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ABSTRACT Dairy cow face recognition using Neural Networks has several hurdles. For example, there are
only a few instances of each individual. The positions and angles of the individuals in the image fluctuate
considerably, the differences between individuals are not apparent, and the number of individuals that the
network has not been trained on is enormous, etc. In this paper, an enhanced Siamese Neural Network is used
to overcome these barriers. First, a combination of Dense Block (DB) and Capsule Network is employed as a
feature extractor to keep the spatial information of features while expanding the feature extraction capabilities
of the Convolutional Neural Network. Second, image pairings are processed through the Siamese Neural
Network to obtain bivariate features. Finally, image recognition is achieved via the correlation analysis of
bivariate features. We conduct comparison experiments with different networks on a small cow face dataset.
The experimental results demonstrate that Siamese DB Capsule Network can learn abstract knowledge about
distinct individuals and can be extended to unfamiliar cows for zero-shot learning.

INDEX TERMS Capsule network, cow face recognition, individual recognition, one-shot learning, Pearson
correlation coefficient, Siamese neural network.

I. INTRODUCTION
Intelligent agriculture has been developed continuously and
effectively through the promotion and application of artificial
intelligence in agriculture. The basis of intelligent agriculture
is large-scale farming. A prerequisite for large-scale farm-
ing is individual identification. A fundamental condition for
monitoring animal safety and food production management
is individual identification. The primary approach to identi-
fying cows in large-scale farming is to deploy electronic tags
based on RFID radio frequency technology [1], [2]. However,
electronic tags have problems. For example, they are easy
to lose and easy to tamper with. This can cause problems
such as inaccurate identity recognition and individual identity
replacement. A cow’s face exhibits human-like facial features
and rich textural elements such as patterns. Cows also have
eyes, nose, mouth, and other parts of the face that are similar
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to humans. It provides unique biological characteristics for
cow identification.

Convolutional Neural Network (CNN) has made many
attempts in cow face recognition. Lu extracted features from
30,000 cow face images using Transfer Learning [3]. The
redundancy property of the sparse representation dictionary
was used to construct a sparse representation classification
model. The accuracy of cow face recognition was com-
pared for non-incremental and incremental cases. Gou et al.
performed multiple cow face detection on 3,200 frames.
Inception v2 was used as a predecessor network for Faster
R-CNN, which was used to improve the model’s accuracy.
Non-Maximum Suppression was employed to optimize the
visual scenes [4]. Yang et al. gathered 85,200 low-resolution
pictures of the faces of 1,000 cows. For cattle facial identifica-
tion, the super-resolution network was applied as a precursor
network. While conducting image recognition, the image
information was recovered [5]. Bisen used the K-means clus-
tering algorithm to constantly deal with six prior frames and
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then used YOLO3 to detect cow faces. 2,991 photos of cattle
were used that contained multiple angles, such as the left
face, the front face and the right face angles. The multi-angle
cow face detection challenge was solved using the modified
YOLO3 model [6]. All of the above studies were conducted
with large-scale datasets. They all use Deep Feedforward
Neural Networks that include convolutional computation for
image recognition or target detection. The number of cows
on large-scale farms ranges from 200 to 1,000. The number
of cows on each farm is considerable. Obtaining a massive
number of face photos for each cow is difficult. During
data collection, the cow’s head cannot be constrained. Cows
are unable to cooperate like humans and take typical face
pictures as required. The constant movement of the cow’s
head causes no uniformity in the data collected. It causes the
cow faces in the photographs to have various orientations.
In addition, the light, background, and other variables vary
substantially [3]–[5]. Therefore, cow face data gathering is
difficult, and identification is costly. This limits the applica-
tion of CNN in the field of cow face recognition.

One-shot learning has been proposed to overcome the
following problem: there are numerous categories, but the
quantity of samples per category is minimal. LeCun et al.
utilized the signatures that a bank had on file and handwritten
signatures on checks as two inputs for a Neural Network [7].
The inputs were mapped to a new vector space to determine
their similarity. Since then, one-shot learning has solved
image classification problems, specifically facing recognition
challenges. Taigman et al. used a 3D face model to align
faces. The feature vectors of face images were extracted
by a 9-layer neural network. The obtained feature vectors
were used directly to predict whether two input face images
belonged to the same person [8]. Hoffer et al. used three sam-
ples: one test sample, one sample from the same category as
the test sample, and one sample from a different category [9].
These samples were fed through the same neural network
to extract features independently. The model minimizes the
distance between two similar features while increasing the
distance between distinct categories. Lu et al. employed a
context-aware module to improve the emphasis on the face by
automatically ignoring the background of the image. Siamese
Neural Network with center-classification was used to extract
image features. The ‘‘D-score’’ was used to analyze the fea-
tures [10]. Zong integrated depth features and RGB features.
The features were recovered by Siamese Neural Network
with privileged knowledge. This network was utilized to
tackle the intra-class noise problem in face recognition [11].
Using the cyclical learning rate, Xu et al. integrated the Incep-
tion Module into Siamese Neural Network. This strategy
improved the speed and accuracy of face recognition train-
ing. It was also suitable for small-size datasets [12]. When
one-shot learning is deployed, each category has only a small
number of labeled samples [13], [14].When the categories are
not annotated with samples, one-shot learning becomes zero-
shot learning. Zero-shot learning performs Transfer Learning
or even direct prediction through the commonality of image

features and class attributes by utilizing already trained net-
works in selected semantic spaces [15]–[18].

Due to the lack of cooperation from cows, it is difficult
to collect large amounts of data and verify the identity of
individuals. This study employs one-shot learning to tackle
the small sample size problem in individual cow face iden-
tification. For feature extraction, a Capsule Network with
Dense Blockmodule is proposed. Bivariate characteristics are
obtained through Siamese Neural Network. The relationships
of these characteristics are analyzed for cow face recognition.

The main contributions of this paper are the following:

• The Capsule Network is improved by incorporating the
Dense Block module of DenseNet. This improves the
ability of the classical Capsule Network to extract con-
volutional features and encode the spatial information of
the object.

• A model of bivariate feature correlation analysis is uti-
lized. Instead of the distance measure used in the clas-
sical Siamese neural network, the Pearson correlation
coefficient is used. Thus, the convergence of the loss
function is accelerated.

• The proposed network solves the problem of cow face
recognition with small samples. Meanwhile, it is robust
to unfamiliar cow faces and can be used for zero-shot
learning.

The organizational structure of this paper is as follows.
Section II introduces related techniques and algorithmic for-
mulations. Section III describes the proposed Siamese Neural
Network structure based on the enhanced Capsule Network.
Section IV presents the experimental conditions. Section V
discusses the experimental results. Section VI summarizes
the conclusions.

II. RELATED TECHNOLOGIES
A. CNN AND DENSENET
In a classical CNN, an image is taken as input. It passes
through the L-layer of the neural network, where the input
of the layer i is denoted as Xi−1, and the nonlinear transfor-
mation is represented as Hi (∗). Hi (∗) is the accumulation of
various functional operations, such as convolution, nonlinear
activation, pooling, etc., used to obtain the output of layer I ,
denoted as Xi. The output features of layer i are obtained
using (1).

Xi = Hi (Xi−1) (1)

DenseNet uses (2) to obtain layer i’s output features [19];
[X0,X1, . . . ,X i−1] represents the merging of the output fea-
tures of layers 0 to i-1. This tight connection exists only
in each Dense Block. Dense Blocks connect all the layers
directly and make more efficient use of feature information.
At the same time, they ensure maximum information transfer
between layers in the network.

Xi = Hi
(
[X0,X1, . . . ,X i−1]

)
(2)
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B. CAPSULE NETWORK
The classical Capsule Network consists of a shallow neural
network [20], [21]. The first layer is a regular convolutional
layer. The second layer collects 6× 6× 8× 32-dimensional
features following convolutional processes and defines the
8-dimensional vector of these features as a capsule. The third
layer performs the convolution operation in the capsule and
then obtains 10 capsules, each consisting of a 16-dimensional
vector. The Capsule Network uses (3) as the nonlinear acti-
vation function, which is called Squash. vj is the output
vector of Capsule j, and sj is the vector-weighted sum of
all Capsule outputs from the previous layer to the current
layer of Capsule j. It means that sj is the input vector of
Capsule j.

vj =
||sj||2

1+||sj||2
·
sj
||sj||

(3)

The first part of (3) maps the activation vector between
0 and 1, with longer vectors nearer to 1. The second part
ensures that the direction of the activation vector is not
altered. The Capsule Network instantiates parameters by
encapsulating convolutional neurons into neuronal feature
vectors representing specific entity types. The neuronal fea-
ture vectors are called Capsule. Each Capsule contains spatial
information, such as the position, texture, orientation, and
probability of occurrence of a particular entity. There have
been various attempts to improve the capsule network’s char-
acteristics by strengthening capsule extraction features and
dynamic routing algorithms [22], [23].

C. SIAMESE NEURAL NETWORK
In Siamese Neural Network (SNN), two images are simul-
taneously feds into an embedding function fθ (∗) consisting
of multiple convolutional layers for feature extraction [24].
The Euclidean distance between the characteristics of the two
images is measured [25]–[27]. The distance is converted into
a probability and then classified using (4), where σ is the
sigmoid activation function and∝ represents the other param-
eters learned by the model during training. The probabilities
are used to determine whether the two images belong to the
same category.

p
(
xi, xj

)
= σ (∝ |fθ (xi)−fθ (xj)|) (4)

The SNN uses two duplicate networks with distinct
images as inputs. During the computations, parameters are
exchanged between networks. This network architecture exe-
cutes the same feature extraction process for diverse images,
providing equivalent output features.

The SNN generally utilizes Contrastive Loss function [28],
[29], and (5) is its mathematical formulation.

L = (1− Y)
1
2
(d)2 + (Y )

1
2
{max(0,m− d)}2 (5)

In (5), d is the distance between two features, and Y is
the label of the image pair. When Y = 1, the two images
belong to the same category, and L minimizes the distance

FIGURE 1. Flowchart of the siamese DB capsule network algorithm.

between the two features.WhenY= 0, the two images belong
to different varieties, and if the distance between the two
features is less than m, then the distance between the two
features is increased to m.

D. BIVARIATE CORRELATION ANALYSIS
The dependent relationships between variables can be ana-
lyzed with methods such as distance analysis and correlation
analysis. Distance analysis commonly employs the Euclidean
distance, cosine distance, andHamming distance. Correlation
analysis typically utilizes the Pearson correlation coefficient
and Kendall’s tau coefficient. The Pearson correlation coef-
ficient takes variance as an assumption. It is used to char-
acterize the degree of linear correlation between variables.
The mathematical expression for the Pearson correlation
coefficient is (6) [30].

COR
(
xi, xj

)
=

n∑
1
(xi − xi)(xj − xj)√

n∑
1
(xi − xi)2(xj − xj)2

(6)

xi, xj are the actual variables; xi, xj are the means of
the corresponding variables; and COR

(
xi, xj

)
is the Pearson

correlation coefficient of xi, xj. The value of COR
(
xi, xj

)
is

between −1 and 1. A value of 1 shows a perfectly positive
correlation between the two random variables. A value of
−1 indicates an entirely negative correlation between the two
random variables. A value of 0 indicates a linear correlation
between the two random variables.

III. PROPOSED METHOD
A. SIAMESE DB CAPSULE NETWORK
In this paper, we propose a Siamese DB Capsule Network
(SDBCN). SDBCN uses Dense Block and Capsule Network
for feature extraction. The features of the image pairs are
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extracted by the Siamese Network architecture. Bivariate
feature correlation analysis is deployed to determine the
categories of two input images, thus solving the image recog-
nition problem for small datasets. Figure 1 illustrates the
flowchart of the SDBCN algorithm, which takes image pairs
and labels as input. The label is equal to 1 when the two
images belong to the same category and 0 when the two
images belong to different classes. For cow identification,
we can first generate a database of small samples of indi-
vidual cow faces. Subsequently, new individual photos can
be taken through SDBCN and compared with the database of
individual cows. Therefore, the identity of each cow can be
confirmed.

There are two deep neural sub-networks in SDBCN to
extract features from two images simultaneously. SDBCN
uses Capsule Network fused with Dense Block as a feature
extractor. The Capsule Network fused with Dense Block is
abbreviated as the DB Capsule Network. The DB Capsule
Network consists of an input layer, a convolutional layer,
a Dense Block layer, a Primary Caps layer, a CFace Caps
layer, and an output layer. The weights are shared between the
sub-networks so that the same features can be obtained for the
same image from both sub-networks. Each layer is followed
by batch normalization and dropout to reduce overfitting.

The DB Capsule Network extracts the features of image
pairs in the form of two feature variables for correlation
analysis. SDBCN uses the Pearson correlation coefficient as
a bivariate correlation analysis metric. When the two images
belong to the same category, the value of the Pearson corre-
lation coefficient is nearer to 1. When the two images do not
belong to the same category, the value of the Pearson corre-
lation coefficient is closer to −1. SDBCN uses the Pearson
Contrastive Loss, which is defined by (7).

L =
1
N

N∑
n=1

[(1− Y )×cor2 + Y ×max(margin− cor, 0)2]

(7)

cor in (7) is the Pearson correlation coefficient, and Y
represents the label of the image pair. When Y = 1, the two
images belong to the same category, and L maximizes the
correlation between the two image features. When Y= 0, the
two images belong to different categories, and L minimizes
the correlation between the two image features. The margin
indicates the set threshold value. Although the loss functions
defined by (7) and (5) look similar, the methods they use to
calculate whether two images belong to the same category
are completely distinct. When Y = 1, the more similar the
two images are, the closer the value of similarity calculated
by (7) is to 1, while the distance value calculated by (5) is
closer to 0.

B. CONSTRUCTING BIVARIATE DATASETS
SDBCN requires two images to be fed into the DB Capsule
Network simultaneously. Therefore, it is necessary to con-
struct a bivariate dataset by randomly selecting two images

at a time from the dataset. The pseudo-code of the algorithm
for constructing the bivariate dataset is shown in Algorithm 1.
The image containing the image category label is taken as
the input, and the output is an image pair and a label. The
algorithm constructs image pairs cyclically as needed. The
label is represented by a randomly generated 0 or 1. Ran-
domly generated labels ensure that the number of positive
and negative image pairs remains consistent. When the image
pair’s label is 1, the two images belong to the same category,
and when the label is 0, the two images belong to different
categories. Specifically, an image img_0 and its category are
randomly selected from the dataset X. When the image pair
label is 1, an image img_1 is randomly filtered from the
dataset until img_0 and img_1 belong to the same category.
When the label is 0, a random image img_1 is selected
from the dataset until img_0 and img_1 belong to different
categories. Finally, img_0, img_1, and the label are added to
the image pair dataset, which is the bivariate dataset.

Algorithm 1 Pseudocode for building a bivariate dataset
Algorithm I: Construct a bivariate dataset
Input: A batch of images X
Output: img_couple[]

1. Start:
2. Define empty lists img_couple[]
3. for all i = 1, 2, . . . , n do
4. img_couple_label = Random.randint(0, 1)
5. img_0, img_0_label = Random.choice(X)
6. if img_couple_label == 1
7. While True
8. img_1, img_1_label = Random.choice(X)
9. if img_0_label == img_1_label
10. break
11. else
12. While True
13. img_1, img_1_label = Random.choice(X)
14. if img_0_label != img_1_label
15. break
16. img_couple.add(img_0, img_1, img_couple_label)
17. end for

18. End.

C. DB CAPSULE NETWORK
In a classical Capsule Network, the first convolutional layer
uses 9 × 9 kernels to extract features, but the large convo-
lutional kernels are not capable of extracting deep convolu-
tional features. Stacking the convolutional layers using small
3× 3 kernels can improve the performance of feature extrac-
tion while speeding up the computations [27]. Therefore, the
Dense Block module uses six layers of 3×3 and 1×1 convo-
lutional kernels stacked interactively to extract deep features
in multiple dimensions and improve the learning capability of
the network. The 1×1 convolution process, for example, can
fuse the features of each channel while also reducing the com-
putational cost by adjusting the dimensionality. DenseNet’s
performance can be improved by using a lesser growth rate.
After performing some experiments, we found that a growth
rate of 32 works best.

63192 VOLUME 10, 2022



F. Xu et al.: Cow Face Recognition for a Small Sample Based on Siamese DB Capsule Network

FIGURE 2. The structure of the DB capsule network.

SDBCN uses the DB Capsule Network as a facial feature
extractor. The structure of the DB Capsule Network is shown
in Fig. 2. It comprises six main parts: Input Layer, Convolu-
tional Layer, Dense Block, Primary Caps, CFace Caps, and
Output Layer. An image pair is fed into the network. First,
128 layers of shallow features are extracted by the convo-
lutional network with two 3 × 3 kernels. Then, the features
are extracted using Dense Blocks to get the 224-dimensional
high-level features. The image features are passed through
the Primary Cap to get 2,048 capsule cells, where each cap-
sule cell is an 8-dimensional vector. After that, the CFace
Caps layer is obtained using the Squash function. The CFace
Caps layer uses a 3-time dynamic routing algorithm and a
Softmax function to adjust the number and dimensionality of
the capsules between two layers. Then, the final 16 capsules
are obtained, where each capsule is a 10-dimensional vector.
Each capsule represents the features of a class of visual enti-
ties, and their probabilities are predicted by the length of each
capsule cell. A nonlinear activation function, Squash, is used
between the two capsule layers; it is defined by (8), where sj
is the sum of the weights of all Primary Capsule outputs j, vj
is the value after squashing, and m is a constant. The capsules
are flattened into a 160-dimensional vector. In the next step,
the Pearson correlation coefficient is calculated by taking the
output values from the two subnetworks.

vj =
||sj||2

m+||sj||2
·
sj
||sj||

(8)

D. BIVARIATE CORRELATION ANALYSIS MODEL
The classical Capsule Network determines whether two
features belong to the same class by calculating the dis-
tance between them (e.g., the Euclidean distance) [24]. The
intra-class samples correspond to features that are closer
together, and the inter-class samples correspond to features
that are farther apart. However, the capsule unit uses vec-
tors rather than scalars to represent features. The distance
between two capsule vectors can not be suitably measured
using distance measures such as the Euclidean distance or
cosine distance.

The DB Capsule Network obtains two 16 × 10 feature
vectors through the Siamese Network. Each cow’s face is
distinct in each picture regarding its position, angle, and size.
As a result, the feature vectors extracted by SDBCN for each
image have different meanings in the vector space. The Pear-
son correlation coefficient does not change due to changes
in the location and scale of the two variables; it is invariant
to changes [26]. Therefore, a bivariate correlation analysis

FIGURE 3. Examples of Image Pairs. When the image pair’s label is 0, the
two images belong to different categories (indicated as neg). When the
label is 1, the two images belong to the same category (indicated as pos).

model is constructed using (4). Two 16 × 10 feature vectors
are obtained through the DB Capsule Network. It calculates
the bivariate Pearson correlation coefficient value. The closer
this value is to 1, the more likely it is that the two images are
in the same category.

IV. EXPERIMENTS
A. DATA SETS AND PREPROCESSING
The data were taken from a contemporary farm with a breed-
ing population ofmore than 300 cows. Face photos of 63 cows
were obtained in a natural environment. The photographs
contain various poses, such as glancing up, looking down,
facing forward, facing sideways, chewing, etc. The 63 cows
are numbered from 0 to 62, and each cow is considered
one category. For one-shot learning, 15 RGB images are
randomly selected for each category. A total of 945 cow face
images constitute a small sample dataset.

For the sake of the experiment, all images were resized
to 50 × 50. Fifty categories were randomly selected from
the dataset for training, while the remaining 13 categories
were used for testing. Ten photographs from each category
for training were randomly picked to make the training
dataset, and the remaining five images make up the valida-
tion dataset. There are no duplicate images in the training
and validation datasets. Algorithm 1 was used to generate
300 image pairs from the training dataset, validation dataset,
and test dataset, respectively. A small example of cow face
recognition is performed. Sample image pairs are given
in Fig. 3.

The LFW dataset [31], which is mainly collected from the
Internet rather than the laboratory, contains more than 13,000
face images, each of which is identified by the name of the
corresponding person, of which 1,680 people correspond to
more than one image, i.e., about 1,680 people contain more
than two faces.
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B. EXPERIMENT
This experiment was done using a computer with a Tesla
P40 23 GB GPU and the Pytorch 1.6.0 deep learning frame-
work development platform on the Centos 7.9 operating
system.

The experiments use accuracy, F1-score, and loss as
evaluation metrics. The F1-score is the comprehensive evalu-
ation of recall and precision, calculated according to (9). The
higher the F1 value, the more robust the classification model
is.

F1 = 2× Recall × Precision
/
(Recall + Precision) (9)

SDBCN is presented in Section III. C. SDBCN employs
the Adam optimizer with a learning rate of 1e-4; there are
200 iterations of training per experiment, and a batch size
of 32 is used. After parameter comparison experiments, it is
clear that the network converges best with m = 0.5 in the
Squash function and margin = 1.7 in the Contrastive Loss
function.

In this paper, four sets of experiments are designed for cow
face recognition on a small sample dataset. In the first set of
studies, SDBCN is compared with other Siamese Networks
under the same conditions, i.e., they all employ distance
measures. The second set of comparison tests utilizes the dis-
tance metric and Pearson correlation coefficient as the input
values of the Contrastive Loss function, respectively. The
third series of tests was conducted, based on the second set
of comparison tests, by adjusting the amount and size of the
images that make up the training data. The final experiment
applies SDBCN to zero-shot learning trials on a dataset that
has not been trained.

V. RESULTS AND DISCUSSION
In this paper, comparison experiments are conducted using
SDBCN and several deep convolutional networks. The exper-
iments show from both a network architecture perspective
and a feature metric perspective. To ensure the fairness of the
comparison experiments, all of these networks use Siamese
Network structures. In the following subsections, we present
the details of each network separately.

A. COMPARISON OF DIFFERENT SIAMESE NETWORKS
Comparative experiments were conducted using five differ-
ent networks under the same conditions, where all distance
measurements were used. These networks all use a Siamese
Network structure. To ensure fairness in the comparison tri-
als, as much as possible, the same parameter settings are used
for each network.

1. The Deep Neural Network used in [25] is denoted as
SNN; the image size is 105×105. In this experiment, SNN is
utilized as the baseline. SNN uses the Euclidean distance for
image recognition, and it uses the Contrastive Loss function.

2. SNN_C is a network derived from SNN that uses the
cosine distance instead of the Euclidean distance. It also uses
the Contrastive Loss function.

TABLE 1. Experimental results and parameter sizes of the different
siamese networks.

3. The classical DenseNet also uses the cosine distance
and the Contrastive Loss function. It is denoted as SDN. The
image size is 224× 224.
4. The classical Siamese Capsule Network (SCN) also uses

the cosine distance and Contrastive Loss function.
5. This experiment compares the feature extraction capa-

bilities of SDBCN with those of the four networks listed
above. As a result, the distance metric used by these other
networks to calculate the distance between two features is
likewise used by SDBCN. After testing, SDBCN fails to con-
verge when the Euclidean distance is employed. Therefore,
in this experiment, SDBCN uses the cosine distance instead
of the Euclidean distance; this version of SDBCN is denoted
as SDBCN_C.

The experimental results and the number of parameters
of different Siamese Networks are compared in Table 1.
When comparing SDBCN_C to other Siamese Networks, it is
clear that SDBCN_C outperforms them. SDN and SCN have
similar accuracy rates, with SDN being 0.67%more accurate.
SDBCN_C has a 91.67% accuracy rate, which is 3.67%
higher than SDN. When compared to SNN with the same
network configuration, SNN_C has a substantially higher
accuracy rate. This Siamese Network maintains a steady
F1-score and accuracy ranking. SNN uses the Euclidean
distance, whereas the other Siamese Networks employ the
cosine distance, and all of those networks employ the Con-
trastive Loss function. SDBCN_C has a more considerable
loss function value than SDN by 0.0476. SNN_C has 3.62
times the number of parameters as SDBCN_C, while SCN
has 1.87 times the number of parameters as SDBCN_C.
SDBCN_C has approximately 0.39 million fewer parameters
than SDN.

The efficiency of the network changes substantially when
different deep convolutional neural networks are utilized as
feature extractors in the same Siamese Network structure.
Fig. 3 depicts the cow face data used in this investigation,
including a complex natural background. While SDN and
SCN extract features using unique deep convolutional neural
networks, their performances are comparable. Compared to
the other networks in this experiment, SDBCN_C has the
best overall performance. It is primarily due to SDBCN_C’s
combination of Dense Block and Capsule Network, which
boosts the network’s ability to extract features.

The Dense Block concentrates all the previous layers’
extracted features while extracting features from each layer.
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TABLE 2. Experimental results from the comparison of SCN and SDBCN.

This strategy improves the efficiency of feature reuse and also
fuses the low-level features with the high-level features to
improve the feature representation. In SDBCN_C, however,
it is observed that stacking more Dense Block layers does
not improve network performance. It implies that image-rich
characteristics may be recovered by utilizing the proper quan-
tity of Dense Block layers. A Capsule is a vehicle with many
neurons. Each Capsule identifies a visual entity with a con-
strained observation condition and instantiates it as a spatial
vector. Cows’ facial features are readily visible, which facili-
tates feature extraction. SDBCN_C first utilizes Dense Block
to extract low-level characteristics such as the color, texture,
and edges. Then, it uses a Capsule to obtain instantiated spa-
tial vector information. Therefore, SDBCN_C extracts richer
features and expresses better than other Siamese Networks.

Although both SNN and SCN are shallow networks with
up to 6 layers, the number of SNN parameters is 38.96M;
SNN is 3.49 times bigger than SDN. It is since the use
of fully connected layers in SNN considerably expands the
number of parameters. The number of parameters in SDN
and the number of parameters in SDBCN_C are nearer; these
networks are markedly smaller than the other networks. This
is due to the number of output channels being modified in
each Dense Block, causing the number of parameters in the
network to be limited.

B. COMPARISON OF THE USE OF DIFFERENT FEATURE
METRICS IN SDBCN
In this experiment, the network performance is investigated
when two different feature measurements are employed. SCN
and SDBCN obtain similar spatial feature vectors. As a result,
this experiment only compares SCN and SDBCN. SCN and
SDBCN still preserve the image size of experiment A.

1.The SCN_C designation still refers to the classic Siamese
Capsule Network (SCN), which uses the cosine distance.

2. SCN_P denotes the SCN created using the Pearson
correlation coefficient to describe the two feature relations.

3. The version of SDBCN employing the cosine distance
is still denoted as SDBCN_C.

4. The version of SDBCN utilizing the Pearson correlation
coefficient to describe the two feature relations is denoted
as SDBCN_P.

Since both feature metrics are non-parametric, the number
of parameters for SDBCN_P and SDBCN_C is the same.

Table 2 compares the results of the SCN and SDBCN
trials. SDBCN_P achieves an accuracy of 93.00%, which is

FIGURE 4. Accuracy of SDBCN_C and SDBCN_P. (a) Accuracy of SDBCN_C
on the training and validation datasets; (b) accuracy of SDBCN_P on the
training and validation datasets.

FIGURE 5. Loss values of SDBCN_C and SDBCN_P. (a) Loss values of
SDBCN_C for the training and validation datasets; (b) loss values of
SDBCN_P for the training and validation datasets.

1.33% higher than SDBCN_C. The F1-score of SDBCN_P is
93.54%, which is 1.09 points higher than that of SDBCN_C.
SDBCN_P performs better than SDBCN_C, SCN_C,
and SCN_P.

The conventional Siamese Network utilizes the distance
between two feature vectors to express the similarity of
an image pair. SDBCN_P applies the Pearson correlation
coefficient to describe the similarity of two feature vectors.
When the Pearson correlation coefficient is close to 1, the
image pairs have a high probability of belonging to the same
category.

Fig. 4 demonstrates the accuracy of SDBCN_C and
SDBCN_P in the training and validation experiments. It can
be found that the overall performance of the two networks is
consistent. SDBCN_P tends to stabilize at the 100th epoch,
whereas SDBCN_C tends to stabilize at the 150th epoch.
Both networks show the same trend in the accuracy in training
and validation experiments, and the fit is robust. Fig. 5 shows
the loss values of SDBCN_C and SDBCN_P in the training-
validation experiments, and the overall performance of the
two networks is likewise consistent. The trends of the accu-
racy and loss values of SDBCN_P are smoother than those of
SDBCN_C. Thus, SDBCN_P better fits the data.

SDBCN extracts the spatial feature vectors of 16 groups
of Capsules through the CFace Capsule layer. Each spatial
feature vector portrays the visible entity, i.e., the instantiated
spatial feature vector. The two image pairs at the bottom of
Fig. 2 belong to the same class, but the cow’s face has a
different location and pose in each image. The states of the
eyes, nose, and mouth of the cow’s face are similarly varied.
All of these facial features are retrieved by SDBCN as spatial
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TABLE 3. Experimental results of SCN and SDBCN.

feature vectors. For example, the position and movement of
the mouth are different in each image. In addition, there are
many poses: the cow may open its mouth, chew, stick its
tongue out, etc. Hence, 16 Capsule groups are obtained using
SDBCN. For example, the mouth feature is represented by
the 7th capsule in the first image feature and by the 12th
capsule in the second image feature. The identical visual
components are positioned differently in the image pair’s
spatial feature vector. As a result, the use of distance to
quantify the similarity of image pairs is constrained. The
Pearson correlation coefficient in subsection II.D is invariant
and does not change due to the change in position. The
Pearson correlation coefficient is more applicable to SDBCN.
According to the comparison mentioned above, SDBCN_P is
the optimal version of SDBCN.

C. STABILITY EXPERIMENTS FOR SDBCN
The experiment in V. B. was conducted on a dataset of 50×
50 pixels and 300 image pairs. Therefore, the experiment
described in this section is meant to discover the effects of
both increasing the image size and increasing the number of
image pairs. The dataset is resized to 50 × 50 pixels with
900 image pairs; 128 × 128 pixels with 300 image pairs;
and 128 × 128 pixels with 900 image pairs, respectively.
Algorithm 1 was used to generate the image pairings, and no
overfitting occurs. This experiment uses the four networks
in Experiment V. B. Table 3 summarizes the experimental
findings.

As shown in Table 3, when the number of 50 × 50 image
pairs increases from 300 to 900, the accuracy of all four
networks improves slightly. On the 50× 50, 900-image-pair
dataset, the accuracy of SDBCN_P, the version of SDBCN
suggested by this study, improves by 0.67%. However, the
size of the dataset was increased by a factor of three. The

FIGURE 6. SDBCN test results on the unfamiliar dataset.

TABLE 4. Verification accuracies of different methodologies on the LFW
dataset.

accuracy of the networks for the 128 × 128 dataset follows
a similar trend. The accuracy of SCN and SDBCN increases
with the amount of training data, but the difference is modest.
For comparison, when the dimensions in pixels are increased
from 50× 50 to 128× 128, the output capsule of the Primary
Caps layer grows by 12.25 times. As a result, the number of
SDBCN parameters is 40.26M, which increases by 3.74%.
However, the accuracy rises only by approximately 1%.

All four networks in this experiment use Capsule units to
represent cow face features, and the experiments demonstrate
that the Capsule units can express image features stably.
The DB Capsule Network in SDBCN has a better feature
representation ability. The Pearson correlation coefficient
fluctuates only slightly as the size of the dataset increases.
SDBCN performs more stably on cow face recognition than
other networks, regardless of the size of the dataset or the
size of the images. In particular, it performs better on small
datasets.

Currently, most face verificationmethods achieve high per-
formance with vast amounts of training data. From the results
in Table 4, the following points are noted. Our results are
higher (+0.95%) than DeepFace[32], higher(+0.70%) than
DeepFace-Siamese[32]. However, the accuracy of SDBCN is
2% lower than that of PSI[34], and HSN[35]. Since SDBCN
is dedicated to cow face recognition rather than human face
recognition such as the LFW dataset, this has been able to
demonstrate its performance.

D. SDBCN FOR ZERO-SHOT LEARNING
The training procedure of SDBCN does not use the
test dataset. Thus, the test dataset can be used as an
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unfamiliar dataset for SDBCN. This experiment employs
the optimal, trained SDBCN. The network was tested using
300 randomly generated image pairs from the test dataset.
The accuracy is 88.33%, and the F1-score is 88.89%
when testing is performed with five cows. When testing
with 13 cows, the accuracy is 86.27%, and the F1-score
is 88.02%.

Fig. 6 displays the performance of SDBCN on the test set.
The label indicates the tag of the image pair. If the label =
1, the images in the image pair belong to the same category,
and if the label = 0, the images in the image pair belong
to different categories. The correctness of the prediction is
denoted by pred. If pred = right, the predicted label is dif-
ferent from the actual label. If pred = wrong, the predicted
label is discordant with the actual label. For SDBCN, the test
dataset is unfamiliar. The training dataset and the test dataset
contain different individuals. The datasets both have pictures
of cows’ faces. Each image comprises comparable visual
entities. Therefore, SDBCN can extract spatial feature vectors
from images. The results reveal that SDBCN is robust to
unknown cow face data. SDBCN can be utilized for zero-shot
learning for cow facial recognition.

VI. CONCLUSION
Cow face recognition has numerous issues, such as a signifi-
cant number of individuals and a small number of samples
for each individual. In this paper, SDBCN is proposed to
address the cow face recognition challenge. As a feature
extractor, SDBCN combines Dense Block and Capsule Net-
work. Through the SiameseNetwork structure, bivariate char-
acteristics are then created. The correlation of the bivariate
characteristics is determined to perform image recognition.
The experiments are conducted on a small sample dataset
of cow faces. The dataset contains 63 cows with 15 photos
per individual, for 945 images. For experiments, SDBCN
is compared with the classical Siamese Network and some
of its variations. SDBCN can achieve an accuracy of 93%.
It shows a significant improvement in recognition accu-
racy and robustness compared with other Siamese Networks.
At the same time, SDBCN can classify individuals that have
not been trained. SDBCN superimposes multiple layers of
convolutional features while extracting spatial vectors. This
feature extraction encodes the spatial information of visual
entities while decreasing the influence of noisy features.
To deal with the changes in spatial vector feature positions
due to the different poses of cows, SDBCN uses correla-
tion analysis instead of distance metrics to achieve positive
results. SDBCN is a novel research idea for small-sample
recognition.
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