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ABSTRACT As the amount of data generated by marine acoustic observation signals grows, efficient
information acquisition of non-stationary observation signals has become a major challenge in marine
observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary
marine acoustic signals. This algorithm can increase the effective data acquisition rate while decreasing
the observation platform’s algorithm energy consumption. To constantly enhance the processing of the
observation signal through the self-feedback, the optimized algorithm is based on the sign function, the
adjustable coefficient, the adaptive step size, and the frequency domain threshold. The simulation verification
experiment and the application experiment based on the optimized algorithm are shown in this study. The
experimental results indicate that the optimized algorithm efficiency is 78.16% in the simulation conditions
and reaches 89.89% in the application experiment. And the data compression rates for the simulation
conditions and the application experiment are 74.65% and 69.32%, respectively. As a result, the optimized
algorithm’s performance has significantly improved.

INDEX TERMS Non-stationary marine acoustic signal, self-feedback, signal processing efficiency, time-
frequency data compression.

I. INTRODUCTION
Marine acoustic monitoring is one of the important technolo-
gies in marine observation [1], [2]. Marine acoustic mon-
itoring equipment is used in variety of applications, such
as sound observation of marine creatures [3], marine noise
monitoring [4]–[6], marine military surveillance and tracking
[7], [8], marine climate modeling and prediction [9], [10], etc.
Despite their differences, these applications all face similar
platform issues, such as limited electricity and growth data
management.

The marine observation environment is very extremely
harsh and special, and researchers are unable to maintain
the observation platform in time [9]. However, long-term
deployment is required for marine observation platforms such
as buoys and submersible buoys, and only a small number
of nearshore buoys may be connected to shore electricity
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via cables [11]. The majority of the other observation plat-
forms are located far away from the land, and thus face
issues such as rapid consumption of electricity and a lack
of reliable power supply [12], [13]. Although, they can only
store energy through pre-installed lithium batteries. On the
contrary, with the continuously increasing output of marine
observations and numerical marine models [14], [15], the
technical requirements of underwater acoustic monitoring
are constantly increasing, such as signal range, signal dura-
tion, signal bandwidth, signal accuracy, and real-time signal
processing capabilities, etc [2], [16], [17]. Therefore, the
power consumption of the observation platform system rises
concurrently. The contradiction between the limited elec-
tricity reserves and a large amount of data collection and
management is becoming increasingly prominent and has
caused great pressure in all aspects [14], [18], [19]. These
pressures mainly include data storage and quality control,
efficient processing and visualization of the signals, system
performance improvement, low power consumption, etc [14].
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Hence the efficient use of electricity on marine observation
platforms is a necessary research area in ocean engineering.

In recent years, to make the marine observation platform
work for a longer time, it has become a feasible option to
extract the marine energy from the local, which can charge
the lithium batteries [13], [20]. A direct method to supply
electricity is to install wind-solar complementary power gen-
eration equipment [21] or wave energy power generation
devices [22] on the buoy platform, but these will also add
additional operational and maintenance burdens to the plat-
form. Nonetheless, the observation system can change the
operating mode to improve the observation efficiency and
thus achieve low power consumption. Optimizing the length
of the data transmission path is an effective way to reduce
the equipment energy consumption for the marine cluster
monitoring platform [17], [23]. In the fixed cycle of marine
observation, asynchronous power management is also an
effective way to save electricity [24]. For long-term marine
acoustic observation, the optimization of the observation sig-
nal processing algorithm can significantly reduce the signal
processing time, the amount of data storage, and the average
power consumption of the system.

In marine acoustic observation, the target signal of interest
usually accounts for a relatively small proportion, and most
acoustic signals only carry a large amount of energy in a
very short time. Therefore, the time-frequency domain of
the signal is extremely sparse. Generally, in the process of
marine acoustic observation, the proportion of the interest
signal is relatively small and the high energy only lasts for
a short time. The useful information in the time-frequency
domain of the observed signal is also very rare, with the
majority of it being background noise [25], [26]. Thereby,
the target signal acquisition and effective data storage in the
working process of the observation platform are inefficient.
In other words, in the process of signal processing and anal-
ysis for marine acoustic observations, most of the time and
electricity are dealing with background noise. The marine
acoustic observation signal is a non-stationary signal with
nonlinear, non-stationary, and non-Gaussian characteristics
[27], [28]. The time-frequency domain processing and anal-
ysis of non-stationary signals have been studied in many
fields [26], [29]. Such as compressed sensing (CS) in the field
of wireless communication [30], short-time fractional order
Fourier transformation (STFRFT) in the field of radar signal
processing [31], and so on.

In the research of this paper, the processing method of
the non-stationary signal is considered to be optimized, and
the method realizes the differential processing of the target
signal and the background noise in the observation signal.
This way can effectively reduce the time-frequency data gen-
erated by background noise, and at the same time improve
the time-frequency processing efficiency of marine acous-
tic observation signals. The time-frequency domain of the
non-stationary signal can be regarded as a sparse model [32].
This model can realize self-feedback optimization of the
marine observation signal processing process by introducing

the sign function, the adjustable coefficient, and the fre-
quency domain threshold. The optimized algorithm has adap-
tive signal classification processing capability. Furthermore,
the optimized algorithm simplifies the processing of the back-
ground noise and improves the information acquisition rate
of the observed signal without changing the time-frequency
resolution of the original algorithm. As a result, the amount
of data in the time-frequency domain can be greatly reduced,
and the effective data storage rate of the observation platform
can be improved.

The remainder of this article is organized as follows.
Section 2 mainly analyzes the limitations of the original
algorithm. Then it proposes the optimization method and
implementation process of the algorithm. In Section 3,
the performance of the optimized method is assessed and
compared using simulation. In Section 4, a verification exper-
iment was applied to the optimized algorithm for the acoustic
observation of the Penaeus vannamei. Finally, the conclu-
sions of the research contents are drawn in Section 5.

II. ALGORITHM ANALYSIS AND PROPOSAL
In marine acoustic observations, the information of acous-
tic signals is multi-dimensional, and time-frequency domain
information is one of the most important information. This
sectionmainly optimizes the time-frequency processing algo-
rithm of non-stationary acoustic signals and realizes adaptive
high-efficiency processing.

A. LIMITATION ANALYSIS
Short-time fractional order Fourier transformation (STFRFT)
[31], Wavelet transform (WT), Hilbert-Huang transform
(HHT), and short-time Fourier transform (STFT) are all
non-stationary signal processing methods [32]. They are
widely applied in marine acoustic observations [16]. Among
them, STFT is one of the most commonly used in marine
acoustic observation engineering [33]. In this paper, we take
STFT as an example to study and analyze the optimization
algorithm, which can be expressed as

STFTx(τ, f ) =
∫
x(t)h∗(t − τ ) e−j2π ftdt (1)

where x(t) is the observation signal, t is the observation
time, h (t − τ) is the window function, τ is the frameshift,
f is the signal frequency. The fixed window function of
STFT uniformly shifts on time-domain signals continu-
ously, thereby realizing short-term stable processing of
non-stationary signals, the schematic diagram is shown in
Figure 1. In long-term marine acoustic observations, the
target signals of interest appear mostly random and short-
term, and other signals are mainly background environment
noise [27]. Therefore, the window function mainly deals
with the time-frequency domain information of the marine
background environmental noise.

The specific procedure of time-frequency domain process-
ing is shown in Figure 1. First, the signal frame is intercepted
in the time domain by the window function, the fast Fourier
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FIGURE 1. Schematic diagram of short-term stable processing of
non-stationary signals.

transform (FFT) is performed on the signal frame, and the
frequency domain data frame can be obtained. Then, by mov-
ing the window function evenly, we can get every single
signal frame performed by FFT. Although the increase of the
signal frame length and interval can improve the processing
efficiency of the observed signal, it affects the fineness of
the spectrogram and lacks the detail resolution performance
in the time-frequency domain. Therefore, it is an inefficient
way for target signal processing and efficient information
acquisition.

B. OPTIMIZED ALGORITHM
To improve the processing efficiency of the marine obser-
vation acoustic signal, this paper optimizes the signal
processing flow of the original algorithm. The optimized
algorithm retains the advantage of the signal frequency
domain resolution and accuracy. The optimized process is to
transform the uniformmovement of the window function into
a real-time self-feedbackmovement between the time domain
and the frequency domain.

The self-feedback process introduces the decision thresh-
old and the sign function sgn(ξ ) in the frequency domain to
realize the optimization of the original observation algorithm.
The optimized algorithm can adaptively distinguish the target
signal and the background noise in the observation, as in (2)
and (3), the window function can adaptively select themoving
step size based on self-feedback.

sgn(ξ )

=

{
1, ξ ≥ 0
−1, ξ < 0

(2)

Optimized-STFTx(τ, f )

=


STFTx(τn, fτn ) =

∫
x(t)h∗(t − τn)e−j2π fτn t

ξ = THR–Max(fτn ), n ∈ N
τn+1 = M sgn(ξ )

· τ1,M ∈ [1, 2], n ∈ N
τ1 = K

(3)

where ξ is the frequency domain detection value, τn is the
adaptive step size of window function, fτn is the frequency of
the window function at the current moment, τ1 is the starting

FIGURE 2. Schematic diagram of adaptive stable processing of
non-stationary signals.

step K,M is the adjustable coefficient, THR is the frequency
domain threshold.

In the optimized algorithm, the maximum frequency
Max(fτn ) of each signal frame is subtracted from the fre-
quency domain threshold THR, and then the frequency
domain detection value ξ can be obtained. The sign function
sgn(ξ ) acts on the adjustable coefficient M and the starting
step τ1, after that the updated step size τn+1 of the window
function is fed-back to the next signal frame.

If the maximum frequency of the Pth time signal frame
is greater than the frequency domain threshold, the fre-
quency domain detection becomes a negative value. It also
indicates that the target signal appears. Then the feedback
value of τP+1 becomes M−1K and the step size of the
window function decreases. Hence, the target signal can be
processed with high precision in the frequency domain dur-
ing the marine acoustic observation. On the contrary, if the
frequency domain detection is a positive value, it indicates
that there is no target signal. The feedback value of τP+1 is
M1K, and the step size of the window function is increased.
Hence, the background noise can be processed sparsely and
quickly.

As shown in Figure 2, the step size of the window function
isM−1K, when target signal 1 and target signal 2 appear, and
the step size is M1K during the background noise. In this
signal processing process, the optimized algorithm realizes
the adaptive classification of the marine acoustic observation
signal.

C. STRUCTURE OF THE OPTIMIZED ALGORITHM
The Equation derivation and analysis of the optimized algo-
rithm demonstrate its feasibility theoretically. However, the
theoretical research and the engineering application are not
completely equivalent. This section implements the specific
steps of the optimized algorithm based on the actual engi-
neering requirements. This is also an important stage before
engineering application. The structure of the optimized algo-
rithm and the specific implementation process are shown
in Figure 3.

The specific implementation procedure of the optimized
algorithm is mainly divided into five parts, as follows.
Step 1: The initial basic parameters of the optimized algo-

rithm including the sampling frequency Fs, the real-time
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FIGURE 3. The structure of the optimized algorithm.

acquisition data buffer L, and the observation signal x(t) is
generated.
Step 2: Framing processing of the observation signal.

On the one hand, the continuous observation signal is inter-
cepted by the window function, and then the signal frames are
obtained. On the other hand, the signal frame can be approx-
imately regarded as the short-term stationary processing of
the signal at this moment. Suppose the signal frame length
is W, the starting step of the frame is K and the adjustable
coefficient is M . Then the corresponding time lengths are
W/Fs, K/Fs, andM sgn(ξ )K/Fs, respectively.
Step 3: Transform the time-domain signal frame into

frequency-domain, then the frequency can be obtained at that
moment. In this paper, STFT is taken as an example, which
is widely used in non-stationary marine acoustic observation
projects.
Step 4: Extract the maximum frequency from the fre-

quency domain of the signal frame and then compare with
the frequency domain threshold. Then the frequency domain
detection value is calculated and the decision is made by
the sign function. To improve the stability of the optimized
algorithm application, the fault tolerance is recommended
as ∈ T [2, 6] and the value can be adjusted according to
the actual conditions. The fault tolerance can prevent the
influence of accidental factors. When the fault tolerance is
greater than the threshold, it means that there are invalid
frequency components in the signal frame after multiple
confirmations, and then the background noise is quickly
processed.

FIGURE 4. The simulation signal and the reference signal.

FIGURE 5. Simulation verification and comparison of the original
algorithm and the optimized algorithm. (a). The original algorithm. (b).
The optimized algorithm.

Step 5: If the data buffer is greater than or equal to L,
repeat Step 2. Contrarily, it means that there is no enough
data length for framing, then we output the spectrogram and
end the algorithm.

III. SIMULATION AND VALIDATION
A. SIMULATION AND VERIFICATION OF THE
OPTIMIZED ALGORITHM
This section uses MATLAB software for simulation and ver-
ification. The specific parameters of the simulation are set
as follows. The observation signal is a non-stationary signal,
the signal-to-noise ratio (SNR) of the signal is 5dB, and the
total duration is 1350ms, as shown in Figure 4. The target
signal is 4 linear frequency modulation (LFM) signals. The
LFM ranges are 10kHz∼ 13kHz, 10kHz∼ 13kHz, 13kHz∼
6kHz, and 10kHz ∼ 13kHz, respectively. The signal energy
ratio is 1: 1: 2: 0.5. The duration of each target signal is 50ms
and appears in 250ms ∼ 300ms, 900ms ∼ 950ms, 950ms ∼
1000ms, and 1150ms ∼ 1200ms, respectively.
We processed the observation signal on both the original

algorithm and the optimized algorithm respectively. From
the spectrogram of the observation signal, we verified and
compared these two algorithms intuitively. The parameters
of the optimized algorithm are set as follows. The signal
frame length is 256 points, the starting step is 256 points,
the step size adjustable coefficient is 2 and the fault tolerance
is 3. The results of the algorithms are compared and shown
in Figure 5.

Two points can be clearly contrasted in Figure 5. The
first point is that the optimized algorithm can identify the
target signals and the background noise, and adjust the frame
step size adaptively. It can achieve ordered high-resolution
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FIGURE 6. The performance of the algorithms. (a) The time-consuming
comparison of the two algorithms. (b) The efficiency improvement of the
optimized algorithm.

processing and sparse processing. The second point is that
the amount of data generated in the time-frequency domain
is greatly reduced. Both illustrate that the performance of the
optimized algorithm has been significantly improved.

B. EFFICIENCY OF THE OPTIMIZED ALGORITHM
Algorithm efficiency is a key metric to evaluate performance.
Under the same computer simulation conditions and same
length of duration, we can get the processing time of the two
different algorithms. Then the time consumed by the algo-
rithm processing can indirectly represent the efficiency of the
algorithm. During the same observation time, the percentage
of background noise varys for comparative analysis. The
observation signal duration is 1350ms, and the percentage
of the background noise ranges from 0 to 100%. The pro-
cessing time of the original algorithm is t1 and the optimized
algorithm is t2. To prevent the influence of accidental factors,
the algorithm processes each observation signal three times
in the experimental analysis. The average processing time of
the two algorithms are t1 and t2, respectively. The efficiency
of the algorithm is η, as shown in (4).

η =
t1 − t2
t1
× 100% (4)

The time-consuming comparison and analysis of the two
algorithms are shown in Figure 6 (Please refer to Appendix-I
for the specific data). Since the original algorithm process
each frame of the observation signal at equal intervals,
the percentage of background noise has little effect on the
algorithm’s time-consuming. The original algorithm takes
about 100ms in every simulation, as shown by the red line
in Figure 6 (a).

The optimized algorithm can adaptively identify the target
signals and the background noise, so the time-consuming of
every simulation is related to the percentage of the back-
ground noise in the observation signal, as shown by the blue
line in Figure 6 (a). In an extreme case, when the percentage
of the background noise is 0%, then the target signal is 100%.

FIGURE 7. The relationship between the adjustable coefficient and the
window function adaptive step size.

The performance of these two algorithms are equivalent at
this moment. However, as the percentage of background
noise gradually increases, the optimized algorithm’s time-
consuming keeps decreasing. The efficiency of the optimized
algorithm continues to improve, as shown in Figure 6 (b).
The optimized algorithm takes the shortest time of 22.15ms
and improves the maximum efficiency of 78.16% when the
percentage of background noise is 100%. In actual marine
acoustic observations, the proportion of background noise is
generally large, so the optimized algorithm can be executed
high-efficiently.

C. DATA PROCESSING PERFORMANCE COMPARISON
The optimized observation algorithm can adaptively distin-
guish the target signals and the background noise according
to the frequency domain threshold. The impact on the data
generated in the time-frequency domain is one of the main
achievements of the optimized algorithm.

In order to analyze the quantity of data generation in the
time-frequency domain, it is assumed that the data length
of the observation signal is LN. Two extreme conditions are
used for analysis, combining (3) and the flow of Figure 3.
When the proportion of the target signals in the observation
signal is 100%, the feedback value τn+1 is alwaysM−1K and
the number of data frames is the less than LN /M−1K. When
the SNR of the observation signal is low and the proportion
of the background noise is 100%, the feedback value τn+1 is
always M1K and the number of data frames is the less than
LN /M1K. To analyze the relationship between the adjustable
coefficient and the window function adaptive step size, the
starting step τ1 is set as K = 256, as shown in Figure 7.
As the adjustable coefficient M increases, the feedback

value of τn+1 is divergent. It can be clearly seen that M is
negatively correlated with M−1K and positively correlated
with M1K. To ensure the stability and robustness of the
optimized algorithm performance, the adjustable coefficient
value isM ∈ [1, 2]. In this paper,M takes the value 2. When
the percentage of the target signals is 100%, the number
of data frames is 2−1K. And when the background noise
percentage is 100%, the number of data frames is 2K. The
information of the observation signal is very rare when the
SNR is low. As shown in (5), σ is the percentage reduction in
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TABLE 1. The percentage reduction of the data frames.

the number of data frames for the background noise, and the
theoretical value of the data frames reduction is up to 75%.

σ =
( LN
2−1K
−

LN
21K

)
LN

2−1K

× 100% (5)

Further, we discussed and analyzed the influence on
the stability of σ introduced by the optimized algorithm in the
process of the background noise. The key parameters of the
simulation are as follows. The observation signal duration is
1350ms, the signal sampling frequency is 48kHz and the data
length is 64800 points. The percentage reduction of the data
frames keep pace with the theoretical analysis by changing
the value of K. And the signal data processing performance
of the optimized algorithm has been greatly improved, the
performance data are shown in Table 1.

IV. APPLICATION EXPERIMENT
The application experiment of the optimized algorithm is
the link between theoretical research and engineering appli-
cation. In this paper, the acoustic observation signal of
the Penaeus vannamei was used in the application experi-
ment. The experimental address is located in the Penaeus
vannamei breeding base in Fengxian District, Shanghai,
China. And the passive acoustic hydrophone model was
Brüel&Kjær-8103 with high sensitivity −211dB re 1V/µPa.
The key parameters of the application experiment were as
follows. The hydrophone was placed at 2m depth underwa-
ter, the duration of the observation signal was the 90s, the
signal sampling frequency was 48kHz, and the data width
was 16bit.

In aquaculture engineering, power frequency interference
and noise crosstalk of auxiliary aquaculture equipment are
serious. First, the acoustic observation signal was processed
by high-pass filtering to remove the low-frequency interfer-
ence of the underwater environment. Then, the original algo-
rithm and the optimized algorithm were applied respectively,
and the performance was analyzed from the operational effi-
ciency and the data compression rate. To facilitate signal
processing, the 90s duration of the observation signal was
equally divided into 3 signal segments, eachwith a duration of
30s. The process of each signal segment was repeated 5 times
to reduce the impact of accidental factors.

The original algorithm parameters were set as that the
data frame length was K = 256 points and the frameshift
step size was 2−1K = 128 points. The parameters of the

FIGURE 8. Comparison of the time-frequency domain effects of the two
algorithms. (a) The time-domain observation signal. (b) The processing
result of the original algorithm. (c) The processing result of the optimized
algorithm.

optimized algorithm were set as follows. The starting step
was K = 256 points, the adjustable coefficient was M =

2, the target signal frameshift step size was M−1K =

128 points and the background noise frameshift step size was
M1K = 512 points. The duration of the acoustic obser-
vation signal was long and the target signal was relatively
sparse. Therefore, this paper only shows the processing effect
of the 0 ∼ 30s observation signal in the time-frequency
domain, as shown in Figure 8. And the processing effect of
the 30s ∼ 90s observation signal is similar and it was not
displayed.

Figure 8 (a) illustrates the time domain observation signal,
and it is relatively intuitive to see some small burrs, but it
is difficult to obtain useful information. Figure 8 (b) shows
the time-frequency domain processing result of the original
algorithm for the non-stationary acoustic observation sig-
nal, which is also a widely used method. It can be seen
that there are sparse target signals in the time-frequency
domain. Figure 8 (c) shows the processing result of the
optimized algorithm. Figure 8 (b1) and (c1) are prelimi-
nary identical in comparison. The details cannot be shown
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TABLE 2. Operation efficiency comparison of the two algorithms.

TABLE 3. Data compression rate comparison of the two algorithms.

because the observation signal duration is too long. And
Figure 8 (b2) and (c2) are the partial magnified effect of
Figure 8 (b1) and (c1), the magnified area starts from 6.38s
to 6.44s in the time-frequency domain.

From the comparison of Figures 8 (b2) and (c2), it can be
seen that the optimized algorithm can also adaptively adjust
the signal frame length in application experiment processing.
Also, the results verified that the optimized algorithm can
realize the autonomous identification of target signal and
sparse processing of background noise.

Then, the performance of the acoustic observation algo-
rithm is studied, and the operation efficiency and data
compression rate of the two algorithms under the same
conditions were compared in the application experiment.
These two algorithms respectively processed the acoustic
observation signal of Penaeus vannamei with a duration of
90s. The comparison data of the algorithm operation effi-
ciency is shown in Table 2 (Please refer to t Appendix-II for
the detailed data), and the data compression rate is shown
in Table 3.

The processed data in Tables 2 and 3 can be analyzed to
obtain several following results. The performance of the orig-
inal algorithm are relatively stable in all aspects. The average
processing time of each signal segment is about 29.3s, and the
number of data frames is 11249. However, the performance
of the optimized algorithm has been significantly improved.
The average processing time of each signal segment is only
about 2.9s, and the number of data frames is only about 3450.
In other words, the operation efficiency of the optimized
algorithm is improved by about 89.89% compared with the
original algorithm. In terms of data processing, the average
data frame is reduced by about 69.32%.

V. RESULT
This paper includes the simulation, verification, and applica-
tion, which proves the better performance of the optimized
algorithm. Hence, we draw following results.

(1) The optimized algorithm is an adaptive non-stationary
signal processing method. It can be introduced into marine
acoustic observations for the efficient processing of non-
stationary signals. Meanwhile, non-stationary signals in other
fields can also refer to this method.

(2) The operation efficiency of the observation signal is
significantly improved. Under the same operating conditions,
the percentage of the target signal in the observation sig-
nal determines the degree of efficiency improvement. The
simulation parameters set in this paper could improve the
efficiency by 78.16%. In the application experiment,
the efficiency could be improved by 89.89%. This can save
the electrical energy of the marine observation platform or
extend the working time of the non-stationary signal obser-
vation system, which is very important and meaningful.

(3) The data processing quantity of the non-stationary
acoustic signal in the time-frequency domain is greatly com-
pressed. The compression performance is closely related to
the adjustable coefficient. The theoretical maximum data
compression rate can reach 75%. In this paper, the data
compression rate of the simulation conditions was 74.65%,
and the data compression rate in the application experiment
was 69.32%. Hence the storage proportion of effective data
is greatly improved.

VI. CONCLUSION
This paper proposed an optimized observation signal pro-
cessing algorithm, which can realize the adaptive processing
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TABLE 4. The time-consuming comparison of the two algorithms.

TABLE 5. Operation efficiency comparison of the two algorithms.

of the non-stationary signals in marine acoustic observation.
The optimization process introduces the sign function, the
frequency domain threshold, and the adjustable coefficient
for self-feedback. It realized the differential processing of the
target signals and background noise. In this paper, the STFT
method was taken as an example to carry out the simulation
and verification of the optimized algorithm, and then some
good results were obtained. Finally, the optimized algorithm
was applied to the acoustic observation of the Penaeus van-
namei. As mentioned above, the proposed algorithm was
more efficient than previous methods.

The optimized algorithm improved the operation efficiency
and data compression rate of the non-stationary signal, which
could be extended to the non-stationary signal processing
methods such as Short-time fractional order Fourier transfor-
mation (STFRFT), Wavelet transform (WT), Hilbert-Huang
transform (HHT) and Wigner-Ville distribution (WVD).

It could balance the deficiency of some algorithms which
cannot be popularized and applied in marine observation
platforms due to the complexity of calculation.

As future research, the generalization of the optimized
algorithm is a promising direction. Also, the optimized algo-
rithm can be applied to the acoustic observation of underwater
animals, monitoring of underwater non-cooperative targets,
marine seismic signal monitoring, and so on. It shows that the
optimized algorithm can be widely popularized and applied
to buoys, submarine buoys, and other marine non-stationary
signal observation platforms.

APPENDIX
See Tables 4 and 5.
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