
Received May 25, 2022, accepted June 6, 2022, date of publication June 13, 2022, date of current version June 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182390

An End-to-End Personalized Preference Drift
Aware Sequential Recommender System
With Optimal Item Utilization
SARANYA MANEEROJ AND NAKARIN SRITRAKOOL
Advanced Virtual and Intelligent Computing Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 10330, Thailand

Corresponding author: Nakarin Sritrakool (nakarin.s@math.sc.chula.ac.th)

ABSTRACT The user preference is dynamic and requires drift detection to capture changes for delivering
relevant recommendations. A sequential recommender system with drift detection was proposed, where drift
points are indicated by comparing characteristics of consecutive items. The model leverages drift points to
retrieve only interactions with preferences relevant to the current user preference. Nonetheless, the number
of utilized items is pre-defined and may not be optimal. It is also not a unified architecture that requires
optimizing each part individually. Recently, a Content-Based Transformer has been proposed to consider
only items with similar characteristics by leveraging a similarity function. Content-Based Transformer is
trained in an end-to-end approach and can be applied for the sequential recommendation task, where the drift
of the user preference is indicated as the point where the item’s group changes. However, Content-Based
Transformer provides the item’s group as the hard label, ignoring the item characteristics in a real-world
scenario where items can exist in many groups. For instance, most movies have multiple genres. This
work proposes a unified sequential recommender system that detects the personalized drift pattern of user
preference. It groups similar items with soft labels and utilizes the optimal amount of items. The model is
trained in an end-to-end approach to jointly optimize for group items with similar characteristics and deliver
relevant recommendations. We conducted the experiments to verify the effectiveness of the proposed method
by comparing it with Content-Based Transformers and related methods. The evaluation results show that the
proposed method consistently outperforms the baselines.

INDEX TERMS Neural networks, machine learning, recommender systems.

I. INTRODUCTION
In online platforms with a massive number of items, the Rec-
ommender System (RS) is essential for recommending items
relevant to the target user preference. Early works adopted
the Collaborative Filtering approach by considering rating
information and applying the Matrix Factorization (MF) to
predict unobserved ratings [1]–[3]. The latent representations
of user and item are extracted to calculate the inner product
between both vectors for predicting missing ratings. How-
ever, the operation in this technique is linear, which limits
the model to capture complex relations between users and
items [4]. Several works are proposed to perform the MF
by a deep neural network with non-linear functions to cap-
ture complex relationships between users and items [4], [5].
Moreover, different neural network architectures are also

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

applied to the recommender system field, such as Auto-
Encoder [6]–[8], restricted Boltzmann machines [6], [9],
and Convolution Neural Networks [6], [10]. Apart from
these methods, other techniques also have been applied to
deliver further accurate prediction of unobserved ratings, e.g.,
error-based correction [11]. Although the these techniques
can model the relationships between users and items, these
approaches ignore the dynamics of user preference.

There is a Sequential Recommender System (SRS), which
can capture user preference dynamics by considering both
rating information and the sequence of the user’s behav-
ior [6]. The Recurrent Neural Network (RNN) is exploited
to capture the user preference dynamics through the hidden
state and utilize it for delivering the prediction [12]–[15].
Recently, several SRSs employed the Transformer
architecture [16] to consider the sequence of the user’s behav-
ior [17], [18]. Transformer-based models reported better
performance and delivered more relevant recommendations

62932
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3827-2549
https://orcid.org/0000-0002-4364-8785
https://orcid.org/0000-0002-3202-1127

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

than traditional RNN methods. Additionally, several works
modified the self-attention mechanism in the Transformer to
better suit the task of sequential recommendation [19]–[21].
For example, DSAN [19] is proposed to ignore irrelevant past
interactions by leveraging a sparse activation function [22]
instead of a softmax function as in typical self-attention [16].
The ignored interactions benefit DSAN by decreasing noises
as irrelevant interactions to the current user preference and
result in superior performance than the previous state-of-the-
art. However, the mentioned RNN-based and Transformer-
based methods only concern the order of the user’s behavior
to model user preference dynamics. They ignore the drift of
the user preference in a real-world scenario where the user
preference can be drifted at arbitrary points in time. There-
fore, the recommendation without awareness of preference
drift may not be relevant to the current user preference.

One line of work that can be applied to model the drift of
user preference is Phased-LSTM [23]. This model considers
the sequential information efficiently by assuming that not
every interaction is important for the model’s learning and
can be ignored. Phased-LSTM utilizes frequency to control
updates of its hidden state when considering the sequen-
tial information. Applying Phased-LSTM for the SRS task
implies that users drift their preferences at an identical fixed
frequency. However, Phased-LSTMdoes not correspondwith
the highly dynamic nature of user preference, where users
drift their preferences differently from each other and are not
characterized by frequency.

Another line of work that aims to capture the drift of user
preference is Time-LSTM [24]. This model categorizes user
preference into short-term and long-term preferences. Time-
LSTM determines the drift of the user preference by exploit-
ing the time interval between the consecutive interactions in
the historical sequence. It assumes that a high time interval
indicates the pause in the users’ activity with the system, and
users may drift their preferences. The recommendation from
Time-LSTM is based on the long-term preference when the
users drift their preferences. In contrast, the model employs
the short-term preference when no drift occurred. Although
the time interval may indicate the drift of the user prefer-
ence, Time-LSTM utilizes the identical magnitude of the
time interval to determine the preference drift of every user.
Therefore, the preference drift pattern is not personalized,
resulting in incorrect detection of the user preference and
irrelevant recommendations.

In our previous work, we proposed an SRS called
PPD [25]. It can detect the personalized drift pattern instead
of employing the frequency or the time interval as in
Phased-LSTM and Time-LSTM. Moreover, PPD utilizes
only relevant interactions in the historical sequence to deliver
the relevant next item rather than considering the whole his-
torical sequence, which contains noises from irrelevant past
interactions. As shown in Fig. 1 (a), the architecture of PPD
can be divided into three main components: item represen-
tations extraction, drift detection, and next item prediction.
In the first stage, PPD adopts the next item prediction task

FIGURE 1. An overview of PPD and PPD+, each model consists of three
main components: item representations extraction, drift detection, and
next item prediction. PPD is trained with three separate components,
whereas PPD+ is a unified architecture that jointly optimizes each part.

to train the model and retrieve latent item representations.
In the next stage, PPD detects the personalized drift pattern
by utilizing the Fuzzy c-Mean to cluster latent item repre-
sentations and to output item latent characteristics. The drift
points of user preference are determined as the point where
the characteristics of the item representation are significantly
different from its previous item. PPD divides the user’s his-
torical sequence into multiple sub-sequences according to
the detected drift points. Consequently, each sub-sequence
contains only a particular user preference. In the final stage,
PPD delivers the recommendation relevant to the current
user preference by computing the similarity between the
latest sub-sequence and other sub-sequences. PPD requires a
hyper-parameter called gamma to control the number of uti-
lized items from selected sub-sequences. Only sub-sequences
with significant similarity with the latest sub-sequence are
considered to output the recommendation.

However, PPD cannot be trained end-to-end since each
model’s component needs to be optimized separately with a
particular loss function, as shown in Fig. 1 (a). Consequently,
PPD is not applicable in a real-world scenario due to the
high computational cost when optimizing each part of the
model. Furthermore, the model requires the hyper-parameter
to control the number of selected sub-sequences, resulting
in the number of utilized items that are not optimal and
personalized. PPD must determine the number of utilized
items according to the user’s behavior since different users
require different amounts of past information to express their
preferences. For example, users with diverse preferences may
require more past interactions to express their preference
patterns. In contrast, users who prefer items from a few
categories may need fewer past interactions to define their
preference patterns.

Recently, several works inspired by the state-of-the-art
performance of the Transformer and modified it to adapt
for a particular task [26], [27]. One line of work is pro-
posed to reduce the complexity of the self-attention in
the Transformer by utilizing a pre-defined sparse attention

VOLUME 10, 2022 62933

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

pattern. For instance, Longformer [28] establishes the atten-
tion pattern as a sliding window or a dilated sliding window to
capture only relations between the target item and its neigh-
bor items. Nonetheless, the attention pattern of Longformer
is not personalized, and it selects past interactions without
regarding the current user preference. Content-Based Trans-
former (CBT) is another line of variation that establishes the
relation of items in the sequence based on their characteristics
with others [29], [30]. CBT categorizes each item into a
corresponding group according to their characteristics based
on a hard clustering algorithm. It allows only items from
the same group to establish relations with each other. When
applying CBT to perform the sequential recommendation
task, the change of the item’s group can be viewed as a drift of
the user preference. The detected drift pattern is personalized
since the pattern is based on changes of the item’s group in the
sequence, which is unique for each user. The SRS can adopt
CBT to be trained end-to-end while maintaining the mecha-
nism to detect the personalized drift of the user preference.
Nonetheless, most CBT groups similar items by utilizing a
hard clustering algorithm, which allows an item to belong to
one group only. Therefore, CBT ignores the characteristic of
items in a real-world scenario where items can be in various
groups simultaneously. For instance, a movie can have many
genres.

To address the limitations of PPD, the model should be
trained in an end-to-end approach as in CBT for enabling it to
be applicable in a real-world scenario. The model should also
overcome the limitation of hard clustering as in CBT which
forces each item to belong to only one group. However, item
characteristics in a real-world scenario can be categorized
into various groups, which can naturally be captured by lever-
aging soft clustering. Additionally, the model must deter-
mine the number of utilized items based on individual users’
behavior instead of requiring the hyper-parameter value.
This work proposes a unified architecture of PPD, which
can be optimized in an end-to-end fashion called PPD+.
As shown in Fig. 1 (b), every part of PPD+ is trained jointly
with a combination of loss functions from each component.
PPD+ leverages the similarity of a user’s behavior to estab-
lish the optimal amount of utilized items required by each
user for the prediction.

The key contributions of this work are summarized as
follows:
• This work proposes a unified model to capture user
preference dynamics by detecting the actual drift of
user preference based on changes in consecutive item
characteristics. The model retrieves item characteristics
based on soft clustering rather than hard clustering as in
Content-Based Transformer to capture item character-
istics when items belong to various groups. The model
considers only groups of items with similar preferences
as the current user preference for delivering relevant
recommendations.

• To efficiently optimize the model in an end-to-end
approach, we propose to combine loss functions of each

FIGURE 2. The demonstration when applying Content-Based
Transformer (CBT) to perform the sequential recommendation task, where
each item is categorized into a distinct group indicated by three different
colors. The red arrow represents the drift point of the user preference,
which can be indicated when the item’s group changes from one to
another. The model establishes the relations among items from the same
group and ignores irrelevant information as items from the other group.

model’s component as a unified loss. The learning of the
model is jointly optimized to group items with similar
user preferences and deliver recommendations relevant
to the current user preference.

• The proposed method determines the optimal number of
utilized items required for the prediction based on each
user’s behavior rather than the pre-defined value as a
hyper-parameter. The optimal item utilization allows the
model to personalize and correspond to the dynamic of
user behavior.

The remainder of this paper is organized as follows:
Section II provides further details of related work and
Section III presents the proposed method. Section IV pro-
vides the experiment settings and evaluation results. The
discussion of the results are presented in Section V, and we
conclude our work in Section VI.

II. RELATED WORK
This section reviews the Sequential Recommender Sys-
tem (SRS) and the essential mechanism of Content-Based
Transformer (CBT) [29], [30]. We further discuss the CBT
for sequential recommendation task. Then, we present the
differences between our proposed model and related works.

A. SEQUENTIAL RECOMMENDER SYSTEM
SRS is proposed to model the dynamics of user preference
in a real-world scenario and recommend items relevant to
the current user preference. Early works leverage Recurrent
Neural Network (RNN) such as LSTM [31] and GRU [32]
to consider the historical sequence of the user and deliver
the next item prediction [6], [14], [24], [33]–[36]. Besides,
other architectures of neural networks are also adopted,

62934 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

such as Convolutional Neural Networks [37]–[39], Graph
Neural Networks [40]–[42], and Transformer [17], [18], [21],
[43], [44].

Nonetheless, the mentioned works consider every interac-
tion in the historical sequence, which contain noises from
irrelevant interactions. DSAN [19] is proposed to focus only
on interactions with high relevance to the current user pref-
erence. The model leverages the self-attention mechanism
to establish relations among interactions in the historical
sequence.When computing the attention score, it ignores less
relevant interactions by leveraging a sparse activation func-
tion [22]. Mathematically, the expression for computing the
attention score between interactions (H) in the self-attention
is:

Q = ReLU
(
WQH+ bQ

)
, (1)

K = V = H, (2)

Attention(Q,K,V) = η − entmax
(
QK>
√
2d

)
V, (3)

η = σ
(
WηhCLS + bη

)
+ 1, (4)

where WQ and Wη are learnable projection matrices.
bQ and bη are learnable biases. d is the dimension of the
latent representation, and σ is the sigmoid activation function.
hCLS is the latent representation of the CLS token, which con-
tains information about the historical sequence’s length and
is utilized as the sequence representation. η is the magnitude
of sparsity for entmax function.

However, DSAN determines the magnitude of sparsity (η)
by the length of the historical sequence rather than deriving
it based on the current user preference. DSAN also does not
model user preference dynamics by capturing the drift of user
preference. Hence, the model cannot capture the changes in
the user preferences and may recommend irrelevant items.

B. CONTENT-BASED TRANSFORMER ARCHITECTURE
Numerous works proposed to modify the attention mecha-
nism in the Transformer [28]–[30], [45]–[49]. One line of
work aim to reduce the computational complexity when per-
forming the self-attention [28], [45]–[49]. The key idea is
to reduce the computational cost of O(l2) due to the self-
attention [16], which expresses as follows:

Q =WQH, K = WKH, V =WVH, (5)

Attention(Q,K,V) = Softmax
(
QK>
√
d

)
V, (6)

where l is the sequence’s length, H ∈ Rd×l is the stacked
item representations, and d is the dimension of item embed-
ding dimension. WQ,WK , and WV

∈ Rd×d are learnable
projection matrices.

One possible solution is to utilize a sparse attention pattern
instead of computing dense attention values between each
pair of interactions in the sequence. Various works proposed
different pre-defined attention patterns to reduce the com-
putation complexity when considering long sequences [28],

[45], [50]. For example, random patterns in Big Bird [45],
sliding windows and dilated sliding windows in Long-
former [28]. However, applying these works for sequential
recommender tasks will consider past interactions regardless
of current user preference. Moreover, the attention pattern is
not personalized, which causes the model to consider interac-
tions that may not be relevant to the current user preference.

Another possible approach is to compute the whole atten-
tion map while reducing the computation complexity via ker-
nel [46] or reordering the computation of self-attention [47].
Although [46] and [47] can reduce the complexity of the
Transformer from O(l2) to O(l), applying these models for
the SRS task will result in considering the whole historical
sequence. As a result, the model’s input will contain noises
from interactions irrelevant to the current user preference.
Hence, the linear-complexity Transformers [46], [47] are not
related to our approach that considers only past interactions
relevant to the current user preference.

Content-Based Transformer (CBT) is another variant of
the Transformer, where each item in the historical sequence
establishes the relations only with items having similar char-
acteristics [29], [30]. The attention pattern of CBT is dynamic
and based on the item characteristics in the sequence rather
than utilizing the pre-defined attention pattern [28], [45],
[49]. The demonstration when applying CBT to perform the
sequential recommendation task is shown in Fig. 2, where
each item is categorized into a different group. Applying CBT
to perform the sequential recommendation task will result
in grouping interactions with a similar user preference since
CBT allows only interactions with similar characteristics to
interact with each other. Consequently, CBT can indicate the
drift of the user preference as the point where the item’s group
changes. The illustration of drift points is depicted in Fig. 2 as
the red arrow. To deliver the prediction relevant to the current
user preference, CBT can utilize the latest interaction as a
reference point to retrieve only the relevant past interactions.
Therefore, CBT ignores irrelevant past interactions to the
current user preference, which reduces the noises from the
model’s input.

We will review related CBTs in the following subsections,
namely Reformer [29] and Routing Transformer [30], which
have different methods to compute the similarity between
items. Note that the word ‘‘group’’ and ‘‘cluster’’ may be used
interchangeably, depending on the method of each model for
computing similarity between items.

1) REFORMER
This model employs Local Sensitive Hash (LSH) to compute
the hash value (b) for categorizing each item into its corre-
sponding group. Mathematically, the computation of the LSH
can be expressed as follows:

LSH(h) = arg-max ([htR;−htR]), (7)

where ht is the item representation, R ∈ Rd×(b/2) is the
random matrix, and [·; ·] is the concatenation of vectors. As a
result, similar items will have a high probability of getting

VOLUME 10, 2022 62935

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 3. The demonstration of LSH’s limitations, given four groups of
items. The items’ distributions in LSH differ from the actual distributions
due to fixed categorized conditions. The item characteristics are
inaccurate since the distances between groups of items are different. The
distance between G2 and G4 in the actual distribution (41) is lower than
the distance in the LSH (42).

the same hash value and being classified into the same group.
When computing the attention score, Reformer allows only
items in the same group to attend with each other:

Attention(Q,K,V) = Softmax
(
QK>
√
d

)
V,

where LSH(q) = LSH(k). (8)

Additionally, the key (k) is equal to the query (q) with a unit
norm, which ensures that none of the groups will contain only
queries (Q) or keys (K):

kt =
qt
‖qt‖

, (9)

where qt and kt are query and key at t th step, respectively.
Despite the effectiveness of Reformer, the model optimizes
only the item representations but not the condition for the
item categorization. The fixed grouping condition may limit
the model from optimizing item representations effectively,
such that item representations may not represent the actual
item characteristics. The illustration of LHS’s limitation is
shown in Fig. 3, given four groups of items (G1 to G4) and
four regions in LSH. The distributions of G1, G2, and G3 in
LSH are different from their actual distributions due to the
fixed categorize condition. Hence, the item characteristics
are incorrectly expressed since the distance between G2 and
G3 in LSH (42) is higher than the distance from the actual
distribution (41).
In contrast, our proposed method is more flexible since it

optimizes both item representations and grouping conditions
as the clustering algorithm. As a result, item representations
of our proposedmethod can express the actual item character-
istics, allowing the model to capture user preference correctly
for delivering relevant recommendations.

2) ROUTING TRANSFORMER
Routing Transformer leverages the k-Mean clustering algo-
rithm to group similar items and allows only items in the same
cluster to attend with each other. Similar to other Transformer
models, Routing Transformer projects item representations

FIGURE 4. The illustration shows the limitation of clustering via the
k-Mean algorithm. Although items h1 and h2 are similar, the k-Mean may
assign these items into different clusters, resulting in an incorrect
interpretation of the item characteristics.

to output queries (Q), keys (K), and values (V). The model
normalizes queries and keys before computing the attention
map by the Layer Normalization (LN) [51]:

Q = LN(Q), (10)

K = LN(K). (11)

Then, Routing Transformer assigns each query and key to
their corresponding cluster based on the similarity between
centroids C ∈ R|centroids|×d :

Qprod = CQ>, (12)

Qidx = top-k(Qprod ,wsize), (13)

Qidx = sort(Qidx), (14)

Kprod = CK>, (15)

Kidx = top-k(Kprod ,wsize), (16)

Kidx = sort(Kidx), (17)

where wsize is the number of keys to which the query can be
attended, and sort is an operation to sort for maintaining the
temporal structure of the sequence after the top-k function.
The self-attention in Routing Transformer is computed by
allowing the query to attend with only keys that are catego-
rized into the same cluster:

Q′ = gather(Q,Qidx), (18)

K′ = gather(K,Kidx), (19)

V′ = gather(V,Kidx), (20)

Attention(Q′,K′,V′) = Softmax
(
Q′K′>
√
d

)
V′, (21)

where gather is a function to retrieve vectors based on the
given indices. Rather than allow the model to optimize only
the item representations as in Reformer, Routing Transformer
updates the centroids via an online learning approach:

Qm = one-hot(arg-max(Qprod)), (22)

Km = one-hot(arg-max(Kprod)), (23)

C = λC+
(1− λ)

2
QmQ+

(1− λ)
2

KmK, (24)

62936 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

TABLE 1. Comparison of the characteristics of related works and PPD+.

where λ is a decay value for the exponentially weighted
average to update the centroids, and one-hot is a function
to convert the integer to its one-hot representation. The loss
function of the Routing Transformer consists of loss function
from prediction and clustering:

Ltotal = Lpredict + αLcluster , (25)

where the hyper-parameter α controls the influence of cluster
loss on the total loss.

One advantage of Routing Transformer is employing a
clustering algorithm, which allows the model to optimize
item representations and centroids rather than utilizing fixed
random vectors to categorize the item’s group as LSH in
Reformer. When adopting the Routing Transformer for the
sequential recommendation task, the drift of user preference
is represented by altering the item’s cluster from one to
another.

However, the clustering algorithm adopted in Routing
Transformer provides a hard label to the item representations,
which may not interpret the actual characteristics of the item
in a real-world scenario. For instance, most movies cannot be
categorized into one cluster since they contain numerous gen-
res, such as romance, comedy, and action. Therefore, Routing
Transformer may not capture the actual drift of user prefer-
ence and result in false-positive drift signals since the k-Mean
may categorize two items into different clusters, although
their characteristics are similar. The limitation of the k-Mean
algorithm is demonstrated in Fig. 4. Given two clusters and
two items in the latent space, both item characteristics are
similar since the distance between the two items (4h1,h2) is
small. Nonetheless, the distance between cluster A and item
h2 (4CA,h2) is large, causing the h2 to be categorized into
cluster B, although h1 and h2 are similar.

On the other hand, our proposed method leverages the
Fuzzy c-Mean algorithm to output a soft label for the item’s
cluster. The soft label corresponds to the actual item charac-
teristics in a real-world scenario where items exist in many
clusters. It further allows item representations to be flexibly
present in multiple clusters and establishes relations with
similar items in another cluster.

We summarize the comparison between our proposed
method (PPD+) with related works and present it in Table 1.
We compare every model in seven aspects: hard cluster-
ing, soft clustering, not fixed cluster centroids, detection
of user preference drift, items comparison for determining
preference drift, items selection regarding current user prefer-

ence, and items selection as a period. In the first aspect, only
Content-Based Transformers leverage the hard clustering,
i.e., k-Mean in Routing Transformer and LSH in Reformer.
On the other hand, PPD+ is the only model that utilizes
soft clustering via Fuzzy c-Mean to group items with sim-
ilar characteristics. Among models that employ clustering
algorithms, Reformer is the only model that fixed the posi-
tion of centroids. In contrast, other models allow the cen-
troids’ position to be changed and optimized. For the fourth
aspect, Routing Transformer, Reformer, and PPD+ are the
only models that detect user preference drift. The detection
of user preference drift in Content-Based Transformers can
be viewed as changing item groups. In comparison, PPD+
determines the drift by comparing consecutive item charac-
teristics. Longformer is the only model that does not regard
the current user preference due to the pre-defined attention
pattern when considering historical sequence. Lastly, Routing
Transformer, Reformer, and PPD+ retrieve past interaction
as periods of similar items. On the other hand, DSAN and
Longformer may retrieve past interactions as several separate
interactions due to sparse activation function in DSAN and
dilated sliding window in Longformer.

To this end, none of the related works can detect the
actual drift of user preference to capture user preference
dynamics for delivering relevant recommendations. Long-
former and DSAN ignore user preference drift when deliver-
ing recommendations. Furthermore, Longformer ignores the
current user preference when considering past interactions.
The recommendation from these models may not be relevant
to the current user preference since the attention pattern in
Longformer and the degree of sparsity in DSAN are not
determined based on the current user preference. In the case
of Content-Based Transformers, the drift can be indicated
by the change of item’s group between consecutive items.
Nonetheless, hard clustering can assign different groups to
similar items and result in a false-positive drift signal. Fur-
thermore, hard clustering cannot model item characteristics
in a real-world scenario, where an item can belong to various
groups simultaneously.

III. PROPOSED METHODS
Fig. 5 (a) illustrates an overview of our proposedmodel called
PPD+. The model consists of three main components while
training in an end-to-end approach with joint loss functions.
We summarize each part of the proposed method as the algo-
rithm in Algorithm 1, 2, and 3, respectively. In the first stage,

VOLUME 10, 2022 62937

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 5. The illustration of (a) the proposed PPD+ consists of three main components with the combined loss function. The
figure further depicts the methodology in (b) the distribution comparison and (c) the sub-sequences selection.

the model considers the historical sequence of the target user
by employing the Transformer to extract contextualized item
representations. Then, the drift detection in the second stage
processes the item representations from the first stage to
establish the personalized drift pattern of the user preference.
The detected drift pattern is leveraged to retrieve past interac-
tions relevant to the current user preference, which reduce the
noises to the model’s input from the irrelevant interactions.

In this work, themodel utilizes the optimal number of items
in the historical sequence by selecting only sub-sequences
having a similarity with the current user preference greater
than zero. The optimal item utilization allows PPD+ to over-
come the limitation of our previous work [25] that required
a hyper-parameter to control the utilization of the past items.
The last stage retrieves the relevant past interactions as inputs
and passes them to the prediction layer for delivering the next
item prediction.

A. ITEM REPRESENTATIONS EXTRACTION
PPD+ adopts the Transformer Encoder [16] to compute the
contextualized latent’s representation of items in the histori-
cal sequence Su of the target user u. PPD+ converts t th item
in the Su into the item embedding et ∈ Rd with associated
positional embedding pt ∈ Rd . The model combines both
vectors as a latent vector ht ∈ Rd , representing the item
characteristics and temporal information:

ht = et + pt . (26)

To encode the contextualized information of other items
present in the sequence into the latent vector (ht), the model

utilizes the self-attention in the Transformer to establish rela-
tions among items in the sequence. The self-attention projects
the latent vector (ht) into query (qt), key (kt), and value (vt):

qt =WQht , kt =WKht , vt =WVht , (27)

where WQ,WK , and WV
∈ Rd×d are learnable projection

matrices. Then, self-attention establishes relations between
items by computing attention scores on stacked queries (Q),
keys (K), and values (V) of items in the Su:

H = Attention(Q,K,V) = Softmax
(
QK>
√
d

)
V, (28)

where
√
d is required for training stability [16].

The Transformer introduces a non-linear transforma-
tion to the stacked latent representations (H) by passing
it into the series of Positional-wise Feed-Forward Net-
work (PFFN), Dropout, Residual Connection, and Layer
Normalization (LN):

H = LN(Dropout(PFFN(H))+H), (29)

PFFN(H) = [FFN(h1); . . . ;FFN(ht)], (30)

FFN(ht) = ReLU(W1ht + b1)W2 + b2, (31)

where W1,W2 ∈ Rd×d and b1,b2 ∈ Rd are learnable
weights and biases, respectively. The final item representa-
tions are passed as an input for the next component to detect
the user preference drift.

B. DRIFT DETECTION
In this component, the model detects the personalized
drift pattern of the user preference based on the user’s

62938 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

Algorithm 1 PPD+: Item Representations Extraction
Input: Su
Output: H
1: Randomly initialized:

• E ∈ R|item|×d : Item embedding matrix
• P ∈ R|Su|×d : Positional embedding matrix
• WQ,WK ,WV

∈ Rd×d : Projection matrices
2: for t=1 to |Su| do
3: et ← emb_lookup(it), pt ← emb_lookup(t)
4: ht ← et + pt
5: end for
6: Q←WQH, K←WKH, V←WVH
7: H← Softmax

(
QK>
√
d

)
V

8: H← LayerNorm(Dropout(PFFN(H))+H)

behavior encoded in the latent representations from the previ-
ous component. The drift point is the point in time when item
characteristics are significantly different from the previous
item. PPD+ utilizes a clustering algorithm to capture item
characteristics, such that similar items will be categorized
into the same cluster. The Fuzzy c-Mean algorithm is adopted
as the clustering algorithm to correspond with item charac-
teristics in a real-world scenario where an item can exist in
various groups.

1) CLUSTERING THE LATENT REPRESENTATIONS
Given latent representations (H) from the previous compo-
nent, the Fuzzy c-Mean categorizes the representation based
on the distance between centroids. It outputs the soft label
classes (ψ) as the probability of classifying the item (h) into
each cluster (c):

ψ s,n =

[
NC∑
r=1

(
‖hn − cnc‖
‖hn − cr‖

) 2
φ−1
]−1

, ∀n, (32)

cnc =

∑N
n=1 ψ

φ
nc,nhn∑N

n=1 ψ
φ
nc,n

, ∀nc. (33)

Here, NC is the number of clusters, n is the total number of
latent representations, and φ ∈ (1,∞) is the fuzzification
constant. The goal of the Fuzzy c-Mean is to minimize the
objective function:

Lcluster (9,C) =
|H |∑
n=1

NC∑
nc=1

ψφnc,n ‖hn − cnc‖2 . (34)

Typically, the Fuzzy c-Mean will repeat the computation
of (32) and (33) until the Lcluster is converged. However,
PPD+ adopts the online update of (33) via the exponential
moving average to enable the model to be trained in an end-
to-end approach:

Cnew = λCnew + (1− λ)Cold , (35)

where λ is the decay value of the exponentially weighted
average.

Algorithm 2 PPD+: Drift Detection
Input: H,φ
Output: S′u
1: Randomly initialized:

• C ∈ RNC×d : Centroids`
FUZZY C-MEAN

2: for n = 1 to |H| do

3: ψ s,n←

[∑NC
r=1

(
‖hn−cnc‖
‖hn−cr‖

) 2
φ−1
]−1

4: end for
5: for nc = 1 to NC do
6: cnc←

∑N
n=1 ψ

φ
nc,nhn∑N

n=1 ψ
φ
nc,n

7: end for
8: Cnew← λCnew + (1− λ)Cold`

DISTRIBUTION COMPARISON
9: for t = 1 to |Su| − 1 do

10: κt ←
∑NC

nc=1 ψ
t
nc log

(
ψ t
nc

ψ t−1
nc

)
11: end for
12: µu←

∑
κ

|κ|

13: σu←

√
(κt−µu)2
|κ|−1

14: drift_points = {0} ∪ {t|κt > µu + σu} ∪ {|Su|}
15: for j = 1 to |drift_points| do
16: υ

j
u← Su[drift_points[j] : drift_points[j+ 1]]

17: end for
18: S′u← {υ

j
u, · · · ,υ

ϑu
u }

2) DISTRIBUTION COMPARISON
To detect the drift of the user preference, the model compares
consecutive item characteristics retrieved from the Fuzzy
c-Mean in the form of soft label classes (ψ), as shown in
Fig. 5 (b). It employs the KL-Divergence (KLD) to compare
consecutive soft label classes since their values are the prob-
ability distribution:

κt = DKL(ψ t
||ψ t−1) =

NC∑
nc=1

ψ t
nc log

(
ψ t
nc

ψ t−1
nc

)
. (36)

The model indicates the drift point of the user preference
as the point where the κt is peak and higher than the per-
sonalized threshold. It computes the mean (µu) and standard
deviation (σu) of κ for each user u and define µu + σu as the
threshold. Since different users have different past behaviors,
the threshold of κ and the detected drift pattern of the user
preference are personalized.

PPD+ leverages the detected drift points to divide the
historical sequence into multiple sub-sequences S′u =

[υ1u, . . . ,υ
ϑu
u], such that each sub-sequence (υu) contains

only a particular user preference.

C. NEXT ITEM PREDICTION
To deliver the recommendation relevant to the current user
preference, the model considers only the past interactions
containing similar preferences to the current user prefer-
ence. The other past interactions are ignored to reduce

VOLUME 10, 2022 62939

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

Algorithm 3 PPD+: Next Item Prediction
Input: S′u,E,P
Output: ŷ
1: Randomly initialized:

• WQ′ ,WK ′ ,WV ′
∈ Rd×d : Projection matrices

• W3 ∈ R|item|×d : Projection matrix
• b3 ∈ R|item|: Bias`
SUB-SEQUENCE SELECTION

2: for j = 1 to ϑu do
3: HP← {h|h ∈ υ ju}
4: H̄P← 1

|HP|
∑d

g=1HP:,g
5: H̃P← HP− H̄P
6: COV← H̃P

>
H̃P

7: ρ
j
u← eigenvector with a highest eigenvalue of COV

8: end for
9: for j = 1 to ϑu do

10: sim(ρju, ρ
ϑu
u)← ρ

j
u·ρ

ϑu
u∥∥∥ρju∥∥∥×∥∥∥ρϑuu ∥∥∥

11: end for
12: Srelu =

{
it |it ∈ υ

j
u, sim(ρ

j
u, ρ

ϑu
u) > 0

}
`

PREDICTION LAYER
13: append CLS to Srelu
14: for t=1 to |Srelu | do
15: et ← emb_lookup(it), pt ← emb_lookup(t)
16: ht ← et + pt
17: end for
18: Q←WQ′H, K←WK ′H, V←WV ′H
19: H← Softmax

(
QK>
√
d

)
V

20: H← LayerNorm(Dropout(PFFN(H))+H)
21: ŷ← Softmax(W3hCLS + b3)

noises as irrelevant information from the model’s input. As a
result, the model is required to compare past interactions
with the current user preference to retrieve relevant interac-
tions. Although the historical sequence is divided into many
sub-sequences that contain only one user preference, the
method for comparing sub-sequences with unequal numbers
of items is not trivial. Hence, the model utilizes the Principal
Component Analysis (PCA) to compute the representation
of each sub-sequence in terms of distribution. It represents
interactions in the sub-sequence by the principal component
with the highest eigenvalues, as shown in Fig. 5 (c).

1) SUB-SEQUENCE SELECTION
In PCA, the latent representations htu,i ∈ Rd in each sub-
sequence (υu) are stacked into a HP ∈ R|υu|×d . Then, PCA
normalizes theHP by subtracting each column with its mean
values and computes the covariance matrix of the HP by
multiplying the HP with its transpose:

H̄P =
1
|HP|

d∑
g=1

HP:,g, (37)

H̃P = HP− H̄P, (38)

COV = H̃P
>
H̃P. (39)

Note that the gth column of the matrix HP is represented
byHP:,g. Next, the PCA calculates eigenvectors (ρ) with cor-
responding eigenvalues as principal axes. The model utilizes
the eigenvector (ρ) with the highest eigenvalues to represent
the sub-sequence (υu) since it captures most of the items’
distribution variance.

To retrieve sub-sequences with similar preferences to the
current user preference, the model represents the current user
preference by the latest sub-sequence and compares it with
other sub-sequences. In particular, PPD+ utilizes the cosine
similarity to compare the representation of the latest sub-
sequence (ρϑuu) and other sub-sequences (ρju):

sim(ρju, ρ
ϑu
u) =

ρ
j
u · ρ

ϑu
u∥∥∥ρju∥∥∥× ∥∥∥ρϑuu ∥∥∥ . (40)

The value of cosine similarity interprets the angle between
two vectors with a degree between 0 and 180, which result
in the range of cosine similarity between −1 and 1. The
similarity is −1 when both vectors are in the opposite direc-
tion (180◦), while the cosine value of 0 shows that both
vectors are orthogonal to each other (90◦). In contrast, the
cosine value of 1 indicates that both vectors are the same (0◦).
Since the negative cosine similarity value indicates that
both vectors are in a different direction, the model selects
only the sub-sequences with a cosine similarity greater than
zero. The positive similarity value ensures that the selected
sub-sequences are relevant to the current user preference. The
model also includes the latest sub-sequence to the relevant
sub-sequence (Srelu) as information about the current user
preference. Finally, the output is the relevant sub-sequence,
containing the id of each item and passed to the prediction
layer for the next item prediction.

Srelu =
{
it |it ∈ υ ju, sim(ρ

j
u, ρ

ϑu
u) > 0

}
(41)

2) PREDICTION LAYER
In the prediction layer, we append a special CLS token to the
relevant sub-sequence (Srelu) and exploit it as the sequence’s
representation for the next item prediction task. Similar to
Section III-A, the model leverages the Transformer to retrieve
contextualized item latent representations in the relevant sub-
sequence (Srelu). The model utilizes the latent representation
of the CLS (hCLS) for computing the probability distribution
of each item as the next item for the given sequence:

ŷ = Softmax(W3hCLS + b3), (42)

where W3 ∈ R|item|×d and b3 ∈ R|item| are learnable
weight and bias, respectively. The next item prediction task
is optimized by the negative log-likelihood loss, which com-
pares the predicted distribution (ŷ) with the ground truth
distribution (y):

Lpredict (y, ŷ) =
|item|∑
j=1

−yj log ŷj. (43)

62940 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

To this end, the model consists of two loss functions:
cluster loss and prediction loss from the drift detection and
the next item prediction, respectively. Similar to Routing
Transformer [30], we combine both loss functions, allowing
the model to be jointly optimized and applicable to train
end-to-end:

Ltotal = Lpredict + αLcluster , (44)

where the hyper-parameter α controls the influence of cluster
loss on the total loss.

The computational complexity of PPD+ is O((l2 × d) +
(l×NC×d)+(l2×d)+(|item|×d)), where l is the length of
the historical sequence, d is the item embedding size, NC is
the number of clusters, and |item| is the number of items in the
system. Similar to [16], the computational complexity when
utilizing the Transformer Encoder grows quadratically with
the length of the historical sequence, i.e., O(l2 × d). During
clustering and drift detection, the computational complexity
grows with the historical sequence’s length and the latent
representation dimension, i.e.,O(l×NC×d). In contrast, the
calculation of sub-sequence selection has a complexity that
grows quadratically to the length of the historical sequence
dominated by the PCA, i.e., O(l2 × d). When delivering the
recommendation, the computation complexity scales with the
number of items in the system since the model calculates
the probability of every item as the next item for the given
historical sequence, i.e., O(|item| × d).

IV. EXPERIMENTS
In this section, we performed experiments to evaluate the
effectiveness of the proposed method to train in an end-to-
end approach and to provide item’s group as a soft label rather
than hard label as in Content-Based Transformer. Moreover,
we compared PPD+ with other methods which do not con-
sider the whole historical sequence to verify that PPD+
selects more relevant past interactions than the baselines.
We compared the proposed method with the baselines as
follows:
• Reformer [29]: This model utilizes the Local Sensitive
Hash (LSH) to group items with similar characteristics
and establishes relations among items in the same group.

• Routing Transformer [30]: This model adopts the
k-Mean clustering algorithm to group similar items
while optimizing the model for clustering and prediction
tasks.

• Longformer [28]: This model utilizes a pre-defined
sparse attention map based on the position of the
item in the historical sequence. Two variants of this
model are adopted where the difference is their atten-
tion pattern: Longformer-SW and Longformer-DW. The
Longformer-SW uses a sliding window attention pattern
to establish relations among adjacent neighbor items.
In contrast, Longformer-DW employs dilated sliding
windows to skip some neighbors, which increases the
receptive field.

TABLE 2. The statistics of datasets before and after pre-processing steps.

• DSAN [19]: This model considers only highly relevant
interactions by leveraging the sparse activation function.
DSAN reported superior results over previous state-of-
the-art.

The rest of this section is organized as follows: we describe
the details of each dataset and explain the experiment setup.
Then, we present the evaluation results of every model.

A. DATASETS
To evaluate all the methods, we conducted the experiments
on three public benchmark datasets with different domains as
follows:
• MovieLens1: A benchmark dataset in the movie
domain, consisting of approximately 1 million interac-
tions from every user.

• Goodreads2: A collection of user interactions in Book
domains [52], [53]. The Spoiler subset is adopted, which
consists of multiple book categories.

• UserBehavior3: A dataset contains over 100 mil-
lion user interactions from an online e-commerce
(Taobao) [54]–[56].

To prepare the datasets for the next item recommendation
task, we converted every interaction into implicit feedback.
We created the historical sequence for each user by grouping
the user’s interacted items and sorted the sequence based on
the time stamp to maintain the temporal structure. To achieve
computational tractability for a large dataset, i.e., UserBehav-
ior, we randomly sampled 50,000 users from the dataset.

Since we aim to model the dynamics of the user prefer-
ence, the length of the historical sequence should be suffi-
cient to contain several users’ preferences. For every dataset,
we removed cold-start items and users by omitting users
and items with less than ten interactions. Following [17],
we set the maximum length of the historical sequence to
be the rough approximation of the average sequence length.
As shown in Table 2, the average length of the historical
sequence of MovieLens, Goodreads, and UserBehavior are
165.6, 72.9, and 101.4, respectively. Therefore, we set the

1https://grouplens.org/datasets/movielens/1m
2https://github.com/MengtingWan/goodreads
3https://tianchi.aliyun.com

VOLUME 10, 2022 62941

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

maximum sequence length of MovieLens, Goodreads, and
UserBehavior as 200, 100, and 100. The statistics of each
dataset before and after the pre-processing steps are presented
in Table 2.

B. TASK SETTING
To evaluate the effectiveness of the model for the next item
prediction, we held out the last interacted item of each histor-
ical sequence as the ground truth label. Therefore, the task of
the model becomes to rank every item as the next item for the
given historical sequence. Following [37], we utilized the first
70% of interactions in the historical sequence as a training set,
the next 10% as a validation set for hyper-parameters tuning,
and the remaining 20% as a test set for evaluation.

C. EVALUATION METRICS
We employed three raking metrics to measure the quality
of the ranking retrieved from the next item prediction task.
The Normalized Discounted Cumulative Gain (NDCG) is the
first metric to calculate the rank quality for top-K items. The
NDCG measures the quality of items’ order by assigning a
higher weight to top-rank items. Specifically, the NDCG can
be expressed as follows:

DCG@K =
K∑
j=1

2relj − 1
log2(j+ 1)

, (45)

IDCG@K =
|RELk |∑
j=1

2relj − 1
log2(j+ 1)

, (46)

NDCG@K =
DCG@K
IDCG@K

, (47)

where |RELk | is the list of relevance items sorted by its
relevance score up to K th position.
The Hit Ratio (HR) is the second metric to evaluate the

ranking quality by measuring the number of times the pre-
dicted item presents in the top-K list:

HR@K =
1
K

K∑
j=1

relj. (48)

The Mean Reciprocal Rank (MRR) is the last metric to
measure the quality of the ranking, expressed as follows:

MRR =
1
|S|

|S|∑
j=1

1
rankj

, (49)

where rankj is the rank of the predicted item on the ground-
truth label.

In this work, we focused on top-ranked items and reported
NDCG@K and HR@K with K = {1, 5, 10} since the
ground-truth label for each sequence is only one item.

D. IMPLEMENTATION DETAILS
For every model, we considered the dimension of the item
embedding from {16, 32, 64, 128}. The learning rate of the

model is considered from {1e-2, 1e-3, 1e-4} and the batch
size from {128, 256, 512, 1024}.

In Reformer, we considered the number of LSH from
{1, 2, 5, 10, 15}. Note that one LSH can divide items into
two groups, such that the given number of LSH can be
equally viewed as 2, 4, 10, 20, and 30 clusters. For Routing
Transformer and PPD+, we selected the number of clusters
from {2, 4, 10, 20, 30} and randomly initialized the centroids.
The wsize in Routing Transformer is set to the length of
the sequence for a fair comparison with other models. The
hyper-parameter α to control the trade-off between the next
item prediction loss and the clustering loss is set to 1e-4.
The hyper-parameter λ to control the update of centroids
via exponential moving average is set to 0.999. We set the
fuzzification value (φ) of PPD+ to 2.

In the case of Longformer, the model can be fur-
ther divided into two variants according to its atten-
tion pattern: Longformer-SW using a sliding window and
Longformer-DW using a dilated sliding window. These mod-
els need a pre-defined window size to establish the attention
pattern. On the one hand, the small window size will cause
the model to have sufficient information for delivering rec-
ommendations. On the other hand, a large window size will
result in unequal item utilization compared to other models.
For a fair comparison with other models, we set the window
size of Longformer-SW as 50% of the total sequence length,
resulting in consideration of the last 50% of the historical
sequence. Similarly, the dilated size of Longformer-DW is
one, which results in item utilization of approximately 50%
of the total sequence length. In particular, Longformer-DW
will skip one item after considering one interaction.

For DSAN, we selected its normalized weight factor [19]
from {1, 5, 10, 15, 20} and dropout rate from {10, 25, 50}.
We employed the implementation of sparse activation func-
tion from Lingvo framework [57].

The weights of every model are randomly initialized and
trained from scratch. We set the dropout rate of Transformer
in every model as 10% to alleviate overfitting. We adopted
the Adam [58] to optimize the weight of every model.

E. EXPERIMENTAL RESULTS
Wepresent the value from searching the optimal hyper-parameters
and select the value of the hyper-parameters based on the
value of NDCG@10 on the validation set.

1) ITEM EMBEDDING DIMENSION SIZE d
We selected the value of the item embedding dimension size
(d) from {16, 32, 64, 128}. Fig. 6 shows the results in terms of
NDCG@10.Most models have an optimal embedding size of
128 in every dataset. We observe that the trend of NDCG@10
increases as the number of embedding sizes increases. This
may be due to the higher degree of freedom provided by a
large embedding size since it can express item characteristics
more than a smaller embedding size.

However, some models may have an optimal item embed-
ding size of 64, e.g., DSAN and Longformer-SW in

62942 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 6. Impact of the number of item embedding size.

FIGURE 7. Impact of the number of clusters.

MovieLens and Longformer-DW in Goodreads. Overfitting
may be a possible explanation for the drop in performance
when increases the dimension of the item embedding.

2) NUMBER OF CLUSTERS NC
The results of the varying number of clusters (NC) are
presented in Fig. 7, where we selected the value of NC
from {2, 4, 10, 20, 30}. Note that only Reformer, Routing
Transformer, and PPD+ have this hyper-parameter since
these models leverage the clustering algorithm. In PPD+,
the optimal values of NC are 10, 20, and 10 for Movie-
Lens, Goodreads, and UserBehavior, respectively. Routing
Transformer has the optimal value of NC as 4, 20, and 2
for MovieLens, Goodreads, and UserBehavior. On the other
hand, Reformer requires the optimal NC of 30, 30, and 4 for
MovieLens, Goodreads, and UserBehavior.

For every model, the Goodreads dataset requires higher
NC compared to other datasets. One possible explanation
may be due to the highest number of items in the Goodreads
datasets, as shown in Table 2. The optimal NC for PPD+
and Routing Transformer is relatively low for the other two
datasets. In contrast, Reformer also has the highest NC on the

MovieLens dataset while requiring relatively low NC in the
UserBehavior dataset.

3) EVALUATION RESULTS
Table 3 presents the evaluation results of the proposed
method and baselines. We show the results in terms of MRR,
NDCG@K , and HR@K , where K is {1, 5, 10}. Since the
NDCG@1 equals HR@1, we omit the HR@1 and report only
the NDCG@1.

Among the baselines, Reformer has the worst performance
in Goodreads and UserBehavior dataset. The poor perfor-
mance of Reformer demonstrates the limitation of the fixed
LSH, which may not correctly represent the actual group of
items. Routing Transformer outperforms Reformer in every
dataset and most metrics. The higher performance of the
Routing Transformer shows the benefits of its flexibility
which allows the centroids of k-Mean to optimize along with
the recommendation task. Surprisingly, Longformer-SWwith
sliding window outperforms Content-Based Transformer and
its variant, i.e., Longformer-DWwith dilated sliding window,
across most datasets and matrices. The possible explana-
tion is that Longformer-SW has more exposure to the latest

VOLUME 10, 2022 62943

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

TABLE 3. Comparison of the evaluation results on benchmark datasets.

interaction than Longformer-DW since it utilizes 50% of
the latest interactions. Consequently, Longformer-DW has
a higher chance of including interactions at the beginning
of the historical sequence, which may not be relevant to
the current user preference. In comparison, DSAN mostly
outperforms other baseline models in Goodreads and User-
Behavior datasets, whereas it has the worst performance in
the MovieLens dataset.

When comparing PPD+ with the baselines, our proposed
method consistently outperforms most baselines in terms of
NDCG, HR, andMRR. The results illustrate the effectiveness
of our proposed method as an end-to-end model to group the
similar items by the Fuzzy c-Mean instead of fixed LSH in
Reformer or k-Mean in Routing Transformer. Moreover, item
utilization of PPD+ is regarding the current user preference,
rather than a pre-defined pattern in Longformer or length of
the historical sequence as in DSAN.

V. DISCUSSION
This section discusses the difference between our proposed
method and the baselines. We analyze the impact of the num-
ber of the cluster on the performance of every model. Next,
we discuss the differences between our proposed model with
the baselines in terms of the similarity function. We verify
the effectiveness of the proposed method for grouping similar
items by conducting an additional experiment where each
model utilizes an equal number of items. Then, we discuss the
impact of noises in the input on every model’s performance.

To demonstrate the behavior of each model under different
circumstances, we present four case studies and discuss the
impact on the model’s prediction. In particular, the four cases
are irrelevant latest interaction, incrementally changed user
preference, incorrectly grouping similar items, and impact of
different clustering algorithms.

Additionally, we discuss the impact of optimal item utiliza-
tion on the model’s performance. We present an additional
experiment to demonstrate the competence of the proposed

threshold by comparing it with variant models using different
thresholds.

A. COMPARE WITH THE BASELINES
1) NUMBER OF CLUSTERS NC
According to Fig. 7, the performance of every model is
affected by the number of clusters (NC). To investigate the
impact of the NC , we analyze the number of utilized items as
the percentage of utilized items since the sequence’s length
of each dataset is unequal, as shown in Table 2. Since dif-
ferent historical sequences have different item utilization,
we show the percentage of utilized items as the average
values. We present the analysis results in Fig. 8, where the
x-axis is the number of clusters, and the y-axis is the average
utilized items percentage.

Among the baseline models, we observe that Routing
Transformer has relativelymore utilized items than Reformer.
The higher item utilization in Routing Transformermay result
from its flexibility that allows the clustering algorithm to
optimize along with the recommendation task. In contrast,
Reformer optimizes only the item representations but not
the grouping condition, which may not be an optimal con-
dition for retrieving similar items. Reformer’s limitation is
demonstrated in Fig. 3, where the distance between the dis-
tribution of similar items differs from the true distribution.
We also notice that the baselines have decreased the average
percentage of utilized items when theNC increases. One pos-
sible explanation is that the baselines establish relations only
among items belonging to the same cluster. The NC limits
item utilization in the baselines since the number of items per
cluster will decrease when the NC increases. Consequently,
the baselines may not have sufficient past information to
deliver the recommendations.

On the other hand, item utilization in PPD+ is not limited
by the NC . PPD+ overcomes the baselines limitation by
retrieving every past interaction similar to the current user
preference. One advantage is that the percentage of utilized
items is optimal and personalized based on the user’s past

62944 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 8. The percentage of utilized items in the sequence.

behavior in the historical sequence, resulting in more relevant
recommendations.

2) GROUPING OF SIMILAR PAST INTERACTIONS
To verify the effectiveness of the proposed method to group
and select past interactions without the impact from the
percentage of utilized items, we performed an additional
experiment by modifying every model to consider an equal
amount of items in the historical sequence. For MovieLens,
Goodreads, and UserBehavior, we set the percentage of uti-
lized items to 30, 30, and 40, respectively. We followed the
same experimental setting as in Section IV. Table 4 reports
the evaluation results on the validation set of each model.

When comparing among the baselines, Routing Trans-
former outperforms Reformer in MovieLens and UserBe-
havior across most metrics. Reformer surpasses Routing
Transformer in the Goodreads dataset. On the other hand,
PPD+ outperforms the baselines in most metrics across every
dataset. Since every model utilized the same amount of items,
the superior evaluation results of PPD+ show that it can better
group and select past interactions than the baselines to deliver
the recommendations.

One possible explanation is that the baselines group similar
items via the hard label method. They ignore the actual item
characteristics in a real-world scenario where an item can be
in many groups, e.g., a movie with various genres. Therefore,
the baseline models may separate similar items into different
groups and retrieve items in the same group, which may be
irrelevant to the current user preference.

In contrast, PPD+ has more flexibility when grouping
items since it utilizes the Fuzzy c-Mean to group similar
items, where each item can belong to various clusters simul-
taneously. Grouping similar items via the Fuzzy c-Mean cor-
responds to characteristics of items in a real-world scenario
where an item can be present in various groups. PPD+ can
retrieve past interactions relevant to the current user prefer-
ence, although each item may belong to different groups.

TABLE 4. Comparison of the evaluation results when the percentage of
utilized items are equal.

In addition to the baselines, PPD+ can retrieve past inter-
actions by comparing groups of items as the sub-sequences
retrieved from leveraging detected drift points. The model
exploits the Principal Component Analysis to compute
the representation for comparing between sub-sequences in
terms of items’ distribution. The model benefits from extract-
ing the user preference concerning items’ distribution since it
interprets an overview of the user preference. It further allows
the model to capture relations of items within the same sub-
sequence. In contrast, the baselines retrieve past interactions
by comparing the latest item with other items from the same
group. As a result, the baselines’ prediction will be highly
influenced by only a single item andmay not reflect the actual
user preference. For example, the user may be interested in
healthy food, and the latest action is a salad. The baselines
may suggest items related to vegetables instead of nutritious
food.

VOLUME 10, 2022 62945

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 9. The impact of the percentage of utilized items in the historical sequence on the model’s performance. The red point indicates
the point with the highest NDCG@10 value, and the gray line is the trend line of NDCG@10.

3) IMPACT OF NOISES
Since user preferences are dynamic and change over time,
some past interactions may not be relevant to the current user
preference. Considering interactions irrelevant to the current
user preference will introduce noises in the model’s inputs
and result in irrelevant recommendations. To study the impact
of noise reduction on the model’s input with the performance,
we illustrate the evaluation results of CBT and PPD+ in
terms of NDCG@10 (y-axis) with the average percentage
of utilized items (x-axis) in Fig. 9. The red point in Fig. 9
represents the point with the highest NDCG@10. The gray
line is the trend line between the NDCG@10 and the average
percentage of utilized items.

In Routing Transformer, the trend line in every dataset
is positive, showing that a higher percentage of utilized
items leads to higher NDCG@10. In contrast, the trend of
NDCG@10 in Reformer decreases when the average percent-
age of utilized items increases. A similar trend also occurs
with PPD+, where it shows a negative trend in MovieLens,
a steady trend in UserBehavior, and a positive trend in
Goodreads.

Although a higher percentage of utilized items pro-
vides more information to the model, most of the highest
NDCG@10 is not the point with the highest percentage of
utilized items. The poor performance when utilizing more
items demonstrates the drawbacks of noises in the historical
sequence. We further notice that the NDCG@10 of Reformer
and PPD+ for MovieLens and UserBehavior are worst when
the average percentage of utilized items is the highest.

Therefore, every model has the optimal value of the average
percentage of utilized items for delivering relevant recom-
mendations. The surplus information may increase noises as
the unrelated information to the model’s input and result in
irrelevant recommendations.

B. CASE STUDIES
To demonstrate the model’s mechanism when applied in dif-
ferent scenarios, we present four example cases and discuss
the behavior of each model under these circumstances. The
first case is when the latest interaction is entirely irrelevant to
every past interaction in the historical sequence. In the second
case, we discuss the scenario where the user preference is
incrementally changed. Next, the third case demonstrates
the impact on recommendations when the model incorrectly
grouping similar items. Lastly, the fourth case focuses on the
model’s behavior when grouping similar items by hard clus-
tering and soft clustering. In the fourth case, we will discuss
only Routing Transformer, Reformer, and PPD+ since other
models do not leverage the clustering algorithm.

In every case, the example historical sequence is based on
five movies (m1 to m5) with different genres. The genres of
movies in every case are action, fantasy, drama, and horror.
Some movies may contain several genres to illustrate the
situation in a real-world scenario. For clarity, we also show
the item utilization of each model, where a utilized item
is the item with the correct mark (3). Otherwise, an item
without a correct mark is ignored by a particular model.
Furthermore, we present both variations of Longformer in

62946 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 10. Example of a case where the latest interaction is completely
irrelevant to other past interactions.

every case, which are Longformer-SW and Longformer-DW.
We set the length of a sliding window of Longformer-SW as
three to represent the utilization of around half of the whole
historical sequence. Similarly, Longformer-DW has a dilated
size of one to simulate the case where it considers only half
of the whole historical sequence.

1) IRRELEVANT LATEST INTERACTION
Fig. 10 illustrates a scenario where the latest interaction is
completely irrelevant to every past interaction. The latest
interaction (m5) is a movie from the horror genre, whereas
other interactions are action, fantasy, and drama movies.
In this case, PPD+ will indicate that the drift point occurred
at the latest interaction. PPD+ will ignore other past inter-
actions since none of the past interactions are similar to the
latest interaction. Consequently, PPD+ will deliver the rec-
ommendation based on the probability of the next movie after
watching the latest movie (m5). Similarly, Routing Trans-
former and Reformer will have the same behavior as PPD+,
where they deliver the recommendation by ignoring other
past interactions and consider only the latest interaction.

In contrast, DSAN will consider some past interactions
due to its sparse activation function, which enforces some
past interactions to have a high attention value. However,
none of the past interactions are relevant to the current user
preference. In this case, the movie with high attention score
is not a movie that is similar to the latest movie. As shown
in Fig. 10, the utilized movie is m3 which is a fantasy-drama
movie, whereas the latest movie is a horror movie. Hence,
a fantasy-drama movie will be noise in the input of DSAN
and result in a recommendation of a movie with irrelevant
genres to current user preference.

For Longformer, most movies are utilized since the atten-
tion pattern of Longformer is pre-defined based on the posi-
tion of interaction in the historical sequence. The pre-defined
pattern forced the model to consider movies from irrelevant

FIGURE 11. Example of a case where the user preference is incrementally
changed.

genres. Specifically, the attention pattern of Longformer-SW
is based on sliding windows. Hence, Longformer-SW will
consider m3, m4, and m5, which include irrelevant informa-
tion related to action, fantasy, and drama movies. In the same
way, Longformer-DWwill considerm1,m3, andm5 due to the
dilated size of one, which results in noisy input from action,
fantasy, and drama movies.

2) INCREMENTALLY CHANGED USER PREFERENCE
The scenario where user preference is incrementally changed
is depicted in Fig. 11. There is a mutual genre for every
consecutive movie, showing that the user preference is slowly
changed from one genre to another. For instance, bothm1 and
m2 belong to the fantasy genre. Since PPD+ leverages
soft clustering to detect the significant changes in consec-
utive movies’ characteristics, the latent classes of consec-
utive movies will not be different. The difference between
characteristics of consecutive movies will be small since
they have mutual characteristics as a genre. Consequently,
PPD+ may not detect any signal of user preference drift,
and the model will utilize every past interaction to deliver the
recommendation.

In the case of Routing Transformer and Reformer, the drift
point may occur at every interaction due to the change of the
movie’s group since the movie’s genres are changed. Notice
that Routing Transformer and Reformer consider different
movies for the recommendation since both models may cate-
gorize the same item into different groups. On the one hand,
Routing Transformer may categorizem1 andm5 into the same
group base on the action genre. On the other hand, Reformer
may categorize m2, m4, and m5 into the same group based
on their mutual fantasy genre. However, Routing Transformer
and Reformer will retrieve past interactions as a single movie
rather than a period of various movies. When retrieving a
movie as a single item, the model will ignore the relation
between items and may not capture some aspects of the user

VOLUME 10, 2022 62947

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

preference. For instance, Routing Transformer will ignore
the transition relation among movies in the genre of action-
fantasy (m1 → m2), and fantasy-drama (m2 → m3). More-
over, the recommendations from Routing Transformer, when
ignoring m2, m3, and m4, will not include user preferences
related to the drama genre.

For DSAN, the model will utilize highly similar movies
and ignore other movies. As shown in Fig. 11, the model
may eventually select only the first movies since it has a
similar genre as the latest interaction. Nonetheless, there are
no significantly similar movies since every movie shares a
mutual genre with its previous movie. Therefore, DSAN will
ignore most aspects of user preference and result in irrelevant
recommendations. For instance, DSAN will ignore a prefer-
ence which is a mixture between fantasy and drama movies,
which are contained in m2 and m4.
In contrast, Longformer will consider most of the past

interactions due to the fixed attention pattern. As shown in
Fig. 11, Longformer-SWwith a sliding window will consider
m3, m4, and m5. Whereas, Longformer-DW with a dilated
size of one will consider m1, m3, and m5. However, it may
capture only some user preferences while ignoring other use-
ful aspects of the user preference. For example, Longformer-
DW skips m2 and m4 such that the preference related to
fantasy-drama movies is completely ignored.

3) INCORRECTLY GROUPING SIMILAR ITEMS
Fig. 12 illustrates the impact of incorrectly grouping similar
items. In this scenario, the last three movies share a mutual
genre and can be viewed as movies from a similar group.
Specifically, m3 and m4 share a common drama genre, while
bothm4 andm5 belong to the fantasy genre.Moreover,m3 and
m5 have a mutual characteristic of action movies. Therefore,
these three movies have similar characteristics, and their
representation should be near to each other in the latent space.

However, these three items may not belong to the same
group in the case of hard clustering as in Routing Transformer
and Reformer. As shown in Fig. 12, m3 and m4 may be cate-
gorized into the same group, whereas m5 is in another group
with m1. Consequently, Routing Transformer and Reformer
will utilize only m1, which ignore the current user preference
related to drama movie. The recommendation from these two
models will be only action-fantasy movies rather than action-
fantasy-drama movies.

Similarly, DSAN also encounters the same issue as Rout-
ing Transformer and Reformer due to its sparse attention pat-
tern. Since DSAN considers only movies with high attention
scores with the latest movies, it will utilize only m1 in this
scenario. Therefore, DSAN will not have a movie with a
drama genre in its recommendations.

In contrast, PPD+ with soft clustering will group these
three items into the same sub-sequence since their character-
istics are not significantly different. As a result, PPD+ will
consider m1,m3,m4, and m5 to deliver the recommendation,
which is the movie includes preference from action, fantasy,
and drama.

FIGURE 12. Example of a case where the grouping of items is incorrect.

In the case of Longformer, although the attention pattern
may groupm3,m4, andm5 together as in Longformer-SW, the
model is not correctly utilizing past interactions. Specifically,
Longformer-SW ignoresm1, which is also similar to the latest
interaction. Additionally, Longformer-DW regardless of m4,
which contains user preferences about the fantasy genre and
further provides information about user preferences related to
fantasy-drama movies.

4) IMPACT OF DIFFERENT CLUSTERING ALGORITHMS
In this case study, we will focus only on the model which
utilizes a clustering algorithm, i.e., Routing Transformer,
Reformer, and PPD+. Fig. 13 depicts the example scenario
where we assume that the number of clusters (NC) is four
according to the number of genres. The groups of each movie
are indicated by color in the lower left part of Fig. 13. Addi-
tionally, the illustration of the decision boundary for grouping
movies with similar characteristics is shown on the right-hand
side of Fig. 13.

In PPD+, the groups of movies can be a mixture of differ-
ent groups since it leverages the soft clustering, which allows
movies to exist in various groups simultaneously. PPD+
can naturally capture the movie’s characteristics in a real-
world scenario, where a movie can have several genres. For
instance, m1 has genres of action, fantasy, and horror. The
groups of m1 are a mixture of three genres, indicated by the
gradient of three colors (green, blue, and pink). Moreover,
the position of m1 in the latent space is the intersection area
between three groups, showing that it belongs to all three
groups.

The correct capturing of movies’ characteristics benefits
PPD+ to model user preference accurately. Given the sce-
nario in Fig. 13, the latest interaction is the movie with
action and fantasy genres. PPD+ will utilize m1,m3,m4, and
m5 since they are near each other in the latent space, as shown
in Fig. 13. Consequently, the recommendation from PPD+

62948 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 13. An illustration of the clustering algorithm in PPD+, Routing Transformer, and Reformer. The left-hand side of the figure describes groups of
movies, while the right-hand side shows each model’s decision boundaries.

will be a movie having multiple genres which cover various
aspects of user preference, such as action, fantasy, and drama.

In contrast, Routing Transformer and Reformer utilize a
hard clustering algorithm as k-Mean and LSH. Consequently,
movies are forced to belong to only one group, which does
not reflect the actual characteristic of movies. As the decision
boundaries are shown in Fig. 13, Routing Transformer and
Reformer categorize each movie into a single group. There-
fore, the hard clustering is not correctly captured the movie’s
characteristics in a real-world scenario.

Moreover, Routing Transformer and Reformer allow only
movies from the same group to establish relations with each
other. These models are limited to integrating preferences of
similar movies from different groups as in PPD+. Hence, the
recommendations from Routing Transformer and Reformer
ignore preferences that are related to current user prefer-
ence. For instance, Routing Transformer will focus only on
m1 since it was categorized into the same group as m5. At the
same time, Reformer will consider only the latest interaction
and ignore other past interactions.

It is also worth mentioning the flexibility of PPD+ and
Routing Transformer to optimize centroids for clustering
along with the recommendation task. These two models can
optimize centroids to represent groups of similar movies in a
real-world scenario. On the other hand, centroids in Reformer
cannot be optimized, which limits Reformer from model-
ing the correct movie representation. As shown in Fig. 13,
m3 is categorized into the horror group (pink), although it
has action and drama genres. The incorrect categorization of
movies is due to bad decision boundaries from fixed centroids
of Reformer. Specifically, m3 should be in the middle of the
action group (green) and drama group (yellow) since it has
both of these genres. However, the only available groups
between action and drama groups are fantasy and horror
groups, which both are the incorrect group. The bad centroids
forced m3 to be in the horror group, although it does not have
characteristics of a horror movie. Consequently, the Reformer
may not capture correct user preference since the movie
representation does not express its actual characteristics and
eventually results in irrelevant recommendations.

C. IMPACT OF THRESHOLD FOR OPTIMAL ITEM
UTILIZATION
In this work, the proposed method selects the optimal number
of utilized items based on the threshold and the cosine similar-
ity between other sub-sequences and the latest sub-sequence.
To evaluate the effectiveness of the proposed threshold for
optimal item utilization, we performed an additional experi-
ment and created two variants of PPD+ as follows:
• M-PPD+: To retrieve sub-sequences with preferences
more relevant than the average of every sub-sequence,
this model computes the average (avgsim) of the results
from (40) and utilizes it as the threshold. The model
retrieves every sub-sequence having a cosine similarity
with the latest sub-sequence more than the avgsim.

• MS-PPD+: This model filters to retrieve only
sub-sequences with preferences significantly more rele-
vant than the average of every sub-sequence. It computes
the threshold as the summation of the average (avgsim)
and the standard deviation (sd sim) of the result from (40).
Only sub-sequences with the cosine similarity between
the latest sub-sequence higher than the avgsim + sd sim
are selected as the relevant sub-sequence.

To focus only on the impact of the threshold, we utilized
the same hyper-parameters for every model. We conducted
the experiment by following the same settings mentioned in
Section IV. We report the evaluation results on the validation
set of every model in Table 5.
According to the results in Table 5, M-PPD+ outperforms

MS-PPD+ in most metrics across every dataset. Besides,
PPD+ has surpassed evaluation results than the variants in
most metrics across every dataset. The superior results of
PPD+ show that the threshold of PPD+ is more effective
than the variant models. The threshold of PPD+ yields the
past interactions with the cosine similarity higher than zero,
which ensures that the selected sub-sequences are similar to
the latest sub-sequence.

On the contrary, although the threshold of M-PPD+
enforces to retrieve more significant similar sub-sequences,
M-PPD+ may select sub-sequences dissimilar to the lat-
est sub-sequence. Since the cosine similarity value is

VOLUME 10, 2022 62949

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

FIGURE 14. The illustration of threshold distributions in MS-PPD+ and M-PPD+. The red vertical line represents the point where the
threshold is zero.

TABLE 5. Comparison of the evaluation results from variants of the
proposed method.

between−1 and 1, the average of the cosine similarity can be
less than zero. Consequently, M-PPD+may select dissimilar
sub-sequences, which contain a preference irrelevant to the
current user preference. We illustrate the threshold distribu-
tions of each model in Fig. 14, where the red vertical line
represents the point with the threshold equal to zero. Accord-
ing to Fig. 14, the threshold distributions of M-PPD+ are
located around zero, while around half of the distributions are
negative values which cause the model to retrieve dissimilar
sub-sequences.

In MS-PPD+, the threshold distributions are slightly
shifted toward a positive value, as shown in Fig. 14. The
threshold has a higher chance of being a positive number
since the threshold includes the standard deviation, which
is certainly a positive number. Nonetheless, the number of

FIGURE 15. The percentage of utilized items in MS-PPD+, M-PPD+, and
PPD+ across every dataset.

selected sub-sequences may be insufficient due to the high
threshold, causing the model to lack the past information
for delivering the recommendations. On the other hand,
PPD+ is not suffering from insufficient past information as
in MS-PPD+ since the threshold is optimal and guarantees to
provide sub-sequences containing preference relevant to the
current user preference. As shown in Fig. 15, the percentages
of utilized items in MS-PPD+ are only around 30 percent,
which may not be sufficient for delivering the prediction.
In contrast, M-PPD+ and PPD+ use about 50 percent of the
total interactions as an optimal percentage of utilized items.

VI. CONCLUSION
Weproposed a unified sequential recommender system called
PPD+. The proposed method detects the personalized drift
pattern of the user preference by grouping similar items with
soft label and utilizes the optimal number of relevant interac-
tions. PPD+ overcomes the requirement of a hyper-parameter
for selecting past interactions by considering the optimal

62950 VOLUME 10, 2022

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

amount of relevant interactions based on similarities with the
current user preference. To correspond with user preference
dynamics, PPD+ determines personalized drift patterns by
comparing item characteristics as soft label classes from
the Fuzzy c-Mean algorithm. The drift points are leveraged
to divide the historical sequence into many sub-sequences,
where each sub-sequence contains only a particular user
preference. To deliver the recommendation relevant to the
current user preference, PPD+ considers only sub-sequences
containing user preferences similar to the latest sub-sequence.
PPD+ compares sub-sequences with an unequal number
of items by employing the Principal Component Analysis
and cosine similarity. PPD+ retrieves sub-sequences with
cosine similarity greater than zero to ensure that the selected
sub-sequences are similar to the current user preference.
Furthermore, PPD+ is trained in an end-to-end approach by
combining the loss function of clustering and prediction as a
unified objective.

The experiments show that PPD+ is more effective in
grouping similar past interactions and delivers more relevant
recommendations than the baselines. We further performed
an additional experiment bymodifying Content-Based Trans-
formers to consider an equal number of items to remove the
impact of utilizing a different amount of items. The results
suggest the superior of PPD+ on grouping items with soft
clustering and benefits from comparing groups of items in
terms of distribution.

To verify the competence of the threshold value for optimal
item utilization, we experimented with the variants of PPD+.
Each variant model has different personalized values of the
threshold. According to the results, PPD+ using the threshold
as zero shows superior results than utilizing the mean and the
mean with standard deviation since the threshold of PPD+
ensures to retrieve only similar past interactions.

In future work, we are interested in leveraging the informa-
tion from irrelevant interactions. Since irrelevant interactions
may contain latent user preferences as the user was interested
and interacted with them in the past. We aim to discover an
effective method to extract only helpful user preferences from
irrelevant interactions while excluding noise information.

REFERENCES
[1] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques

for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009.

[2] A. Mnih and R. R. Salakhutdinov, ‘‘Probabilistic matrix factorization,’’
in Advances in Neural Information Processing Systems, vol. 20, J. Platt,
D. Koller, Y. Singer, and S. Roweis, Eds. Red Hook, NY, USA: Curran
Associates, 2007.

[3] D. Lee and H. S. Seung, ‘‘Algorithms for non-negative matrix factoriza-
tion,’’ in Advances in Neural Information Processing Systems, vol. 13,
T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA, USA: MIT
Press, 2000.

[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘‘Neural
collaborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web (WWW),
Geneva, Switzerland, 2017, pp. 173–182.

[5] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, ‘‘XDeepFM:
Combining explicit and implicit feature interactions for recommender
systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2018, pp. 1754–1763.

[6] M. Khoali, A. Tali, and Y. Laaziz, ‘‘Advanced recommendation systems
through deep learning,’’ in Proc. 3rd Int. Conf. Netw., Inf. Syst. Secur.
(NISS). NewYork, NY,USA:Association for ComputingMachinery, 2020,
pp. 1–8.

[7] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, ‘‘AutoRec: Autoencoders
meet collaborative filtering,’’ in Proc. 24th Int. Conf. World Wide Web
(WWW). New York, NY, USA: Association for Computing Machinery,
2015, pp. 111–112.

[8] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, ‘‘Collaborative denoising
auto-encoders for top-n recommender systems,’’ in Proc. 9th ACM Int.
Conf. Web Search Data Mining (WSDM). New York, NY, USA: Associ-
ation for Computing Machinery, 2016, pp. 153–162.

[9] F. Yang and Y. Lu, ‘‘Restricted Boltzmann machines for recommender
systems with implicit feedback,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2018, pp. 4109–4113.

[10] C. Chen, M. Zhang, Y. Liu, and S. Ma, ‘‘Neural attentional rating regres-
sion with review-level explanations,’’ in Proc. World Wide Web Conf.
(WWW), Geneva, Switzerland: InternationalWorldWideWebConferences
Steering Committee, 2018, pp. 1583–1592.

[11] C. Panagiotakis, H. Papadakis, A. Papagrigoriou, and P. Fragopoulou,
‘‘Improving recommender systems via a dual training error based correc-
tion approach,’’ Expert Syst. Appl., vol. 183, Nov. 2021, Art. no. 115386.

[12] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, ‘‘Recurrent
recommender networks,’’ in Proc. 10th ACM Int. Conf. Web Search Data
Mining, Feb. 2017, pp. 495–503.

[13] T. Donkers, B. Loepp, and J. Ziegler, ‘‘Sequential user-based recurrent
neural network recommendations,’’ in Proc. 11th ACM Conf. Rec. Syst.
(RecSys). New York, NY, USA: Association for Computing Machinery,
2017, pp. 152–160.

[14] B. Hidasi andA.Karatzoglou, ‘‘Recurrent neural networkswith top-k gains
for session-based recommendations,’’ in Proc. 27th ACM Int. Conf. Inf.
Knowl. Manage., Oct. 2018, pp. 843–852.

[15] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, ‘‘Per-
sonalizing session-based recommendations with hierarchical recurrent
neural networks,’’ in Proc. 11th ACM Conf. Rec. Syst. (RecSys).
New York, NY, USA: Association for Computing Machinery, 2017,
pp. 130–137.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. 31st
Int. Conf. Neural Inf. Process. Syst. (NIPS). Red Hook, NY, USA: Curran
Associates, 2017, pp. 6000–6010.

[17] W.-C. Kang and J. McAuley, ‘‘Self-attentive sequential recommenda-
tion,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018,
pp. 197–206.

[18] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, ‘‘BERT4Rec:
Sequential recommendation with bidirectional encoder representations
from transformer,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.
(CIKM). New York, NY, USA: Association for Computing Machinery,
2019, pp. 1441–1450.

[19] J. Yuan, Z. Song,M. Sun, X.Wang, andW. X. Zhao, ‘‘Dual sparse attention
network for session-based recommendation,’’ in Proc. AAAI Conf. Artif.
Intell. CIKM, May 2021, vol. 35, no. 5, pp. 4635–4643.

[20] J. Basilico and Y. Raimond, ‘‘Déjà vu: The importance of time and causal-
ity in recommender systems,’’ inProc. 11th ACMConf. Rec. Syst. (RecSys).
NewYork, NY, USA: Association for ComputingMachinery, 2017, p. 342.

[21] J. Zhao, P. Zhao, L. Zhao, Y. Liu, V. S. Sheng, and X. Zhou, ‘‘Variational
self-attention network for sequential recommendation,’’ in Proc. IEEE
37th Int. Conf. Data Eng. (ICDE), Los Alamitos, CA, USA, Apr. 2021,
pp. 1559–1570.

[22] B. Peters, V. Niculae, and A. F. T. Martins, ‘‘Sparse sequence-to-
sequence models,’’ in Proc. 57th Annu. Meeting Assoc. Comput. Linguis-
tics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 1504–1519.

[23] D. Neil, M. Pfeiffer, and S.-C. Liu, ‘‘Phased LSTM: Accelerating recurrent
network training for long or event-based sequences,’’ in Proc. 30th Int.
Conf. Neural Inf. Process. Syst. (NIPS). Red Hook, NY, USA: Curran
Associates, 2016, pp. 3889–3897.

[24] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai, ‘‘What to
do next: Modeling user behaviors by time-LSTM,’’ in Proc. 26th Int. Joint
Conf. Artif. Intell., Aug. 2017, pp. 3602–3608.

[25] N. Sritrakool and S. Maneeroj, ‘‘Personalized preference drift
aware sequential recommender system,’’ IEEE Access, vol. 9,
pp. 155491–155506, 2021.

VOLUME 10, 2022 62951

S. Maneeroj, N. Sritrakool: End-to-End Personalized Preference Drift Aware Sequential Recommender System

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ in Proc. ICLR,
2021, pp. 1–21. [Online]. Available: https://dblp.org/rec/conf/iclr/
DosovitskiyB0WZ21.html?view=bibtex

[27] L. Dong, S. Xu, and B. Xu, ‘‘Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5884–5888.

[28] I. Beltagy, M. E. Peters, and A. Cohan, ‘‘Longformer: The long-document
transformer,’’ 2020, arXiv:2004.05150.

[29] N. Kitaev, L. Kaiser, and A. Levskaya, ‘‘Reformer: The efficient trans-
former,’’ in Proc. Int. Conf. Learn. Represent., 2020, pp. 1–11. [Online].
Available: https://dblp.org/rec/conf/iclr/KitaevKL20.html?view=bibtex&
param=1

[30] A. Roy, M. Saffar, A. Vaswani, and D. Grangier, ‘‘Efficient content-
based sparse attention with routing transformers,’’ Trans. Assoc. Comput.
Linguistics, vol. 9, pp. 53–68, Feb. 2021.

[31] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[32] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1724–1734.

[33] Y. Han, Q. Li, Y. Xiao, H. Zhou, Z. Yang, and J.Wu, ‘‘Multiple interleaving
interests modeling of sequential user behaviors in e-commerce platform,’’
World Wide Web, vol. 24, no. 4, pp. 1121–1146, Jul. 2021.

[34] C. Yan, Y. Wang, Y. Zhang, Z. Wang, and P. Wang, ‘‘Modeling Long- and
short-term user behaviors for sequential recommendation with deep neural
networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021,
pp. 1–8.

[35] J. Zhang, C. Ma, C. Zhong, X. Mu, and L. Wang, ‘‘MBPI: Mixed behav-
iors and preference interaction for session-based recommendation,’’ Appl.
Intell., vol. 51, no. 10, pp. 7440–7452, Oct. 2021.

[36] H. Wang, K. Yao, J. Luo, and Y. Lin, ‘‘An implicit preference-aware
sequential recommendation method based on knowledge graph,’’Wireless
Commun. Mobile Comput., vol. 2021, pp. 1–12, Aug. 2021.

[37] J. Tang and K. Wang, ‘‘Personalized top-n sequential recommendation
via convolutional sequence embedding,’’ in Proc. 11th ACM Int. Conf.
Web Search Data Mining (WSDM). New York, NY, USA: Association for
Computing Machinery, 2018, pp. 565–573.

[38] S. Yakhchi, A. Behehsti, S.-M. Ghafari, I. Razzak,M. Orgun, andM. Elahi,
‘‘A convolutional attention network for unifying general and sequen-
tial recommenders,’’ Inf. Process. Manage., vol. 59, no. 1, Jan. 2022,
Art. no. 102755.

[39] Q. Zhang, L. Cao, C. Shi, and Z. Niu, ‘‘Neural time-aware sequential
recommendation by jointly modeling preference dynamics and explicit
feature couplings,’’ IEEE Trans. Neural Netw. Learn. Syst., early access,
Apr. 14, 2021, doi: 10.1109/TNNLS.2021.3069058.

[40] W. Chen and H. Chen, ‘‘Collaborative co-attention network for session-
based recommendation,’’Mathematics, vol. 9, no. 12, p. 1392, Jun. 2021.

[41] C.-H. Lee, J.-E. Ding, C.-M. Chen, J.-K. Lou, M.-F. Tsai, and C.-J. Wang,
‘‘LSTPR: Graph-based matrix factorization with long short-term prefer-
ence ranking,’’ in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 2222–2226.

[42] D. Hu, L. Wei, W. Zhou, X. Huai, Z. Fang, and S. Hu, ‘‘PEN4Rec:
Preference evolution networks for session-based recommendation,’’ in
Knowledge Science, Engineering and Management, H. Qiu, C. Zhang,
Z. Fei, M. Qiu, and S.-Y. Kung, Eds. Cham, Switzerland: Springer, 2021,
pp. 504–516.

[43] W. Chen, P. Ren, F. Cai, F. Sun, and M. De Rijke, ‘‘Multi-interest diversifi-
cation for end-to-end sequential recommendation,’’ ACM Trans. Inf. Syst.,
vol. 40, no. 1, pp. 1–30, Jan. 2022.

[44] E. Shao, S. Guo, and Z. A. Pardos, ‘‘Degree planning with plan-bert: Multi-
semester recommendation using future courses of interest,’’ in Proc. AAAI
Conf. Artif. Intell., May 2021, vol. 35, no. 17, pp. 14920–14929.

[45] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed,
‘‘Big bird: Transformers for longer sequences,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 17283–17297. [Online]. Available:
https://papers.nips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361
ab9-Abstract.html

[46] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlós,
P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. J.
Colwell, and A. Weller, ‘‘Rethinking attention with performers,’’ 2020,
arXiv:2009.14794.

[47] C.Wu, F.Wu, T. Qi, Y. Huang, and X. Xie, ‘‘Fastformer: Additive attention
can be all you need,’’ 2021, arXiv:2108.09084.

[48] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, ‘‘Transformers
are RNNs: Fast autoregressive transformers with linear attention,’’ in
Proc. 37th Int. Conf. Mach. Learn., in Proceedings of Machine Learn-
ing Research, vol. 119, H. Daume, III, and A. Singh, Eds., Jul. 2020,
pp. 5156–5165.

[49] R. Child, S. Gray, A. Radford, and I. Sutskever, ‘‘Generating long
sequences with sparse transformers,’’ 2019, arXiv:1904.10509.

[50] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, ‘‘Efficient transform-
ers: A survey,’’ 2020, arXiv:2009.06732.

[51] L. J. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ Jul. 2016,
arXiv:1607.06450.

[52] M.Wan and J. J. McAuley, ‘‘Item recommendation on monotonic behavior
chains,’’ in Proc. 12th ACM Conf. Rec. Syst. (RecSys), Vancouver, BC,
Canada, Oct. 2018, pp. 86–94.

[53] M.Wan, R. Misra, N. Nakashole, and J. J. McAuley, ‘‘Fine-grained spoiler
detection from large-scale review corpora,’’ in Proc. 57th Conf. Assoc.
Comput. Linguistics (ACL), vol. 1, Florence, Italy: Association for Com-
putational Linguistics, Jul./Aug. 2019, pp. 2605–2610.

[54] H. Zhu, D. Chang, Z. Xu, P. Zhang, X. Li, J. He, H. Li, J. Xu, and K. Gai,
‘‘Joint optimization of tree-based index and deep model for recommender
systems,’’ in Advances in Neural Information Processing Systems, vol. 32.
Red Hook, NY, USA: Curran Associates, 2019.

[55] H. Zhu, X. Li, P. Zhang, G. Li, J. He, H. Li, and K. Gai, ‘‘Learn-
ing tree-based deep model for recommender systems,’’ Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 1079–1088. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/
3219819.3219826, doi: 10.1145/3219819.3219826.

[56] J. Zhuo, Z. Xu,W. Dai, H. Zhu, H. Li, J. Xu, and K. Gai, ‘‘Learning optimal
tree models under beam search,’’ in Proc. ICML, 2020, pp. 11650–11659.
[Online]. Available: https://dl.acm.org/doi/10.5555/3524938.3526018,
doi: 10.5555/3524938.3526018.

[57] J. Shen et al., ‘‘Lingvo: A modular and scalable framework for sequence-
to-sequence modeling,’’ 2019, arXiv:1902.08295.

[58] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1–15. [Online].
Available: https://dblp.org/rec/journals/corr/KingmaB14.html

SARANYA MANEEROJ received the B.S.
degree from Chulalongkorn University, Thailand,
in 1996, and the M.E. and Dr. (Eng.) degrees
from The University of Electro-Communications,
Japan, in 2001 and 2005, respectively. She is cur-
rently an Associate Professor with the Department
of Mathematics and Computer Science, Faculty of
Science, Chulalongkorn University. Her research
interests include recommender systems and data
mining.

NAKARIN SRITRAKOOL is currently pursu-
ing the bachelor’s degree in computer science
with Chulalongkorn University, Thailand. In 2021,
he did an internship at Sertis Company Ltd. His
research interests include recommender systems
and machine learning.

62952 VOLUME 10, 2022

http://dx.doi.org/10.1109/TNNLS.2021.3069058
http://dx.doi.org/10.1145/3219819.3219826
http://dx.doi.org/10.5555/3524938.3526018

