termi-
nologies used for iteration with its contextual description to
researchers and managers. It will also help in making the
comparison between different iterative situations.

To validate the taxonomy, four studies ([16], [17], [34],
[118]) were selected to completely map and describe
the different iterative perspectives to the taxonomy. First,
we describe in detail how the studies can be mapped to

taxonomy by selecting four studies then present a summary
of all selected primary studies of the SLR. All four studies
contain specific iterative situations mapped to the taxonomy.
This mapping is summarized in Figure 6 and explained in
the following paragraphs. For each paper, the paths from
taxonomy, its classification, and its context are explained.
In many primary studies, the iterative striations are deduced
from the text, and it involves a detailed analysis of each study
to extract the related evidence.

In the first study, the authors talk about an iterative
situation that occurs during the architectural design for
selecting an optimal option among the multiple variants,
the analysis, synthesis, and evaluation cycle continue for
choosing the best options in the given circumstances [17].
This study maps on exploration (iteration) in the design
phase of software development due to the enormous design
space.

In the second study, authors code an iterative scenario that
arises during actual development time due to taking shortcuts
for short-term benefit; repayment occurs in the long run in
the different form of refactoring and code improvements [34].

VOLUME 10, 2022 65365



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

FIGURE 6. Illustration of taxonomy.

This study maps on refinement (iteration) in the implementa-
tion phase due to the technical debt.

Two different scenarios of iteration are extracted from
the textual description of the third study [118]. The first
iterative situation is due to the limited budget and multiple
people involved in the requirement elicitation that leads to
the negotiation. In the second scenario, the product backlog is
updated due to the feedback on prototypes from the customers
in the requirement eliciting stage. This study maps on both
refinement and negotiation.

In the fourth selected study for the validation, authors illus-
trate the rework perspective of the taxonomy, and multiple
causes of it are discussed [16]. Overall, this study describes
three paths from the taxonomy shown in Figure 6. The
multiple causes extracted from the study are: critical stake-
holders overlooked unaligned agendas, insufficient planning,

continuous changes, defects that cause the rework throughout
the whole software development lifecycle.

Further, we have revised the same 153 studies selected
initially from the SLR search process to validate the taxon-
omy. We then extracted the iterative perspectives that exist
in the study according to the taxonomy and summarized the
paths from each study in Table 11. We followed the same
data extraction, and mapping process explained in Figure 6.
The number of studies verifying each iterative perspective
against the stage of the development life cycle is shown in 7.
Out of 152 studies, 41 studies were mapped on multiple
perspectives of iteration, 10 studies on exploration, 59 studies
on refinement, 28 studies on rework, and 13 studies mapped
on negotiation. Note that it is also possible that a study can
be mapped to multiple iterative perspectives if it contains
several iteration scenarios that exist in software development

65366 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 11. Taxonomy paths illustration by selected studies.

projects. For example, both rework and refinement are men-
tioned in a study as given in Table 11 [127].

VIII. VALIDITY THREATS AND EVALUATION
We used internal, external, construct, and conclusion validity
threats classification adapted from the work of [180].

A. INTERNAL VALIDITY THREATS
According to [180], internal threats are related to the wrong
conclusion drawn about the causal relationship. This type of
threat can occur due to personal bias on study understanding.
We tried to minimize internal threats by mitigating personal
biases. We performed the selection process iteratively by
multiple authors to remove personal biasness. Another threat
to internal validity can be erroneous data extraction as the
number of primary studies is significant, and data extrac-
tion involves subjectivity. Data extraction was harrowing
because many studies did not explicitly mention sources,
stages, and impacts of iteration, and an interpretation of data
was required, which involves personal biasness. This threat
was minimized by performing data extraction by multiple
researchers.

B. EXTERNAL VALIDITY THREATS
The external validity of the literature review depends on the
selected primary studies. The selected studies should be valid
and representative of the review topic in the external eval-
uation. We applied inclusion, exclusion, and quality assess-
ment criteria to minimize this type of threats to select good
literature. To mitigate external validity threats, we defined
the search process iteratively by performing some trials and
getting agreement from all authors. The threat can be due to
assessing all the studies by a single researcher for inclusion
and exclusion decisions. The inclusion/exclusion decisions
were discussed with the advisor, and a test-retest approach
was applied, as recommended by the [32] to mitigate this
threat. To check reliability of the decisions, reevaluations
of inclusion and exclusion were performed for randomly
selected studies.

C. CONSTRUCT VALIDITY THREATS
Construct-related threats are about generalizing the results
[180]. We used search strings with different synonyms and
six different databases to search related studies to minimize
this type of threat. In synthesis, we extracted the common

VOLUME 10, 2022 65367



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

FIGURE 7. Summary of the selected studies.

concepts described using different terms and normalized the
terms used. Additionally, we created a lucid taxonomy based
on these concepts. In the development of research questions,
we have not completely followed the PICOC guidelines pro-
posed by [32].

D. CONCLUSION VALIDITY THREATS
We cannot identify all the primary studies that exist related
to research questions [32]. We used multiple synonyms for
the keywords to cover maximum studies and minimize this
threat while designing search string. To mitigate conclusion
validity threats, the whole process was developed carefully
and verified.

IX. CONCLUSION
The investigation into the iteration suggests that additional
care is necessary for dealing with iteration during software
development. In software engineering literature, different
authors use different terms to refer to iteration at different
places. Additionally, many different sources contribute to
iteration at different phases of the development cycle and
impact the project in different ways. In this context, the
management of iteration becomes a troublesome task. There-
fore, to resolve the issues related to iteration, we created the
taxonomy of iteration. So, the main objective of this article
was to combine the existing knowledge about the different
iterative situations and enhance understanding of these situa-
tions that consistently exist in software engineering. Different
characteristics of each iterative situation were analyzed, such
as sources/causes that lead to that situation, stages of the

development process at which it can occur, and its impacts
on the development project, positive and negative.

Our SLR is based on 153 primary studies, selected out
of 2072, through four stages. The review encompasses the
whole software development lifecycle, i.e., the review is not
restricted to a particular phase or domain. The broader scope
of the review gives us deeper insights into iteration during the
whole software development lifecycle. We have verified the
created taxonomy using selected primary studies.

The significant findings from this review and suggestions
for further research are given in the following subsection.

A. PRINCIPLE FINDINGS
In answer to RQ1.1, we have found from the literature that
there are lots of multiple causes/ sources that yield iteration
in software engineering projects. It is also noted that differ-
ent terms are being used in literature for the same cause/
source concept. Due to many extracted causes, we synthe-
sized those into twenty-two leading causes. The most cited
causes are defects, code smells, and conflicts, whereas the
least referenced causes are poor management and different
development methods followed by teams.

When responding to RQ1.2, we observed that the iteration
could occur at different phases in different forms during the
whole software development lifecycle. The 22 studies cited
iteration at requirement stage, 20 studies at design, 21 papers
at implementation, 4 studies mention iteration at the testing
phase, 27 studies talk about iteration at maintenance, while
13 articles mention the iteration during the whole software
development lifecycle.

65368 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 12. Selected primary studies with their quality score.

VOLUME 10, 2022 65369



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

TABLE 12. (Continued.) Selected primary studies with their quality score.

In response to RQ1.3, it is found that iteration has both
positive and negative impacts on the development project.
The most cited positive consequences of iteration are qual-
ity improvement (21 studies), flexible and more accessi-
ble maintenance (28 studies), understandability enhancement
(17 studies), complexity reduction (10 studies), and better
decision making (8 studies). The negative impacts of iteration
are increasing effort (5 studies), time (7 studies), and cost
(8 studies).

Regarding RQ1.4, we observed that the different iterative
situations were rarely defined in the literature. Moreover,
different authors use their terms to refer to iteration at dif-
ferent places, which is misleading. Sometimes, an iterative
situation is being denoted by different terminology and vice
versa. This makes the management of iteration difficult and
problematic for the practitioners, and it also makes problems
for researchers trying to synthesize results from different
research studies. A detailed analysis of different iterative
situations does not exist to clarify differences among different
iterative situations. On the way towards building the iteration
taxonomy, we organized an SLR. Our investigation found that
most synonyms are being used for iteration and its sources.
Without defining clear and coherent terminology, researchers
will continue choosing different terms for iteration. Addi-
tionally, it makes synthesizing process for reviews more
complex.

The terms used in our proposed taxonomy do not
entirely demonstrate the current use of the terms. However,
we built the taxonomy of the different iterative perspectives
based on the development cycle’s stage and the iteration’s
source. Understanding different iterative situations and their
after-effects play an essential role in the success of a software
project. It increases the visibility into processes. Enhancing
visibility into processes during development supports better
management of the project.

B. AUDIENCE
Though the primary purpose of the taxonomy is the detailed
analysis of iteration in software engineering to facilitate the
understandability and enhance visibility into development
processes. The target audience for our research contribution
is both practitioners and researchers. We see inconsistent and
different terms to refere iteration are a hurdle for understand-
ing and managing iteration during software development pro-
cesses. The taxonomy proposed in this article enhances the
understanding of different perspectives on unplanned itera-
tion and serves as a roadmap for practitioners and researchers
in understanding different iterative situations.

C. IMPLICATION FOR FUTURE
1) RESEARCH
The contribution of this study is the taxonomy of iteration
in software engineering. It also demonstrates how taxonomy
can be based on literature and map present studies. This
taxonomy of iteration is a step toward further research on
iteration in software engineering. If the terms are not clear and
consistent, the search process, developing search strings, and
directing literature reviews are challenging. The taxonomy
can also be used to synthesize existing knowledge, find the
gaps, and further analyze. The method used for developing
the taxonomy can also be used in other research areas. It is
also possible to investigate the relationship among different
iteration perspectives. It is also likely to conduct an expert
survey to validate the terminologies, causes, impacts, and
taxonomy.

2) PRACTICE
As a number of diverse scenarios for iterative situations are
possible, it is reasonable to accept that an iterative situation
that emerges from the requirement phase is different from
that which emerges from another phase. It is also sound to

65370 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

understand that different causes at different stages lead to
different iterative situations, and each of these scenarios can-
not be managed in the same way. Thus, the context plays an
essential role in managing iterative situations. The mapping
of the studies to the taxonomy suggests that it is often chal-
lenging to understand the context of the iteration described in
the software engineering literature. For better management
support, an implication of the taxonomy of iteration in soft-
ware engineering is that it is possible to extract the paths
and incorporate them in planning and management tools.
Contextual information about the different iterative scenarios
can be extracted from taxonomy which can further be used in
simulating the particular situation for better decision making.

APPENDIX
QA RESULTS
Quality assessment results of the selected studies are shown
in the Table 12.

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner’s Approach.

New York, NY, USA: Palgrave Macmillan, 2005.
[2] M. Dowson, ‘‘Iteration in the software process; review of the 3rd inter-

national software process workshop,’’ in Proc. 9th Int. Conf. Softw. Eng.,
1987, pp. 36–41.

[3] M.W.Mkaouer, M. Kessentini, S. Bechikh,M. Ó. Cinneéide, and K. Deb,
‘‘On the use of many quality attributes for software refactoring: A many-
objective search-based software engineering approach,’’ Empirical Softw.
Eng., vol. 21, no. 6, pp. 2503–2545, Dec. 2016.

[4] J. Ferreira, J. Noble, and R. Biddle, ‘‘Agile development iterations and UI
design,’’ in Proc. Agile Conf. (AGILE), Aug. 2007, pp. 50–58.

[5] M. Hamid, F. Zeshan, A. Ahmad, F. Ahmad, M. A. Hamza, Z. A. Khan,
S. Munawar, and H. Aljuaid, ‘‘An intelligent recommender and decision
support system (IRDSS) for effective management of software projects,’’
IEEE Access, vol. 8, pp. 140752–140766, 2020.

[6] M. Mumtaz, N. Ahmad, M. U. Ashraf, A. Alshaflut, A. Alourani, and
H. J. Anjum, ‘‘Modeling iteration’s perspectives in software engineer-
ing,’’ IEEE Access, vol. 10, pp. 19333–19347, 2022.

[7] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue, ‘‘Simultaneous modifica-
tion support based on code clone analysis,’’ in Proc. 14th Asia–Pacific
Softw. Eng. Conf. (APSEC), Dec. 2007, pp. 262–269.

[8] J.-F. Tang, ‘‘An adaptive model of health diagnosis for agile software
development,’’ in Proc. Int. Conf. Mach. Learn. Cybern., vol. 2, Jul. 2008,
pp. 655–659.

[9] K. O. Elish and M. Alshayeb, ‘‘Investigating the effect of refactoring on
software testing effort,’’ in Proc. 16th Asia–Pacific Softw. Eng. Conf.,
Dec. 2009, pp. 29–34.

[10] M. Riebisch and S. Wohlfarth, ‘‘Introducing impact analysis for archi-
tectural decisions,’’ in Proc. 14th Annu. IEEE Int. Conf. Workshops Eng.
Comput.-Based Syst. (ECBS), Mar. 2007, pp. 381–392.

[11] V. Laporti, M. R. S. Borges, and V. P. Braganholo, ‘‘A collaborative
approach to requirements elicitation,’’ in Proc. 11th Int. Conf. Comput.
Supported Cooperat. Work Design, Apr. 2007, pp. 734–739.

[12] H.Kitapci andB. Boehm, ‘‘Formalizing informal stakeholder decisions—
A hybrid method approach,’’ in Proc. 40th Annu. Hawaii Int. Conf. Syst.
Sci. (HICSS), 2007, p. 283.

[13] A. De Lucia, F. Fasano, G. Tortora, and G. Scanniello, ‘‘Assessing the
effectiveness of a distributed method for code inspection: A controlled
experiment,’’ in Proc. Int. Conf. Global Softw. Eng. (ICGSE), Aug. 2007,
pp. 252–261.

[14] K. Mu, Z. Jin, and D. Zowghi, ‘‘A measurement-driven process model
for managing inconsistent software requirements,’’ in Proc. 15th Asia–
Pacific Softw. Eng. Conf., 2008, pp. 291–298.

[15] F. M. Hamid, A. Ahmad, and E. Aimeur, ‘‘Factors contributing in failures
of software projects,’’ Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 5,
pp. 62–77, 2019.

[16] C. Ebert and S. Brinkkemper, ‘‘Software product management—An
industry evaluation,’’ J. Syst. Softw., vol. 95, pp. 10–18, Sep. 2014.

[17] U. van Heesch, A. Jansen, H. Pei-Breivold, P. Avgeriou, and
C. Manteuffel, ‘‘Platform design space exploration using architecture
decision viewpoints—A longitudinal study,’’ J. Syst. Softw., vol. 124,
pp. 56–81, Feb. 2017.

[18] M. Larusdottir, J. Gulliksen, and Å. Cajander, ‘‘A license to kill–
improving UCSD in agile development,’’ J. Syst. Softw., vol. 123,
pp. 214–222, Jan. 2017.

[19] J. Pernstål, T. Gorschek, R. Feldt, and D. Florén, ‘‘Requirements commu-
nication and balancing in large-scale software-intensive product develop-
ment,’’ Inf. Softw. Technol., vol. 67, pp. 44–64, Nov. 2015.

[20] N. Bhuiyan, D. Gerwin, and V. Thomson, ‘‘Simulation of the new prod-
uct development process for performance improvement,’’ Manage. Sci.,
vol. 50, no. 12, pp. 1690–1703, Dec. 2004.

[21] D. Unger and S. Eppinger, ‘‘Improving product development process
design: A method for managing information flows, risks, and iterations,’’
J. Eng. Des., vol. 22, no. 10, pp. 689–699, Oct. 2011.

[22] T. Taylor and D. N. Ford, ‘‘Tipping point failure and robustness in
single development projects,’’ Syst. Dyn. Rev., vol. 22, no. 1, pp. 51–71,
Mar. 2006.

[23] H.-B. Jun and H.-W. Suh, ‘‘A modeling framework for product develop-
ment process considering its characteristics,’’ IEEE Trans. Eng. Manag.,
vol. 55, no. 1, pp. 103–119, Feb. 2008.

[24] M. Haller, W. Lu, L. Stehn, and G. Jansson, ‘‘An indicator for superfluous
iteration in offsite building design processes,’’ Architectural Eng. Design
Manage., vol. 11, no. 5, pp. 360–375, Sep. 2015.

[25] D. C. Wynn, C. M. Eckert, and P. J. Clarkson, ‘‘Modelling iteration
in engineering design,’’ School Technol., Cambridge Univ., Cambridge,
U.K., Tech. Rep., 2007.

[26] J. Clarkson and C. Eckert, Design Process Improvement: A Review of
Current Practice. Cambridge, U.K.: Springer, 2010.

[27] S.-H. Cho and S. D. Eppinger, ‘‘A simulation-based process model for
managing complex design projects,’’ IEEE Trans. Eng. Manage., vol. 52,
no. 3, pp. 316–328, Aug. 2005.

[28] R. Costa, ‘‘Productive iteration in student engineering design projects,’’
Ph.D. dissertation, College Eng., Montana State Univ.-Bozeman, Boze-
man, MT, USA, 2004.

[29] D. C. Wynn and C. M. Eckert, ‘‘Perspectives on iteration in design and
development,’’ Res. Eng. Design, vol. 28, no. 2, pp. 153–184, Apr. 2017.

[30] M. J. Safoutin, ‘‘A methodology for empirical measurement of iteration
in engineering design processes,’’ Tech. Rep., Univ. Washington, Seattle,
WA, USA, 2003.

[31] R. Costa and D. K. Sobek, ‘‘Iteration in engineering design: Inherent and
unavoidable or product of choices made?’’ in Proc. 15th Int. Conf. Design
Theory Methodol., Jan. 2003, pp. 669–674.

[32] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Univ. Washington, Seattle,
WA, USA, Tech. Rep., 2007.

[33] J. Chen, J. Xiao, Q. Wang, L. J. Osterweil, and M. Li, ‘‘Perspectives on
refactoring planning and practice: An empirical study,’’ Empirical Softw.
Eng., vol. 21, no. 3, pp. 1397–1436, Jun. 2016.

[34] J. Yli-Huumo, A. Maglyas, and K. Smolander, ‘‘How do software devel-
opment teams manage technical debt?—An empirical study,’’ J. Syst.
Softw., vol. 120, pp. 195–218, Oct. 2016.

[35] H. van Vliet and A. Tang, ‘‘Decision making in software architecture,’’
J. Syst. Softw., vol. 117, pp. 638–644, Jul. 2016.

[36] V.-P. Eloranta, K. Koskimies, and T. Mikkonen, ‘‘Exploring ScrumBut—
An empirical study of scrum anti-patterns,’’ Inf. Softw. Technol., vol. 74,
pp. 194–203, Jun. 2016.

[37] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, ‘‘Requirements
engineering paper classification and evaluation criteria: A proposal and a
discussion,’’ Requir. Eng., vol. 11, no. 1, pp. 102–107, Mar. 2006.

[38] J. Vilela, J. Castro, L. E. G. Martins, and T. Gorschek, ‘‘Integration
between requirements engineering and safety analysis: A systematic
literature review,’’ J. Syst. Softw., vol. 125, pp. 68–92, Mar. 2017.

[39] S. Tiwari and A. Gupta, ‘‘A systematic literature review of use case speci-
fications research,’’ Inf. Softw. Technol., vol. 67, pp. 128–158, Nov. 2015.

[40] B. Kitchenham and P. Brereton, ‘‘A systematic review of systematic
review process research in software engineering,’’ Inf. Softw. Technol.,
vol. 55, pp. 2049–2075, Dec. 2013.

[41] D. Dermeval, J. Vilela, I. B. Bittencourt, J. Castro, S. Isotani, P. Brito,
and A. Silva, ‘‘Applications of ontologies in requirements engineering:
A systematic review of the literature,’’ Requirements Eng., vol. 21, no. 4,
pp. 405–437, 2016.

VOLUME 10, 2022 65371



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

[42] P. Ralph, ‘‘The sensemaking-coevolution-implementation theory of soft-
ware design,’’ Sci. Comput. Program., vol. 101, pp. 21–41, Apr. 2015.

[43] C. Erbas and B. C. Erbas, ‘‘Modules and transactions: Building blocks
for a theory of software engineering,’’ Sci. Comput. Program., vol. 101,
pp. 6–20, Apr. 2015.

[44] T. Zäschke, S. Leone, T. Gmünder, and M. C. Norrie, ‘‘Improving con-
ceptual data models through iterative development,’’ Data Knowl. Eng.,
vol. 98, pp. 54–73, Jul. 2015.

[45] L. Lagadec, C. Teodorov, J.-C. Le Lann, D. Picard, and E. Fabiani,
‘‘Model-driven toolset for embedded reconfigurable cores: Flexible pro-
totyping and software-like debugging,’’ Sci. Comput. Program., vol. 96,
pp. 156–174, Dec. 2014.

[46] B. Nikolik, ‘‘Software quality assurance economics,’’ Inf. Softw. Technol.,
vol. 54, no. 11, pp. 1229–1238, Nov. 2012.

[47] R.Weinreich and G. Buchgeher, ‘‘Towards supporting the software archi-
tecture life cycle,’’ J. Syst. Softw., vol. 85, no. 3, pp. 546–561, Mar. 2012.

[48] P.-H. Chu, N.-L. Hsueh, H.-H. Chen, and C.-H. Liu, ‘‘A test case refac-
toring approach for pattern-based software development,’’ Softw. Quality
J., vol. 20, no. 1, pp. 43–75, Mar. 2012.

[49] K.-D. Mu, W. Liu, Z. Jin, J. Hong, and D. Bell, ‘‘Managing software
requirements changes based on negotiation-style revision,’’ J. Comput.
Sci. Technol., vol. 26, no. 5, p. 890, 2011.

[50] S. Ahmad and N. A. Muda, ‘‘An empirical framework design to examine
the improvement in software requirements through negotiation,’’ Int.
J. New Comput. Architectures Appl., vol. 1, no. 3, pp. 599–614, 2011.

[51] E. Erturk and E. A. Sezer, ‘‘Iterative software fault prediction with
a hybrid approach,’’ Appl. Soft Comput., vol. 49, pp. 1020–1033,
Dec. 2016.

[52] C. A. Siebra, R. G. Oliveira, C. B. Seaman, F. Q. B. Silva, and
A. L. M. Santos, ‘‘Theoretical conceptualization of TD: A practical
perspective,’’ J. Syst. Softw., vol. 120, pp. 219–237, Oct. 2016.

[53] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘‘Multi-
criteria code refactoring using search-based software engineering: An
industrial case study,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3,
p. 23, 2016.

[54] V. B. R. V. Sagar and S. Abirami, ‘‘Conceptual modeling of natural
language functional requirements,’’ J. Syst. Softw., vol. 88, pp. 25–41,
Feb. 2014.

[55] A. Christopoulou, E. A. Giakoumakis, V. E. Zafeiris, and V. Soukara,
‘‘Automated refactoring to the strategy design pattern,’’ Inf. Softw. Tech-
nol., vol. 54, no. 11, pp. 1202–1214, Nov. 2012.

[56] L. Pareto, A. B. Sandberg, P. Eriksson, and S. Ehnebom, ‘‘Collaborative
prioritization of architectural concerns,’’ J. Syst. Softw., vol. 85, no. 9,
pp. 1971–1994, Sep. 2012.

[57] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, ‘‘Identi-
fication and application of extract class refactorings in object-oriented
systems,’’ J. Syst. Softw., vol. 85, no. 10, pp. 2241–2260, 2012.

[58] X. Peng, B. Chen, Y. Yu, and W. Zhao, ‘‘Self-tuning of software sys-
tems through dynamic quality tradeoff and value-based feedback control
loop,’’ J. Syst. Softw., vol. 85, no. 12, pp. 2707–2719, Dec. 2012.

[59] K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, ‘‘The agile
requirements refinery: Applying SCRUM principles to software product
management,’’ Inf. Softw. Technol., vol. 53, no. 1, pp. 58–70, Jan. 2011.

[60] L. Cao, B. Ramesh, and T. Abdel-Hamid, ‘‘Modeling dynamics in agile
software development,’’ ACMTrans. Manage. Inf. Syst., vol. 1, no. 1, p. 5,
2010.

[61] M.-I. Sanchez-Segura, F. Medina-Dominguez, A. de Amescua, and
A. Mora-Soto, ‘‘Improving the efficiency of use of software engi-
neering practices using product patterns,’’ Inf. Sci., vol. 180, no. 14,
pp. 2721–2742, Jul. 2010.

[62] C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu, ‘‘Exception handling
refactorings: Directed by goals and driven by bug fixing,’’ J. Syst. Softw.,
vol. 82, no. 2, pp. 333–345, Feb. 2009.

[63] T. Shimomura, K. Ikeda, and M. Takahashi, ‘‘An approach to GA-driven
automatic refactoring based on design patterns,’’ in Proc. 5th Int. Conf.
Softw. Eng. Adv., Aug. 2010, pp. 213–218.

[64] M. Mirzaaghaei, F. Pastore, and M. Pezze, ‘‘Automatically repairing test
cases for evolving method declarations,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2010, pp. 1–5.

[65] D. Qi, A. Roychoudhury, and Z. Liang, ‘‘Test generation to expose
changes in evolving programs,’’ in Proc. IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Sep. 2010, pp. 397–406.

[66] B. Gao, X. Ban, Q. Lv, and X. Li, ‘‘A component-based method for
software architecture refinement,’’ in Proc. Int. Conf. Intell. Control Inf.
Process., Aug. 2010, pp. 574–578.

[67] T. Heyman, R. Scandariato, andW. Joosen, ‘‘Security in context: Analysis
and refinement of software architectures,’’ in Proc. IEEE 34th Annu.
Comput. Softw. Appl. Conf., Jul. 2010, pp. 161–170.

[68] K. Usha, N. Poonguzhali, and E. Kavitha, ‘‘A quantitative approach
for evaluating the effectiveness of refactoring in software development
process,’’ in Proc. Int. Conf. Methods Models Comput. Sci. (ICMCS),
Dec. 2009, pp. 1–7.

[69] S. C. Lu and N. Jing, ‘‘A socio-technical negotiation approach for collab-
orative design in software engineering,’’ Int. J. Collaborative Eng., vol. 1,
nos. 1–2, pp. 185–209, 2009.

[70] K. Mohan and B. Ramesh, ‘‘Traceability-based knowledge integration in
group decision and negotiation activities,’’ Decis. Support Syst., vol. 43,
no. 3, pp. 968–989, Apr. 2007.

[71] A. Bucaioni, A. Cicchetti, F. Ciccozzi, S. Mubeen, A. Pierantonio, and
M. Sjodin, ‘‘Handling uncertainty in automatically generated implemen-
tation models in the automotive domain,’’ in Proc. 42th Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Aug. 2016, pp. 173–180.

[72] A. Hudic, M. Flittner, T. Lorunser, P. M. Radl, and R. Bless, ‘‘Towards
a unified secure cloud service development and deployment life-cycle,’’
in Proc. 11th Int. Conf. Availability, Rel. Secur. (ARES), Aug. 2016,
pp. 428–436.

[73] F. Furtado and A. Zisman, ‘‘Trace++: A traceability approach to support
transitioning to agile software engineering,’’ in Proc. IEEE 24th Int.
Requirements Eng. Conf. (RE), Sep. 2016, pp. 66–75.

[74] I. Khlif, M. H. Kacem, P. Stolf, and A. H. Kacem, ‘‘Software architec-
tures: Multi-scale refinement,’’ in Proc. IEEE 14th Int. Conf. Softw. Eng.
Res., Manage. Appl. (SERA), Jun. 2016, pp. 265–272.

[75] H. Xu, S. Krusche, and B. Bruegge, ‘‘Using software theater for the
demonstration of innovative ubiquitous applications,’’ in Proc. 10th Joint
Meeting Found. Softw. Eng., 2015, pp. 894–897.

[76] H. Wang, M. Kessentini, W. Grosky, and H. Meddeb, ‘‘On the use of time
series and search based software engineering for refactoring recommen-
dation,’’ in Proc. 7th Int. Conf. Manage. Comput. collective Intell. Digit.
Ecosyst., Oct. 2015, pp. 35–42.

[77] K. Triantafyllidis, E. Bondarev, and P. H. N. DeWith, ‘‘Guided rule-based
multi-objective optimization for real-time distributed systems,’’ in Proc.
41st Euromicro Conf. Softw. Eng. Adv. Appl., Aug. 2015, pp. 224–232.

[78] D. Tengeri, A. Beszedes, T. Gergely, L. Vidacs, D. Havas, and
T. Gyimothy, ‘‘Beyond code coverage—An approach for test suite assess-
ment and improvement,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verifi-
cation Validation Workshops (ICSTW), Apr. 2015, pp. 1–7.

[79] E. F. Cruz, R. J. Machado, and M. Y. Santos, ‘‘On the decomposition of
use cases for the refinement of software requirements,’’ in Proc. 14th Int.
Conf. Comput. Sci. Appl., Jun. 2014, pp. 237–240.

[80] A.-R. Han and D.-H. Bae, ‘‘An efficient method for assessing the
impact of refactoring candidates on maintainability based on matrix
computation,’’ in Proc. 21st Asia–Pacific Softw. Eng. Conf., Dec. 2014,
pp. 430–437.

[81] D. Kwon and R. J. Hammell, ‘‘Refinement/verification of early stage
probabilistic software project schedules in the planning stage,’’ in Proc.
15th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Paral-
lel/Distrib. Comput. (SNPD), Jun. 2014, pp. 1–6.

[82] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, ‘‘High dimensional search-based software engineering:
Finding tradeoffs among 15 objectives for automating software
refactoring using NSGA-III,’’ in Proc. Annu. Conf. Genetic Evol.
Comput., Jul. 2014, pp. 1263–1270.

[83] J.-J. Guo, N.-L. Hsueh, W.-T. Lee, and S.-C. Hwang, ‘‘Improving
software maintenance for pattern-based software development: A com-
ment refactoring approach,’’ in Proc. Int. Conf. Trustworthy Syst. Appl.,
Jun. 2014, pp. 75–79.

[84] C. Napoli, G. Pappalardo, and E. Tramontana, ‘‘Using modularity metrics
to assist move method refactoring of large systems,’’ in Proc. 7th Int.
Conf. Complex, Intell., Softw. Intensive Syst., Jul. 2013, pp. 529–534.

[85] A. Murashkin, M. Antkiewicz, D. Rayside, and K. Czarnecki, ‘‘Visual-
ization and exploration of optimal variants in product line engineering,’’
in Proc. 17th Int. Softw. Product Line Conf. (SPLC), 2013, pp. 111–115.

[86] Y. Y. Lee, N. Chen, and R. E. Johnson, ‘‘Drag-and-drop refactoring:
Intuitive and efficient program transformation,’’ in Proc. 35th Int. Conf.
Softw. Eng. (ICSE), May 2013, pp. 23–32.

65372 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

[87] H. Yang and P. Liang, ‘‘Reasoning about stakeholder groups for require-
ments negotiation based on power relationships,’’ in Proc. 20th Asia–
Pacific Softw. Eng. Conf. (APSEC), Dec. 2013, pp. 247–254.

[88] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes, and
A. Finkelstein, ‘‘STREAM-ADD-Supporting the documentation of archi-
tectural design decisions in an architecture derivation process,’’ in Proc.
IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012, pp. 602–611.

[89] X. Ge, Q. L. DuBose, and E. Murphy-Hill, ‘‘Reconciling manual and
automatic refactoring,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE),
Jun. 2012, pp. 211–221.

[90] A. B. Fadhel, M. Kessentini, P. Langer, and M. Wimmer, ‘‘Search-based
detection of high-level model changes,’’ in Proc. 28th IEEE Int. Conf.
Softw. Maintenance (ICSM), Sep. 2012, pp. 212–221.

[91] V. B. Singh and K. K. Chaturvedi, ‘‘Entropy based bug prediction using
support vector regression,’’ in Proc. 12th Int. Conf. Intell. Syst. Design
Appl. (ISDA), Nov. 2012, pp. 746–751.

[92] R. Mzid, C. Mraidha, J.-P. Babau, and M. Abid, ‘‘A MDD approach
for RTOS integration on valid real-time design model,’’ in Proc. 38th
Euromicro Conf. Softw. Eng. Adv. Appl., Sep. 2012, pp. 9–16.

[93] L. Chen, L. Huang, C. Li, and W. Luo, ‘‘Software architecture matching
by meta-model extension and refinement,’’ in Proc. 19th Asia–Pacific
Softw. Eng. Conf., vol. 1, Dec. 2012, pp. 422–427.

[94] P. Petrov, U. Buy, and R. L. Nord, ‘‘Enhancing the software architecture
analysis and design process with inferred macro-architectural require-
ments,’’ in Proc. 1st IEEE Int. Workshop Twin Peaks Requirements Archit.
(TwinPeaks), Sep. 2012, pp. 20–26.

[95] P. Conroy and P. Kruchten, ‘‘Performance norms: An approach to rework
reduction in software development,’’ in Proc. 25th IEEE Can. Conf.
Electr. Comput. Eng. (CCECE), Apr. 2012, pp. 1–6.

[96] S. Ahmad, ‘‘Negotiation in the requirements elicitation and analysis
process,’’ in Proc. 19th Austral. Conf. Softw. Eng. (ASWEC), Mar. 2008,
pp. 683–689.

[97] F. M. Gon, C. I. M. Bezerra, A. D. Belchior, C. C. Coelho, and
C. G. S. Pires, ‘‘Implementing causal analysis and resolution in software
development projects: The MiniDMAIC approach,’’ in Proc. 19th Aus-
tral. Conf. Softw. Eng. (ASWEC), Mar. 2008, pp. 112–119.

[98] S. Hayashi, Y. Tsuda, and M. Saeki, ‘‘Detecting occurrences of refactor-
ing with heuristic search,’’ in Proc. 15th Asia–Pacific Softw. Eng. Conf.,
2008, pp. 453–460.

[99] P. Mader, O. Gotel, and I. Philippow, ‘‘Enabling automated traceability
maintenance by recognizing development activities applied to models,’’
in Proc. 23rd IEEE/ACM Int. Conf. Automated Softw. Eng., Sep. 2008,
pp. 49–58.

[100] Z. Racheva, M. Daneva, and L. Buglione, ‘‘Complementing measure-
ments and real options concepts to support inter-iteration decision-
making in agile projects,’’ in Proc. 34th Euromicro Conf. Softw. Eng. Adv.
Appl., Sep. 2008, pp. 457–464.

[101] S. Afsharian, M. Giacomobono, and P. Inverardi, ‘‘A framework for
software project estimation based on cosmic, dsm and rework character-
ization,’’ in Proc. 1st Int. Workshop Bus. Impact Process Improvements
(BiPi), 2008, pp. 15–24.

[102] P. Anbalagan and T. Xie, ‘‘Automated inference of pointcuts in aspect-
oriented refactoring,’’ in Proc. 29th Int. Conf. Softw. Eng. (ICSE),
May 2007, pp. 127–136.

[103] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth, ‘‘Improving usabil-
ity of software refactoring tools,’’ in Proc. Austral. Softw. Eng. Conf.
(ASWEC), Apr. 2007, pp. 307–318.

[104] T. Neubauer and C. Stummer, ‘‘Interactive decision support for multiob-
jective COTS selection,’’ in Proc. 40th Annu. Hawaii Int. Conf. Syst. Sci.
(HICSS), 2007, p. 283.

[105] X. Zhao, B. S. Lerner, and L. Osterweil, ‘‘The role of context in exception-
driven rework,’’ in Proc. 5th Int. Workshop Exception Handling (WEH),
Jun. 2012, pp. 41–45.

[106] M. Rahimi and J. Cleland-Huang, ‘‘Patterns of co-evolution between
requirements and source code,’’ in Proc. IEEE 5th Int. Workshop Require-
ments Patterns (RePa), Aug. 2015, pp. 25–31.

[107] J. Cuenca, F. Larrinaga, and I. Arenaza-Nuño, ‘‘A software engineering
process to develop services within the arrowhead project,’’ in Proc. 42nd
Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2016, pp. 5232–5237.

[108] R. Klashner and S. Sabet, ‘‘A DSS design model for complex prob-
lems: Lessons from mission critical infrastructure,’’ Decis. Support Syst.,
vol. 43, no. 3, pp. 990–1013, Apr. 2007.

[109] L.-O. Damm, L. Lundberg, and C.Wohlin, ‘‘A model for software rework
reduction through a combination of anomaly metrics,’’ J. Syst. Softw.,
vol. 81, no. 11, pp. 1968–1982, Nov. 2008.

[110] S. Ahmad, A. K. Muda, N. A. Muda, and Z. Othman, ‘‘An approach
to estimate the savings from negotiation based on cost-benefit analysis
model,’’ in Proc. Malaysian Conf. Softw. Eng., Dec. 2011, pp. 298–303.

[111] D. Aceituna, H. Do, G. S. Walia, and S.-W. Lee, ‘‘Evaluating the use
of model-based requirements verification method: A feasibility study,’’
in Proc. Workshop Empirical Requirements Eng. (EmpiRE), Aug. 2011,
pp. 13–20.

[112] P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong, ‘‘Identify-
ing refactoring through formal model based on data flow graph,’’ in Proc.
Malaysian Conf. Softw. Eng., Dec. 2011, pp. 113–118.

[113] J. P. Carvallo and X. Franch, ‘‘Requirements negotiation for multilayer
system components,’’ in Proc. IEEE 19th Int. Requirements Eng. Conf.,
Aug. 2011, pp. 285–290.

[114] A. Aleti, L. Grunske, I. Meedeniya, and I. Moser, ‘‘Let the ants
deploy your software–An ACO based deployment optimisation strat-
egy,’’ in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., Nov. 2009,
pp. 505–509.

[115] D. de Almeida Ferreira and A. R. da Silva, ‘‘Wiki-based tool for require-
ments engineering according to the ProjectIT approach,’’ in Proc. 4th Int.
Conf. Softw. Eng. Adv., Sep. 2009, pp. 359–364.

[116] S. Ahmad and S. A. Asmai, ‘‘Measuring software requirements quality
following negotiation through empirical study,’’ Int. J. Appl. Eng. Res.,
vol. 11, no. 6, pp. 4190–4196, 2016.

[117] T.-M. Hesse, V. Lerche, M. Seiler, K. Knoess, and B. Paech, ‘‘Doc-
umented decision-making strategies and decision knowledge in open
source projects: An empirical study on Firefox issue reports,’’ Inf. Softw.
Technol., vol. 79, pp. 36–51, Nov. 2016.

[118] H. Ghanbari, J. Similä, and J. Markkula, ‘‘Utilizing online serious games
to facilitate distributed requirements elicitation,’’ J. Syst. Softw., vol. 109,
pp. 32–49, Nov. 2015.

[119] T. Saika, E. Choi, N. Yoshida, A. Goto, S. Haruna, and K. Inoue,
‘‘What kinds of refactorings are co-occurred? An analysis of eclipse
usage datasets,’’ in Proc. 6th Int. Workshop Empirical Softw. Eng. Pract.,
Nov. 2014, pp. 31–36.

[120] R. R. Souza, C. F. Chavez, and R. A. Bittencourt, ‘‘Patch rejection in
firefox: Negative reviews, backouts, and issue reopening,’’ J. Softw. Eng.
Res. Develop., vol. 3, no. 1, pp. 1–22, Dec. 2015.

[121] S. Singh and K. S. Kahlon, ‘‘Object oriented software metrics threshold
values at quantitative acceptable risk level,’’ CSI Trans. ICT, vol. 2, no. 3,
pp. 191–205, Nov. 2014.

[122] S. H. Kannangara and W. M. J. I. Wijayanayake, ‘‘An empirical explo-
ration of refactoring effect on software quality using external quality
factors,’’ Int. J. Adv. ICT Emerg. Regions, vol. 7, no. 2, p. 36, May 2014.

[123] J. Díaz, J. Pérez, and J. Garbajosa, ‘‘Agile product-line architecting in
practice: A case study in smart grids,’’ Inf. Softw. Technol., vol. 56, no. 7,
pp. 727–748, 2014.

[124] A. Yamashita and L.Moonen, ‘‘Towhat extent canmaintenance problems
be predicted by code smell detection?—An empirical study,’’ Inf. Softw.
Technol., vol. 55, no. 12, pp. 2223–2242, Dec. 2013.

[125] T. G. Nair, V. Suma, and P. K. Tiwari, ‘‘Significance of depth of inspection
and inspection performance metrics for consistent defect management in
software industry,’’ IET software, vol. 6, no. 6, pp. 524–535, 2012.

[126] G. Concas, M. Marchesi, G. Destefanis, and R. Tonelli, ‘‘An empirical
study of software metrics for assessing the phases of an agile project,’’
Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 4, pp. 525–548, Jun. 2012.

[127] D. G. Feitelson, ‘‘Perpetual development: A model of the Linux kernel
life cycle,’’ J. Syst. Softw., vol. 85, no. 4, pp. 859–875, Apr. 2012.

[128] E. Murphy-Hill and A. P. Black, ‘‘Breaking the barriers to successful
refactoring: Observations and tools for extract method,’’ in Proc. 13th
Int. Conf. Softw. Eng. (ICSE), 2008, pp. 421–430.

[129] S. Khaiyum, Y. S. Kumaraswamy, and K. Karibasappa, ‘‘Significance of
failure avoidance in software development process,’’ in Proc. Int. Conf.
Intell. Comput. Appl., Mar. 2014, pp. 340–344.

[130] T. Illes-Seifert and B. Paech, ‘‘Exploring the relationship of a file’s
history and its fault-proneness: An empirical method and its application to
open source programs,’’ Inf. Softw. Technol., vol. 52, no. 5, pp. 539–558,
May 2010.

[131] K. Petersen and C. Wohlin, ‘‘The effect of moving from a plan-driven
to an incremental software development approach with agile practices,’’
Empirical Softw. Eng., vol. 15, no. 6, pp. 654–693, 2010.

VOLUME 10, 2022 65373



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

[132] A. Joshi, N. L. Sarda, and S. Tripathi, ‘‘Measuring effectiveness of HCI
integration in software development processes,’’ J. Syst. Softw., vol. 83,
no. 11, pp. 2045–2058, Nov. 2010.

[133] C. Ebert and J. D.Man, ‘‘Effectively utilizing project, product and process
knowledge,’’ Inf. Softw. Technol., vol. 50, no. 6, pp. 579–594, May 2008.

[134] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, ‘‘When and why your code starts to smell bad,’’
in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE), vol. 1,
May 2015, pp. 403–414.

[135] G. Szoke, C. Nagy, P. Hegedus, R. Ferenc, and T. Gyimothy, ‘‘Do auto-
matic refactorings improve maintainability? An industrial case study,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2015,
pp. 429–438.

[136] H. Subramaniam, H. Zulzalil, M. A. Jabar, and S. Hassan, ‘‘Evaluation
of early aspect formation technique for aspect refactoring,’’ in Proc. 9th
Malaysian Softw. Eng. Conf. (MySEC), Dec. 2015, pp. 81–86.

[137] J. Diaz, J. Perez, J. Garbajosa, and A. Yague, ‘‘Change-impact driven
agile architecting,’’ in Proc. 46th Hawaii Int. Conf. Syst. Sci., Jan. 2013,
pp. 4780–4789.

[138] A. Chatzigeorgiou and A. Manakos, ‘‘Investigating the evolution of bad
smells in object-oriented code,’’ in Proc. 7th Int. Conf. Quality Inf.
Commun. Technol., Sep. 2010, pp. 106–115.

[139] M. A. Parande and G. Koru, ‘‘A longitudinal analysis of the dependency
concentration in smaller modules for open-source software products,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2010, pp. 1–5.

[140] B. B. Chua, ‘‘Rework requirement changes in software maintenance,’’ in
Proc. 5th Int. Conf. Softw. Eng. Adv., Aug. 2010, pp. 252–258.

[141] N. Ramasubbu and R. K. Balan, ‘‘The impact of process choice in high
maturity environments: An empirical analysis,’’ in Proc. IEEE 31st Int.
Conf. Softw. Eng., May 2009, pp. 529–539.

[142] R. Shatnawi and W. Li, ‘‘The effectiveness of software metrics in iden-
tifying error-prone classes in post-release software evolution process,’’
J. Syst. Softw., vol. 81, no. 11, pp. 1868–1882, 2008.

[143] D. Damian, F. Lanubile, and T. Mallardo, ‘‘On the need for mixed
media in distributed requirements negotiations,’’ IEEE Trans. Softw. Eng.,
vol. 34, no. 1, pp. 116–132, Jan. 2008.

[144] E. Alégroth, R. Feldt, and P. Kolström, ‘‘Maintenance of automated test
suites in industry: An empirical study on visual GUI testing,’’ Inf. Softw.
Technol., vol. 73, pp. 66–80, May 2016.

[145] M. B. Julian, ‘‘Artefacts and agile method tailoring in large-scale off-
shore software development programmes,’’ Inf. Softw. Technol., vol. 75,
pp. 1–16, Jul. 2016.

[146] A. Martini, J. Bosch, and M. Chaudron, ‘‘Investigating architectural
technical debt accumulation and refactoring over time: A multiple-case
study,’’ Inf. Softw. Technol., vol. 67, pp. 237–253, Nov. 2015.

[147] D. Dönmez, G. Grote, and S. Brusoni, ‘‘Routine interdependencies as a
source of stability and flexibility. A study of agile software development
teams,’’ Inf. Org., vol. 26, no. 3, pp. 63–83, Sep. 2016.

[148] M. Khurum, S. Fricker, and T. Gorschek, ‘‘The contextual nature of
innovation—An empirical investigation of three software intensive prod-
ucts,’’ Inf. Softw. Technol., vol. 57, pp. 595–613, Jan. 2015.

[149] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,
and S. R. D. L. Meira, ‘‘Software product line scoping and requirements
engineering in a small and medium-sized enterprise: An industrial case
study,’’ J. Syst. Softw., vol. 88, pp. 189–206, Feb. 2014.

[150] M. Daneva, E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar,
N. Ajmeri, U. Ramteerthkar, and R.Wieringa, ‘‘Agile requirements prior-
itization in large-scale outsourced system projects: An empirical study,’’
J. Syst. Softw., vol. 86, no. 5, pp. 1333–1353, May 2013.

[151] G. vanWaardenburg and H. van Vliet, ‘‘When agile meets the enterprise,’’
Inf. Softw. Technol., vol. 55, no. 12, pp. 2154–2171, Dec. 2013.

[152] R. Hoda, J. Noble, and S. Marshall, ‘‘The impact of inadequate customer
collaboration on self-organizing agile teams,’’ Inf. Softw. Technol., vol. 53,
no. 5, pp. 521–534, May 2011.

[153] K. Cox, M. Niazi, and J. Verner, ‘‘Empirical study of Sommerville and
Sawyer’s requirements engineering practices,’’ IET Softw. J., vol. 3, no. 5,
pp. 339–355, Oct. 2009.

[154] J. Paay, L. Sterling, F. Vetere, S. Howard, and A. Boettcher, ‘‘Engineering
the social: The role of shared artifacts,’’ Int. J. Hum.-Comput. Stud.,
vol. 67, no. 5, pp. 437–454, May 2009.

[155] R. Malhotra and A. Chug, ‘‘An empirical study to assess the effects of
refactoring on softwaremaintainability,’’ inProc. Int. Conf. Adv. Comput.,
Commun. Informat. (ICACCI), Sep. 2016, pp. 110–117.

[156] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella,
M. Di Penta, and A. Zaidman, ‘‘Continuous delivery practices in a large
financial organization,’’ in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Oct. 2016, pp. 519–528.

[157] J. A. O. da Cunha, F. Q. da Silva, H. P. de Moura, and F. J. Vasconcellos,
‘‘Decision-making in software project management: A qualitative case
study of a private organization,’’ in Proc. 9th Int. Workshop Cooperat.
Hum. Aspects Softw. Eng., 2016, pp. 26–32.

[158] J. Chen, J. Xiao, Q. Wang, L. J. Osterweil, and M. Li, ‘‘Refactoring plan-
ning and practice in agile software development: An empirical study,’’ in
Proc. Int. Conf. Softw. Syst. Process, 2014, pp. 55–64.

[159] L. Chen and M. A. Babar, ‘‘Towards an evidence-based understanding of
emergence of architecture through continuous refactoring in agile soft-
ware development,’’ in Proc. IEEE/IFIP Conf. Softw. Archit., Apr. 2014,
pp. 195–204.

[160] S. Koolmanojwong and J. A. Lane, ‘‘Enablers and inhibitors of expe-
diting systems engineering,’’ Proc. Comput. Sci., vol. 16, pp. 483–491,
Jan. 2013.

[161] B. Braunschweig and C. Seaman, ‘‘An examination of shared under-
standing in free/libre open source project maintenance,’’ in Proc. 6th
Int. Workshop Cooperat. Hum. Aspects Softw. Eng. (CHASE), May 2013,
pp. 113–116.

[162] G. Hanssen, A. F. Yamashita, R. Conradi, and L. Moonen, ‘‘Software
entropy in agile product evolution,’’ in Proc. 43rd Hawaii Int. Conf. Syst.
Sci., 2010, pp. 1–10.

[163] Z. Racheva, M. Daneva, A. Herrmann, and R. J. Wieringa, ‘‘A conceptual
model and process for client-driven agile requirements prioritization,’’
in Proc. 4th Int. Conf. Res. Challenges Inf. Sci. (RCIS), May 2010,
pp. 287–298.

[164] Y. Wang, ‘‘What motivate software engineers to refactor source code?
Evidences from professional developers,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2009, pp. 413–416.

[165] W. G. Griswold andW. F. Opdyke, ‘‘The birth of refactoring: A retrospec-
tive on the nature of high-impact software engineering research,’’ IEEE
Softw., vol. 32, no. 6, pp. 30–38, Nov. 2015.

[166] A. De Lucia and A. Qusef, ‘‘Requirements engineering in agile software
development,’’ J. Emerg. Technol. Web Intell., vol. 2, no. 3, pp. 212–220,
2010.

[167] M. Wahler, U. Drofenik, and W. Snipes, ‘‘Improving code maintainabil-
ity: A case study on the impact of refactoring,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Oct. 2016, pp. 493–501.

[168] P. Newman, M. A. Ferrario, W. Simm, S. Forshaw, A. Friday, and
J.Whittle, ‘‘The role of design thinking and physical prototyping in social
software engineering,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw.
Eng., May 2015, pp. 487–496.

[169] B. Weitzel, D. Rost, and M. Scheffe, ‘‘Sustaining agility through archi-
tecture: Experiences from a joint research and development laboratory,’’
in Proc. IEEE/IFIP Conf. Softw. Archit., Apr. 2014, pp. 53–56.

[170] K. D. Palmer, ‘‘The essential nature of product traceability and its relation
to agile approaches,’’ Proc. Comput. Sci., vol. 28, pp. 44–53, Jan. 2014.

[171] D. X. Houston and D. J. Buettner, ‘‘Modeling user story completion of
an agile software process,’’ in Proc. 2013 Int. Conf. Softw. Syst. Process,
2013, pp. 88–97.

[172] P. C. Brebner, ‘‘Experiences with early life-cycle performance modeling
for architecture assessment,’’ in Proc. 8th Int. ACM SIGSOFT Conf.
Quality Softw. Architectures (QoSA), 2012, pp. 149–154.

[173] P. Pohjalainen, ‘‘Bottom-up modeling for a software product line: An
experience report on agile modeling of governmental mobile networks,’’
in Proc. 15th Int. Softw. Product Line Conf., Aug. 2011, pp. 323–332.

[174] W. Heider, P. Grunbacher, and R. Rabiser, ‘‘Negotiation constellations in
reactive product line evolution,’’ inProc. 4th Int. Workshop Softw. Product
Manage., Sep. 2010, pp. 63–66.

[175] K. E. Madsen, ‘‘Collaboration strategies for distributed teams: A case
study of CAD systems integration,’’ in Proc. 4th Int. Conf. Syst., 2009,
pp. 222–227.

[176] P. Adamczyk, A. Zambrano, and F. Balaguer, ‘‘Refactoring big balls of
mud,’’ in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 50–60.

[177] I. M. Bertran, ‘‘Detecting architecturally-relevant code smells in evolving
software systems,’’ in Proc. 33rd Int. Conf. Softw. Eng., May 2011,
pp. 1090–1093.

[178] S. Adolph, P. Kruchten, and W. Hall, ‘‘Reconciling perspectives: A
grounded theory of how people manage the process of software devel-
opment,’’ J. Syst. Softw., vol. 85, no. 6, pp. 1269–1286, Jun. 2012.

65374 VOLUME 10, 2022



M. Mumtaz et al.: Iteration Causes, Impact, and Timing in Software Development Lifecycle: An SLR

[179] R. Bellamy, M. Desmond, J. Martino, P. Matchen, H. Ossher, J. Richards,
and C. Swart, ‘‘Sketching tools for ideation: NIER track,’’ in Proc. 33rd
Int. Conf. Softw. Eng., May 2011, pp. 808–811.

[180] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer, 2000.

MAMOONA MUMTAZ received the M.S. degree
in software engineering from the COMSATS
University Islamabad, Pakistan, in 2018. She is
currently working as a Lecturer at the Uni-
versity of Management and Technology. Her
research interests include change in software
development, software process improvements, and
human–computer interaction.

NAVEED AHMAD received the Ph.D. degree in
engineering design from the University of Cam-
bridge, in 2011. In January 2019, he joined FAST-
NUCES as a Professor. His research interests
include modeling and simulation, understanding
the behavior of complex systems, information
systems and security, software engineering, and
human–computer interaction (user experience).

M. USMAN ASHRAF received the Ph.D. degree
in computer science from King Abdulaziz Uni-
versity, Saudi Arabia, in 2018. He was a HPC
Scientist at the HPC Centre, King Abdulaziz Uni-
versity. He is currently an Assistant Professor and
the Head of the Department of Computer Sci-
ence, GC Women University Sialkot, Pakistan.
His research interests include exascale computing
systems, high performance computing (HPC) sys-
tems, parallel computing, HPC for deep learning,

and location-based services system has appeared in IEEE ACCESS, IET Soft-
ware, International Journal of Advanced Research in Computer Science,
International Journal of Advanced Computer Science and Applications,
International Journal of Information Technology and Computer Science,
International Journal of Computer Science and Security, and several Inter-
national IEEE/ACM/Springer conferences.

AHMED MOHAMMED ALGHAMDI He
received the B.Sc. degree in computer science and
the first M.Sc. degree in business administration
from King Abdulaziz University, Jeddah, Saudi
Arabia, in 2005 and 2010, respectively, the second
master’s degree in internet computing and network
security from Loughborough University, U.K.,
in 2013, and the Ph.D. degree in computer science
from King Abdulaziz University. He has over
11 years of working experience before attending

the academic carrier. He is currently an Assistant Professor at the Department
of Software Engineering, College of Computer Science and Engineering,
University of Jeddah, Jeddah, Saudi Arabia. His research interests include
high-performance computing, big data, distributed systems, programming
models, software engineering, and software testing.

ADEL A. BAHADDAD received the B.S. degree
in computer science from the Science’s Col-
lege, Saudi Arabia, in 2002, and the M.S. and
Ph.D. degrees in information and communication
technology from the School of Information and
Communication Technology, Griffith University,
Australia, in 2012 and 2017, respectively. He is
currently an Assistant Professor with the Faculty
of Computing and Information Technology, King
Abdulaziz University (KAU), where he has been

the Head of the Department of Systems and Educational Programs, Deanship
of E-Learning and Distance Education, since 2018. He has participated in a
number of executive committees concerned with automating operations at
the Educational Curriculum Center and the Strategic Plan of the Strategic
Center to achieve the Kingdom’s vision at King Abdulaziz University. His
research interests include diffusion and technology adoption and digital
transformation, M-service, M-commerce, LMS, and M- government. He has
many publications in these fields.

KHALID ALI ALMARHABI received the B.Sc.
degree in computer science from King Abdulaziz
University, Jeddah, Saudi Arabia, in 2009, the
M.Sc. degree in information technology from the
Queensland University of Technology, Brisbane,
QLD, Australia, in 2014, and the Ph.D. degree
in computer science from King Abdulaziz Uni-
versity and the Queensland University of Tech-
nology. He is currently an Assistant Professor at
the Department of Computer Science, College of

Computing in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia. His
research interests include information security, access control policies, infor-
mation system management, and cloud computing.

VOLUME 10, 2022 65375


