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ABSTRACT Object tracking is a technique for tracking a specific object appearing in a video sequence
while observing its features or changes. Recently, many algorithms showing high performance have emerged
by applying the Siamese network to the object tracking field. A Siamese network is designed to learn the
similarity between two images. In object tracking, the Siamese network tracks the object by finding the
location most similar to the target image in the search image. Algorithms based on Siamese networks are
vulnerable to partial and total occlusion of objects. In addition, since the object is tracked using only the
similarity with the image obtained using the ground-truth bounding box of the first frame, if an object is
missed once, then errors are accumulated, and a situation where the object drifts away from the object of
interest frequently occurs. Therefore, in this paper, we propose a reinforcement learning model that can
maximize the reward for tracking success after partial and total occlusion of an object. We also propose a
dynamic template exchange method using a template that has been successfully tracked in a recent frame to
solve the drift problem. When the proposed model is applied to the existing tracking models to evaluate the
quantitative performance in representative object tracking benchmarks VOT2018 and OTB50, it is confirmed
that the accuracy is improved, and the number of tracking failures decreases compared to the existingmethod.
As a result, an accuracy of 0.618, robustness of 0.234, and expected average overlap (EAO) of 0.416 are
achieved in VOT2018, and success of 0.673 and precision of 0.881 are achieved in OTB50.

INDEX TERMS Object tracking, Siamese network, region proposal network, reinforcement learning,
dynamic template exchange.

I. INTRODUCTION
Visual object tracking is a fundamental computer vision task.
In this field, it is possible to infer the correlation of target
objects between frames in a video sequence. It is used as
a basic work of video application in fields such as robot
vision [1], [2], self-driving [3], [4], and surveillance systems
[5], [6]. Although tracking algorithms are used in various
applications, problems such as partial and full occlusion of
objects, scale changes, and object/camera motion remain
challenges to be solved [7]. That is, spatial features and
temporal features must be present so that the initially selected
object of interest can be tracked to the end. It is necessary
to solve the occlusion and drift problems that occur during
the tracking process. However, occlusion is difficult to define
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for annotating as ground-truth in the training dataset. Most of
the training datasets constructed thus far are only annotated
with 1 or 0 in the frame in which the occlusion occurs.
We need data or a model that can effectively learn about the
occlusion and drift. Reinforcement learning is mainly used in
tasks where training data are scarce or ground-truth setting
is difficult. In object tracking, reinforcement learning can
experience success and failure through tracking simulation.
Therefore, in this paper, we propose a reinforcement learning
model that can be applied to the existing tracker by defin-
ing the state, action, and reward to solve the occlusion and
drift problems. Our proposed reinforcement learning model
integrates the channels divided into foreground and back-
ground into a single channel. Then, the agent learns to select
where the tracking can be successful in the feature of the
occlusion situation. Existing methods using reinforcement
learning to be described in Section 2 are designed to move

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63339

https://orcid.org/0000-0002-2316-6463
https://orcid.org/0000-0003-2576-2274
https://orcid.org/0000-0003-4606-6737
https://orcid.org/0000-0003-3835-1079


S. J. Park et al.: Object Tracking Using Siamese Network-Based Reinforcement Learning

the bounding box. The model then has a prior experience of
the location of the bounding box. This tends to keep track
of the intact objects, and it is more likely to lose the target
object in the event of an occlusion. The proposed method
in this paper allows the agent to pre-experience tracking
hindrances such as occlusion and drift. From the feature
map at that time, a feature that can be successfully tracked
is selected. This can be learned in a way that maximizes
the rewards the agent can earn in a reinforcement learning
environment.

Recently, the Siamese network [8] has been applied to
tracking tasks, showing balanced performance in speed and
accuracy, and various applications are continuing. Typically,
in [9]–[12], the ground-truth of the object of interest in the
first frame was maintained as a template, and the object was
tracked until the end of the video sequence. These models
were designed as CNNs, so the model was mainly used to
capture spatial features.

It is difficult to solve the continuous tracking problem
caused by temporal features within a sequence [13]. Refer-
ences [14]–[16] solved it by matching several templates with
the object of interest during tracking. However, a model for
this needs to be additionally designed. To simplify this, in this
paper, the dynamic template exchange method of Yan et al.
[13] is applied to a Siamese network to enable the capture
of temporal characteristic information, thereby solving the
temporal problem.

In general, object tracking models are trained using the
coordinates of the bounding box representing the object loca-
tion. The predicted coordinates have various influences, such
as the starting point for inference in the next frame and the
motion model. The tracking model makes inferences every
frame. This is why a single inference affects the tracking
until the end of the sequence. When an occlusion occurs, the
tracking of a part of the object causes errors to accumulate
and drift or leads to tracking success. Even if the overlap
ratio between the ground-truth and the estimated result in
one frame is measured to be high, it may not be a successful
inference in the entire sequence. Fig. 1 shows the tracking
results of the red box tracker and the green box tracker
initialized with the ground-truth (cyan box) in the first col-
umn. The green box tracking results (GOTURN [17], ATOM
[18], and DiMP50 [19]) in the second column have a higher
intersection over union (IoU) with the ground-truth than the
red-box tracking result. In the second column, the IoU value
between the red box and ground-truth falls below 0.5. This
means that tracking fails. However, similar to the third and
fourth columns, when the occlusion of the tracking object
is finished, the complete object shape is found due to the
position of the bounding box, and when the sequence ends,
the tracking can be successful. In this way, it can be confirmed
that the inference result for every frame has a great influence
on the accuracy and robustness of the trackingmodel. As with
most tracking models, pretrained models and CNNs in the
backbone network tend to track larger and intact objects.
When the tracking object is obscured by other objects, it will

FIGURE 1. Examples of inference in frame where occlusion occurred in
last frame. Cyan box is ground-truth, green box is CNN-based tracker
results (GOTURN – 1st and 3rd rows, ATOM – 2nd row, DiMP50 – 4th row),
and red box is ours. In second column where occlusion occurred, green
box performed better than red box based on IoU. However, in second
column, red box chose location for successful tracking in subsequent
frames. As a result, red box shows continuous success in tracking, but
green box fails.

track other objects that appear intact. Therefore, tracking
results such as green boxes occur frequently.

In this paper, to solve this problem, the tracking perfor-
mance is improved by learning the experience of tracking
success and failure through a reinforcement learning model
that rewards when tracking is successful in the last frame
of the sequence and gives a penalty when it fails. By com-
bining a Siamese network and a region proposal network,
the similarity score map output from the object tracking
model and the vector for the moving direction of the object
are set as the state, and the selection of the location of the
object on the score map is set as the action. The reward
is given according to the success of tracking the last frame
in the learning sequence. As a result, state-of-the-art per-
formance is achieved by linking the reinforcement learning
model and dynamic template exchange method proposed in
the VOT2018 [20] and OTB50 [21] benchmarks with the
existing tracker.

The main contributions of this work are as follows:

• We propose a new reinforcement learning framework to
solve the occlusion problem.
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• We propose a dynamic template exchange method appli-
cable to Siamese network-based tracking algorithms to
solve the drift problem.

• Our proposed method outperforms the state-of-the-art
methods in VOT2018 and OTB50.

The structure of this paper is as follows. Section 2 intro-
duces the study of applying visual object tracking and deep
reinforcement learning to the tracking model. Section 3 intro-
duces the reinforcement learning model proposed in this
study, the problem settings in reinforcement learning, and the
dynamic template exchange method in the Siamese network.
Section 4 compares the performance with existing studies on
the tracking benchmark and verifies that the performance is
improved. Finally, a conclusion is drawn in Section 5.

II. RELATED WORKS
The purpose of this study is to improve the performance of the
existing Siamese network-based object tracking model using
reinforcement learning. In this section, we review the existing
object tracking model and representative methods in the field
of object tracking using reinforcement learning. In the object
tracking section, we briefly introduce CNN-based tracking
models. Additionally, the object tracking models used as the
starting point of this paper, SiamRPN [10], SiamRPN++
[11], and SiamMask [12], are explained. In the reinforcement
learning-based object tracking session, existing studies are
described on how the reinforcement learningmodel is applied
to the object tracking model.

A. VISUAL TRACKING
Until the Siamese network-based object tracking model was
developed, many tracking models using the basic structure of
CNN were developed. C-COT [22] proposed a new structure
that uses a continuous convolution filter instead of a dis-
criminative correlation filter for learning, greatly improving
the tracking performance. ECO [23] improved the accuracy
and speed performance by optimizing the key factors that
degrade the tracking performance in C-COT. MDNet [24]
significantly improved tracking performance by suggesting
shared layers to obtain a general target representation and
a domain-specific layer structure for a binary classifier that
identifies targets in each domain. VITAL [25] proposed a
new structure for applying a generative adversarial network
[26] to object tracking. GOTURN [17] proposed a structure
that is similar to the Siamese network but shares features
extracted from CNNs from two input images in a fully
connected layer. Although the above CNN-based tracking
algorithms have been proposed in various network structures,
SiamFC [9], a tracking model based on the Siamese net-
work, shows a balanced performance in terms of accuracy
and speed and changes the paradigm of the object tracking
algorithm. SiamFC is a study aimed at proving the efficiency
of the Siamese network. Without adding any additional cues,
the output of the model was used without bounding box
regression. Therefore, various studies (SiamVGG [27], SE-

SiamFC [28], and SiamDW [29]) were conducted based on
SiamFC research, and its application to thermal infrared
images (HSSNet [30], MLSSNet [31], and MMNet [32])
as well as RGB images shows high performance. Among
them, SiamRPN [10], which applied the region proposal
network [33] to SiamFC, and SiamMask, which added a
mask branch to SiamRPN, are representative algorithms that
greatly improved the performance of the Siamese network-
based object tracking algorithm. The Siamese network frame-
work as above has been used as a starting point for various
studies (SiamMask_E [34], THOR [16], and Siam R-CNN
[35]) until recently. In this paper, SiamMask, which shows
higher performance, is used as the starting point.

First, SiamRPN [10] inputs the results of the Siamese
network to the classification and regression branches of the
regional proposal network. Then it outputs k anchor box posi-
tions and classification scores for objects and backgrounds
through cross-correlation. Because only offline learning is
performed, it shows a fairly high-speed performance. During
training, the classification branch is output as two channels
(positive and negative) for each anchor, and cross-entropy
loss (Lcls) is used. In the regression branch, the center coordi-
nates, width, and height of each anchor are output to 4 chan-
nels (dx, dy, dw, and dh). The loss function is used by adopt-
ing the smoothL1 loss function (Lreg). The input to the loss
function is the normalized coordinates (δ) of the ground-truth
box (G) and the anchor box (AN) defined as in (1). Finally,
the total loss LSRPN of SiamRPN is the same as (2). Here,
λ(≥ 0) is a hyperparameter.

δ [0] =
Gx − AN x

Aw
δ [1] =

Gy − AN y

Ah

δ [2] = ln
Gw
ANw

δ [3] = ln
Gh
AN h

(1)

LSRPN = Lcls + λLreg (2)

SiamRPN++ [11] is an improved model that explores
some disadvantages of SiamRPN. It shows the highest per-
formance among contemporary object tracking models by
removing padding to maintain spatial invariance and reduc-
ing parameters by changing the cross-correlation method to
depthwise cross-correlation.

SiamMask extends the mask branch and loss function to
SiamRPN to encode the features required for outputting the
binary segmentation mask of an object. Since it is possible to
obtain a mask for an object, the gap between Visual Object
Tracking and Video Object Segmentation is reduced, and
tracking performance is greatly improved. In the binarymask,
a target image (z) and a search image (x) are output through a
mask branch (Mφ). That is, the binary mask corresponding to
the feature map obtained by the depthwise cross-correlation
layer can be expressed as shown in (3) so that it is possible to
generate another mask for the search image.

Mask = Mφ(z, x) (3)

The loss function for the mask during training is defined in
the form of a logistic loss function between the pixel-by-pixel
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annotated ground-truth and the predicted mask. Finally,
SiamMask’s total loss LSM adds a loss function (Lmask ) for
the mask branch to the two loss functions used for SiamRPN
training. As shown in (4), the model is trained using COCO
[36], ImageNet-VID [37], and YouTube-VOS [38] in combi-
nation with the hyperparameters of Pinheiro et al. [39]. Here,
λ1 = 32 and λ2 = λ3 = 1 are set.

LSM = λ1Lmask + λ2Lcls + λ3Lreg (4)

In inference, the binary mask of the object is predicted
at the index that outputs the highest score in the score
branch. The search region is cropped by referring to the
bounding box location from the box branch of the corre-
sponding index. Although it showed high performance in
the VOT2018 benchmark, tracking performance is still poor
when tracking motion blur and nonobjects. The reason is that,
as the author mentioned, the training dataset focused on intact
objects. Supervised learning repeatedly learns well-refined
data despite the use of data augmentation. Because it learns
while reducing the error between the inferred result and
ground-truth on the annotated data, it self-limits the actual
test data. As mentioned in Section 1, this was overcome by
performing tracking without ground-truth through tracking
simulation in reinforcement learning. Yan et al. [13] pre-
sented the problem that if only convolutional operation is
used, training on temporal features is difficult and vulner-
able to large-scale changes in objects. To solve this prob-
lem, Transformer [40], which is mainly used in the natural
language processing (NLP) task, is used. In this paper, the
concept of a dynamic template proposed by Yan et al. is
applied to a Siamese convolutional network to overcome the
problem of capturing temporal features.

B. REINFORCEMENT LEARNING
ADNet [38], the most representative algorithm applying rein-
forcement learning to object tracking, was a great inspiration
for this study. Yun et al. [41] pointed out the inefficiency
of the search algorithm of MDNet. This is because MDNet
selects the best candidate by matching the tracking model
after searching the region of interest. In addition, the problem
that labels should be annotated on all frames to train the
model was presented. To solve this problem, an algorithm
combining supervised learning and reinforcement learning
was proposed. Silver et al. [42] showed a study result that
the performance of the reinforcement learning policy network
can be significantly improved if it is pretrained through super-
vised learning. Similarly, in ADNet, the parameters of the
network were updated through reinforcement learning after
supervised learning by annotating labels on actions according
to states. ADNet tracks the object by controlling the bound-
ing box being expressed in the sequence through successive
actions selected by the model. Action is an 11-dimensional
vector, and the movement and scale adjustment of the bound-
ing box are defined as shown in Fig. 2. A state is defined as a
tuple of vectors containing the image patch within the bound-
ing box and the previous 10 actions. When the model chooses

FIGURE 2. ADNet’s action set.

a stop action, the agent is rewarded and then transitioned
to the initial state in the next frame. The parameters of the
model are updated through stochastic gradient ascent (SGA)
[43] to give rewards by comparing the results of sequen-
tial actions and IoU with ground-truth and maximizing the
rewards. Additionally, even if the ground-truth exists inter-
mittently in the video sequence, we need to reward only the
frame where the ground-truth exists. Due to this advantage,
semi-supervised learning can overcome the limitations of
test data.

Zhang et al. [44] proposed a method to learn spatial and
temporal information by applying reinforcement learning to
a network combined with CNN and LSTM [45]. Similar
to ADNet, they used the reinforcement learning algorithm
proposed by Williams [43] and designed a CNN to encode
the features extracted from the frame and an RNN to regress
the position of the target object in time steps.

TRASFUST [46] designed a model by combining knowl-
edge distillation (KD) [47] and reinforcement learning.
TRASFUST defines a state as a patch of two images in a
bounding box. Different from ADNet for action, the amount
of change for themotion of the bounding boxwas set as a vec-
tor. Using KCF [48], MDNet [24], ECO [23], and SiamRPN
[10], which have significantly improved performance in the
tracking field, as a Teacher network, the teacher learns the
movement of the bounding box predicted by the teacher, and
the student transitions the state. This showed state-of-the-
art performance against benchmarks such as GOT-10k [49]
and UAV123 [50] but showed low performance in VOT2019
[51]. This is because the VOT2019 benchmark was built to
evaluate which algorithm estimates the best bounding box by
defining the center of an object rather than an intact object
as a ground-truth bounding box. However, since TRASFUST
tends to track whole objects, it has the same effect as having
better performance than other object tracking algorithms in
qualitative evaluation.

Asmentioned above, object tracking algorithms using rein-
forcement learning have been actively studied. Most object
tracking models using reinforcement learning are designed
to refine the location of bounding boxes. However, in this
paper, it is designed to select a better feature rather than refine
the position of the box. The complexity of the input image is
reduced by using the feature map of the score branch output
by the Siamese network-based tracking model as input. Sim-
ilar to ADNet, the performance of the tracking model was
improved by designing to maximize the reward for tracking
success.
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FIGURE 3. Proposed model architecture. The similarity score computed by the tracker’s depthwise cross-correlation layer is used as input to the
reinforcement learning model and the dynamic template method. The output of the reinforcement learning model becomes the index of the score map
and is passed to the mask/box branch for the final bounding box. In the next frame, the result of cropping around the output bounding box is used as the
search image. When the value of the selected score is less than 0.1, the tracker determines that the tracking object has been lost and uses the bounding
box previously tracked with the highest score as a template. After that, when the template is input to the tracker, a higher similarity score is used as an
input for reinforcement learning by comparing the similarity between dynamic template and search image, and between target image and search image.

III. PROPOSED METHODS
In this section, we first describe the model structure of the
reinforcement learning framework proposed in Section A.
It takes the score map of the Siamese-network-based tracker
as input, passes through two convolution layers, and out-
puts the action to succeed in tracking until the end of the
sequence. Section B describes how to define the problems of
state, action, and reward in reinforcement learning. Finally,
the detailed implementation, learning method, and reasoning
process are described.

A. PROPOSED MODEL
The Siamese network-based tracking algorithm tracks the
object only with similarity to the ground-truth of the first
frame. As a result, if the model misses a tracking object once,
then errors accumulate and tend to drift in the wrong place.
To compensate for these shortcomings, this paper proposes
a tracking model by applying reinforcement learning to the
Siamese network-based RPN’s score branch. In addition,
by applying a dynamic template exchange to the Siamese

network-based tracking model, it is designed to ensure accu-
rate tracking by increasing the robustness to temporal varia-
tion of objects. Fig. 3 shows the proposed model structure.
The reinforcement learning model in this paper follows the
Markov decision process (MDP) strategy. The state of the
MDP is defined by s ∈ S, the action as a ∈ A, the state
transition function as f , and the reward as R. Reinforcement
learning performs well in games with similar backgrounds,
similar objects, and set rules. However, in object tracking,
numerous objects and backgrounds appear in the input image.
Therefore, if the input image is used for reinforcement learn-
ing as it is, then an infinite state is created, so it is diffi-
cult to determine an action according to the state. To solve
this problem, the input of the reinforcement learning model
should be simplified as much as possible. Therefore, the
features extracted from the score map are used as input to
the reinforcement learning model. Fig. 4 is an example of a
score map used as an input.

The state is set by the score map and the movement direc-
tion of the object. Here, the movement direction of the object
is used to weight the score map. Furthermore, as shown in
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FIGURE 4. Sample of score map.

FIGURE 5. A game abstraction in which players choose actions to achieve
high scores within a score map.

Fig. 5, the action is defined to select whether the character of
the game will move in one of eight directions from the initial
position. If the tracking is successful in the last frame of the
sequence, then it is designed to abstract the object tracking
process like a simple game by giving rewards as if we obtain a
score whenwe clear the stage of the game. The final bounding
box is output by passing the index to the box or mask branch
according to the selected action. The background in Fig. 5 is
a mask according to the selected index. Here, it can be seen
that when a low score index is selected, a mask containing
a background is obtained rather than a human-shaped mask
that was a tracking object.

In Section B, the action, state, state transition function, and
reward are described in detail.

B. PROBLEM SETTINGS
1) ACTION
Action is defined in 9 discrete spaces as in (6). (5) is a position
where the highest score is output in the score branch when the

target image z and the search image x are input. Action A is
defined as a 9-dimensional vector with the position of (5) and
8 adjacent positions of the same channel as in (6).

m, n = argmax(Fscore (z, x)) (5)

A =


a0
a1
...

a7
a8

 (6)

where a0 = (m− 1, n− 1) , a1 = (m− 1, n) , . . . , a4 =
(m, n) , . . . , a7 = (m+ 1, n) , a8 = (m+ 1, n+ 1).
The feature map output from the score branch is input

to the softmax function to select an action according to the
score-based probability and use it for training. By passing the
selected index to the box or mask branch, the bounding box
that can express the position of the object at the corresponding
index can be predicted.

2) STATE
The state S is defined as (7) in the form of a 2-tuple with
the score map and the vector for the moving direction of the
object.

S = (Fscore, bbd ) (7)

A score map is used to minimize the information appearing
in the actual image. The direction of the object can be inferred
using the bounding box estimated by the previously selected
action. The unit vector for the movement direction extracted
as the position of the bounding box is used. The movement
direction from the previous 10 frames to the current frame
is set in a vector form. Finally, in (7), Fscore is the similarity
score map, and bbd is a vector containing the moving direc-
tion of the bounding box. Therefore, the state includes the
location information of the part most similar to the target

3) REWARD
Inmost offline learning-based tracking algorithms, if tracking
fails once within a sequence, then errors accumulate and
drift to another target or background. It can be assumed that
the tracking algorithm performs good job tracking when the
tracking is successful in the last frame. Therefore, reward is
defined through the IoU between the ground-truth bounding
box (bbG) of the last frame and the estimated bounding box
(bbE ).

There are several ways to reward this work. For example,
there are methods of comparing with ground-truth every
frame, a method of giving the output score value as it is,
and a method of giving a position difference between two
boxes. However, if an overly accurate value is given as a
reward using ground-truth, then the difference with super-
vised learning becomes ambiguous. The purpose of this study
is to effectively learn in the section where an object occlusion
occurs. To achieve this purpose, like ADNet, the reward is
defined as in (8) so that if the IOU is 0.7 or more in the last
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TABLE 1. Quantitative performance comparison on VOT2018.

TABLE 2. Comparison of performance between the proposed model and
the existing state-of-the-art model.

frame, a reward of 1 is given; otherwise, a penalty of -1 is
given.

RL =
{

1, if IoU = bbG∩bbE
bbG∪bbE

> 0.7
−1, otherwise

}
(8)

4) STATE TRANSITION FUNCTION
After an action is selected in an arbitrary state, the state is
changed to the next state, as shown in (9), by a state transition
function based on the action.

st+1 = ftransition(st , at ) (9)

If an action is selected in the current state, then the bound-
ing box is estimated by the mask or box branch at the location
of the action. After that, the similarity score of the next state is
obtained. The next state is created by including the movement
direction of the object obtained by the previously selected
action in bbd .

TABLE 3. Quantitative performance comparison on OTB50.

C. IMPLEMENTATION
The reinforcement learning model is designed to extract the
features of the score map by placing two 3 × 3 convolution
layers and then output the nine previously defined actions
through the fully connected layer. The average direction of
10 frames can be obtained as the average of the moving
direction vectors (bbd ). Actions are selected by elementwise
multiplication of the weights (wk , k ∈ [0, 8]) for the average
direction on the score map. It is expressed as (10), and an
example is shown in Fig. 6.

a = MRL(Fscore × wk ) (10)

As shown in Fig. 6, if the average direction of bbd is right,
the right side (w6) is given a higher weight than the remaining
element values, and the average direction of the previous
10 frames in the state when selecting an action on the score
map is considered.

The dynamic template exchange method uses the result of
tracking with the highest score in the previous frame as a
template when it is determined that tracking has failed. The
template is correlated with the search image in a correlation
layer with the target image. Here, the result of tracking with a
higher score is used as the final output. Since the probability
of missing the target is low at the beginning of tracking and
there is no significant change in the object, it is designed to
use the dynamic template exchange method after a certain
frame interval.

D. TRAINING
The pretrained SiamMask model is used to output the
score map during training. TrackingNet [52] is used for
the dataset, and approximately 2,000 sequences, including
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FIGURE 6. Example of giving weight to the average direction of the movement direction vector on the output score map when selecting an action.

object occlusion, are used for training. As mentioned earlier,
Silver et al. [42] stated that the accuracy of reinforcement
learning models can be improved through supervised learn-
ing. Therefore, before reinforcement learning, supervised
learning is initially performed so that a more accurate action
can be selected. First, for supervised learning, the data are
customized so that the proposed model can be trained using
a part of the training data. By inputting the sequence into
SiamMask, a total of 9 inferences are performed on the
adjacent index, including the max score index per frame.
The score index with the highest overlap ratio in the last
sequence is set to the same class as (6) as the ground-truth.
If there are no significant factors that hinder tracking by
supervised learning, the max score index is mostly selected
as an action. However, when occlusion or motion blur occurs,
the probability of selecting the max score index is drastically
decreased. This situation has been experienced in reinforce-
ment learning, and when an obstacle to tracking appears,
an action that can succeed in tracking is selected.

Reinforcement learning models are trained by rewards
obtained through actions in a specific environment state.
In this research, the environment is set to a randomly selected
sequence. The learning parameters are updated by the reward
given in the last frame of the sequence. As mentioned earlier,

The reward is obtained in the last frame of the sequence
belonging to the environment during training. Therefore,
as in (11), the training parameters of the reinforcement learn-
ing model are updated using the SGA used in ADNet.

1WMRL ∝

∑Env

L

∂ log (p (MRL (sL)))
∂WMRL

RL (11)

E. INFERENCE
Fig. 3 shows a flowchart of the inference process. First,
the search image and target image are input to the Siamese
network-based tracker, and the score map is input to the
reinforcement learning model. The reinforcement learning

model predicts the final bounding box by transferring the
state of the score map and search image and delivering the
selected index to the box/mask branch. At this time, when
the output of the score map is less than 0.1, it is determined
that the model has missed the target object. The tracked
object in the frame with the highest score of the previous
frame (fp) is used as a dynamic template. Here, fp is set
to 10 in the same way as the number of action storage in
Yun et al. [41]. We experimentally confirm that it takes
approximately 3 frames when the tracker misses the object.
Therefore, if it is set to a small number of 10 or less, there
is a risk of performance degradation because there is a high
possibility of using a template at the moment of missing a
tracking object. When fp is set to 5, the EAO of SiamMask_R
decreases by approximately 0.03 by the VOT performance
evaluation method. If fp is set to be as high as 20, the tracking
object within 10 frames after initialization is mainly used
as a template. This drastically reduces the use of the target
image initialized with the ground-truth, greatly increasing the
number of missing objects. EAO is 0.04 lower when fp is
20 compared to when fp is 10.
We use a dynamic template after 50 frames. This is because

it is assumed that the first 50 frames will be well tracked by
initialization using ground-truth.

IV. EXPERIMENTS
In this section, experiments to verify the performance of the
proposed algorithm and an analysis of the results are con-
ducted. First, the experimental environment and the dataset
used for performance evaluation will be described. Then, the
experimental results are analyzed.

A. SETUP
The operating system of the experimental environment is
Ubuntu 18.04, and the computer has the specifications of Intel
i7-10700K CPU, Geforce RTX 2080 Ti (x2), and 32 GB of
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FIGURE 7. Expected average overlap rankings at VOT2018.

RAM. All proposed algorithms are written in Python, and
PyTorch is used as the framework for deep learning.

B. DATASET
As a dataset for the objective quantitative evaluation of design
methods, there are many benchmarks such as OTB50/100
[21], [60], VOT2016/2018/2019, LaSOT [61], and UAV123.
However, the benchmark VOT2018, which has been used in
many studies, and no-reset-based performance evaluation are
used. OTB50, which can obtain various evaluation results,
is adopted. VOT2018 was built with a total of 60 sequences
considering many factors that interfere with tracking such as

illuminance, occlusion, motion, and scale, and the ground-
truth was annotated with a rotated bounding box.

C. ANALYSIS OF RESULTS AND DISCUSSION
The models applying the proposed method to SiamRPN,
SiamRPN++, and SiamMask are denoted as SiamRPN_R,
SiamRPN++_R, and SiamMask_R, respectively.

1) VOT2018
In the VOT Challenge, the tracking algorithm is evaluated
using accuracy, robustness, and EAO [62].

First, in Table 1, by applying the proposed framework to
SiamRPN, SiamMask, and SiamRPN++, the performance
before and after application is evaluated. Accuracy, robust-
ness, and EAO are all adopted to compare performance.
Additionally, to evaluate the one-pass evaluation (OPE), aver-
age overlap (AO) is adopted for performance comparison.
In reset-based evaluation, performance is improved in all
except robustness of SiamMask. Based on EAO, SiamRPN
achieves a performance improvement of 2.6%, SiamMask
1%, and SiamRPN++ 0.2%. In the no reset-based eval-
uation, there is a performance improvement of 1.3% only
in SiamRPN++, but the lowered performance is analyzed
together with the qualitative results in Fig. 8.

Table 2 refers to the results of VOT2018. We compare
our models with 12 state-of-the-art trackers [20], including

DaSiamRPN [53], SA_Siam_R [54], CSRDCF [55], STRCF
[56], DLSTpp [57], CPT, DRT, RCO, UPDT, MFT [58],
LADCF [59], and SiamFC [9]. For accurate evaluation, the
official VOT Toolkit is used, and the proposed framework
is applied to SiamMask, SiamRPN, and SiamRPN++ and
compared with 12 latest object trackers. When the proposed
method is applied to SiamRPN++, as shown in Table 2, it
surpasses the performance of all existing trackers, including
the tracker evaluated with the highest rank in the VOT2018
Challenge based on EAO and accuracy. Compared with
LADCF, which had won the challenge, it is 9.7% higher
in accuracy and achieves a performance improvement of
2.7% in EAO. Although the EAO of SiamMask_R, which
applies the proposed method to SiamMask, is lower than
that of SiamRPN++, it shows higher performance than the
existing tracking algorithm and has the highest accuracy.
It achieves a performance improvement of 4.9% compared
to DaSiamRPN, which achieves the best performance based
on the existing accuracy.

In Table 1, all performance except for the robustness
of SiamMask_R is improved in the reset-based evaluation.
As seen from the book and helicopter sequence in Fig. 8,
the bounding box of SiamMask_R is larger than that of
other trackers. The reinforcement learning model passes the
selected index to the mask branch to estimate the final bound-
ing box based on themask. At this time, if the indexwith a low
score is selected, the mask includes the background, as shown
in Fig. 5. The final bounding box is output large enough to
include the background. Therefore, due to the accumulation
of errors, the tracking fails and shows low robustness. How-
ever, it can be seen that the accuracy performance is improved
by tracking more tightly to the ground-truth than the existing
SiamMask in the frame in which the tracking is successful.

In the Flamingo1, soccer2, wiper, and helicopter
sequences, it is confirmed that the reinforcement learning
model robustly copes with occlusion by selecting an index
different from SiamRPN and SiamRPN++.

Although the speed (fps) decreases due to the increase in
computational cost by adding the framework, it still shows
performance beyond real-time performance.

2) OTB50
The Object Tracking Benchmark (OTB) adopts success and
precision to evaluate performance. Here, success is the over-
lap ratio between the tracking result and ground-truth, and
it is the percentage of successful frames according to the
threshold. Precision is an index indicating the percentage of
the tracking result and the center distance of the ground-
truth in pixels. In addition, we can check the performance of
each attribute by evaluating the performance with the success
performance index for 11 attributes. Performance is evaluated
based on a one-pass evaluation. Hyperparameters are the
same as those used in VOT2018.

First, as shown in Table 3, SiamMask_R shows perfor-
mance improvement of 1% in success and 2.2% in pre-
cision compared to the existing model and performance
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FIGURE 8. Qualitative results: We show some sample outputs on eight sequences selected from VOT2018, where the red box is SiamRPN++_R, the pink
box is SiamRPN++, the blue box is siamMask_R, the cyan box is siamMask, the orange box is SiamRPN_R, the yellow box is SiamRPN, and the green box is
the ground-truth.
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FIGURE 9. Quantitative results for OTB50 by 11 attributes.

improvement of 0.8% and 0.6% in SiamRPN++_R com-
pared to the previous model. Additionally, as shown in
Fig. 9, SiamRPN++_R using the proposed method shows
the highest performance in all attributes except low resolu-
tion, motion blur, deformation, and scale variation. Although
the performance of SiamRPN++_R in the above four

attributes decreases, SiamMask_R shows higher performance
than the existing SiamMask model. In particular, both of
SiamRPN++_R and SiamMask_R show high performance
in occlusion and out of view. This is because the reinforce-
ment learning model selects the action to succeed in track-
ing when occlusion occurs in consideration of the moving

VOLUME 10, 2022 63349



S. J. Park et al.: Object Tracking Using Siamese Network-Based Reinforcement Learning

FIGURE 10. Example of performance degradation at low resolution and
motion blur, where the green box is ground-truth and the yellow box is
SiamRPN++_R

direction of the object and the score map. In the occlusion
attributes, there is a performance improvement of 1.4% for
SiamRPN++_R and 1.6% for SiamMask_R compared to the
existing model. Because the dynamic template has the tem-
plate of the frame tracked with the highest similarity recently,
there is a substantial performance improvement of 9.3% for
SiamRPN++_R and 2.6% for SiamMask_R compared to the
existing model in the out-of-view attributes where the object
disappears from view.

In Fig. 9, our method degrades the performance of
SiamRPN++ for the low resolution and motion blur
attributes. In Fig. 10, the first row is a sequence with low
resolution attributes, the second row is a sequence with both
low resolution and motion blur attributes, and the last row is
a sequence with motion blur attributes.

Our method aims to successfully track the last frame of
the sequence. In the sequence of low resolution attributes,
we choose a location that completely misses the tracking
object when the object moves quickly or when occlusion
occurs. However, it continues to take an action to find the
tracking object, and the tracking succeeds at the end of the
sequence through the dynamic template. In the sequence of
motion blur attributes, as shown in the third column of the
frisbee sequence in Figure 8, the bounding box is predicted
ahead of the object in the moving direction of the object.
In the second row of Figure 10, we can see that the bounding
box is visible at the end in the direction of the object’s
movement. In the third row, the upper part of the object is

tracked, and the target object is tracked again even in theworst
case of occlusion with other objects.

In the process of finding the target object again, it takes
slightly longer for a sequence with motion blur and low res-
olution attributes than for a sequence in which a clear object
appears. Therefore, a section with a low overlap with the
ground-truth frequently occurs. Although the performance
decreases in some sequences, the object is tracked again with-
out reinitialization according to the design intention without
the drift problem.

V. CONCLUSION
In this paper, we proposed a reinforcement learning model
and dynamic template method to improve the performance
of existing Siamese network-based trackers. Our proposed
reinforcement learning models solve the occlusion problem
by taking an action with a higher expected reward through
experience of tracking successes and failures. The dynamic
template exchange method prevents the drift problem by
updating the template when the tracking model determines
that the tracking object is lost. The proposed method out-
performs existing state-of-the-art methods in VOT2018 and
OTB50.
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