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ABSTRACT The low-cost snapshot multispectral spectral imaging systems with multispectral filter
array (MSFA) require generic MSFA demosaicking methods to generate the multispectral image (MSI)
with a variable number of spectral bands depending on the applications. Most of the existing MSFA demo-
saicking methods are either non-generic or perform inadequately. This paper presents a new generic MSFA
demosaicking method based on the directional weighted interpolation. Our proposed method calculates
the four directional estimates around the location of the unknown pixel and combines them in a weighted
manner using the local edge magnitude in the corresponding directions to estimate the missing pixel values.
Experimental results confirm that the proposed demosaicking method provides improvement, compared to
the state-of-the-art generic demosaicking methods in terms of both subjective and objective evaluations on
the two benchmark MSI datasets.

INDEX TERMS Demosaicking, interpolation, multispectral filter array, multispectral imaging system.

I. INTRODUCTION
Multispectral images (MSIs) are richer in the spectral and
spatial information about the scene than standard RGB
images. Hence, MSIs are more useful than RGB images
in the area of agriculture [1], [2], remote sensing [3]–[5],
satellite imaging [6], medical imaging [7]–[9], food
industry [10]–[12], and computer vision [13]–[19]. MSIs are
generally acquired bymultispectral spectral imaging systems,
which use either multiple exposures with a single imaging
sensor or single exposure with multiple imaging sensors.
The use of multiple exposures makes multispectral imaging
systems unsuitable for moving objects and the use of multiple
sensors makes these systems of high cost. Motivated by the
use of a color filter array (CFA) to capture RGB images,
a multispectral filter array (MSFA) based imaging system
simultaneously obtains all spectral bands information from
a single shot using a single imaging sensor. Its capability to
capture MSI using a single senor opens up a vast range of
possibilities in various applications.

The image taken by a single sensor based multispectral
imaging system stores just one band’s information at each
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pixel location. This captured raw image using an MSFA is
called an MSFA image, similar to the CFA image in the RGB
domain. An interpolationmethod calledMSFAdemosaicking
is used to generate the fullMSI from theMSFA image, similar
to the CFA demosaicking in the color (RGB) domain. The
quality of the generated MSI not only relies on the MSFA
demosaicking algorithm but also on the MSFA patterns used
to capture the initial raw image.Many genericMSFA patterns
(non-redundant MSFA pattern [20], [21], uniform MSFA
pattern [22], binary tree based MSFA pattern [23], and ran-
dom [22]) are given in the literature. Still, binary tree based
MSFA patterns are the most preferred in the multispectral
domain due to their compact nature as compared to other
MSFA patterns [24], [25].

Several efficient CFA demosaicking methods [26], [27]
have been proposed, but their direct extension to MSFA
demosaicking is neither possible nor straightforward. MSFA
demosaicking is difficult because the spectral and spatial
correlation properties of MSIs differ greatly from those of
RGB images. The spectral bands in the MSFA image are
sparsely sampled, particularly in the MSFA image with a
higher number of bands. Because of the sparsity, the MSFA
image has few pixels of the same band, which lessens the
spatial correlation. The weak spectral correlation of the band
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with the distant bands also makes MSFA demosaicking even
more challenging [28]. The current MSFA demosaicking
methods can be categorized into two classes. The first class
contains the MSFA demosaicking methods that are limited
to the specific number of bands MSIs [25], [29]–[32] and
the second class contains generic MSFA demosaicking meth-
ods [20]–[22], [24], [28], [33]–[35] which can be used to
generate anyK -bandMSI from theMSFA image. The generic
demosaicking methods are picked due to their broad appli-
cability and ability to provide multispectral imaging system
manufacturers with numerous customizing choices through a
single procedure.

In this paper, we propose a generic MSFA demosaicking
method that generates the complete MSI from the MSFA
image captured using binary tree based MSFA patterns.
Several other existing generic MSFA demosaicking meth-
ods [24], [33]–[35] use MSFA images generated using binary
tree based MSFA patterns. All these methods, except [33],
use both the spatial and spectral correlations and their effi-
cacy depends on the better utilization of spectral correlation
present in the MSFA image. We aim to better utilize the
spectral correlation and considering the insights presented
in [36] (constrained to Bayer CFA only), a newMSFA demo-
saickingmethod is proposed that uses the multiple directional
estimates of bands based on the spectral correlation to cal-
culate the missing pixel values. In the case of color (RGB)
images, bands have higher probability of appearance (PoA)
and fixed pixel arrangements around the unknown pixel
locations. However, in the multispectral domain, bands have
lower (each band has PoA equal to 1

16 in the considered
16-band MSFA image) and varying PoA depending on the
number of bands in theMSFA image. Different pixel arrange-
ments of bands w.r.t. each other, are also possible depending
on the number of bands in the MSFA image and the PoA of
each spectral band. So directly applying [36] demosaicking
method to the multispectral domain is not possible due to the
much lower PoA of bands in the MSIs, and it is not straight-
forward to propose a generic MSFA demosaicking method
in the multispectral domain due to the reasons mentioned
above. In work [37], authors extended [36] to the multispec-
tral domain; however, only for the specific band size MSIs,
where the number of bands is 2p × 2p (p = 1, 2, . . .), as the
non-redundant MSFA patterns and binary tree based MSFA
patterns are same in these cases. Otherwise, their approach is
not applicable to the compact and preferred binary tree based
MSFAs. Further, [37] uses an existing method for the initial
estimation of the multispectral image, so the steps of [36]
were easily extendable. But the use of an initializationmethod
also leads to bias and has the cascading effects of error.
On the contrary, the proposed method uses the intelligent
interpolation scheme based on the PoA of spectral bands
without relying on any other method for an initial estimation.

The proposed approach uses the binary tree based MSFAs
and spectral correlations effectively and the experimental
results on two standardmultispectral datasets illustrate its bet-
ter performance compared to existing generic demosaicking

approaches. The major contributions of the proposed MSFA
demosaicking method are as follows: (i) The proposed demo-
saicking method is generic; therefore, it can be used to gen-
erate MSI from any K -band MSFA image captured using
binary tree based MSFA pattern. (ii) To interpolate missing
pixel values of a band, the proposed demosaicking method
calculates the multiple directional estimates of that band
based on spectral correlation and combines these estimates
in a weighted way based on the local edge magnitude in
the corresponding direction. (iii) The proposed demosaicking
method uses a specific order of pixel locations of bands to
interpolate each band at the locations of other bands based
on the PoA of bands and the binary tree used to generate the
MSFA patterns. (iv) The proposed method is progressive and
chooses the interpolation scheme intelligently based on the
PoA of bands, and the proposed method does not depend on
any other existing method for the initial estimation of MSI.

The rest of the paper is organized as follows: Section II
briefly discusses the existing MSFA demosaicking methods.
The proposed demosaicking method is described in
section III. Experimental results are shown in Section IV, and
Section V concludes the paper.

II. RELATED WORK
A. BAND-SPECIFIC MSFA DEMOSAICKING METHODS
Monno et al. [29] proposed a 5-band MSFA demosaicking
methods. This method used binary tree based MSFA pat-
terns to capture the 5-band MSFA image. In this 5-band
MSFA patterns, the authors kept the PoA of G band equals
to 1

2 . To generate the full MSI from the MSFA image,
the authors first estimated the G band employing the adap-
tive kernel and later used the interpolated G as the guide
image to estimate other bands. Jaiswal et al. [31] used
the MSFA pattern given by [29] and proposed an MSFA
demosaicking method for 5-band MSIs based on frequency
domain analysis. Mihoubi et al. [38] utilized the idea of
intensity image, defined as the average of all the bands and
considered strongly correlated with each band than bands
taken pairwise. Their proposed method is non-generic and
constrains to square-shaped non-redundant MSFA patterns.
Later, in work [30], Mihoubi et al. presented a 16-band
MSFA demosaicking method based on the concept of pseudo
panchromatic image. Sun et al. [25] proposed an MSFA
demosaicking method to generate the full MSI for the 9-band
MSFA image captured using binary tree basedMSFA pattern.
To generate the MSI, the authors first interpolated the middle
band (fifth band) using the neighboring known pixels value
to the unknown pixel location using the image gradients and
later used the interpolated fifth band as the guide filter to
interpolate other bands.

B. GENERIC MSFA DEMOSAICKING METHODS
Miao et al. presented a generic binary tree based MSFA
patterns [23] and the binary tree based edge sensing (BTES)
generic MSFA demosaicking method [33]. BTES method
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employs only spatial correlation, and the spatial correlation
decreases as the number of spectral bands increases in the
MSFA image. Therefore, BTES shows poor performance
on the higher band images. Brauers and Aach [20] pro-
posed weighted bilinear (WB) and spectral difference (SD)
interpolation based MSFA demosaicking method to generate
6-bandMSI from theMSFA image capture using 6-band non-
redundant MSFA pattern arranged in 2 × 3 matrix. Later,
WB and SD are generalized to generate any K-band MSIs
using non-redundantMSFA patterns by [21] and [39], respec-
tively. Further, Mizutani et al. [28] proposed an iterative
spectral difference (ISD) based MSFA demosaicking method
(improved version of [20]) by iteratively repeating the inter-
polation process. The number of repetitions is determined
by the correlation between spectral bands. The number of
repetitions in strongly correlated spectral bands is greater
than in loosely correlated spectral bands.

In [34], the authors presented a generic MSFA demosaick-
ing method (PBSD) for the binary tree based MSFA images
by progressively using WB and SD. In work [24], the authors
formulated new convolution filters based on the PoA of bands
in binary tree based MSFA patterns and presented a generic
MSFA demosaicking method (PCBSD) that utilized these
PoA based filters to performweighted interpolation and spec-
tral difference based interpolation to calculate the missing
pixel values. Recently, Gupta et al. proposed a generic MSFA
demosaicking algorithm (APMID) [35] utilizing the binary
tree based MSFA pattern. In the considered MSFA patterns,
the authors kept the PoA of the middle band higher than
other bands as the middle band is used to evaluate all other
bands. In APMID, the authors first estimated themiddle using
adaptive and progressive interpolation inspired by the adap-
tive color image demosaicking [40]. Later, other bands are
interpolated using the progressive spectral difference method
by utilizing the interpolated middle band. On the higher
band MSIs, APMID does not perform satisfactorily as its
performance relies upon the middle band interpolation. The
PoA of the middle band becomes lower in a higher number of
bands MSIs, and the APMID utilizes only spatial correlation
to interpolate the middle band at some locations in the higher
bands MSIs.

Few deep learning-based MSFA demosaicking meth-
ods [41]–[43] are recently proposed. Some of these meth-
ods [41], [42] are constrained to specific band-size images
and may require a complete architectural change and,
therefore, require to re-train to make these methods appli-
cable to different band-size MSIs. Even these deep learning
based methods need some of the original MSIs to train and
validate the model, and the original images are not accessible
in the real-time imaging scenario.

C. OUR CONSIDERED BINARY TREE BASED MSFA
PATTERNS
MSFA patterns decides the basis of the raw information
captured in the MSFA image, and they are critical to the
effectiveness of MSFA demosaicking methods. In this paper,

FIGURE 1. Binary tree based MSFA pattern used by the proposed MSFA
demosaicking methods.

we utilize binary tree based MSFA patterns given by [23].
Binary tree based MSFA patterns can be designed to cap-
ture any band-size MSFA image. Many MSFA demosaicking
methods [29], [31], [44]–[49] effectively use these MSFA
patterns. We show the binary tree based MSFA pattern used
in the proposed method to capture the MSFA image of 5-16
band in Fig. 1.

III. PROPOSED MSFA DEMOSAICKING METHOD
This paper proposes an MSFA demosaicking method that
takes advantage of both spectral and spatial correlation
present in the MSFA image. MSFA image is captured using
a single sensor with binary tree based MSFA and has sparse
information of the spectral bands. The proposed demosaick-
ing method is generic; therefore, it can be applied to generate
any K -band MSI from the respective MSFA image. Our
proposed method exploits the properties of the binary tree
based MSFA patterns where all the bands with similar PoA,
irrespective of the different number of bands in the MSIs,
have similar pixel arrangements. Our proposed method uses
the PoA of bands in the binary tree based MSFA patterns to
choose the interpolation scheme intelligently. The proposed
method calculates four directional estimates of the band
around the unknown location and combines them based on
the weights in respective directions based on the interpolation
scheme. These weights are computed by utilizing the edge
magnitude information from the band chosen for interpola-
tion in the respective direction, whereas [36] uses both bands
(the band (k) that is chosen for interpolation and the band (l)
at which location band k is to be interpolated) in the weight
calculation and band l may not be available due to its lower
PoA compared to the band k in the multispectral domain.

The proposed method is progressive, i.e., it first estimates
the part of missing pixel values. Later, it uses the estimated
values with the initially known pixel values in the MSFA
image to estimate other unknown pixel values. The proposed
method is independent of the order of the bands taken for
interpolation. However, for any band selected for the interpo-
lation process, the ordering of pixel locations picked for the
interpolation is fixed and different for each band. This order
relies upon the binary tree utilized to generate the MSFA
pattern and on the PoA of the bands. Due to the progressive
nature of the proposed method, the PoA of each band is
updated after interpolating the missing pixel values at other
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FIGURE 2. Example of the interpolation scheme for band 1 in the 5-band MSFA image.(a) 5-band MSFA image and (f) binary tree used to create
5-band MSFA pattern. (b) Band 1’s pixel locations in the MSFA image with band 1’s PoA = 1

8 . (c) Band 1 is calculated first at the pixel locations
of band 2, and band 1’s PoA is now 1

4 . (d) Later, band 1 is calculated at the pixel locations of band 3 and band 1’s PoA is now 1
2 . (e) Finally,

band 1 is estimated at the pixel locations of band 4 and band 5, and the band 1’s PoA becomes 1. (f)-(i) show the changes in the PoA of band 1
during interpolation of band 1.

band pixel locations, and the proposed method chooses the
correct interpolation scheme based on its updated PoA to
interpolate at pixel locations of remaining bands, as discussed
later in the following subsections. Algorithm 1 illustrates the
steps of the proposed MSFA demosaicking method where,
IMSFA is the MSFA image, K is the number of bands in IMSFA,
B is a set of binarymasks (b1, b2, . . . , bK ); bk has value 1 only
at the locations of band k in IMSFA and ’�’ is the element-wise
multiplication operator. The proposed MSFA demosaicking
method mainly has the following two components.

A. PIXEL SELECTION SCHEME
To interpolate any band k, our proposed method follows a
particular ordering of unknown pixel locations selected for
the interpolation process. This order of selection of unknown
pixel locations picked for interpolation of any band k is given
by the pixel selection scheme corresponding to band k.
The pixel selection scheme utilizes the binary tree

employed to form the MSFA pattern and starts from the leaf
corresponding to the band selected for the interpolation in that
binary tree. The pixel selection scheme first interpolates at
the pixel locations of the sibling band of the band selected
for the interpolation, in the binary tree. Then the scheme
moves one level in the tree and selects the pixel locations
corresponding to the sibling band of its parent. This pixel
selection scheme progresses till the root of the binary tree is
visited. If any sibling band is an internal node at any stage
during interpolation, the bands corresponding to the leaves
under that sibling node are considered irrespective of their
order.

For example, we consider a 5-band MSFA image as shown
in Fig. 2(a) and binary tree used to construct 5-band MSFA
pattern shown in Fig. 2(f). To interpolate band 1 (initially,
its PoA equals to 1

8 ) at the pixel locations of other bands,

band 1 is first estimated at the pixel locations of band 2 as
shown in Fig. 2(c), chosen as per pixel selection scheme and
now PoA of band 1 becomes 1

4 as shown in Fig. 2(g). Now
band 1 is interpolated at the pixel locations of band 3 as per
pixel selection scheme as shown in Fig. 2(d) and PoA of
band 1 becomes 1

2 as shown in Fig. 2(h). Finally, band 1 is
interpolated the pixel locations of band 4 and band 5 as shown
in Fig. 2(e) and now PoA of band 1 becomes 1 as shown in
Fig. 2(i).

B. INTERPOLATION SCHEME
The missing pixel values of band k at the location of band l at
(i, j) is estimated using the spectral correlation of band k and
band l in the neighborhood of (i, j). The interpolation scheme
used to interpolate any band k depends on the PoA of band k.
Here, we consider MSIs from 5-16 band, the initial PoA of
any band k (PoA(k)) will be from the set { 12 ,

1
4 ,

1
8 ,

1
16 } as per

our considered MSFA patterns. As the proposed method is
progressive, the PoA of band k is updated during the interpo-
lation process as defined in the pixel selection scheme. Based
on the PoA of band k at any stage of the interpolation scheme,
we define four possible cases of the pixel arrangements of
band k w.r.t unknown center pixel location (at the location
of band l) in our proposed method as shown in Fig. 3. The
interpolation scheme of band k depends on these four cases
as described in the following section of the paper.

1) CASE A AND CASE C
These cases A and C are applicable when PoA(k) is greater
than equal to 1

2 and between [ 18 ,
1
4 ), respectively during

any stage of the interpolation scheme. The missing pixel
values of band k at the center location (i, j) is estimated
along four directions (north (N), south (S), east (E), and
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Algorithm 1 Proposed MSFA Demosaicking Method

Input : IMSFA(MSFA_Image), MSFA_Pattern, K (number of bands), B (set of binary mask)
Output: Î (estimated MSI by combining all K bands after interpolation)

1 Calculate PoA(k) of each band k in IMSFA;
2 for each band k do
3 I k=IMSFA � bk ; /* bk ∈ B */
4 end
5 while sum(PoA(1)+ · · · + PoA(K )) 6= K do
6 for each band k do
7 if PoA(k) 6= 1 then
8 for each band l selected from pixel_selection_scheme do
9 if PoA(k) < (4× PoA(l)) then
10 if band k is not interpolated at the locations of band l then
11 Ĩ k=Interpolation_scheme(PoA(k), I k , I l); /* call Algorithm 2 */
12 I k=I k+Ĩ k ;
13 PoA(k) = PoA(k)+ PoA(l);
14 else
15 continue;
16 end
17 else
18 break;
19 end
20 end
21 end
22 end
23 end

Algorithm 2 Interpolation Scheme to Interpolate Band k at the Pixel Locations of Band l

Input : PoA(k), I k , I l

Output: Ĩ k

1 if PoA(k) >= 1
4 then

2 t=1;
3 else
4 t=2;
5 end
6 if PoA(k) >= 1

2 ||
1
8 <= PoA(k) < 1

4 then
7 Compute multiple estimate of Ĩ k in four directions (N , S,E,W ) using Eqs. 1-4.
8 Compute corresponding weights in these directions using Eqs. 5-8.
9 Estimate the value of Ĩ k using Eq. 9.
10 else
11 Compute multiple estimate of Ĩ k in four directions (NW , SE,NE, SW ) using Eqs. 10-13.
12 Compute corresponding weights in these directions using Eqs. 14-17.
13 Estimate the value of Ĩ k using Eq. 18.
14 end

west (W)) as shown in Figs 3(a) and 3(c) by utilizing the
spectral correlation between band k and band l. We consider
t = 1 for Case A and t = 2 for Case C in the following
equations.

Ĩ k
N

i,j = I ki−t,j + 0.5 ∗
(
I li,j − I

l
i−2∗t,j

)
(1)

Ĩ k
S

i,j = I ki+t,j + 0.5 ∗
(
I li,j − I

l
i+2∗t,j

)
(2)

Ĩ k
W

i,j = I ki,j−t + 0.5 ∗
(
I li,j − I

l
i,j−2∗t

)
(3)

Ĩ k
E

i,j = I ki,j+t + 0.5 ∗
(
I li,j − I

l
i,j+2∗t

)
, (4)

where I ki,j is pixel value of band k at pixel location (i, j).
We use weighted interpolation method to combine these four
directional estimates. The weights along these four direc-
tions are calculated using edge magnitude of band k in these
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FIGURE 3. PoA(k) based four pixel arrangements (cases) of band k for
estimating it at central location having known value of band l.
(a) PoA(k) >= 1

2 , (b) 1
4 <= PoA(k) < 1

2 , (c) 1
8 <= PoA(k) < 1

4 , and
(d) 1

16 <= PoA(k) < 1
8 .

directions. So the larger the edge magnitude, the smaller
the contribution from that directional estimate. The weights
along these directions are estimated as follow:

WN
=

(
1+

∣∣∣I ki+t,j − I ki−t,j∣∣∣
+

∣∣∣I ki−3∗t,j − I ki−t,j∣∣∣
+

1
2

∣∣∣I ki−2∗t,j−t − I ki,j−t ∣∣∣
+

1
2

∣∣∣I ki−2∗t,j+t − I ki,j+t ∣∣∣)−1 (5)

W S
=

(
1+

∣∣∣I ki−t,j − I ki+t,j∣∣∣
+

∣∣∣I ki+3∗t,j − I ki+t,j∣∣∣
+

1
2

∣∣∣I ki+2∗t,j−t − I ki,j−t ∣∣∣
+

1
2

∣∣∣I ki+2∗t,j+t − I ki,j+t ∣∣∣)−1 (6)

WW
=

(
1+

∣∣∣I ki,j+t − I ki,j−t ∣∣∣
+

∣∣∣I ki,j−3∗t − I ki,j−t ∣∣∣
+

1
2

∣∣∣I ki+t,j−2∗t − I ki+t,j∣∣∣
+

1
2

∣∣∣I ki−t,j−2∗t − I ki−t,j∣∣∣)−1 (7)

WE
=

(
1+

∣∣∣I ki,j−t − I ki,j+t ∣∣∣
+

∣∣∣I ki,j+3∗t − I ki,j+t ∣∣∣
+

1
2

∣∣∣I ki−t,j+2∗t − I ki−t,j∣∣∣
+

1
2

∣∣∣I ki+t,j+2∗t − I ki+t,j∣∣∣)−1 (8)

Finally, band k value is estimated as weighted sum as follow:

Ĩ ki,j =
Ĩ k

N

i,j W
N
+ Ĩ k

S

i,j W
S
+ Ĩ k

W

i,j W
W
+ Ĩ k

E

i,j W
E

WN +W S +WW +WE (9)

2) CASE B AND CASE D
These cases B and D are applicable when the PoA(k) is
between [ 14 ,

1
2 ) and between [ 1

16 ,
1
8 ), respectively during any

stage of the interpolation scheme. The missing pixel values
of band k at the center location (i, j) (at band l location) Ĩ ki,j is
estimated along four diagonal directions (north-west (NW),
south-east (SE), north-east (NE), and south-west (SW)) as
shown in Figs 3(b) and 3(d) by utilizing the spectral corre-
lation between band k and band l. We consider t = 1 for
Case B and t = 2 for Case D in the following equations.

Ĩ k
NW

i,j = I ki−t,j−t + 0.5 ∗
(
I li,j − I

l
i−2∗t,j−2∗t

)
(10)

Ĩ k
SE

i,j = I ki+t,j+t + 0.5 ∗
(
I li,j − I

l
i+2∗t,j+2∗t

)
(11)

Ĩ k
NE

i,j = I ki−t,j+t + 0.5 ∗
(
I li,j − I

l
i−2∗t,j+2∗t

)
(12)

Ĩ k
SW

i,j = I ki+t,j−t + 0.5 ∗
(
I li,j − I

l
i+2∗t,j−2∗t

)
(13)

Similarly, we calculate the weights along these four diagonal
directions based on the edge magnitude of band k in these
directions. The weight along these directions are estimated
as follow:

WNW
=

(
1+

∣∣∣I ki+t,j+t − I ki−t,j−t ∣∣∣
+

∣∣∣I ki−3∗t,j−3∗t − I ki−t,j−t ∣∣∣
+

1
2

∣∣∣I ki−t,j−3∗t − I ki+t,j−t ∣∣∣
+

1
2

∣∣∣I ki−3∗t,j−t − I ki−t,j+t ∣∣∣)−1 (14)

W SE
=

(
1+

∣∣∣I ki−t,j−t − I ki+t,j+t ∣∣∣
+

∣∣∣I ki+3∗t,j+3∗t − I ki+t,j+t ∣∣∣
+

1
2

∣∣∣I ki+t,j+3∗t − I ki−t,j+t ∣∣∣
+

1
2

∣∣∣I ki+3∗t,j+t − I ki+t,j−t ∣∣∣)−1 (15)

WNE
=

(
1+

∣∣∣I ki+t,j−t − I ki−t,j+t ∣∣∣
+

∣∣∣I ki−3∗t,+3∗t − I ki−t,j+t ∣∣∣
+

1
2

∣∣∣I ki−3∗t,j+t − I ki−t,j−t ∣∣∣
+

1
2

∣∣∣I ki−t,j+3∗t − I ki+t,j+t ∣∣∣)−1 (16)

W SW
=

(
1+

∣∣∣I ki−t,j+t − I ki+t,j−t ∣∣∣
+

∣∣∣I ki+3∗t,j−3∗t − I ki+t,j−t ∣∣∣
+

1
2

∣∣∣I ki+3∗t,j−t − I ki+t,j+t ∣∣∣
+

1
2

∣∣∣I ki+t,j−3∗t − I ki−t,j−t ∣∣∣)−1 (17)
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TABLE 1. PSNR (dB) of different MSFA demosaicking methods
(WB: Weighted Bilinear [20], [21], SD: Spectral Difference [20], BTES:
Binary Tree based Edge Sensing [33], ISD: Iterative Spectral
Difference [28], PBSD: Progressive Bilinear Spectral Difference [34],
PCBSD: PoA based Convolution based Bilinear Spectral Difference [24],
and APMID: Adaptive and Progressive Multispectral Image
Demosaicking [35]) on MSIs from the CAVE dataset.

Finally, band k value is estimated as weighted sum as follow:

Ĩ ki,j =
Ĩ k

NW

i,j WNW
+ Ĩ k

SE

i,j W
SE
+ Ĩ k

NE

i,j WNE
+ Ĩ k

SW

i,j W SW

WNW +W SE +WNE +W SW (18)

Algorithm 1 summarizes the proposed MSFA demosaick-
ing algorithm. Algorithm 2 summarizes the interpolation
scheme for band k at the pixel locations of the band l and
In Algorithm 1, it may be noted that to interpolate band
k at the pixel locations of band l (selected from the pixel
selection scheme for band k), PoA(k) should be less than four
times the PoA of band l (PoA(l)). Otherwise, due to the small
PoA of band l compared to the PoA of band k, the required
number of known values of band l will not be available in
the local neighborhood considered to estimate the band k
at the pixel locations of band l, as per the cases mentioned in
the interpolation scheme. In such cases, Algorithm 1 breaks
the interpolation procedure for band k for the time being,
and it proceeds ahead for interpolating other bands (including
band l), leading to the enhancement of PoAs of these other
bands. As the k and likely few other bands are not completely
estimated in the first major iteration, Algorithm 1 continues
the next iteration and would be reconsidering interpolating
band k at the pixel locations of band l. As the PoA(l) has
been increased, band l will be sufficiently available now to
support the estimation of band k at the locations of band l.
This process continues iteratively for all bands and finally,
Algorithm 1 generates the estimated MSI Ĩ .

IV. EXPERIMENTAL RESULTS
We compare the performance of our proposed MSFA demo-
saicking method with existing generic MSFA demosaicking
methods on MSIs from the CAVE [50] and TokyoTech [29]
datasets. The CAVE dataset has 31-band MSIs of size 512×
512. These MSIs are captured from 400nm to 700nm at
every 10nm spectral gap. The TokyoTech dataset also con-
tains 31-band MSIs of size 500 × 500, and these MSIs
are captured from 420nm to 720nm at every 10nm spectral
gap. We compare our proposed MSFA demosaicking method

TABLE 2. PSNR (dB) of different MSFA demosaicking methods (WB [20],
[21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and APMID [35])
on images from the TokyoTech dataset.

TABLE 3. sRGB PSNR (dB) of different MSFA demosaicking methods
(WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and
APMID [35]) on images from the CAVE dataset.

TABLE 4. sRGB PSNR (dB) of different MSFA demosaicking methods
(WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and
APMID [35]) on images from the TokyoTech dataset.

with WB [21], SD [20], BTES [33], ISD [28], PBSD [34],
PCBSD [24], and APMID [35]. We use PSNR, sRGB PSNR,
and CIEDE2000 [51] as image quality metrics for the objec-
tive evaluation. For the subjective evaluation, we transform
the MSI into the sRGB image [29] and compare different
MSFA demosaicking methods based on the visual artifacts
present in the sRGB images.

We compare the performance of different generic MSFA
demosaicking methods on the MSIs with the number of
bands (K ) ranging from 5 to 16 as many existing manu-
facturers [52]–[54] develop multispectral imaging systems
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TABLE 5. CIEDE2000 values of different MSFA demosaicking methods
(WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and
APMID [35]) on images from the CAVE dataset.

TABLE 6. CIEDE2000 values of different MSFA demosaicking methods
(WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and
APMID [35]) on images from the TokyoTech dataset.

that capture MSIs generally from 5-band to 16-band. In our
experiments, to have the K -band reference image from the
31-band image, we select K bands at uniform spectral gaps
starting from the 1st band of the 31-band image. First, we use
mosaicking to get the MSFA image, and later, we perform
demosaicking to reconstruct the MSI. Finally, the recon-
structedMSI is compared to the corresponding referenceMSI
in order to assess the effectiveness of the MSFA demosaicked
methods.

Tables 1 and 2 show the PNSR values of different MSFA
demosaicking approaches on the MSIs of the CAVE and
TokyoTech datasets, respectively. Our proposed method con-
sistently surpasses other generic demosaicking approaches
almost by 1 dB on the lower number of bands MSIs and
by 2 dB on the higher number of bands MSIs on both
the datasets. Our proposed method exceeds the second best
MSFA demosaicking method (APMID) by 1.46 dB and
2.20 dB on the CAVE and TokyoTech datasets, respec-
tively as average over 5-band to 16-band MSIs. All MSFA
demosaicking methods (BTES, PBSD, PCBSD, APMID, and
Ours) based on binary tree based MSFA patterns outperform
non-redundant MSFA patterns based demosaicking methods
(WB, SD, and ISD). This is due to the compact nature of
binary tree based MSFA patterns as compared to the non-
redundant MSFA patterns [24]. Even, the performance of the

WB, SD, and ISDmethods significantly degrade on the prime
number (e.g., 5,7,11,13) of bands MSIs as compared to the
non-prime number (e.g., 6,8,9,12) of bands MSIs due to the
highly non-compact nature of prime number of bands MSFA
pattern as compared to the non-prime number of bandsMSFA
patterns.

Table 7 shows the performance of different MSFA demo-
saicking methods on the individual MSIs of 10-band and
15-band from the CAVE dataset. Clearly, our proposed
method generates almost all MSIs with better quality from
the corresponding MSFA images than other generic MSFA
demosaicking methods. Similarly, Table 8 compares the per-
formance of demosaicking methods on the individual images
of 8-band and 14-band from the TokyoTech dataset. Here as
well, our method outperforms other methods on nearly all
MSIs from the TokyoTech dataset. Fig. 4 shows the perfor-
mance of individual band of different band-size MSIs form
both datasets. Our proposedmethod outperforms other demo-
saicking methods on all bands on 8-band MSIs and on the
all bands (expect 9th) on 14-band MSIs from the TokyoTech
dataset as shown in Fig. 4 (c,d). Our proposed method also
performs better on all bands (except first band) on 10-band
and 15-bandMSIs from the CAVE dataset than other methods
as shown in Fig. 4 (a,b).
We transform the K-band images to the sRGB domain

to assess colorimetric correctness. Tables 3 and 4 show the
PSNR values of sRGB images converted from the MSIs
generated by the differentMSFA demosaickingmethods. Our
proposed MSFA demosaicking method consistently outper-
forms other generic demosaicking methods by more than
1 dB on the sRGB images converted from all band-size
MSIs on both the datasets. On average over all band-size
images, our proposed method exceeds the second best MSFA
demosaicking method (PCBSD) by 1.35 dB and 2.07 dB
on the CAVE and TokyoTech datasets, respectively. Our
proposed MSFA demosaicking method performs better than
other demosaicking methods in terms of CIEDE2000 metric,
as shown in Tables 5 and 6 on the CAVE and TokyoTech
dataset, respectively. We also examine the performance of
the proposed method by considering the weights used in
intermediate steps of [37] and the comparative results are
presented in Table 9. As weights defined in [37] use both the
bands (the band k whose value to be interpolated and band l
at which location band k to be interpolated) and band l values
may not be available due to its lower PoA than PoA of band
K , we also use the estimated values of band l using the WB
method similar to [37]. Clearly, our proposedmethodwith our
defined weight performs better than by using weights of [37]
by 0.33 dB and 0.75 dB on average on the CAVE and the
TokyoTech datasets.

Table 10 represents the average running of different MSFA
demosaicking methods on MSIs from the CAVE and Toky-
oTech datasets. We use MATLAB 2018b to implement these
methods and execute them on a 64-bit MSI machine with a
Core-i7-8750H processor with 8 GB random access memory
and 2.20 GHz processing speed with Windows 10 Home
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FIGURE 4. PSNR values of each band of different MSFA demosaicking methods on (a,b) 10-band and 15-band, respectively MSIs on the
CAVE dataset and (c,d) 8-band and 14-band, respectively MSIs on the TokyoTech dataset.

FIGURE 5. Visual comparison of the cropped region of size 100× 30 from the Party image (sRGB) of the TokyoTech dataset generated from 10-band
demosaicked MSI.

as the operating system. WB and APMID are the fastest
methods compared to other methods. However, our proposed
method achieves the best results on image quality metrics
than all other demosaicking methods considered and it gives
better or nearly the same computation times than that of other
demosaicking methods like ISD, PBSD, SD, and PCBSD on
both the datasets.

Figs 5, 7, 8, and 6 show the subjective performance
of the proposed MSFA demosaicking method compared
other generic MSFA demosaicking methods. Figs 5, and 6

show performance on the Cloth, Party, and Character
images, respectively from the TokyoTech dataset and Figs 7
and 8 indicate performance on the Cloth and Egyptian
Statue images from the CAVE dataset. Both WB and
BTES methods generate blurred images, and blurriness
increases as the number of bands increases in MSIs. PBSD,
PCBSD, and APMID produce significant artifacts around
the edges. Our proposed method generates good qual-
ity images with lesser artifacts than other demosaicking
methods.
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TABLE 7. PSNR (dB) value of different MSFA demosaicking methods (WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and APMID [35])
on individual images of the CAVE datasets.

FIGURE 6. Visual comparison of the cropped region of size 45× 47 from the Character image (sRGB) of the TokyoTech dataset generated from
16-band demosaicked MSI.

V. CONCLUSION
This paper has presented a generic MSFA demosaicking
method to reconstruct the MSI from the highly sparse

MSFA image. The MSFA images are captured using binary
tree based MSFA patterns highly preferred in the MSFA
demosaicking. The proposed method does not rely on any
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TABLE 8. PSNR (dB) of different MSFA demosaicking methods (WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and APMID [35]) on
images from the TokyoTech dataset.

TABLE 9. Comparison of our method using the weight strategy used in [37] based on the PSNR values.

TABLE 10. Average running time (in seconds) of MSFA demosaicking methods (WB [20], [21], SD [20], BTES [33], ISD [28], PBSD [34], PCBSD [24], and
APMID [35]) on different band size MSIs of both datasets.

other method for an initial estimate of the MSI. To estimate
the missing pixel values of any band, we has presented a

progressive interpolation scheme that uses the PoA of that
band during the interpolation process to select an appropriate
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FIGURE 7. Visual comparison of the cropped region of size 66× 66 from the Cloth image (sRGB) of the CAVE dataset generated from 11-band
demosaicked MSI.

FIGURE 8. Visual comparison of the cropped region of size 46× 46 from the Egyptian Statue image (sRGB) of the CAVE dataset generated from
15-band demosaicked MSI.

case for interpolation. Using that appropriate case, we have
calculated four directional estimates of that band around the
unknown location and combine these four estimates based on
weights calculated using the edge magnitude in those respec-
tive directions. The experimental results have confirmed
that the proposed method outperforms other generic MSFA
demosaicking methods quantitatively and qualitatively on
two benchmark datasets.
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