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ABSTRACT Fitness and activity trackers are hugely popular wearable devices that monitor various
health-related metrics, such as step count, heartbeat rate, or even oxygen saturation. Utilizing personal health
information obtained by users’ personal trackers provides promising results in the fields of telemedicine
and personal well-being. However, we face challenges such as data quality, privacy and compliance with
standards and regulations. This paper addresses such challenges, with the focus on the last one. Semantic
constraints for healthcare datatypes are defined to ensure compliance with standards, making the information
medically valid and relevant. A process of semantic verification and Schematron-based validation is pro-
posed. The validation process suggested in this paper will enable the data to be transferred and incorporated
into a formal Electronic Health Record. The process is then verified using datasets containing various health-
related data types. The aim is to integrate personal health data into Electronic Health Record, which forms
a part of Central Health Information System. This would provide personalized medical services to patients
and help physicians to make more informed decisions.

INDEX TERMS Central health information system, eHealth Services, electronic health record, internet of

medical things, healthcare standards.

I. INTRODUCTION

Fitness or activity trackers are electronic wearable devices
that monitor health-related metrics, e.g., steps/distance
walked/ran, heartbeat rate, oxygen saturation, calories con-
sumption, etc. Trackers, usually in a form of a wristband
bracelet, can transmit data directly to a smartphone/PC appli-
cation. Fortune Business Insights reports that the global mar-
ket size for fitness trackers was USD 30 billion in 2019 and
is projected to reach USD 92 billion by 2027 [1]. Wristband
fitness trackers and smart-watches are products that lead the
growth of the market; however, the wearables market also
includes smart clothing and ear-worn devices. A growing
number of products provide advantageous health tracking
technology, which include heart rate or body temperature
measurements and even blood oxygen tracking (SpO2). The
integration of these functions is gaining a lot of traction
with consumers, especially in the era of Coronavirus disease
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2019 (COVID-19). Utilizing patient-generated health data
could bring benefits to fields of medicine [2]-[4],
telemedicine [5], [6], and personal well-being [6]-[8]. The
information collected could mean an improved, more tai-
lored healthcare approach as it could offer physicians con-
stant comprehensive insight into the health of the patient.
Thus, implementing the integration of personal health data,
obtained through various fitness trackers’ sensors into the
formal Electronic Health Record (EHR) shall provide per-
sonalized medical services in accordance with standards and
could be a way to offer a more personalized and consistent
care, helping medical workers to make better and more
informed decisions.

To achieve this aim, several requirements must be met.
Main challenges are ensuring data quality, maintaining
privacy and compliance with applicable standards and reg-
ulations. Research presented in this paper focuses on the
latter, as data quality was addressed in previously published
work [9]. On the other hand, privacy concerns are planned
to be the focus of future work. Due to the complex nature of
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healthcare data, issues related to joining disparate elements
and connecting different systems arise. Achieving interop-
erability implies defining data structure and content for the
core data types, to which then implementations would need
to comply. Health data interoperability imposes standards and
protocols that are used by most implementations of Central
Health Information Systems worldwide. If patient-generated
health data were compliant with the same standards, Central
Information Health System platform applications would be
able to perform analytics on personal health data and create
clinically valid EHR documents.

Thus, the aim of this research is to define a semantic
constraints specification for health data for common data
types and to model the process for Schematron-based val-
idation. In the following chapters, possible solutions for
ensuring compliance are discussed, and reasons for the selec-
tion of Schematron-based validation are provided. Further-
more, an overview of datasets used for model verification is
given, including the dataset collected for the purpose of this
research. Results depict the proposed validation process in
detail and its verification is provided based on a case study
using the before mentioned datasets. Finally, Discussion pro-
vides conclusions and proposes future work.

Il. RELATED RESEARCH
Systematic review [10] summarized the validity and relia-
bility of some of the most popular fitness trackers and their
ability to accurately estimate health-related metrics, such as
steps, heartbeat rate, and sleep. Results indicated high relia-
bility among all devices. In [11], a comparative analysis was
performed between the data of the fitness tracker with pho-
toplethysmography (measures heartbeat rate) and a certified
clinical device, an electrocardiogram (ECG), which assesses
heartbeat rate through the electrical activity of the heart. The
analysis suggests that fitness trackers, regarding the evalu-
ation of heartbeat rate, provide valid information for use in
clinical practice. After revising results of 67 studies, [12]
concludes that wearable devices meet acceptable accuracy
for step count; however, a tendency to underestimate steps
in controlled (test) environments and overestimate steps in
free-living environments exists. Furthermore, [13] highlights
the absence of a standard test protocol for the validation
process. As [14] and [15] report, compared to an ambula-
tory electrocardiogram (ECG), two commercially available
models shown to have high accuracy, giving heartbeat accu-
racy of less than £10% for the 24-hour period and across
all activities. Additionally, both devices were less accurate
following erratic movements and increased heart rate. Other
models gave similar results [16]. State-of-the-art survey on
data quality has been published in [17]. Finally, case study
on Quality of Experience (QoE) presents a new approach to
smart wearables evaluation, suggesting that accuracy of heart
rate monitoring and step count are the two most important
parameters [18].

However, to be able to use personal health data obtained
through sensors in wearable trackers as relevant information
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in a formal EHR, the data must be accurate and free of
faults and errors, as this could lead to misleading conclu-
sions and incorrect diagnoses. Fitness trackers are relatively
inexpensive and easy to use; however, doubts as to their
reliability and accuracy exist. The errors in sensor readings
may be caused by different external sources, such as the
environmental effects that affect the measurement process
itself, communication channel and the transmission of signal,
or due to fault of hardware as low-cost sensors have limited
resources and reliability. This can result in measured signal
noise, missing values, or inaccurately measured values. These
are all factors that need to be addressed. Furthermore, the lack
of information and validation of the algorithms used by the
devices make them inadequate to be used in the medical field
without additional data cleaning (as this data must be reliable
and accurate) and data validation, in the sense of compliance
to the standards set in the medical field, such as Health
Level 7 (HL7). Regarding data quality, [19] claims, artificial
neural networks can significantly improve fault detection and
data analyses for wearable devices. Several studies [20]-[23]
employ some form of data cleaning process for data collected
from Wireless Sensor Networks (WSN); i.e., coappearance-
based analysis for incorrect records, decision tree-based miss-
ing value imputation, and fault and anomaly classification.
Lastly, article [9] compares various data-driven models clean-
ing eHealth sensor data with the goal of ensuring that the
collected data is accurate, relevant and can be used in formal
EHR. It also identifies multiple linear regression and neural
network as best models for data imputation, which it further
optimizes with result of 10-17% improvement in accuracy,
depending on the person monitored (data was collected by
monitoring ten volunteers, diverse in terms of sex, age, and
fitness level).

The use of EHR is growing rapidly; i.e., EHR is replac-
ing patients’ paper charts [24], [25]. On the other hand,
as far as transferring personal health records into a formal
EHR is considered, no attempts have been implemented yet.
However, [26] evaluated Health Level 7 Fast Healthcare Inter-
operability Resources (HL7 FHIR) system architecture in the
use case of smart glasses as a source of personal health infor-
mation by measuring the user’s vital signs, i.e., temperature,
heart rate, and respiration rate. One more example of this
is [27], mHealth, which is ““a prototype of implementing a
HL7-compatible personal health record system’” in a form of
a mobile application which users use to access and directly
communicate their medical information to healthcare service
providers (also through HL7 FHIR). A similar effort is seen
in [28], where Tangle is an application which serves as a
“bridge”’, where patients can share their PHR data for physi-
cians to access.

A Personal Health Record (PHR) contains person’s health
information in an electronic format and is managed by
the said person. It is different from an Electronic Health
Record (EHR), which is owned and stored by the healthcare
provider. For the full integration of personal health data into
EHR, the primary task is to overcome the discrepancies and
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consolidate distinctive datasets into a unified, comprehen-
sive collection of information and ensure data quality. This
would allow highly beneficial insight and public eHealth
services improvement, preventing fragmentation of health
data. However, even though Tangle mentions integrating IoT
sensor personal health data into EHR, no data cleaning is
mentioned, and it remains unclear what is the format of
said data, if they are transferred and validated, and in what
way. WearableHUB [29] is a platform which collects and
transforms wearable tracker’s data and integrates it into a
PHR. The data is said to be transformed “‘into a unified format
according to a predefined standard”, although it does not
elaborate on this point further. Angel-Echo [30] is another
PHR solution which helps monitor the health status of a
patient by collecting data via a wristband device. Open-
Health [31] is an open-source platform for wearable health
monitoring which uses machine learning algorithms to clean
and transform data. Finally, mHealth4Afrika [32] mentions
data validation (including sensor-collected data) in healthcare
facilities in Ethiopia, Kenya, and Malawi via ‘““formal valida-
tion sessions’’, which include individual or group interviews
and observations, meaning it is not an automated process.

To integrate this data into EHR, data verification and
validation is necessary. For this purpose, a schematron [33]
can be used. Schematron is a structural schema valida-
tion language based on rules and expressed in Extensible
Markup Language (XML). It is used commonly for asserting
whether specified patterns are present or absent in XML
trees and is capable of creating constraints in ways that other
XML schema languages, such are XML Schema and Docu-
ment Type Definition (DTD), cannot. This requires specific
attributes, content control of certain elements by another ele-
ment, or even specification of requirements between multiple
XML files [34]. Schematron has been standardized by the
ISO as “Information technology, Document Schema Def-
inition Languages (DSDL), Part 3: Rule-based validation,
Schematron (ISO/IEC 19757-3:2016)”" [33]. Lastly, consid-
ering the said data is of a highly sensitive nature, security
is a pivotal challenge. Ensuring that the patient’s privacy
remains undisputed is an important requisite. The transfer of
personal health data to EHR data requires standardization,
in this particular case, via the use of schematrons, so that it
has the correct medical format and context. This information,
in conjunction with the rest of EHR information (such as
previous diagnoses, medication history, doctor visitations,
and laboratory results), can aid medical staff in remotely
screening a patient, diagnosing issues early, and improving
health services.

Integrating the Healthcare Enterprise (IHE) is an initia-
tive between healthcare professionals and industry with the
goal of improving healthcare. It provides interoperability
specifications, tools, and services for sharing and managing
healthcare information. Its mission is to “engage clinicians,
health authorities, industry, and users to develop, test, and
implement standard-based solutions to vital health informa-
tion needs’ [35]. This is done by identifying requirements,
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defining standards, and providing technical guidelines and
frameworks for developers to implement. IHE Technical
Frameworks [36] define implementations of previously set
up standards to facilitate viable and efficient systems inte-
gration, achieve warranted exchange of medical information
and, thus, offer optimal patient care. Annually, following a
period of public review, these are expanded and maintained
on a regular basis by the IHE Technical Committees. Among
others, Technical Frameworks (TF) described include those
for Anatomic pathology, Dental, Cardiology and IT infras-
tructure. IT infrastructure describes integration profiles [37]
as well as ITI transactions ITI-1 to ITI-28 [38], ITI-29 to
ITI-64 [39], ITI-65 and greater [40], together with the meta-
data [41], [42]. Specifically, Cardiology TF entices the devel-
opment of a range of implementation profiles, such as cardiac
or intravascular imaging, resting ECG (REFW) or stress test-
ing workflow (STRESS), many of which would benefit from
the inclusion of aggregated personal health data (such as ECG
information) into a formal EHR [43], [44].

Furthermore, Quality, research and public health TF under
Supplements for Trial Implementation encourage initiative
for the development of several implementation profiles,
among them, Aggregate Data Exchange (ADX) [45]. ADX
serves for ““‘interoperable public health reporting of aggregate
health data”. Most common use cases of ADX are peri-
odic (week, month, quarter, or annual) reports from a health
facility to an administrative jurisdiction. A Content Data
Structure Creator defines the structure of XML data that will
be communicated between a Content Creator and Content
Consumer, which assumes the creation of two normative
message structure definition files:

o Data Structure Definition (DSD) file that is conformant

to the normative schematron

e W3C XML Schema Definition (XSD) with an ISO

Schematron schema, both of which must match the
result generated by the normative XSLT transform from
DSD to XSD and from DSD to schematron.

Ill. RESEARCH GOAL
The goal of the presented research is to model a data verifi-
cation and validation process that would enable a standard-
compliant integration of personal health data collected by
wearables into EHR. A single unified EHR system within the
European Union doesn’t exist at this time. Rather, some coun-
tries have implemented national EHR systems in place; others
have several, oftentimes overlapping, systems operating on a
regional level, and there are ones having no EHR as of yet.
Examples of functional national EHR systems are Croatian
and Finnish EHR systems, both of which cover healthcare
facilities in public and private sectors, offering additional
services to patients, such as prescription renewal or man-
agement of doctor appointments. In contrast, in Belgium,
a country known for its linguistic diversity, distinct regions
have separate EHR systems that do not interact with one
another. Furthermore, e.g., Germany has coverage of only
some of the federal states.
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Thus, when integrating patient-generated data, achieving
interoperability implies defining data structure and content
for the core datatypes to which then implementations would
need to comply. Also, health data interoperability imposes
compliance to standards which are used by most implemen-
tations of EHR systems.

Data verification and validation process has to ensure the
data has the adequate structure and content and that all the
communication complies with existing standards.

IV. MATERIALS AND METHODS

The study was performed in several stages: 1) data collection;
2) defining the process of data parsing, data verification, and
data validation; and 3) verification of the proposed process
via a use-case study, using datasets containing various rele-
vant datatypes.

A. DATA COLLECTION

To verify the validation process described in the follow-
ing chapter, two datasets have been used. The PMData
Dataset [46], provided from Simula Open Datasets, contains
life logging and sports activity logging of sixteen persons
over a five-month period using a commercial smartwatch
wristband. Additionally, over the course of two months,
OxyBeat [47] dataset was collected for the purpose of
this research, containing heartbeat rate, as well as body
temperature and oxygen saturation (SpO2). This was done
to add several more datatypes, with focus on COVID-
relevant datatypes and subsequently ensure a more robust use-
case scenario. SpO2 specifies the percentage of oxygenated
hemoglobin (hemoglobin containing oxygen) compared to
the total amount of hemoglobin in the blood (oxygenated
and non-oxygenated hemoglobin). Fitness tracker measures
SpO2 levels using the relative reflection of red and infrared
light from the blood and its variations compared to heart
beats. Deoxygenated blood, which returns to the lungs via
veins, is of a darker red color than the fully oxygenated blood
in the arteries and arterioles. Blood oxygen saturation (SpO2)
tends to fluctuate very little, even during exercise and sleep;
oxygen levels in blood during the day are generally 95-100%.
SpO2 during sleep is generally lower than daytime SpO2
since the total amount of air breathed drops during sleep.
Typically, nighttime SpO2 values are >90%. This dataset was
also collected using a commercially available smartwatch
wristband. Commercial wearable activity trackers have close
to 100 million active users. In the third quarter of 2020, Health
Metrics Dashboard (Figure 1) was introduced to the devices,
which tracks metrics like breathing rate, heart rate variability
and SpO2 — all important metrics when it comes to illness
detection [48].

Triaxial accelerometers in wearables capture spatial body
motion. Motion data is analyzed with the use of proprietary
algorithms. Identified are patterns of motion that serve to
calculate health-related metrics, such as steps taken, time
spent exercising or sleeping. Although devised as a consumer
product for motivating individuals to exercise and promoting
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4 Health Metrics

Heart rate variability [HRV)
Recent sleep: 53 milliseconds

LEARNMORE

Skin temperature
Lastnight: =0.2°C

LEARN MORE

FIGURE 1. Health metrics dashboard.

{“dateTime”: “2021-03-01 11:22:02",
“value”:

— {"bpm”: €5,

- “confidence™:3}

L }'

- {“dateTime”: “2021-03-01 11:22:07",

E “value”:

= {*bpm”: &3,

F “confidence”:2}

R IR S

FIGURE 2. An example of heartbeat rate data (JSON).

physical activity, wearables have been increasing in popu-
larity as equipment in research as well as a support tool in
doctor-patient interactions [49]. Since 2011 and up to 2020,
a total of 260 clinical trials have been registered at Clinical-
Trials.gov [50]. The most measured metric in the trials in
question was the number of steps taken, followed by time
spent in physical activity or sleep, heart-beat rate, and energy
expenditure. Smart wearables, and especially devices worn
on the wrist, have shown they are dependable, durable, and
acceptable [14], [51].

Health-related metrics considered in this research are
heartbeat rate, oxygen saturation (Sp0O2), and body temper-
ature. One of the vital signs all personal trackers measure,
is the heartbeat rate. Furthermore, the module for sensor
data cleaning of this datatype has already been developed
and in-depth described in previously published research [16].
Thus, this will also be used as the first example for the
model’s syntax and semantic validation. To be in line with the
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HL7 standards, HL7’s Structure Definition of HeartRate [52]
is to be followed. The structure is derived from ‘‘observation-
vitalsigns™ [53]. Heartbeat rate data is exported from the
tracker in the form of a JSON file, as shown below.

B. PROCESS FOR PARSING, VERIFYING, AND

VALIDATING THE DATA

Heart rate readings occur every five seconds, which results
in over 1.5 million readings total for the given time period in
the PMData dataset. Each reading consists of a timestamp,
‘bpm’ field which denotes heart rate value, i.e., beats per
minute, and confidence of the reading. Confidence ranges
from O to 3, where 3 indicates that the device is extremely
confident in the accuracy of the heart rate measured. Data
cleaning process was employed in previous work by using
a data-driven model for cleaning of eHealth data [9], which
uses neural network algorithms to impute incorrect data, and
has shown an improvement in accuracy between 10 and 17%.

¢ Copy the data

e |dentify corrupt data

e Consider corrupt data as missing data
Data «Impute all the missing data

eReturn new data set

Cleaning

e Parse data points into data-specific XML

e Verify all data is complete and in correct format

\VIRiileE ilolal el ¢ Validate created XML using Schemtatron
validation

FIGURE 3. Process of data cleaning and validation.

Data cleaning process consists of copying the data, identi-
fying corrupt data, considering corrupt data as missing data,
imputing all missing data, and returning the new data set
as a result. Data points selected for imputation were in this
case those of confidence equal to zero. Thus, cleaned data
contains original values for data points with confidence level
1-3, as well as imputed values for data points with confidence
level zero. Clean data is then parsed and checked using
Schematron-based validation. The process is pictured in Fig-
ure 3. The parser must be able to efficiently support large
quantities of data. It should also be robust and always run
without crashing. Parser was implemented in Python, using
pysimdjson library, a SIMD-accelerated (Single instruction,
multiple data) JSON parser, which can achieve speeds of up
to 2.2 GB/s. It operates in two stages: the first stage processes
data in batches of 64 bytes, and the second stage builds ““tape
representation’’. Detailed process is given in Figure 4 below.

The data format needed for EHR is eXtensible Markup
Language (XML) document. XML documents consist of
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elements and attributes. For defining the allowable structure
of an XML document, following schemas can be used:

o Document Type Definition (DTD),

o Microsoft XML-Data Reduced (XDR),

« or, mostused, XML Schema definition language (XSD).

Initially, XML documents were only validated using
schema validation. This means that if an XML document
had passed schema validation, it was deemed valid. However,
although schema validation ensures document structure,
it cannot check conditional and integrity requirements. The
proposed process for validation of personal healthcare doc-
uments (Figure 5) would first validate the document struc-
ture, followed by validation of document content and its
attributes. Lastly, any existing additional constraints must
also be validated.

Steps in the validation process pertaining to content
and constraints validation require a rule-based schema lan-
guage. Grammar-based schemas, such as XSD, simply can-
not achieve necessary level of validity. Alternative options
include Tree Regular Expressions for XML (TREX), Regu-
lar Language for XML Next Generation (RELAX NG) and
Schematron, all of which are schema languages for XML with
the ability to validate both the structure and content of XML
documents. However, Schematron can also make assertions
about patterns of occurrences anywhere in the document,
whereas TREX and RELAX NG cannot. Another advantage
of using Schematron is the possibility to nest Schematron
schemas within XSD schemas. Considering this, Schematron
is the most suitable schema language for the validation pro-
cess presented in this work.

IHE has as its main goal integration of workflows within a
healthcare setup using existing standards, for example Digital
Imaging and Communications in Medicine (DICOM) and
Health Level Seven (HL7). DICOM has been developed by
the American College of Radiologists (ACR) and National
Electrical Manufacturers Association (NEMA) and focuses
on workflow of images. Complementary, HL7’s focus is man-
agement of non-imaging data in hospital-based scenarios.
Globally accepted, it offers protocols for sharing, managing,
and administrating electronic health data [54] and enables
the interoperability between electronic patient administra-
tion and practice management systems, pharmacy and billing
systems, systems handling laboratory and dietary informa-
tion and Electronic Health Record (EHR) systems. Health
Level 7 Fast Healthcare Interoperability Resources (HL7
FHIR) [55] is a standard for exchanging healthcare informa-
tion electronically, published by HL7. FHIR’s basic building
block is called Resource, and is made up of metadata, stan-
dard data, and human readable part (as pictured in Figure 6).

The HL7 FHIR specification is developing as a next-
gen standard framework for the management and sharing of
EHR data and health information in general. Schematron-
based validation process will be defined and then verified
using previously mentioned datasets. Different devices cre-
ate different XML syntax to represent similar health data
(e.g., heartbeat rate). For effective personal health data
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Stage one -

JSON input

Identify structural
characters

= braces {}

= brackets []

= colons :

= commas,

Identify quotation marks

Identify pseudo-

structural characters:
= null

= true, false
= numerical values 0-9

Index the data

Character-encoding
validation (UTF-8)

FIGURE 4. Process of data parsing.

Validate
document

structure

*Presence of
elements
eAbsence of
elements
eLocation of
elements

Validate
document

content

*Presence of
any content
ePresence of
particular
content
*Rule-
following
content

FIGURE 5. Expected validation process.

communication and integration, the XML documents must
have correct syntax as well as be semantically meaningful,
i.e., represent a complete FHIR resource. The idea is to create
and maintain one Schematron document for similar health
data among different personal tracking devices, thus reducing
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Stage two -

XML output

Iteration through
extracted indexes

Creating element tree

Creating XML documents

Validate
document

attributes

ePresence of
attributes
eAbsence of
attributes
eContent of
attributes

Check co-
occurence

constraint
S

ee.g.if Xis
present,
then Y must
be present
ee.g.only A
oronly B
must be
present

the complexity. Schematron can require the presence of some
or all attributes in any given element, or it can define relation-
ships or constrains of one element depending on another ele-
ment. It allows for the implementation of complex rules and
constraints needed for semantic validation. Schematron rules
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<Patient xmins="http://hl7.cxg/fhiz">

- ~uS=Tga ::T Rd
<eta>

<lassUpdated value="2014-11-13711:41:00+11:00%/>
</=aza>

Resource ID and
metadata

<text>
<status value="generated"/>
<div xmlins="http://w.w3.cxg/1999/xhtml">
<p> Henry Levin the 7th</p>
<p> MRN: 123456. Male, 24-Sept 1932</p>
</dzv>
</text>

Human-readable
text (summary)

<extensicon urL=TaAttp:i//exaTple.org/Structurelefinition/trials >

<valueCcde value="renal™/>
</extensiond>

SoSNCITISY
<use value="usual"/>
<tyre>

<ceding>

<coda valus="MR"/>
</coding>
</type>

<value value="12345¢€"/>
</idenzifiez>
<active value="true®/>
<named>
<family value="levin"/>
<given value="Henry"/>
<suffix value="The 7cth"/>
</naxme>
<gender value="zale™/>
<bizthDate value="1932-09-24"/>
<generalPractiticner>
<zeference value="Practiticner/exa=ple™/>
<display value="Dr idam Careful"/>
</genezalPractiticnez>
<manag:nglrgan: on>
<reference value="Crgan:ization/2%/>

<display value="Goocd Mealth Clinic“/>
</managingOrganizaticn>

<systex value="http://terminclogy.hl7.o0xg/CodeSysten/v2-0203"/3

<system value="h:tp://www.gcodhealth.org/idensifiers/mza"/>

Extension URI to

resource definition

Standard data: set of structured data
items as described by the definition
of the resource type

</ratient>

FIGURE 6. An example of HL7 FHIR resource.

Fl<rule context="Observation">

<assert test="@id">The element Observation must have an id attzribute.</assert>
l<assert test="count(*) = 2 and count (Category) = 1 and count(Code)= 1">
The element Observation must have the child elements Category and Code.</assert>

L</rule>

FIGURE 7. Rule example for FHIR resource observation.

are formed using the rule element with a context attribute.
The value of the attribute must match an Xpath Expression
which selects at least one node in the document. The con-
text attribute specifies where the assertion must be applied.
From the abovementioned example, the context is fixed to
the Observation element, so the Schematron rule with the
Observation element being the context should look like the
following (Figure 7). To fulfill all the requirements previously
mentioned and comply with the standards, heart rate Schema-
tron for data validation with the goal of its inclusion into EHR
needs to contain rules provided in Figure 8.
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C. PROCESS VERIFICATION: USE-CASE STUDY

The defined process was verified in a use-case study, using
two datasets containing various relevant data types. The
results are presented in the following section.

V. RESULTS

The goal was to research integration of personal health data
into Electronic Health Record (EHR) which forms a part of
Central Health Information System. To verify the data clean-
ing and validation process presented in this paper, a dataset
was collected for the purpose of this research, containing
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|— Vital signs profile rules _

Profile-specific rules (e.g.
heartbeat rate, body

temperature, oxygen
saturation)

ll Reporting-specific rules
continuous

FIGURE 8. Rules hierarchy for heartbeat rate schematron.

heartbeat rate, as well as body temperature and oxygen satu-
ration (SpO2) using a fitness tracker. Data has been cleaned
by employing the data-driven model for cleaning of eHealth
data [9], which uses neural network algorithms to impute
incorrect data, and has previously resulted in an improve-
ment in accuracy between 10 and 17%. To test the defined
validation process in a use-case scenario, a two-stage parser
has been developed. The full two months of readings for the
three datatypes measured equate to around 50 MB worth of
JSON files with over 2 million datapoints, which have been
parsed in 58 seconds on a Ryzen 5 5600X 6-core proces-
sor (running at 3.7 GHz in 64- bit mode). As per reliabil-
ity, this has been done for all data points, with a success
rate of 100%.

Finally, a detailed overview of all the rules defined is given
as a complete summary of the mandatory requirements below
in this chapter. This facilitated the creation of Schematrons
for the three datatypes. This is used in the final step of the
data validation process. Heartbeat rate data is described by
FHIR HeartRate Structure Definition [50]. Schematron for
heartbeat rate type data is shown in Figure 9. Similarly, body
temperature data is described by FHIR BodyTemp Structure
Definition [56] which is to be followed. The structure is
derived from observation-vitalsigns. Skin temperature read-
ing data is exported in a form of a JSON file. Readings
occur each minute. Each reading consists of a timestamp,
temperature value and unit in which temperature is measured
(in this case, degrees Celsius). Lastly, oxygen saturation in
arterial blood is described by FHIR OxygenSat Structure Def-
inition [57] which is to be followed. The structure is derived
from observation-vitalsigns. Oxygen saturation is exported
in a form of JSON file, consisting of dateTime and value
attributes. dateTime is of the same format as in the case of
heartbeat rate readings and its value is expressed in percent-
age. Figs. 10 and 11 show Schematrons for body temperature
and oxygen saturation, respectively. Complete Summary of
the Mandatory Requirements for the given datatypes is as
shown below:

Observation.Code needs to have one code with:

(D fixed value of coding system equal to loinc.org
(II) fixed coding code equal to:
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a. 8867-4 for heartbeat rate
b. 8310-5 for body temperature
c. 2708-6 for oxygen saturation
(IIT) all codes must have a system value
Also, Observation needs to have a value quantity or, if there is
no such value, a reason for absence of data. If a value quantity
exists, it needs to have:
(I) numerical value
(II) fixed value quantity system equal to unitsofmea-
sure.org
(III) UCUM unit code:
a. /min (per minute) for heartbeat rate
b. Cel (Celsius) or degF (Fahrenheit) for body tem-
perature
c. % (per cent) for oxygen saturation
In total, Observation must:
a. contain three mandatory elements (with 4 more nested
mandatory elements),
b. support four elements,
c. have fixed value for three (body temperature) to four
(heartbeat rate, oxygen saturation) elements.
Compliance to each rule for all given data types is ensured
using the corresponding Schematron. The semantic con-
straints framework provides the specification of data that nor-
mally has a very complex structure, while the validation tool
may be used as a standalone component or can be integrated
as a module into a larger data processing system. General
important things to note of FHIR resource representation:
« FHIR elements are always in the namespace
http://hl7.org/thir, usually specified as default namespace
on root element
« Resource names are case-sensitive
« Element names are case-sensitive and must appear in the
order specified by documentation. In case of element
repeating, elements must be ordered
« FHIR elements cannot be empty - they either have a
value attribute, valid child element or extension
« Attributes cannot be empty
« Infrastructural elements must appear before any other
defined child elements, i.e., first base resource elements,
then domain resource elements.
Element Observation resource provides ‘“‘measurements and
simple assertions made about a patient, device or other sub-
ject” and is used for vital signs, height, weight, laboratory
results, etc. Element Id contains logical ID of the resource,
in this case heart rate. Meta is metadata about the resource,
with profile references a structure profile URL to which this
resource claims to conform to, vital signs being an example.
An optional Text contains human-readable summary of the
resource. Category classifies the general type of observa-
tion, whereas coding is a reference to a code unambiguously
defined by a terminology system (observation-category and
http://loinc.org, respectively) and identified by an existing
code (vital signs and 8867-4). Display provides human-
readable meaning of the code.
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t="£" uri="http://hl7 oxg/thix"/>

‘ ¢="h" uri="http://www,v3,0xg/1999/xhtnl"/>
:pattern id="observation">
schititle>Observation</schititle>

<sch:rule co ="{:0bservation">

sch:assert

x=ins:sch="http://purl oclc . org/dsdl/schematron” que

ryBindinga"xslt2">

t="not (exists (£:dataAbsentReason)) or (not(exists(*[starts-with(local-name(.), 'value')])))">dataAbsentReason

SHALL only be present if Observation.value(x] is not present (inherited)</sch:assert>

<sch:assert test="not(exists(f:component/f:code)) or

count (for $coding in f:code/f:coding return parent::*/f:component/f:code/f:coding(f:code/ivalue=$coding/£:code/dvalue
and f:system/ivalue=§coding/f:systen/ivalue])=0">Component code SHALL not be same as observation code (inherited)</schiasse:t>

<sch:assert tes
<sch:assert
<sch:assert test

needs to have proper format for dateTime</sch:iassert>

"category">
2 E <sch:irule

21 <sch:asser

<sch:assert t

defined by correct systen</schiassert>

«t="£:0bservation/£:code/f:coding">

</sch:scheza>

FIGURE 9. Schematron for heartbeat rate type data.

Subject references the subject of the observation, i.e.,
the patient. Effective[x] has four available types: dateTime,
Period, Timing and instant. In this case, effective Date-
Time is used. According to the specification, dateTime may
represent date, date-time or partial date with the respec-
tive formats being YYYY-MM-DD or YYYY-MMDDThh:
mm:ss + zz:zzand YYYY or YYYY-MM. However, for this
specific use case, only date-time is expected and this needs to
be reflected in the Schematron rules. Value[x] has different
types available (as pictured in Figure 12) and provides infor-
mation determined a result of the observation. Here, value
Quantity is used. Value Quantity consists of numerical value,
unit representation (e.g., bpm), system that defines coded
unit form and coded form of the unit. Another (optional)
parameter is comparator with possible values <(less), less or
equal (<=), >(more) and more or equal (>=). Thus, after
adjusting the datetime format, mapping data points from the
wearable in this case is straightforward.

All datatypes share the rules for vital signs profile, since
the FHIR Vizal Signs profile sets minimum expectations for
the Observation resource to record, search and fetch the
vital signs (e.g., temperature, blood pressure, respiration rate,
etc.). This is followed by profile-specific rules and whatever
additional rules apply.
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xt="£:0bservation/f:category/£:coding/£:code">
T t="fvalue = 'vital-signs'">vVital signs must defined by correct observation code</sch:iassert>
T test="count(fvalue) = 1">Code =ust exist and be uniquely defined</schiassert>

t="f:id/ivalue = 'heart-rate'">Observation is not heartrate type observation</sch:assert
"exists (f:subject/f:reference/ivalue) ">Patient must exist and be uniquely defined</sch:assert>
="matches (f:effectiveDateTime/fvalue, '~ (\d(4)-\d(2)-\d(2}7\d({2}:\d{2}:\d{2)\+\d{2}:\d{2))$") ">Observation

sert test="exists(f:valueQuantity/f:value/ivalue) ">Observation needs to have value measured</sch:iassert>

xt="{:0bservation/f:category/£f:coding/£f:systen">
t="2value = 'http://terninology.hl?. oxg/CodeSysten/obsexvation-category' ">Vital signs must

t="f:code/dvalue = '8867-4'">Heartbeat rate must defined by correct observation code</sch:assert>
t="f:gysten/ivalue = 'http://loinc.oxg' ">Heartbeat rate must defined by correct systeac/schiassert>
t="count (f:code/dvalue) = 1">Code must exist and be uniquely defined</sch:assert>

All the XMLs, produced from datapoints and compliant
with the Schematrons defined in this work, are following the
rules of the latest FHIR version, i.e.:

« datatypes, in XML and JSON format

« the terminology layer, i.e., CodeSystems and ValueSets

« the conformance framework (StructureDefinition)

« the FHIR resources, i.e., Patient and Observation
Regarding the implementation presented in this work, exe-
cutable components, i.e., parser and validator were developed
in Python 3 using Anaconda Spyder, opensource IDE for sci-
entific programming and computing (data science, machine
learning applications, large-scale data processing, etc.) and
scientific packages NumPy, SciPy, Matplotlib, pysimdjson
and pandas. XML templates and Schematrons were written
in Notepad++.

Considering our research objectives, the paper provides the
following contributions:

« model for validation of personal health data collected by
wearable sensors with the goal of integrating the data
into EHR was proposed

« semantic constraints for healthcare data types were
defined in compliance with standards which were used
in creating Schematron schemas corresponding to each
of the datatypes
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e>Observation</schititle>
"£:0bsezxvation">

¢ <schiassert test="not(exists(f:component/f:code)) oz

" querysi

nding="xslt2">

ch:assert test="not(exists(f:dataAbsentReascn)) or (not(exists(*([starts-with(lccal-name(.), 'value’')])))">dataAbsentReason
snu. only be present if Observation.value(x] is not present (inherited)</schiasssrt>

10 count (for §coding in £:code/f:coding return parent::*/f:component/f:code/f:coding(£f:code/évalue=$coding/f:code/Evalue
11 and f£:systen/#value=§coding/f:systen/évalue])=0">Co=ponent code SEALL not be same as cbservation code (inberited)</sch:izsssrt>

12 <sch:assert
<sch:asse:
<sch:assert t
15 needs to have proper format for dateTime</schiasssrt>
16 <sch:assert

f
"
vl

category™>
~£:0bservation/£:category/£:coding/£:code">

(-

"£:0bsezvation/f:category/f:coding/£f:systea™>

RO

25 <sc"asse"
26 | defined by correct systamc¢/schiassert>
2 - </sch:rule>
2 r </5"* pattern>

0 xt="f:0Obsexvation">
<sch:assert te

!::ysto:/lvuuo = ‘Mwm;_._qxg“‘mody terperature must defined by correct sysua</=
="count (£:code/fvalue) = 1">Code must exist and be uniquely defined</sch:iasssrt>

="£:id/évalue = 'body-termperature'">Observation is not body te=p type ob ion</schiasssrt>
="exists(f:subject/f:reference/ivalue) ">Patient =ust exist and be uniquely defined</sch:assert>
="matches (£:effectiveDateTine/fvalue, '~(\d{4}-\d{2}-\d{2}7\d{2}:\d{2}:\d{2}\+\d{2}:\d{2})$") ">Observaticn

"exists(f:valueQuantity/f:value/?value) ">Obsezvation needs to have value measured</sch:iasssrt>

fvalue = 'vital-signs'">Vital signs must defined by corzect observation code</schiasssrt>
count (¢value) = 1">Code must exist and be uniquely defined</schiasssrt>

="Gvalue = 'http://terminology.hl7.oxg/CodeSysten/obsexvation-category' ">Vital signs must

st="not (exists(f:dataAbsentReason)) or (not(exists(*(starts-with(local-name(.), 'value')])))">dataAbsentReason

SHALL only be p t if Ob tion.value(x]) is not present (inherited)</sch:assert>

<sch:iassert test="not(exists(f:component/f:code)) or

1 count (for $coding in f:code/f:coding return parent::*/f:component/f:code/f:coding(f:code/2value=§coding/f:code/dvalue
11 and f:system/dvalues$coding/f:systen/dvalue))=0">Componant code SHALL not ba same as observation code (inherited)</sch:assert>

12 <:ch:assc:: test="f:id/évalue = 'sat02'">0b on is not
13 <sch:ass

¥g tion type observation</sch:assert>

t="exists (f£:subject/f:reference/dvalue) ">Patient must exist and be uniquely defined</schiassert>

4 ¢ <sch:asse: test="matches (£:effectiveDateTime/dvalue, '~ (\d{4)-\d{2)-\d{2)7\d{2}:\d{2}:\d{2}\+\d(2):\d(2))$") ">Obsexvation
198 ¢ needs to have proper £ t for d ime</schiassert>
1€ <sch:assert te »-mmu(z valueQuantity/£:value/fvalue) ">Observation needs to have value measured</sch ere>

17 </schizule>
18 F </sch:ipattern
% 2 <schipattern ids="category">

2 <sch:rule xt="£:0bservation/f:category/f:coding/f:code">

21 <sch:asser "2value = 'vital-signs'">Vital signs must defined by correct observation code</schiassert>

22 <sch:iassert t="count (fvalue) = 1">Code must exist and be uniquely defined</sch:iassert>

23 </sch:irule>

24 <schirule context="f:Observation/f:category/f:coding/f:systen">

25 & <schiassert test="dvalue = 'http://terminology.hl?.oxg/CodeSysten/obsexvation-category'">Vital signs must

26 ¢} defined by correct systemc/schiassert>

27 </sch:rule>

2 </sch:pattern>

29 § <sch: ;\at:e" iz"code">

3 = <sch:rule ="£:0bservation/f:code/f:coding">

3 <sch:assert "f:code/dvalue = '2708-6'">Oxygen saturation must defined by correct observation code</sch:iassert>
3 <sch:assert "f:systen/ivalue = 'http://loinc.oxg’' ">Oxygen saturation must defined by correct systenc</sch:iassert>
33 <schiassert test="count(f:code/fvalue) = 1">Code must exist and be uniquely defined</schiassert>

34 ¢} </schirule>

35 </sch:pattern>

3¢  ‘</schischema>

FIGURE 11. Schematron for oxygen saturation data.

« validation process was then verified using datasets con-
taining various health-related datatypes.

VI. DISCUSSION
Using personal healthcare data is a significant step in optimiz-
ing patient care. Despite the advances in personal and body
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area networks, along with the increase in official use of EHRs
globally, healthcare enterprises are slow in catching on to the
full potential of using personal health information and thus
improving the overall quality of medical care. Especially con-
sidering the current situation, as Coronavirus disease 2019
(COVID-19) overwhelms the health care systems around the
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TABLE 1. Comparative table of the performances and functionalities of different system models.

Data Data Compliance
collected . Data Validation . P
. cleaning . . with
via integration process
process standards
wearables
Wearable HUB Yes N/A PHR N/A N/A
Angel-Echo Yes N/A PHR N/A N/A
Machine
Open Health Yes learning PHR N/A N/A
algorithms
mHealth No N/A PHR/EHR N/A HL7 -~ FHIR-
based
Tangle Yes N/A PHR/EHR N/A HL7 ~ FHIR-
based
Validation
through
mHealth4Afrika Yes N/A PHR/EHR human HL7 — FHIR-
review; group based
interviews and
observation
Machine
learning
Proposed model Yes algorithm: EHR focus Schemgtron HL7 = FHIR-
validation based
neural
network
- @ value[x] > 301 B 5 Compliance to every rule for all given data types has been

) valueQuantity
) valueCodeableConcept
valueString

valueBoolean

valuelnteger

) valueRange Range

) valueRatio Ratio

) valueSampledData SampledData
valueTime time

valueDateTime dateTime

) valuePeriod Period

FIGURE 12. value[x] types.

globe, personal trackers could help in monitoring coronavirus
patients and help decide about hospitalization, help identify
faster those who have contracted the disease, and, finally,
track the progress of the pandemic.

Thus, the goal of the research presented integrates per-
sonal health record into a formal medical information system;
i.e., a transformation of personal health data into adequate
format and its inclusion into formal EHR. To ensure data
quality, data cleaning process was described in previous work
by using a data-driven model for cleaning of eHealth data,
which used neural network algorithms to impute incorrect
data. This approach has shown accuracy improvements of
10-17%. Parser performance and reliability has been proven
to be viable with short parsing times and 100% success rate.
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extensively tested by purposefully attempting to validate erro-
neous XML files against the corresponding Schematron. The
next key challenge of the research was to define a validation
process to ensure the data complies with standards. This was
done by:

« Defining semantic constraints for healthcare datatypes
to ensure compliance to standards making the informa-
tion medically valid and relevant

o Defining and modelling the validation process of the
data collected which enables the data to be easily trans-
ferred and incorporated into a formal EHR. Finally, this
approach was verified in a use-case study, using an
existing dataset containing various relevant datatypes.

Compliance to standards is essential to use personal health
data for personalized and preventive medicine. Employment
of the process specified in this work enables inclusion of
created information into a formal EHR, following current
IHE standards for the given datatypes. Finally, a compari-
son of the proposed model with those mentioned earlier is
given in the Table 1 below. The model focuses on EHR data
integration, provides data cleaning module, offers automated
Schematron-based validation and is compliant with the lead-
ing industry standard.

FUTURE WORK

Survey by Cisco found that 74% of patients worldwide were
willing to allow cloud-based storage of their personal health
records under certain conditions [58]. Study [59] reports
that up to 75% of UK and 60% of US citizens are will-
ing to share their anonymized personal health information,
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while [60] concludes that the COVID-19 pandemic made
people generally more supportive of sharing health data
within the health information system. Sharing personal health
information urges more caution than other types of data
with similar privacy concerns (e.g., consumer spending and
financial data) [61]. New participant-centered investigations
show that patients are more likely to share data when they
have the power to select the conditions under which said data
is shared [62].

Furthermore, [63] reports that patients are somewhat com-
fortable sharing their health data with third-party commercial
companies for patient purposes, but uncomfortable sharing it
for business purposes. Still, there are many possible security
risks and privacy concerns that need to be mitigated, such
as data anonymization, data encryption, insecure communi-
cation channel, logging practices, etc. Future work envisions
comprehensive security and privacy threat identification and
analysis when integrating [oMT health data into EHR.

Furthermore, more research is necessary to see how well
older trackers perform and how the quality of data changes as
sensors age.
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