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ABSTRACT On-orbit removing tumbling targets is a critical research issue for future space missions.
Repeated tentative contacts by the robot can be used to eliminate the rotational motion of a tumbling
target. The elimination process depends on the accuracy of the information provided by a motion estimator,
which is not discussed in conventional research. Additionally, there are few literatures that examine how to
reduce the number of contacts to increase mission safety. To solve these issues, a coupling framework of a
navigation method and a detumbling controller is designed in this paper. In particular, the relative navigation
method, which incorporates the momentum transfer information and the visual guidance, is developed to
estimate states of the target. The combination of two types of information ensures that the estimator can
be used continuously in free-floating and contact modes without the need for measuring interaction forces.
Bymodifying an optimal controller, a detumbling controller is designed. A sufficient condition is established
such that the robot can achieve the goal of detumbling the target under the influence of estimation errors.
Finally, a numerical example is provided to illustrate the effectiveness of the designed framework.

INDEX TERMS Space debris, space robot, state estimation, detumbling controller, repeated contact.

NOMENCLATURE
aU Vector from the {R} to {U}
A(·) Rotation matrix computed by a quaternion
b Robotic knowledge
cf , cg, cρ Length of fE, g, and ρ, respectively
d Timing of contacts
D Set of the timing of contacts
f E Interaction force exerted on the target
f R, τR Active force/torque generating in the process

of orbital/attitude maneuver
fmax Upper threshold of the magnitude of the

interaction force
g Angular momentum of the object about

the CM
iyz Inertia ratio
I MI of the object described in {U}
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ixx , iyy, izz Principal components of I
K Kalman gain matrix
l, p Angular momentum, momentum of

the object
lR, pR Angular momentum, momentum of

the robot
lS , pS Angular momentum, momentum of the

robot-target system
m Mass of the object
M Total number of contacts
N Dimension of x
P Covariance matrix of a variable
Q Covariance matrix of environmental

disturbance
q, qR Quaternion of {U} and {R}
q∗ Conjugate quaternion of q
qs, qv Scalar, vector part of q
qRU Attitude quaternion of {U} relative to {R}
r Position of {U} relative to {I}
rE Position of the end-effector relative

to {I}
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rR Position of {R} relative to {I}
R Covariance matrix of measurement error
R Set of the position of cloud points
S Cholesky factor of of the error covariance

matrix
t1 Sampling time
tδ Duration of a contact event
u Angular impulse of a contact about the

CM of the object
umax Maximum magnitude of u
v Velocity of the object
vR Velocity of the robot
wm0 , w

c
0, w

m
i Weight parameters of the estimator

w Discrete process noise
x State of the filter
X , Z Sigma points related to state vector,

observation vector
z Observation vector
δ Dirac delta function
ζ , η, ι, κ Constant parameters of MCB-SRUKF
ρE Vector from {U} to the contact point
ρR Vector from {U} to {R}
ϑ Measurement noise
ω Angular velocities of the object

described in {U}
ωmin Allowable residual angular velocity
R, Rn Set of real numbers or n-dimensional

column vectors
1n n× n identity matrix
× Cross product operation of a vector
[·×] Cross product matrix
⊗ Quaternion products
‖·‖ Euclidean norm
·
k Variable at k-th contact
·unit Normalized vector of a vector
·̂, δ· Estimated value, error of a variable
·̃ Variables computed by using estimations

ABBREVIATION
CM Center of mass
EM Equations of motion
FCDS Fewest contact detumbling strategy
MC Momentum conservation
MCB-SQUKF Momentum-conservation-based square

root unscented Kalman filter
MI Moment of inertia
RCDS Repeated-contact-detumbling scheme
SASC Smooth attitude-stabilizing control
SQUKF Square root unscented Kalman filter

I. INTRODUCTION
Currently, there are a large number of orbital service mis-
sions require reliable robotic technology to capture uncoop-
erative objects including dysfunctional satellites and orbital
debris [1]. Usually, these targets are tumbling due to the

influence of the space environment. The uncertain nature of
motion states and inertial parameters is the second unco-
operative characteristic. These factors make the capture of
uncooperative targets challenging.

Matunaga [2] proposed that the manipulator can absorb
the rotational motion of the object by repeatedly con-
tacting with it and applying a slight impulse on it. This
method, illustrated in Fig. 1 and named as repeated-contact-
detumbling scheme (RCDS) in the following, was a candi-
date pre-capture approach to reduce the risk of capturing
the object. Kawamoto et al. [3] proposed that by reducing
the nutation and stopping the spinning by turns, a robot
can completely dissipate the rotational motion of the object.
Yoshikawa and Yamada [4] examined the stationary response
under contact model uncertainty and the analytical stability
condition of the RCDS. A space target capturing mission
carried out by a robot generally consisted of four phases [1]:
the pre-capture phase, the impact-contact phase, the post-
capture phase, and the compound stabilization phase. In the
second phase, RCDS was employed periodically unless the
angular velocity of the object was sufficiently small, which
ensure that the robot can capture the object safely. Despite
the advantage of the RCDS, there exists a few open ques-
tions. The detumbling should be performed with the fewest
number of contacts possible. However, the optimization
problem has not been considered due to the complexity of
the RCDS. [2]–[4] indicated that accurate estimations of
motion states and inertia parameters of the object are key
inputs for the RCDS method. Several navigation methods are
discussed in the following to determine whether they can be
applied to the RCDS.

Most of estimators for the object removal mission can
be classified into three schools according to their primary
measurement method: the vision school [5]–[8], the tactile
school [9], [10], and the robot-knowledge school [11]–[13].
Some solutions [5], [6] were concerned about free-floating
targets and only used vision guidance, which were regarded
as the vision school. By incorporating LIDAR sensor data,
model-based estimation, and optimal control, Aghili et al.
developed several autonomous close-range estimation
schemes for the space robot [14]–[16]. It is noteworthy
that vision-class studies were not able to estimate absolute
inertia parameters such as mass and the absolute value of
moments of inertia (MI). Shenfield and Rock [17] pro-
posed that all the inertial parameters could be calculated by
observing forces and torques exerted on the object. Some
researchers, drawing inspiration from them, introduced tac-
tile sensors or force/moment sensors to measure the inter-
action force/moment between the robotic manipulator and
the object. Studies [9], [10] used a Kalman filter to esti-
mate rotational motion in the free-floating mode and a least
squares algorithm to determine the MI in the contact mode.
A force/moment sensor equipped on the robot is used to
collect force and torque information when the robot touches
the target. However, extra sensors can lead to a higher cost and
power demand. The third school [12], [18], [19] which relies
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FIGURE 1. The process of RCDS. In (a), the robot tracks the predetermined contact point. The object keeps floating freely. In (b), the
controlled collision between the manipulator and the object happens. In (c), the manipulator and the object separate. In (d),
a second contact is executed. It should be noted that the robot can choose different contact points according to the motion of the
object, as shown in (b) and (d).

on the knowledge of the robot, were widely used in the post-
capture phase. Inertial parameters including mass, center of
mass (CM), and MI, are calculated by using characteristic
parameters and motion states of the robot. However, these
algorithms only used motion information of the robot and did
not utilize other measurements. Consequently, they were not
appropriate for the free-floating motion mode.

Summarizing the aforementioned discussions, we draw
several technical problems as follows:

1. The attitude, position, velocity, angular velocity,
mass, and MI of the object are unknown. How
can a single filter estimates these states under the
influence of external disturbance?

2. A series of engineering problems arises from the
measuring the interaction force. How can the mea-
surement of the interaction force be avoided in the
estimation process?

3. During the RCDS mission, the object can be float-
ing freely or touched by the robot. How can a single
filter be designed for this scenario?

4. How tominimize the number of contacts and reduce
the risk of RCDS?

To solve all these problems, this paper carries out the
research into two parts including constructing an estimator
and developing a control algorithm. Main contributions are
listed as follows.

1. A novel navigationmethod, which uses vision guid-
ance and the momentum transfer computation as

well as the dynamic model based on the MC law,
is developed to estimate inertia parameters and
motion information of the object. The only criterion
for a usable technique is that it is not affected by the
interaction force between the robot and the object.

2. To avoid the oscillation, a detumbling controller
is developed by modifying an optimal controller
based on Pontryagin’s principle. By constructing a
Lyapunov function, we demonstrate the stability of
the controller in the presence of estimation errors.

A square root unscented Kalman filter (SRUKF) which
can maintain the positive semi-definiteness of the high-
dimensional covariance matrix [20] is used to construct
the estimator. Therefore, the proposed estimator is named
as momentum-conservation-based square root unscented
Kalman filter or MCB-SRUKF. Combining the detumbling
controller with a method of calculating capture points and
forces according to the output of the controller is called the
Fewest Contact Detumbling Strategy (FCDS). In the RCDS
mission as shown in Fig. 2, the object keeps tumbling and
floating freely after a contact. The states of the target is esti-
mated by theMCB-SRUKF. The contact point and interaction
of the next contact are predetermined by the FCDS to ensure
that the detumbling can be alleviated. After that, the space
robot predicts and tracks the motion of the contact point
by using the estimation of the object. In this paper, we do
not discuss the prediction and tracking of a contact point,
which were thoroughly examined in [21]–[24]. The contact
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FIGURE 2. The relationship among real dynamics of the RCDS, vision guidance, MCB-SRUKF, FCDS and
tracking controller. The object-robot system could be in free-floating mode or the contact mode,
as illustrated in the real dynamics box. The environmental disturbing force and torque exerted on the
object are considered. Variables are explained in Nomenclature.

FIGURE 3. The structure of the robot and target.The robot consists of an
end-effector, a manipulator, a base satellite, and a LIDAR. The
end-effector is controlled to follow the contact point while the target is
floating.

detumbling is repetitively executed until the angular velocity
of the object becomes enough small.

After this introduction, the MCB-SRUKF are established
in Section II. The FCDS is addressed in Section IV. The
validation of the coupling scheme of the MCB-SRUKF and
FCDS are conducted in Section III. Finally, conclusions are
given in Section V.

II. THE DERIVATION OF THE FILTER
A. DYNAMIC ANALYSIS OF THE ROBOT-TARGET SYSTEM
In this section, dynamics of the object and the robot are
researched. The structure of the object and the robot are
properly simplified, as shown in Fig. 3. The robot coordinate
system, denoted as {R}, is fixed on the LIDAR. {I} is the
inertial frame. The body frame of the object is denoted as {U},
which is fixed on the CM. {U} is oriented to the principal axes
of MI.

A similar frame system is used for the robot base, denoted
as {R}. On the left shoulder, the superscript indicates the

FIGURE 4. Force analysis in the point contact mode. f E represents the
force exerted on the target. The opposite force is exerted on the
end-effector. External force/torque on the target are denoted by wτ and
wf . The active force/torque on the robot are denoted by τR and f R .

frame for describing the vector/tensor. The default frame of a
vector/tensor is {I}, with the exception of ω and I expressed
in {U}. Motion states of the robot are presumed to be precisely
measured.

Total angular momentum and momentum of the system are
as follows:

lS = lR + A(q)Iω + r× mv (1)

pS = pR + mv (2)

lR and pR can be computed by using motion information of
the robot which is provided by onboard inertia measurement
units and joint encoders, as illustrated in [25], [26]. Therefore,
lR and pR are considered as inputs to the filter.
The force analysis in the contact mode is shown in Fig. 4.

The active force/torque and the interaction force are exerted
upon the robot. Active force/torque is generated by the satel-
lite orbit/attitude maneuvering actuator. Therefore, τR and
f R are assumed to be known. Aside from the interaction force,
the motion of the object is influenced by others factor, such
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as flexible solar panels, fuel sloshing, and gravity gradient.
The sum of these three factors are represented by w with the

form of w =
[
wTτ wTf

]T
. Prior research [27] indicates that

w can be modeled as zero-mean Gaussian white noise pro-
cesses with the covariance matrix

E{wiwTj } = Qδi,j (3)

For the robot-target system, the change rate of the angular
momentum is equal to the resultant moment on the origin of
inertia frame, which is

l̇S = rR × f R + τR + r× wf + wτ (4)

The momentum of the system can be calculated by solving
the differential equation:

ṗS = f R + wf (5)

It should be noted that f E is eliminated in (4) and (5). Two
equations also are valid in the free-floating mode as well
because f E is always equal to zero when the object is free-
floating. Kinematic equations for the object are the following:

q̇ =
1
2
�(ω)q (6)

ṙ = v (7)

where �(·) is

�(ω) ≡
[
−[ω×] ω

−ωT 0

]
(8)

Dynamics parameters of the object including ixx , m, and iyz,
are unknown constants and are used as filter states. ixx and
iyz are explained in Appendix A. In addition to q, r, ixx , m,
and iyz, candidate states include ω, v, lS , and pS . According
to (1) and (2), lS and pS can be computed by ω, v, and others
states or known variables. Similarly, ω and v can be solved by
rewriting (1) and (2) as

ω = (ixxIyz)−1AT (q)(lS − lR − r× (pS − pR)) (9)

and

v = m−1(pS − pR) (10)

where Iyz are explained in Appendix A. Therefore, ω, v, lS ,
and pS are redundant to the filter. (9) and (10) must be differ-
entiatedwith respect to time to construct the process equation,
ifω and v are chosen as states of the filter, as in [28]. However,
this approach is undesirable because the differentiation of
motion states of the robot can introduce errors. (4) and (5)
can be used as process equations of the filter if lS and pS
are considered as states. The second method reduces comput-
ing complexity and can prevent truncation errors. Therefore,
ω and v are considered intermediate variables that can be
computed by using pS , lS , and other variables.

States of the filter can be summarized as follows:

x =
[
qT rT lTS pTS ixx m iTyz

]T
(11)

Robotic knowledge used in (4), (5), (9), and (10) is written as
a single vector which is

b =
[
lTR pTR rTR qTR τTR f TR

]T
(12)

In this section, the dynamic of the system is presented in
the form of (4), (5), (6), (7), (9), and (10). Momentum transfer
is used as an indirect measurement of the velocity/angular
velocity. Taking the prediction of the velocity and the position
of the object as an example: The total momentum is predicted
according to Eq. (5); The momentum and velocity of the
object are calculated by subtracting the robot momentum
from the total momentum, as shown in (10); The object
position is calculated after solving differential equation of (7).
The angular momentum, the velocity and the attitude of the
object can be calculated in the same way. The indirect method
has several advantages over the traditional acceleration for-
mulas which are widely used in previous studies [29], [30].
The proposed method is not affected by the interaction force
and is appropriate for two motion modes. The method does
not require any additional sensors.

B. PROCESS EQUATIONS AND OBSERVATION EQUATIONS
In this subsection, dynamic equations mentioned above are
transformed into discrete process equations. (4), (5), (6),
and (7) are integrated and discretized. xk is propagated for-
ward by

qk = 2(ωk−1)qk−1 (13)

rk = vk−1t1 + rk−1 (14)

lS,k = lS,k−1 + t1(rR,k−1 × f R,k−1 + τR,k−1
+ rk−1 × wf ,k−1 + wτ,k−1) (15)

pS,k = pS,k−1 + t1(f R,k−1 + wf ,k−1) (16)

ixx,k = ixx,k−1 (17)

mk = mk−1 (18)

iyz,k = iyz,k−1 (19)

where ωk−1 and vk−1 are calculated by substituting x̂k−1
into (9) and (10). 2 in (13) can be derived by (6). It has the
form of

2(ω) ≡ cos(t1 ‖ω‖ /2)14 +
[
−[ψ×] ψ

−ψT 0

]
(20)

where ψ ≡ sin(t1 ‖ω‖ /2)ω/ ‖ω‖. Discrete process equa-
tions can be compiled into a compact form

xk = f (xk−1, bk−1)+ G(xk−1)wk−1 (21)

where G(xk−1) is

G(xk−1) = t1


07×3 07×3
13 [rk−1×]
03×3 13
04×3 04×3

 (22)

Observation equations are then investigated. The orienta-
tion and position of {U} relative to the robot frame {R} can
be calculated by range data of the point cloud provided by
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the LIDAR according to [6], [10]. Considering the measuring
error of the LIDAR which is denoted by ϑ , the measurement
vector is

zk =
[
RaU
qRU

]
+ ϑk (23)

where RaU represents aU described in {R}. Using experimen-
tal data from a previous study [21], the measurement error
of LIDAR can be modeled as known Gaussian white-noise
processes. Therefore, means and covariances of ϑk can be
written as

E{ϑ i} = 0 (24)

E{ϑ iϑTj } = Rδi,j (25)

In Fig. 3, the position and the orientation of the target
relative to the robot, denoted by RaU and qRU , are measured
by the LIDAR. According to the figure, aU can be computed
by

aU = r− rR (26)

RaU is the value of aU described in {R} and can be calculated
by

RaU = AT (qR)(r− rR) (27)

q and qR are orientations of {U} and {R}, respectively.
According to the quaternion operation, the quaternion of {U}
relative to {R} is

qRU = q⊗ q∗R (28)

where q⊗ represents q⊗ ≡ qs14 + �(qv). q
∗ is given by

q∗ ≡
[
−qTv qs

]T . All variables on the right hand side of (27)
and (28) are included in u and x. Therefore, (27) and (28) can
be written as [

RaU
qRU

]
= h(x,u) (29)

Substituting (29) into (23), the measurement of the vision
guidance is

zk = h(xk, bk−1)+ ϑk (30)

In this section, process equations and measuring equations
are built. A series of Kalman filter can be used to construct the
estimator. A square root unscented Kalman filter (SRUKF)
which is reviewed in Appendix B is used in this paper due to
the computational stability.

C. SUPPLEMENTARY INSTRUCTION OF THE FILTER
The natural law that m, ixx , lS , and pS cannot be esti-
mated before the first contact occurs is followed by the
MCB-SRUKF. The estimation of q, r, ω, v, iyz is not affected
by this phenomenon, denoted by the semi-activation. Activat-
ing the filter requires that the interaction force is not equal to
zero, and f E cannot be parallel to ρE . These conditions can
be summed up as ρE × f E 6= 0.
This condition requires reasonable settings, especially the

contact point and the interaction force. The FCDS which

automaticallymeets the demand of ρ×f E 6= 0, is presented in
the next section. By using the FCDS and MCB-SRUKF, two
purposes can be achieved after several contacts: estimating all
states including m, ixx , lS , and pS ; and detumbling the object
with the least of number of contacts.

III. FEWEST CONTACT DETUMBLING STRATEGY
The construction of the FCDS takes three steps. Firstly, the
attitude dynamic of the object is investigated along with the
effect of estimation errors on the angular momentum about
the CM of the object. Secondly, a sub-optimal controller is
designed. The stability proof of the controller is given under
the existence of estimation errors. Thirdly, the method for
determining the contact point and interaction force by using
the control quantity is developed.

A. PROBLEM STATEMENT AND ERROR ANALYSIS IN THE
DETUMBLING TASK
The attitude of the object is influenced by the interaction
force and disturbance torque as discussed in Section II-A.
The interaction force is not equal to zero at contacts.
This can be expressed as that f E,k 6= 0 when k ∈
D
{
d1, . . . , d i, . . . , dM

}
where d i represents the time of

i-th contact andM is the total number of contacts. During the
free mode, the influence of disturbance torque on the attitude
can be estimated by the filter. It is reasonable to ignore
the environmental disturbance in this section. Therefore, the
angular momentum about the CM of the object, denoted by g,
changes only at contacts and is a constant vector between two
contacts, which is stated as:

gi,− = gi−1,+ (31)

where gi,− and gi−1,+ represent the g right before d i and
right after d i−1. The relationship between gi,+ and gi,− can
be written as

gi,+ = gi,− + tδρiE × f
i
E (32)

where tδ is the duration of a contact. Assuming that the length
of ρiE is constant, denoted by cρ . For safety, the magnitude
of the contact force cannot exceed a certain value which is
denoted by fmax . The second term in the right side of (32) is
regarded as the control variable, denoted as u. For simplicity,
the plus superscript of gi,+ is omitted. Combining (31), (32)
can be rewritten as

gi = gi−1 + ui (33)

The physical meanings of ui is the angular impulse about the
CM of the object at the i-th contact. g can be calculated by
states of the estimator:

g = AIω = ixxA(q) Iyzω (34)

The length and unit vector of g are denoted by cg and gunit.
Considering that ATA = 13, they have the form of

cg = ixx
∥∥Iyzω∥∥ (35)
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and

gunit = A(q)Iyzω/
∥∥Iyzω∥∥ (36)

Assuming that the controller can be designed to be ui =
ui(g̃i−1, d i), where g̃ is computed by x̂. Assuming that the
relationship between g and g̃ has the form of

g̃ = agg+ εg (37)

where g · εg = 0. The relatively precise estimation of q, Iyz,
and ω in (36) always can be provided by the filter. Therefore,
the angle between g and g̃ is small. We can solve ag and εg
with the form of

ag =
c̃g
cg
=
îxx
ixx
·

∥∥∥Îyzω̂∥∥∥∥∥Iyzω∥∥ (38)

and

εg = c̃g(g̃unit − gunit) (39)

g̃ and g have same magnitude when ag = 1. g̃ is parallel
to g if εg = 0. Before the first contact, there is much
difference between ag and 1 because the semi-activated filter
cannot estimated ixx . Considering that εg is far smaller than g,
we assume that there exists a common maximum magnitude
of εg, denoted by εmax.

B. DESIGN AND STABILITY ANALYSIS OF THE
CONTROLLER
According to (33) and (37), the attitude dynamic of the object
is as follows:

gi = gi−1 + ui(g̃i−1, d i), i ∈ [1, . . . ,M ] (40)

where

g̃i−1 = ai−1g gi−1 + εi−1g , i ∈ [1, . . . ,M ] (41)

subject to ∥∥∥ui∥∥∥ ≤ umax = tδcρ fmax (42)

ai−1g > 0 (43)

and ∥∥∥εi−1g

∥∥∥ ≤ εmax (44)

Boundary conditions are

g0 = g(0) (45)

and

gM = 0 (46)

It should be noted that the time interval of the discrete con-
troller is equal to the time it takes between two contacts,
which is longer than the time interval of the systemmentioned
in Section II-B. The controller is designed to make ω or lC

equal to zero with the fewest number of contacts. Therefore,
the cost function of the control problem can be formulated as

J = F1(gM ,M )+
M−1∑
i=0

F2(gi,ui, i) (47)

Based on Pontryagin’s maximum principle, a discrete optimal
controller is derived in Appendix C. It has the form of

ui = −umax
g0∥∥g0∥∥ (48)

This is not a feedback control and is not robust to any
disturbance. The optimal continuous detumbling controller
developed by Farhad [31] is the equivalent of

ui = −umax
gi−1∥∥gi−1∥∥ (49)

It cannot guarantee the convergence of g in the discrete
system and can lead to the chattering if ‖g‖ ≤ umax. We have
to develop a novel controller which is robust against measure-
ment errors. Two controllers reveals that an optimal detum-
bling controller must keeps the direction of u opposite to g.
Therefore, a sub-optimal proportional controller is given:

ui = −umaxTanh


∥∥∥g̃i−1∥∥∥
umax

 g̃i−1∥∥∥g̃i−1∥∥∥ (50)

A hyperbolic tangent coefficient is used to make ui .= −g̃i−1

when
∥∥∥g̃i−1∥∥∥ < umax. Therefore, the residual rotational

motion can be eliminated without the chattering.
To validate the stability of the controller, a Lyapunov func-

tion is considered:

V = gT g/2 (51)

Combining (40) and (50), the differentiation ofV with respect
to time can be computed as

1V
1t

∣∣∣∣
k=d i−1

= gi−1,Tui

= −gi−1,T umaxTanh


∥∥∥g̃i−1∥∥∥
umax

 ai−1g gi−1 + εi−1g∥∥∥g̃i−1∥∥∥
≤ −

umax∥∥∥g̃i−1∥∥∥Tanh

∥∥∥g̃i−1∥∥∥
umax

 (ai−1g

∥∥∥gi−1∥∥∥2
−εmax

∥∥∥gi−1∥∥∥) (52)

Considering that ai−1g > 0, we can find that

1V
1t
≤ 0 (53)

when ∥∥∥gi−1∥∥∥ ≥ εmax/ai−1g (54)

VOLUME 10, 2022 64441



D. Che et al.: Innovate Detumbling Method for a Non-Cooperative Space Target via Repeated Tentative Contacts

FIGURE 5. The detumbling of the object executed by the robot. (a) and
(b) represent scenes at the moments of k = d i−1 and k = d i ,
respectively. Vectors which are marked as red arrows lie on the normal
plane of u (red curve). It should be noted that contact points and contact
forces in two subgraphs are different.

is satisfied. Therefore, we can conclude that g can always
converge into the region of

∥∥gi−1∥∥ < εmax/ai−1g . The
semi-activated filter does not affect the convergence trend
although it makes ag deviate from 1. On the other hand, g can-
not completely equal zero in the presence of εg. Therefore, the
residual rotation of the object is inevitable due to the inexact
estimation.

C. REALIZATION OF THE CONTROLLER
Optimal contact points and interaction forces are determined
in this subsection to generate the desired output contact.
ρE and fE lie on the normal plane of u as shown in Fig. 5
due to

u = tδρE × f E (55)

TABLE 1. Inertial parameters of the robot and those of the object.

An unit vector of ρE which is perpendicular to u can be
computed by

ρunitE =
u× ρR
‖u× ρR‖

(56)

where ρR is

ρR = rR − r̂ (57)

ρR can be replaced by other applicable vectors. The position
dataset of 3-D point clouds provided by the vision guidance
is given asR = {r̂cloud1 . . . r̂cloudm }. The vector from the CM to
the j-th cloud point is parallel to ρunitE if

(r̂cloudj − r̂)× ρunitE = 0 (58)

is met. The j-th point is selected as the contact point. ρE can
be rewritten as

ρE = r̂cloudi − r̂ = cρρunitE (59)

To generalize maximal torque, the active force are perpendic-
ular to ρE. Accordingly, the active force can be determined by

fE = cf
u× ρE
‖u× ρE‖

(60)

where cf is the length of fE. Substituting (50), (56), (59), and
(60) into (55), cf can be solved by

cf =
umax

tδcρ
Tanh

(
‖g̃‖
umax

)
(61)

Therefore, the contact points and interaction forces which
are used to generate expected u are determined.

In the FCDS, the control is carried out by selecting
sub-optimal contact points and interaction forces until the
magnitude of the angular velocity of the object does not
exceed a predefined value, denoted by ωmin. Therefore, the
MCB-SRUKF and FCDS can be summarized as pseudo-code
(Algorithm 1).

IV. SIMULATION
A. SIMULATION SCHEME
In this paper, to simulate the real robot-target environment,
we employ the famous ETS-VII mission as the background.
The manipulator of the ETS-VII is composed of six rigid
links. The end-effector can be seen as a part of the sixth
link. Detailed related inertia parameters of the robot base,
manipulator links, and the target are shown in Table 1. Initial
motion parameters of the robot-target system are presented in
Table 2. SpaceDyn [32], a space robot simulation toolbox for
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Algorithm 1
Input: initial guess of the state vector x̂0, initial guess of the
covariance Ŝ0, maximum discrete time kmax, contact timing
set D, magnitude of allowed residual angular velocity ωmin,
magnitude of maximum allowed interaction force fmax, mean
radius of the object cρ , duration of a contact tδ
Output: estimation set X , contact point set Cρ , contact force
set C f

1: for k = 1 : kmax do
2: zk and bk are calculated or measured.
3: x̂k , Ŝk← x̂k−1, Ŝk−1, zk , and bk according to (74)-(86).
4: if k ∈ D &&

∥∥ω̂∥∥ > ωmin then
5: R is called from the range image generated by

LIDAR.
6: g̃← x̂k according to (34).
7: umax← fmax, cρ , and tδ according to (42).
8: u← umax, g̃ according to (50).
9: ρE ← x̂k , rR,k, u, and R according to (56), (57),

(58), and (59)
10: fE← ρE, g̃, u, umax, tδ , and cρ according to (60) and

(61).
11: else
12: break
13: end if
14: x̂k−1← x̂k , Ŝk−1← Ŝk
15: end for
16:

17: return X =
{
x̂1, . . . , x̂kmax

}
, Cρ =

{
ρ1E , . . . , ρ

M
E

}
,

C f =
{
f 1E , . . . , f

M
E

}

MATLAB with high computational efficiency, is used in this
paper.

Precision parameters of LIDAR are reported in [21].
The measuring frequency of the LIDAR is set as 2.5Hz.
The covariance matrix of the measurement noise is R =
diag(0.0452 × 13m2, 0.062 × 14). tδ and cρ are set to 1s
and 3m, respectively. The covariancematrix of environmental
disturbances is Q = diag(1.82 × 13kg2 ·m4/s4, 1.22 ×
13kg2 ·m2/s4). The robot is controlled to follow the object,
whose controller is f R = cv(v − vR) + cr (r − rR) where
cv = 30kg/s and cr = 20kg/s2.
In the simulation, we present several configurations, parts

of which are outlined in Table 3. FCDS is employed in the
first and second configurations. A validated detumbling strat-
egy proposed by Wallsgrove [33] is used as a benchmark in
the third configuration. The benchmark, named as the smooth
attitude-stabilizing control (SASC) is similar to the FCDS,
except that (50) is replaced by

ui = −umaxTanh

(
g̃i−1

umax

)
(62)

To compare the performance of our estimator on estimating
inertia parameter with an existing method in [9], configura-
tion 4 is set.

TABLE 2. Initial values of states/guesses.

TABLE 3. Differences among four configurations.

The effectiveness of the MCB-SRUKF and the FCDS with
configuration 1 is examined in Subsection IV-B. A test on
the estimation accuracy of the MCB-SRUKF under differ-
ent conditions and the comparison between this filter and
the benchmark estimator are given in Subsection IV-C. Two
detumbling controller, i.e., FCDS and SASC, are compared
in Subsection IV-D.

B. TEST 1: SIMULATION RESULTS OF CONFIGURATION 1
The performance of the tracking filter with configuration 1 is
examined. In Fig. 6, real and estimated values of all states
and intermediate variables are recorded. q, r, lS, pS, Iyz,
absolute inertia parameters (ixx and m), ω, and v are depicted
separately in different subgraphs. Lines of different com-
ponents are moved downward to different distances so that
components of variables can be shown. For example, q = 0,
q = −3, q = −6, and q = −9 in subgraph (a) are
regarded as zero lines of q1, q2, q3, and q4, which are marked
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FIGURE 6. Estimation results of the MCB-SRUKF in configuration 1.

with black horizontal lines. In Fig. 6, red dotted curves,
blue solid curves, and black dotted vertical lines represent
actual values of variables, estimates of variables, and contact
events, respectively. In each of subgraphs, there are four black
vertical lines, which indicates that the robot touches the object
four times. As compared to Fig. 6, Fig. 7 displays errors
of variables more clearly. The same translation operation of
Fig. 6 is applied to lines of Fig. 7. In this figure, blue solid
curves and black dotted curves represent estimation errors
and 3σ of variables, respectively. It should be noted that ω
and v are intermediate variables. Therefore, there is no 3σ in
Fig. 7 (g) and 7 (h).

As depicted in Fig. 6, the slope of curves of q, r, ω, and v
changes each time the robot touches the object. In contrast
to these variables, curves of lS and pS are smooth at the
moment of contacts. The cause of this phenomenon lies in the
momentum conservation law. Fig. 7 (a), 7 (b), 7 (g), and 7 (h)
indicate that errors of q, r, Iyz, ω, and v converge to zero
lines before 40s. ω and v relate to the translation and
rotation motion, respectively. From Fig. 7 (g) and 7 (h),
we can see that the filter performs better on a translational
motion than a rotational motion. The comparison between
lS and pS confirms this conclusion. According to Fig. 7 (f),
absolute inertia parameters, i.e., ixx and m, cannot be
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FIGURE 7. Estimation errors of the MCB-SRUKF in configuration 1.

determined before the robot touches the object. (An unlisted
test demonstrates that without the influence of the external
disturbance, estimated values and 3σ of ixx and m are con-
stant before 40s. Another non-contact research shows that
using the external disturbance to estimate inertia parameter is
time-consuming and inaccuracy. Therefore, we can conclude
that the disturbance is beneficial but insufficient to estimate
absolute inertia parameters of the object.) The uncertainties
and errors associated with ixx and m rapidly decrease when
the contact event occurs. Curves converge to zero in a short
period of time following the first contact. Curves of lS and pS
in Fig. 7 (c) and 7 (d) can be precisely estimated after 40s,

which is similar to ixx and m. Therefore, the MCB-SRUKF
is confirmed to be semi-activated before 40s and to be fully
activated by the first contact. The semi-activated filter is
demonstrated to be capable of estimating q, r, ω, and v. The
activated filter is proved to be able to estimate all states reli-
ably. In Fig. 7, all estimation curves are within bounds of 3σ .
Therefore, the stability and effectiveness of theMCB-SRUKF
are verified.

Fig. 7 (g) shows that the object is tumbling at a high speed
before the first contact. The output data of the FCDS at all
contact events is summarized in Table 4 where ξg represents
the deviation ratio of the output of the FCDS and can be used
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TABLE 4. Outputs of the FCDS. The red number is above normal values.

to describe the influence of estimation errors on the FCDS.
ξg is computed by

ξg =
‖g− g̃‖
‖g̃‖

× 100% (63)

The table illustrates that the interaction force at the first and
the second contacts is close to the threshold value, i.e., 200N.
After the 80s, the angular velocity of the object decreases
around zero lines as depicted in Fig. 6 (g). The attitude quater-
nion correspondingly changes slowly as shown in Fig. 6 (a)
After the third contact, the object is detumbled. We can
find that differences between ideal detumbling moments and
output moments of the FCDS at first two contacts are within
a reasonable range. Based on the fact that δixx and δm are
large and that g̃ has a low bias at the first contact, we can
conclude that the semi-activated filter almost has no effect
on the FCDS. Immediately following the second contact, the
ratio increases sharply due to a decreasing magnitude of ‖g̃‖.
The angular velocity of the object remains near zero despite
the disturbance of errors. Therefore, the effectiveness and
robustness of the FCDS are verified. (A needless contact, i.e.,
the fourth contact, is exerted on the object in the simulation
even after it has almost stopped rotating. The goal is to test
the stability of the FCDS. In practice, the robot can stop the
FCDS after completing the third contact or when the angular
velocity is sufficiently small.)

C. TEST 2: THE STEADY-STATE ERROR OF THE MCB-SRUKF
UNDER DIFFERENT CONDITIONS
The MCB-SRUKF with different configurations is tested
in this study case. The simulation is run for 20 times to
eliminate the effect of outliers on the steady-state error. The
mean absolute error after 80s, denoted by ςp, is computed
considering that all states are estimated stably after the second
contact. Take the attitude quaternion as an example. ςp which
corresponds to q can be calculated by using

ςp = E(
∥∥δqp∥∥) (64)

where p is the configuration number. A comparison of the
ratio of ςp with different configurations is provided in Table 5
to determine influencing factors of steady-state errors. If the
ratio is 1, the performance of the filter with configuration 2
or 3 is similar to the performance of the filter with configura-
tion 1. In the first column of Table 5, ratios corresponding
to ixx and m exceed the normal range. Results in the sec-
ond column are close to 1. Therefore, the magnitude of the

TABLE 5. Estimation errors of three tests. Red numbers are much greater
than 1.

TABLE 6. cf (N) of three configurations. The magnitude of the contact
force which corresponds to the red number is less than others.

interaction force can significantly affect the estimation preci-
sion of absolute inertia parameters.

To further examine the influence of the interaction force,
errors of ixx and m are shown in Fig. 8. The estimation
result of ixx in configuration 4 is given in Fig. 8 (a).
The estimation on mass of the object is not consid-
ered in [9]. Therefore, only configuration 1, 2, and 3
are compared in 8 (b). The first subgraph illustrates that
δixx curves in configuration 1 and 3 are similar. They have
fast convergence speeds at the time of the fist contact and
can converge before the second contact. In the same period,
δixx curve of the configuration 2 decrease but are not equal
to zero. It is only after the third contact that the filter with
the configuration 2 is capable of estimating ixx precisely. The
same phenomenon of Fig. 8 (a) can be observed in Fig. 8 (b) in
regard to configuration 1, 2, and 3. Therefore, the limit of the
interaction force, i.e., fmax, is the dominant factor affecting
the estimation accuracy of inertia parameters. More contacts
are required as fmax decreases to ensure a certain level of the
estimation accuracy. Different detumbling strategies with the
same fmax have little influence on the performance of our
estimator. Fig. 8 (a) illustrates that after three contacts, inertia
estimator presented in [9] can have a similar precision as
our estimator in configuration 1. The benchmark algorithm
only samples quantities of velocity every one contacts to
compute inertial properties, compared with our work which
samples throughout the estimation task. The performance of
the benchmark is restricted by inadequate samples. Neglect
of the environmental disturbance also reduced its accuracy.
Therefore, these factors yield performance disadvantages
over our method.

D. TEST 3: THE COMPARISON OF DETUMBLING
STRATEGIES
Outputs of the interaction force in configuration 1, 2,
and 3 are presented in Table 6. As mentioned before, the
object is considered to be detumbled after three contacts
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FIGURE 8. Errors of absolute inertia parameters of the filter with different configurations. Rectangular regions
of Subgraphs (a) and (c) are displayed enlarged in Subgraphs (b) and (d), respectively.

FIGURE 9. The magnitude of residual rotational motion of three
configurations.

FIGURE 10. The magnitude of u in different configurations. Nominal last
contacts are marked by black cycles symbols.

with configuration 1. The table and Fig. 9 illustrate that four
contacts are required in configurations 1 and 3 to detumble
the object.

To further investigate the performance of difference detum-
bling strategy, more configurations are given as shown in
Table 7. The duration between two contacts is set as 5s.

FIGURE 11. Estimated and true values of g in Configuration 5, 6, and 7
are illustrated. Lines of g in three configurations are shown, as well as
the curve of g̃ in Configuration 5. g(i, :) represents the set of the i-th
component of g. The larger rectangle in (a) illustrates details of g and g̃ in
Configuration 5. The object stops tumbling when all components of g
converge to zero.

TABLE 7. Differences of three configurations.

Differ from configuration 1 which keeps detumbling even
when the object almost stopped rotating, the robot in configu-
ration 5, 6, and 7 stops the task if ‖ω‖ < 1e−2. The contact of
configuration 5 which satisfies the stop condition is marked
as a blue star with a black cycle in Fig. 10 and is named as
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the nominal last contact. The nominal last contact is a key
indicator to evaluate the efficiency of the detumbling strategy.
Affected by the measurement disturbance,

∥∥ω̂∥∥ could exceed
1e-2, which induces the robot to restart the detumbling task.
The additional contact of configuration 5 at 150s is caused by
this phenomenon and can be ignored. Nominal last contacts
of configuration 6 and 7 are alsomarked in Fig. 10. Therefore,
we can conclude that configuration 5, 6, and 7 cost 90s, 140s,
and 110s to detumble the object, respectively.

In Fig. 11 (a), g̃ is consistent with g after about 50s.
Although g is not estimated precisely before 50s, g is reduced
by FCDS at a constant speed. This indicates that FCDS is
robust to the measurement error. We can find that three com-
ponents of g̃ in Configuration 5 and 6 synchronously converge
to zero. Components of Configuration 7 spend 95s, 60s, 110s
to converge, respectively. SASC can damp the detumbling
motion into a simpler rotation motion. Some space robot
which can deal with single-axial rotating targets can benefit
from SASC.

Therefore, the FCDS is more effective at detumbling the
object by using fewer contacts or smaller fmax than the SASC.
The efficiency of the FCDS is confirmed by simulation
results.

V. CONCLUSION
The MCB-SRUKF and the FCDS have been developed in
this paper for the RCDS mission. By combining several
techniques including the vision guidance and the momentum
transfer computation as well as the dynamic model based on
the MC law, a novel navigation method has been constructed.
In the FCDS, the angular impulse has been controlled to be
the opposite vector of the angular momentum about the CM
of the object. A scheme of sub-optimal contact points and
interaction forces has been presented to generate a desired
impulse. Theoretically, FCDS has been demonstrated to be
robust to estimation errors, even when the filter is semi-
activated.

In the simulation, the MCB-SRUKF has been demon-
strated to be applicable for both contact and free-floating
modes. It has been observed that the precision of the proposed
estimator about the absolute value of mass and MI increases
with the threshold value of the interaction force. Simulations
have shown that the designed estimator is not affected by
the detumbling strategies employed. MCB-SRUKF has gen-
erated more accurate results than the benchmark estimator.
Our results regarding the activation of the estimator given
in Subsection II-C have been proven. FCDS has been shown
to be more efficient than other detumbling approaches. Tar-
gets have been detumbled using MCB-SRUKF and FCDS
in various configurations. The coupling scheme of the
MCB-SRUKF and FCDS has been demonstrated to be stable
even when the filter is semi-activated. Our future work will
focus on constructing an experimental platform and demon-
strating the performance of the coupling scheme in hardware-
in-the-loop simulations.

APPENDIX A
DEFINITIONS OF INERTIA PARAMETERS
I = diag(ixx , iyy, izz) is the MI described in {U}. Iyz and iyz
are

Iyz = diag(1, iyy/ixx , izz/ixx) (65)

iyz =
[
iyy/ixx izz/ixx

]T (66)

Therefore, I can be rewritten as

I = ixxIyz (67)

APPENDIX B
SQUARE ROOT UNSCENTED KALMAN FILTER
In the following, qr{·}, chol{·}, and cholupdate{·} stand for
the QR decomposition [34], Cholesky decomposition, and
Cholesky factor updating, respectively. Initial values of the
state and covariance can be provided as

x̂0 = E(x0) (68)

Ŝ0 = chol
(
E
[
(x0 − x̂0)(x0 − x̂0)T

])
(69)

Weight parameters, wmi and wci , are computed by

wm0 =
ι

N + ι
(70)

wc0 =
ι

N + ι
+ 1− ζ 2 + η (71)

wmi = wci =
ι

2(N + ι)
i ∈ {1, . . . , 2N } (72)

where

ι = N (ζ 2 − 1) (73)

With a prior estimate x̂k−1 and Ŝk−1, sigma points can be
computed using

Xk−1 =

[
x̂k−1 x̂k−1 +

√
L + ιŜk−1 x̂k−1 −

√
L + ιŜk−1

]
(74)

Sigma points are propagated through process equations,
which are

X (i)
k|k−1 = f (X (i)

k−1, bk−1) i ∈ {1, . . . , 2N } (75)

where X (i) is the i-th column of the matrix X . The mean
and the Cholesky factor can be propagated by

x̂k|k−1 =
2N∑
i=0

wmi X
(i)
k|k−1 (76)

Ŝk|k−1 = cholupdate
{
Ŝ
′

k , X
(0)
k|k−1 − x̂k|k−1, w

c
0

}
(77)

Ŝ
′

k = qr
{[√

wci
[
X (i=1:2N )
k|k−1 − x̂k|k−1

]
Ĝ
√
Q
]}

(78)

Measurement-transformed sigma points can be calculated by
the observation equation (30), which are

Z (i)
k|k−1 = h(X (i)

k|k−1, bk ), i ∈ {0, . . . , 2N } (79)
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The mean measurement vector, the Cholesky factor of
observation-error covariancematrix, and the cross-covariance
can be computed by

ẑk|k−1 =
2N∑
i=0

wmi Z
(i)
k|k−1 (80)

Ŝzz,k = cholupdate
{
Ŝ
′

zz,k , Z
(0)
k|k−1 − ẑk|k−1, w

c
0

}
(81)

P̂xz,k =
2N∑
i=0

wci (X
(i)
k|k−1 − x̂k|k−1)(Z

(i)
k|k−1 − ẑk|k−1)

T (82)

Ŝ
′

zz,k = qr
{[√

wci
[
Z (i=1:2N )
k|k−1 − ẑk|k−1

] √
R
]}

(83)

The Kalman gain matrix is computed by

Kk = (P̂xz,k/Ŝ
T
zz,k )/Ŝzz,k (84)

The posteriori estimated state and the Cholesky factor can be
updated by

x̂k = x̂k|k−1 + Kk (zk − ẑk|k−1) (85)

Ŝk = cholupdate
{
Ŝk|k−1, Kk Ŝzz,k , −1

}
(86)

APPENDIX C
DERIVATION OF THE OPTIMAL CONTROLLER
The state equation, constraint condition, boundary conditions
and cost function are given in Section III-B. The system
Hamiltonian can be constructed as:

H (λi, gi−1,ui) = λi,T (gi−1 + ui) (87)

An augmenting discrete performance index is given as
follows:

Ja = M +
M∑
i=1

[H (λi, gi−1,ui)− λi,T gi] (88)

where λ is the costate vector. According to the optimal control
theory, the costate must satisfy

λi−1,∗ =
∂H (λi,∗, gi−1,∗,ui,∗)

∂gi−1
= λi,∗ (89)

Therefore, λ∗ is a constant vector, denoted as λ0. Pontryagin’s
minimum principle indicates that optimal torque u∗ satisfies
the equation:

H (λi,∗, gi−1,∗,ui,∗) ≤ H (λi,∗, gi−1,∗,ui) (90)

where ui ∈ R3
3
∥∥ui∥∥ ≤ umax for every i ∈ [1,M ]. We can

solve ui,∗ as a function of costate:

ui,∗ = −umax
λ0

‖λ0‖
(91)

ui,∗ is also invariable. Combing (91) and boundary condi-
tions, i.e., (45) and (46), an equation can be given:

g0 −Mumax
λ0

‖λ0‖
= 0 (92)

Therefore, the unit vector of g0 is identical that of λ0. We can
conclude that

ui,∗ = −umax
g0∥∥g0∥∥ (93)
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