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ABSTRACT This paper discusses the various methods of identifying the seizure onset zone (SOZ) from the
intracranial electroencephalography (iEEG) data. Epilepsy, also known as seizure disorder, is a neurological
condition caused due to disruption in the regular electrical communication within the neuron network. With
almost a third of epileptic conditions being drug-resistant and several cases with no known cause, there is
a need to resort to alternative treatment methods such as neurostimulation or surgical resection. Both these
methods require the identification of regions within the brain that need to be stimulated or resected. For most
of the patients, this corresponds to the part that initiates the seizure. These are called seizure onset zone (SOZ)
or epileptogenic zone (EZ). Epileptologists locate the SOZ by analyzing the iEEG data of patients suffering
from seizures. This, however, is time-consuming and can be prone to human error. Thus, there has been
significant research on the automatic detection of SOZ. High-frequency oscillations (HFOs), characterized
by iEEG oscillations above 80 Hz, are one of the most promising candidates for identifying SOZ. Functional
connectivity and graph theory measures have also distinguished SOZ and non-SOZ regions using different
features. Newer works on phase-amplitude coupling have also shown promising results. With the increased
data availability, it has also become possible to build supervised learning algorithms to improve the predictive
power of anomaly detection algorithms used to localize SOZ.

INDEX TERMS Epilepsy, epileptogenic zone, high frequency oscillations, iEEG, seizure, seizure onset
zone.

I. INTRODUCTION
Epilepsy is a neurological condition that affects the central
nervous system. It is characterized by recurrent unprovoked
seizures whose cause is primarily unknown [1]. With
symptoms ranging from temporary loss of consciousness to
increased risk of psychological conditions and premature
death, epilepsy affects over 65 million worldwide [1].
Although drug delivery is a standard treatment method,
at least one-third of them suffer from drug-resistant
epilepsy [1]. In such cases, neurostimulation and surgical
resection are two commonly suggested remedial measures.
It is essential to identify the region within the brain respon-
sible for triggering these seizures for effective treatment.
These regions are called the seizure onset zones (SOZs) or
epileptogenic zone.

In most cases, intracranial electroencephalography (iEEG)
helps in the identification of SOZ in humans. Unlike scalp
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EEG, iEEG data records from electrodes surgically implanted
inside patients’ brains to obtain a continuous recording of
the local field potentials over several hours to days [2]. The
two main electrodes used are the subdural grid electrodes
- an electrode array with contacts spanning across its
rows and columns, and the depth electrodes - electrodes
with 4 - 8 contacts placed deep inside the brain [3]. Such
continuous data availability provides valuable information on
the onset of seizures and the anatomical onset region. Several
established works have used this data to develop practical
algorithms for automated seizure detection and prediction.
iEEG data can also be used to identify the onset zone from
a range of biomarkers. Figure 1 illustrates the common
phenomena and features that can be used as biomarker
for SOZ identification. Among these biomarkers, the most
researched is high-frequency oscillations [4]–[15]. Another
useful measure is identifying a unique cross-frequency
coupling mechanism, called phase amplitude coupling, that
exists majorly in SOZs [16]–[18]. iEEG data recorded
simultaneously across different cortical regions can be used
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FIGURE 1. Common SOZ biomarkers - phenomena and methods.

to obtain directional measures of functional connectivity,
represented using directed graphs. The topological features
of these graphs can then be used to locate SOZ. Various
methods of representing such directed graphs have been
proposed in [19]–[24]. The rapid increase in the advancement
of deep learning algorithms and relatively easy availability of
GPUs also make it possible to develop superior deep learning
models, ranging from unsupervised to supervised, to identify
the SOZs using different biomarkers. This paper discusses the
different established methods for identifying SOZ from iEEG
data and their future implications.

The remainder of this paper is organized as follows.
Section II describes the common types of seizures, charac-
terization of the epileptic syndrome, and the concept of the
epileptogenic zone or the seizure onset zone. Sections III, IV,
and V, respectively, describe the recent work on identifying
the SOZ from high-frequency oscillations, graph theory
methods, and phase-amplitude coupling. Section VI dis-
cusses the application of Machine Learning (ML) in seizure
localization. Finally, SectionVII provides a comparative table
of the results from important methodologies and explores the
necessity to include SOZ identification algorithms in future
presurgical tests.

II. EPILEPSY AND EPILEPTOGENIC ZONE
A seizure is a sudden unrestricted disruption of electrical
activity across the neurons [25]. Usually caused by the
local disturbances of the brain’s electrical activity, seizures
typically cause short-term abnormalities in muscular move-
ments and consciousness. Although sometimes a known
external reason, such as stroke or head injury, causes seizures,
the cause remains unidentified in many cases. Physicians
diagnose a person as epileptic when they encounter more
than two unprovoked seizing episodes separated by at least
one day. Epilepsy is one of the most diagnosed neurological
disorders affecting around 65 million global citizens, with
about 3.4 million of them in the United States [1]. Roughly

FIGURE 2. The ILAE classification of seizures [26].

half of them are diagnosed with a known cause. These can be
genetic or caused by a structural change in the brain, a brain
infection, or autoimmune disorder. Identification of the cause
can help in curating a successful treatment strategy.

A group of features characterizes epileptic syndrome.
Examples include the type of seizures, regions affected, the
cause, age of onset, severity, and the frequency of attacks [1].
Seizures are broadly classified into three groups by the
International League Against Epilepsy (ILAE) based on the
onset, the patient’s level of awareness during the seizure, and
the presence/absence of motor symptoms exhibited by the
patient [26]. The different groups are shown in Figure 2. Focal
onset seizures, also called partial seizures, are localized,
with the seizures starting in one part of the brain. Temporal
lobe epilepsy (TLE) is one of the most common forms of
epilepsy. It is the most common focal onset epilepsy [27].
Focal onset seizures are further classified into focal onset
awareness if the person is awake and knowledgeable, and
focal onset impaired awareness when the seizure affects
the patient’s awareness. Generalized onset seizures, also
called generalized tonic-clonic or grand mal seizures, affect
both the hemispheres of the brain simultaneously and
frequently cause impaired cognition. When the origin of the
seizure is undetected, it’s categorized as an unknown onset
seizure.

Localizing epilepsy has been one of the crucial tasks
since its diagnosis. Some of the early work from [28]
defined the concept of epileptogenic lesion responsible for
epilepsy as structurally and functionally distributed tissue
lesions but are operational abutting grey matter. Based on
this, Jasper [29] defined the lesion area, epileptogenic focus,
and the epileptogenic spikes as three concentric circles with
different properties that are evident on EEG analysis. This
idea has evolved over the years. From a surgical perspective,
SOZ is the cortical region where seizures originate. The EZ,
which refers to the crucial areas for generating seizures,
is equivalent to a subsection of cortical regions that include
SOZ and potential SOZ regions inferred from irritative zone
- the cortical regions that generate interictal spikes [30].
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FIGURE 3. The epileptogenic zone (EZ) [31].

Resection of EZ should render patients free from seizing.
Figure 3 shows the pictorial representation of the EZ
encompassing the actual SOZ and potential SOZ [31].
As the location of EZ cannot be deduced directly, it is
inferred mainly from SOZ. Thus, the two terms are used
interchangeably [30].

Currently, SOZ localization is performed by epileptol-
ogists using visual inspection. First, magnetic resonance
imaging (MRI) of the brain is used to locate focal lesions.
Then, the ictal EEG or iEEG recordings of individual
electrodes are inspected to identify signatures of SOZ, such
as low-voltage fast activity and periodic spiking [32]. EEG
recorded during sedated sleep, and sleep deprivation has
shown to improve the diagnosis of epilepsy by locating sites
of epileptiform discharges that were not seen in routine
EEG [33]. Thus, epileptologist may also choose to record
EEG (or iEEG) from patients under sedated sleep or sleep-
deprived states.

III. HIGH-FREQUENCY OSCILLATIONS
A. BRAIN RHYTHMS AND FREQUENCY BANDS OF EEG
Upon inventing EEG to record the brain’s electrical activities,
Berger identified specific patterns of continuous recurring
oscillations from the EEG recordings. He used the terms
alpha and beta waves to describe these oscillatory brain
rhythms in [34]. Since this discovery, researchers have
documented numerous sustained oscillations across various
mammalian brains, ranging from periods in minutes to
frequencies over 600 Hz generated by different mechanisms.
Furthermore, brain activity comprises multiple rhythms (fre-
quencies) and varies over time [35]. Thus, time-frequency
analysis of brain signals provide an appropriate measure
of changes in frequency over time. Two standard methods
for frequency decomposition are short-term Fourier trans-
form (STFT) and wavelet transform [35]. STFT evaluates the
Fourier transform within a time window that spans the time-
series. A signal is decomposed by wavelet transform onto
a set of basis functions called wavelets. These are obtained

TABLE 1. EEG frequency bands.

from scaling and time shifts of a single template, called
mother wavelet [36].

Over time, scientists grouped these oscillations into
different frequency bands. Although there is no exact limit
for each band, the commonly categorized bands are delta
(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),
gamma (30-80 Hz), ripple (80-200 Hz), and fast ripple (200-
600 Hz) [37]. Based on the sampling frequency, the ripple
band can be band-limited to 80-250 Hz and the fast ripple to
250-500 Hz. These frequency bands are shown in Table 1.
iEEG oscillations above frequencies of 20 Hz are typically
grouped as fast oscillations (FOs). FOs include beta-2 sub-
band in 20 - 30 Hz, the gamma band, ripples, and fast
ripples. High-frequency oscillations (HFOs), a sub-group of
FOs, are characterized by at least four oscillations in the
ripple or fast ripple frequency bands (80 Hz and above).
HFOs occur for a relatively short duration (10–100 ms) and
have a higher amplitude (10–1000 µV) than background
EEG/seizures [38].

B. SOZ IDENTIFICATION FROM HFO FEATURES
The rate of HFO occurrence has been one of the predomi-
nantly used methods for analyzing the viability of HFOs as
a biomarker for SOZ. The iEEG data of ten patients with
intractable epilepsy was analyzed in [7]. The HFO rate (i.e.,
the occurrence of HFOs per minute for each electrode) was
measured and it was found for all ten patients that the HFO
rate, especially the rate of fast ripple, is significantly higher
in SOZ channels (24.3 ± 32.4) than the non-SOZ channels
(1.9±4.7). It also established that HFOs occur independently
of epileptic spikes, andHFO rate as a feature performed better
than spikes with a high specificity of 95%. The study in [6]
has shown that HFOs occur more frequently in SOZ regions
than outside SOZ. The study chose ten patients undergoing
presurgical evaluation from Montreal Neurological Institute
with medically refractory focal seizures. HFOs were detected
in seizure sections using visual inspection and the frequency
spectrum was analyzed using fast Fourier transform. Results
from [12], [13], and [39] that analyzed HFO rates also agreed
with the above experiments. Various works have shown
other features such as HFO amplitude, duration, and peak
frequency can complement the HFO rate as an excellent
predictive measure for seizure onset [10], [11], and [40].
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Although the above results show the predominant presence
of HFOs in SOZ regions, HFOs also exist in non-SOZ
areas. Hence it is additionally beneficial to distinguish the
two occurrences. The study of fast ripples in [11] among
the 35 patients with neocortical epilepsy classified the
ripples into type I and type II based on their influence
in or independence from epileptiform discharges. This
was characterized by the presence or absence of interictal
epileptiform discharge (IED) along with the ripple event.
With very high statistical significance, Type I ripple exhibited
higher frequency (p = 0.019), less duration (p = 0.000), and
greater amplitude(p = 0.000) than type II ripple.

Various patient studies have identified a sharp increase
in the power of fast-ripple HFOs primarily in SOZ sites
during seizure onset and preceding it by several minutes.
The spectral power of EEG showed a significant increase
during the onset of seizures, increasing up to two times
for the 40 – 50 Hz range and up to five times for the
80 – 120 Hz range [41]. Analysis of subdural EEG recorded
from children with intractable seizures showed the presence
of very fast oscillations few seconds before seizure onset [42].
The study in [5] found HFOs localized during the onset of
seizures for all the patients analyzed. In addition to this, the
high-frequency activity increased 20minutes before the onset
for most seizures. Results from [8] also showed localization
of high-frequency oscillations above 100 Hz at the onset
electrodes. It also showed a significant increase in the signal
power of HFOs 8 seconds before the onset.

Multiple studies on epileptic surgeries have also shown that
resecting brain regions having high interictal HFO events and
positive surgical outcomes have a high correlation [43]–[45].
These results make HFOs a promising biomarker for SOZ
identification. However, the average HFO rate, as observed
from the works mentioned above, varies significantly across
different brain regions. The rate is affected by sleeping
patterns, indicating that it could depend on the time of the
day when it’s measured. The statistical analysis of iEEG
recordings during non-REM sleep in [46] showed that the
HFO rate, by itself, is statistically no better than spikes
in localizing SOZ and is not sensitive enough to be a
unique biomarker for seizure localization. It has also been
demonstrated that the high correlation between the removal
of HFO-generating regions and seizure-free outcomes at the
group level diminished for individual analysis, and some
patients became seizure-free without resecting the majority
of HFO-generating regions [47]. Further work is required to
understand and overcome these limitations that challenge the
suitability of HFOs as a biomarker for SOZ identification.

C. HFO DETECTION USING UNSUPERVISED LEARNING
Automated detection of HFOs use some form of anomaly
detector to observe the high-frequency activities and find out
the aberrant activity that corresponds to ictal signals. Figure 4
shows a generalized block diagram of such an unsupervised
detection system. Amoving average RMS amplitude detector
for the 100 – 500 Hz range is used in [4]. Using a sliding

FIGURE 4. Automatic detection of high-frequency oscillations.

window of 3 ms, window sections that exceeded a threshold
of 5 standard deviations from mean RMS for at least two
windows were selected as HFO candidates. There was an
additional threshold to identify at least six rectified peaks to
label a candidate as a HFO event. In [48], the detection of
HFO events occurred in stages. It used the same method as
in [4] to select the HFO candidates. Then the retention of
a candidate and subsequent unsupervised classification were
carried out using features extracted from the power spectral
density. The anomaly detection algorithm used in [14], which
studied both amplitude and rates of HFOs, utilized dynamic
time warping to calculate the distance of every pair of
windows and clustering to separate the background cluster
from the anomalous cluster (epileptogenic cluster).

Interictal spikes (IES) of EEG, which are observed for a
very short duration (less than 250 ms), mainly in patients
susceptible to seizures, is another highly sensitive spatial
biomarker for the epileptogenic zone [49]. These, however,
are not specific to the seizing zones [50] and hence are
inferior to HFOs as a biomarker. The combination of
IES with HFOs can provide more beneficial information
in identifying the onset zone using their co-occurrence.
In [15], an automatic HFO and IES detector was built using
kernelized SVM. Using the intracranial EEG of eight patients
from the study group and simulated data from SIMDAT, the
classifier was trained using visually marked events on 25 ms
windows with 50% overlap. The classifier, with an accuracy
ranging from 95% to 100% and specificity of 96% to 100%,
showed that IES as such performed poorly in classifying
when compared to HFOs. However, the combination of IES
with fast ripples or HFOs outperformed the prediction using
HFOs alone. The classifier suffered from lower sensitivity in
the presence of noise when used on the SIMDAT data.

It is common for iEEG recordings to contain
high-frequency transients and artifacts caused due to muscle
movements. These can be mistaken for HFOs without a
proper preprocessing step [51]. Introducing semi-supervised
learning or creating an algorithm tailormade to filter out
these artifacts can result in more accurate identification.
The anomaly detection techniques discussed earlier utilize
different forms of thresholding operation to avoid such false
positives. The HFO detection technique in [13] used an
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intermediate time-frequency analysis for denoising, which
eliminated spikes. Using features extracted from spectral
information of high-frequency candidates, clustering was
employed to identify HFO signals and segregate them from
any additional noise.

IV. GRAPH THEORY BASED BRAIN CONNECTIVITY
MEASURES
One of the primary goals of cognitive neuroscience is to iden-
tify the neural interactions within the brain corresponding
to a specific cognitive task. By comparing these interactions
during seizures with a healthy baseline, we can identify the
abnormalities. Researchers have used this approach to obtain
a brain map from iEEG data for analyzing epileptic patients.

The brain connectivity, as described in [52], can be
predominantly classified into three types - structural con-
nectivity, functional connectivity, and effective connectivity.
Structural/ anatomical connectivity refers to the physical
interconnection of axons emerging from a brain region con-
necting to another. Any of the widely available non-invasive
magnetic resonance imaging techniques can identify the
structural connectivity. Functional connectivity is a measure
of the correlation or the statistical dependency between the
brain regions inferred from a time-series signal. It is helpful
in grouping regions of the brain into an interactive network
corresponding to a cognitive task. The Pearson’s correlation
coefficient is a commonly used measure of functional
connectivity. Effective connectivity represents the directional
data flow between the brain regions during a cognitive
task. It identifies a causal brain network corresponding to
the directed interactions between the different areas in the
brain during a cognitive task [53]. There are other ways
to describe and classify brain connectivity measures. For
example, complex network models are used in [54] to
describe structural and functional connectivity employing
small-world architectures, clustering, and quantifiable topo-
logical parameters, such as modularity, centrality, and hub
distribution. In [55], functional connectivity is described as
an observable phenomenon quantified with measures of sta-
tistical dependencies, and effective connectivity corresponds
to the parameter of a model that tries to explain observed
dependencies described by functional connectivity. Func-
tional connectivity has been used to discriminate borderline
personality disorder in [56].

The presence of hidden sources highly impacts the
estimation of connectivity measures. For example, in the
case of functional connectivity estimation using Pearson’s
correlation, two independent process variables can be highly
correlated. However, neither could be a causal factor of
the other, and a hidden process could be driving these
two processes. Hidden factors also can lead to spurious
connectivity estimates using Granger Causality measures
if a common input node is not observed or the coupling
strength varies between the nodes [57], [58]. This, however,
can be eliminated by observing all the nodes and using
re-normalization. Other factors that affect the accurate

estimation of connectivity measures are signal-to-noise ratio
and unequal observation periods [57]. Thus, care must be
taken to minimize the noise and avoid sampling bias.

Identifying a causal relation in a complex system such
as the human brain can be complicated. Scientists have
developed multiple methods over the years for estimating
effective connectivity. However, it is often debated if the
effective connectivity measure is an actual representation of
the causal interactions within the brain. This stems from the
idea that a few hundred electrophysiological recordings from
different regions may be insufficient to derive a brain’s causal
model consisting of billions of neurons, as the activities of
the numerous unobserved neurons may likely have a more
significant influence than the ones recorded [59]. Perhaps
effective connectivity can be better described as a directional
measure inferred from the statistical dependency of the
time-series of iEEG recordings from the various channels.

Nonetheless, such effective connectivity measures have
shown promising results in locating SOZ. For the context
of this manuscript, any reference to ‘‘causal’’ networks
refers to effective connectivity. This section reviews two
main measures of effective connectivity that have been
used in the literature to localize seizures. Subsection IV-A
describes the works that make use of the family of Granger
Causality measures, and the subsection IV-B describes works
that use directed information as the causal measure in
identifying SOZs. In both cases, the connectivity measures
are represented using the edges of a directed graph with the
different channels as the nodes. Different graph features, such
as node degrees and centrality, are used to distinguish SOZ
from non-SOZ channels.

A. GRANGER CAUSALITY AS THE CAUSAL MEASURE
1) THE FAMILY OF GRANGER CAUSALITY MEASURES
The statistical hypothesis test of Granger Causality (GC) [60]
is one of the most popular measures in neuroscience to infer
causality between two time-series. Considering two Auto
Regressive (AR) time series X and Y, we can infer that X
Granger causes Y if the predictability of Y improves when
it is modeled using the past inputs of Y and X. To express
mathematically as suggested in [61], let the time series be
XN = [x1, x2, . . . , xN ] and YN = [y1, y2, . . . , yN ]. Consider
the two different AR representations of Y:

yi =
L∑
j=1

ajyi−j + ei

yi =
L∑
j=1

(bjyi−j + cjxi−j)+ ẽi

Let ei represent the error in predicting Y from its past values
alone and ẽi be the error in predicting Y from past values of
both X and Y. It can be concluded that X Granger causes Y if
the mean squared error of ẽi is much less than that of ei.

GC index inferred from the AR model is used to
estimate the causal interaction in the time domain. The
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same concept can be extended to a multivariate AR model.
Other causal measures in the GC family include Directed
Transfer Function (DTF) [62] and Partial Directed Coherence
(PDC) [63], which estimate the causal interaction in the
frequency domain. This is useful for identifying interactions
during a cognitive task predominantly observed in a particular
frequency band.

2) SOZ IDENTIFICATION FROM GC MEASURES
The EEG study in [22] used an extension of Fourier and
wavelet transform-based nonparametric methods to obtain
GC spectra and observed the net causal outflow of each
channel. The results from all eight patients showed that
high-frequency GC relationships could be established among
groups of channels 2 to 12 seconds before any visible ictal
onset (100% positive prediction before the onset). The net
causal outflow also exceeded three standard deviations (SD)
from the mean value. The study of 25 patients in [64]
using the Granger causal connectivity analysis (GCCA)
toolbox [65] determined the causal inference among each
possible pair of electrode-specific iEEG data using 20 min-
utes of interictal data. The visual analysis of the obtained
graphs showed a concentration of ‘‘causal nodes’’ in and
around the ictally active electrodes. The estimated probability
of such a match by chance alone is minuscule (with
probability less than 10−20), suggesting the strong correlation
between the derived interictal GC maps with actual ictal
networks.

In contrast to the standard definition of focal seizures, [66]
hypothesizes that focal seizures arise from a network rather
than a single node. SOZ, in this case, is identified by the
crucial node within this network, the removal of which stops
seizures. Thus, identifying SOZ requires a graph theory
approach within the seizure-inducing network to locate the
crucial node based on local measures (node degree and cen-
trality). Multiple past and recent works have reinforced this
hypothesis. For example, DTF, proposed by [62], was used for
windows of ictal and interictal clips in their study to identify
the strongest 5% of the analyzed causal connections. Based
on the values of betweenness centrality, the brain regions
were segregated via k-means clustering [67] into active and
inactive. The active regions were found to correlate with
the location of the resected cortical regions in patients who
were seizure-free following surgical intervention. Another
example is the analysis of epileptic networks of 16 patients
with TLE in [68]. Using time-varying PDC estimates of
directed interaction, they showed that regions with high net
outflow were concordant with the EZ estimated invasively by
clinicians.

Though the family of GC measures is widely recognized
for its effectiveness and simplicity, its major limitation is
that GC assumes the process to be wide-sense stationary,
builds an AR model for the time series, and, uses a linear
predictor. This leads to poor results analyzing data that have
non-linear solid interactions. Many interactions between the
brain regions are non-linear, and thus, cannot be directly

inferred using GC [69]. Newer methods of non-linear GC
methods proposed in [70]–[73] helps to remediate the linear
prediction of the GC model. Several methods have been
proposed to overcome the stationarity assumption to provide
time-varying functional and effective connectivity measures
using GC measures. For example, [74] proposes an adaptive
MVAR model using overlapped smaller time windows, and
the process is assumed to be stationary within a time window.
This modification was incorporated in [75] to improve the
estimation of causal interaction using DTF. In contrast to
stationary assumption within a small time window, [76], [77]
proposed data-driven algorithms that modeled the dynamic
changes in the brain network as a time-varying MVARmodel
using adaptive Kalman filters, with both themodels providing
superior estimates of the directed interactions that were in
accordance with known physiology.

The work of [19] and [21] also used a modified variant
of the directed transfer function to extend for time-varying
MVAR model, called adaptive directed transfer function,
to obtain a graphical connectivity pattern during seizure
onset. The net outflow of information and out-degree
measures were used to predict the onset region. The resection
of regions identified in [19] resulted in elimination of
seizures post-surgery. The highest total out-degree evaluated
in [21] corresponded for all patients with the regions that
were identified by epileptologists and were subsequently
resected.

The above-discussed method is attractive for seizure
localization as it is non-invasive. Traditional non-invasive
EEGs, primarily used in seizure detection, suffer from poor
spatial resolution – making them impractical for seizure
localization. However, the combination of high-density EEG
source imaging (ESI) with the functional connectivity analy-
sis in [78] devised a non-invasive approach that overcame this
limitation. The high-density EEG (HD-EEG) of five patients
with refractory epilepsy, recorded for 24 hours sampled
at 250 Hz or 1 kHz with 32 – 204 electrodes, was studied
for this. The functional connectivity in this work was also
estimated using the adaptive transfer function [21] and the
SOZ was selected as the region with the highest out-degree.
The brain source was reconstructed from ESI using the finite
difference method (FDM) head model [79] and the LORETA
algorithm [80]. This method successfully localized the SOZ
for four of five patients for all setups that used at least
128 electrodes. Future enhancements of such a combined
method may facilitate a non-invasive presurgical evaluation
for SOZ identification.

B. DIRECTED INFORMATION (DI) AS THE CAUSAL
MEASURE
A causal connectivity measure can also be inferred using
directed information, an information-theoretic measure intro-
duced by Massey [81]. To define this, let’s consider N data
samples of two channels/time-series X and Y with the same
form of representation used to explain GC. The directed
information from X to Y can be interpreted as the number
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of bits of uncertainty in process Y that is causally explained
away by the process X [23]. With reference to [23] and [82],
DI can be mathematically defined as

I (XN → YN ) =
N∑
n=1

I (XN ; yn|Y n−1).

DI method is not model specific, and we can apply DI to a
wide range of electrical signals from the brain, such as EEG
and ECoG.

In [23], a data-driven andmodel-based likelihood estimator
is used to calculate the directed information between each
pair of electrodes. Using this causal graph, the net outward
flow of information was computed and the regions with the
significant net outward flow were identified. Compared to
a visual analysis by expert physicians, the results from the
data-driven model were able to locate all the onset regions
with false-positive observed in only two of the patients.
An added advantage of this method is ranking the areas in
decreased order of clinical relevance based on the net outward
flow.

A combination of DI and GC can improve the localization
of SOZ [24]. Using publicly available data from IEEG-Portal
[83] (http://www.ieeg.org), [24] proposed an algorithm to
automatize the SOZ identification. The algorithm involved
two steps. The first step involved estimating pairwise causal
influence using both the DI and GCmethods. The second step
of SOZ inference utilized a variant of the PageRank algo-
rithm [84] followed by post-processing scoring. The results
from 17 out of 19 patients showed successful deduction, i.e.,
more than 50% overlap of identified electrodes with actual
onset electrodes or their immediate neighbors.

V. NEURONAL SYNCHRONY AND PHASE
AMPLITUDE COUPLING
A. SYNCHRONY MEASURES AND SOZ IDENTIFICATION
The measure of synchronization in firing a large population
of neurons within a network is termed neuronal synchrony.
Synchrony is a critical measure that can characterize epilepsy.
Traditionally, abnormally high and prolonged neural syn-
chronization is presumed to result in epilepsy [85]. The
hypersynchronous firing of a large population of neurons as
epileptic seizures has been described in [86].

While the amplitude of EEG signals is a consequence
and thus can correlate to the synchrony, the presence of
other critical factors, mainly the degree of precision in
synchronization of neuronal discharges, makes it infeasible
to characterize the synchrony solely from the amplitude
values [87]. Popular synchrony measures include linear
cross correlation [88], [89], coherence - the covariance
of amplitudes for different frequency bands, and phase
correlation [90]. A few experiments have tried locating SOZ
from measures of synchrony.

EEG analysis of six patients with intractable epilepsy
in [91] studied synchrony measures to distinguish SOZ.
One hour-long interictal EEG signals, acquired using grid

and depth electrodes, were filtered with a passband of 4
- 30 Hz (theta, alpha, and beta bands). The normalized
cross-correlation coefficients for a 5-sec window were
used as the synchrony measure, and the regions with the
highest synchrony measure were marked hypersynchronous.
The synchrony pattern remained stable for the 1-hour
duration, and the hypersynchronous area overlapped with
the SOZs located by epileptologists in all but one patient.
Though this shows a correlation between the two, it is
unclear if the hypersynchronous activity causes seizures.
Moreover, grid electrodes used for the analysis are placed
on the brain surface and thus do not provide sufficient
information to study seizures originating from deep inside
the brain.

While studies on epileptic patients provide meaningful
results on localizing seizures, it does not show how
the brain and synchrony measures differ from a healthy
person. The research work by [92] studied the local field
potential (LFP) of four patients with focal partial epilepsy
and two control non-epileptic subjects. The signal, acquired
at 32,556 Hz using subdural grid electrodes, was later
downsampled to 5 kHz for analysis. Synchrony measures of
cross-correlation and mean phase coherence were obtained
for 1s non-overlapping windows. The SOZ identified by
clinical experts showed lower synchrony with other regions
for epileptic patients when compared to the control. The
lower synchrony levels led the researchers to speculate
that the SOZs in epileptic patients are isolated functionally
from the neighboring areas, which might be a substantial
contributing factor for spontaneous epileptic activity. Three
of the four patients were eligible for resective surgery and
remained seizure-free after the surgery. Though this success
seems to validate the former speculation of the functional
disconnect of SOZs from other regions, further work is
required to validate whether this contributes to seizure
generation.

B. PHASE-AMPLITUDE COUPLING MEASURES AND SOZ
IDENTIFICATION
The concept of neuronal synchrony can also be interpreted in
terms of synchronizing interactions between various neuronal
oscillations. The brain oscillations exist in varying frequen-
cies, with lower frequencies responsible for interactions that
occur over a longer time and over much larger regions,
and the short-term local interactions are characterized by
high-frequency bands [93]. These oscillations show a degree
of dependence between each other. The different frequency
bands can interact with each other, and the oscillations
of one band can modulate the oscillatory response of
another [94]. This phenomenon is called cross-frequency
coupling (CFC). A major form of such interaction is called
phase-amplitude coupling (PAC), in which the phase of
lower frequency actions modulate the amplitude of high-
frequency activities. Results from [95] and [96] have shown
that CFC is characteristic of the ongoing brain activity
and change based on the cognitive task. In addition to
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FIGURE 5. Estimation of phase-amplitude coupling.

this, the results from [97], [98], and [99] have also shown
that CFC, especially that between low-frequency phase
and the amplitude of high-frequency gamma of ictal iEEG
data, can characterize the seizures effectively. These have
led to a few recent works on characterizing the pre-
dictability of phase-amplitude coupling for the identification
of SOZ [16]–[18].

With no single standard for PAC measure, there exist
different techniques to quantify PAC. While each method
has its pros and cons as described in [100]–[102], a popular
method is the modulation index proposed in [103], which
is based on the normalized entropy measure from [104].
Hilbert transform is used to extract the envelope of the
high-frequency band and phase of the low-frequency band.
The phases are binned against the mean amplitude of the
HF signal for each bin. Finally, the normalized entropy
measure is calculated for the modulation index (MI).
Figure 5 shows the general steps in determining the measures
for PAC.

This feature was used in [16] to calculate the PAC for all
low- and high-frequency pairs. The first four minutes of EEG
signal during each sleeping stage (N1, N2, N3, and REM) is
used for analysis. The channels were grouped into either of
the three classes – SOZ channels, exclusively irritative zone
(EIZ, channels where spiking is observed outside SOZ), and

normal zone (NoZ, channels without any epileptic incident).
The PAC measure (MI) obtained for the three classes are
compared, and it was seen that the MI for SOZ channels
is much higher than that for the EIZ and NoZ channels
for varied levels of sleep. The observations also concluded
that the coupling is maximum during the deep sleep N3
stage. Prior observations from [4] and [12] that inferred the
modulation of HFOs by sleep show an underlying correlation
between the two phenomena. However, the study [16] did
not analyze the various regions of the brain, and the role of
PAC in identifying the resective area is yet to be studied.
A similar analysis of the phase-locking value (PLV) of
limited patients by [18] showed higher phase-amplitude
coupling for electrodes near the seizure onset zone. The
ripples for the range of 80 – 150 Hz and spikes of EEG
data was analyzed in [17] from patients with mesial temporal
lobe epilepsy while asleep. PAC is measured using two
methods. The first method is by phasor transformation of the
instantaneous amplitude and phase, quantifying the strength
and ripple rate coupledwith spikes. The second step evaluated
the strength and spectral frequency of the modulating and
modulated signals with a modified averaging measure. Both
estimates indicated a higher coupling of ripple amplitude
with the phase of epileptiform spikes inside the SOZ than
outside.

Supervised machine learning in retrospective analyses
has shown promising results in validating PAC as a viable
biomarker for locating SOZ. For example, a logistic regres-
sion classifier was developed in [105] using PLV features
of high gamma amplitude with the phase of low-frequency
rhythms, extracted from ictal iEEG recordings of ten epileptic
patients who underwent surgical resection. In addition to the
successful location of SOZ regions for seizure-free patients
post-surgery, the number of non-resected SOZ electrodes
identified by the algorithm correlated with the seizure
outcome in non-seizure-free patients.

Although the discussed methods indicate significantly
higher PAC at SOZ regions, these are obtained from smaller
studies. Their generalizability is unknown, and the actual
relation between PAC with SOZ is yet to be quantified.
Further work is required to confirm the viability of PAC as
a biomarker for localizing seizures.

VI. MACHINE LEARNING FOR SOZ IDENTIFICATION
The increased data availability has facilitated significant uti-
lization of machine learning (ML) algorithms for predictive
tasks across numerous fields, including biological data sets.
Numerous research works on brain data sets have applied
machine learning for the detection and prediction of seizures
with very high accuracy [106]–[110]. Seizure localization is
a more complex problem as the ground truth identified by
visual inspection may be subjective. One way to determine
the veracity is to determine the success rate in rendering a
patient seizure-free after surgical resection of the identified
region.
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As discussed in section III, unsupervised ML algorithms,
such as clustering and anomaly detection, are predominantly
used in the automated identification of HFOs. These algo-
rithms have been shown to locate SOZ with high accuracy,
evidenced by the successful correspondence with the resected
regions that rendered patients seizure-free. Unsupervised
clustering based on graph features from connectivity mea-
sures, discussed in section IV-A, has also been shown to
distinguish SOZ channels from non-SOZ accurately.

Supervised ML algorithms rely on class labels of regions
(SOZ and non-SOZ) provided by epileptologists. The
classifier features are mainly extracted from the discussed
biomarkers. Some specific examples are discussed in the
previous sections. As discussed earlier, each biomarker by
itself hasminor shortcomings. Thus, combining features from
multiple biomarkers might improve the predictive strength.
This was done in [111] where a SOZ detection algorithm was
developed using the local values of HFOs, interictal epilep-
tiform discharges (IED), and PAC as features for an SVM
classifier. The results showed that the combined classifier
outperformed both unsupervised classification and classifi-
cation using individual components with an AUC of 0.79.

The deluge of data availability has also facilitated the
burgeoning of neural network-based algorithms for improved
localization of SOZ. Deep neural network (DNN) models
can be used to more accurately identify viable biomarkers
of SOZ when compared to standard ML algorithms. For
example, the convolutional neural network (CNN) model
with time-frequency maps as features in [112] detects HFOs
with improved specificity when compared to conventional
unsupervised and supervised ML methods. The analysis
of twelve patients from two independent datasets in [113]
also shows the generalizability of the long short-term
memory (LSTM) model for HFO identification. Newer
works have also shown the success of DNN algorithms in
identifying SOZ from non-invasive recordings, such as scalp
EEG, that directly learn from the spatial and temporal features
of the EEG recordings. For example, the SZLoc architecture,
proposed in [114], utilizes different CNN encodings for
local and global networks and combines the representation
using a transformer layer. The algorithm shows superior
predictability using scalp EEG (with a mean accuracy of
71.1%) and is generalizable across independent datasets.
However, the performance accuracy is less than ML-based
methods utilizing iEEG recordings. The above-discussed
results indicate that DNN can be a useful presurgical tool to
analyze a large amount of data in a much shorter time.

VII. CONCLUSION
Localizing seizure onset from iEEG can be posed as a
classification task to separate electrodes into SOZ and non-
SOZ. Various phenomena that are characteristic of the iEEG
data from the onset zone are discussed in this paper. Table 2
summarizes the data, methodology, and performance of some
essential methods discussed in this manuscript. One of the
most extensively studied electrophysiological biomarkers

is HFOs. To the most extent, the identification of HFO
activities is performed using unsupervised learning methods
for anomaly detection, such as clustering. Semi-supervised
algorithms that have shown to outperform unsupervised
methods [115], [116] can be incorporated to improve the
detection. An alternate approach is the evaluation of brain
networks using graph theory and information-theoretic
methods to characterize the signal flow within the observed
channels. Measures of synchrony and PAC have also shown
increased coupling of specific frequency bands, which can
be used to localize SOZ. ML has also been shown to improve
SOZ identification and make it possible to analyze extensive
data rapidly.

However, the true success of an algorithm in identifying
SOZ lies in rendering the patient seizure-free after resecting
the tissue from the identified regions. Unfortunately, most
discussed methods are either retrospective or performed in
conjunction with the physician’s analysis. The final decision
for resective surgeries is still performed by visual inspection.
Although the role of physicians and epileptologists in
locating SOZ is indisputable, analysis of iEEG recordings
becomes more time-consuming with the increase in channel
density. Furthermore, resection based on visual inspection
sometimes results in unsatisfactory surgical outcomes. For
example, the analysis of 414 patients in [117] concluded
that visual inspection of the ictal iEEG recordings resulted
in absolute seizure freedom only in 61%, 47%, and 42% of
patients at one, three, and ten years post-surgery, respectively.
The concordance of SOZ regions identified by automated
algorithms and physicians, and the higher correlation of ML
algorithm-identified regions with seizure outcomes in non-
seizure-free patients, indicates that future clinical decisions
might benefit from the inclusion of automated analysis of
iEEG signals.

Although iEEG is the gold standard for seizure analysis, its
invasive nature drives researchers to find non-invasive alter-
natives with similar performance. Recent efforts have focused
on less invasive scalp EEGs and inference using source
imaging techniques to identify SOZs from the different
biomarkers [78], [118]. However, the attachment of several
electrodes for a long duration still creates discomfort for the
patients. This necessitates newer non-invasive techniques of
similar performance. The work in [119] uses wavelet-based
Maximum Entropy on the Mean method on the magnetic
and electric source imaging of the SOZ from MEG and
EEG recordings during the ictal stage. The proposed method
showed 90% concordance of magnetic source imaging results
with the clinical SOZ. Unlike seizure detection or prediction
classification problems, which can now be classified with
very high accuracy, identifying the seizure onset zone is not
easy. Although there has been significant progress in this
problem, as seen from this paper, more work is required for
an automated identification algorithm to be used clinically.
The continuous improvement of imaging techniques and
incorporation of deep neural networks in future works may
accurately localize SOZ.
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