
Received May 20, 2022, accepted June 7, 2022, date of publication June 13, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182500

Deep Reinforcement Learning Enabled
Self-Configurable Networks-on-Chip for
High-Performance and Energy-Efficient
Computing Systems
MD FARHADUR REZA , (Member, IEEE)
Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920, USA

e-mail: mreza2@eiu.edu

This work is supported by my startup fund in the Department of Mathematics and Computer Science at the Eastern Illinois University.

ABSTRACT Network-on-Chips (NoC) has been the superior interconnect fabric for multi/many-core on-
chip systems because of its scalability and parallelism. On-chip network resources can be dynamically
configured to improve the energy efficiency and performance of NoC. However, large and complex design
space in heterogeneous NoC architectures becomes difficult to explore within a reasonable time for optimal
trade-offs of energy and performance. Furthermore, reactive resource management is not effective in
preventing problems, such as thermal hotspots, from happening in adaptive systems. Therefore, we propose
machine learning (ML) techniques to provide proactive solutions within an instant in NoC-based computing
systems. We present a deep reinforcement learning (deep RL) technique to configure voltage/frequency
levels of NoC routers and links for both high performance and energy efficiency while meeting the global
energy budget constraint. Distributed RL agents technique has been proposed, where an RL agent configures
a NoC router and associated links intelligently based on system utilization and application demands.
Additionally, neural networks are used to approximate the actions of distributed RL agents. Simulations
results for NoC sizes ranging from 16 to 256 cores under real applications and synthetic traffic show that
the proposed self-configurable and scalable approach, on average, improves energy-delay product (EDP)
by 30-40% (up to 80%) and by 8% (up to 17%) compared to existing non-ML and ML based solutions,
respectively.

INDEX TERMS Network-on-chip (NoC), multicore architecture, mancore processor, machine learning
(ML), reinforcement learning (RL), distributed RL, deep reinforcement learning (Deep RL), Q-learning,
neural networks (NNs), self-configurable, energy-efficiency, high-performance.

I. INTRODUCTION
Multiprocessor System-on-Chips (MPSoCs) and chip mul-
tiprocessors (CMP) are moving towards the integration of
hundreds to thousands of cores on a chip. Manycore on-chip
systems have better power efficiency, interconnection, and
latency compared to traditional local area network (LAN)
based systems [28]. Industry and academia researchers are
working on manycore single chip solution that could replace
the traditional big data-center solution and/or that can be used
as the base chip for supercomputer with million cores [1],
[8], [10]. For example, a single chip with 850K independent

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

cores has been developed by Cerebras [1], and each processor
chip of Sunway TaihuLight with 40960 processors contains
256 cores [10]. As on-chip systems can contain hundreds to
thousand of cores, network-on-chip (NoC) has been adopted
as a standard solution to manage the complex on-chip com-
munication among cores, where cores are running the tasks of
applications. NoC offers several important benefits over tradi-
tional bus in terms of scalability, parallelism, throughput, and
power efficiency for on-chip communication in multi/many-
core systems [5], [14], [16]. The number of NoC router and
link resources to support the increased number of cores in
on-chip system has also increased significantly. This results
in significant increase in NoC power consumption relative
to the total chip power. Several NoC prototypes have shown

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65339

https://orcid.org/0000-0002-2978-6671
https://orcid.org/0000-0002-1939-4842


M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

that on-chip network consumes 10-40% of the total chip
power, including 30% in the Intel 80-core Terascale chip [24]
and 40% in the MIT RAW chip [48]. Furthermore, [29]
demonstrated that data movement consumes 25% of the total
energy. Because of the gap between transistor density and
transistor power efficiency in process technology (failure of
Dennard Scaling [17]), manycore chip faces power budget
problem [47]. High power consumption also affects the lifes-
pan of systems, due to increased heat buildup.

With the advancement of technology, computation
becomes more energy-efficient compared to communication.
In 7nm transistor technology, energy per unit communica-
tion consumes 6-time more energy than that of computa-
tion [9]. The fraction of time spent in communication for
an application increases with the increase in the number of
processing cores in systems and it (fraction of time spent
in communication) can be more than 50% for large-scale
systems [6], which significantly hampers the parallelism
performance (as computations need to wait for data trans-
ferred in communication). The key element to scalable chip
performance is the on-chip interconnects connecting the
cores/memory. Therefore, a challenging research problem
is to design energy-efficient and high-performance NoC for
multi/many-core computing systems.

FIGURE 1. 64-core architecture connected through 4 × 4 concentrated
2D-Mesh NoC.

Our objective is to obtain high-performance NoC while
achieving energy-efficiency. In this work, besides small-scale
16-core NoC, we consider large-scale 256-core architecture
that is placed in a 8×8 concentrated mesh (CMesh) topology.
A 64-core CMesh architecture is illustrated in Figure 1, where
cores are placed in a 4 × 4 2D-Mesh topology. 4-core are
concentrated with a single router in a tile, where every core
can be heterogeneous with different computational capaci-
ties. Each core has an individual L1 cache and each router
has an L2 cache shared among the four cores connected to
each router. Routers are connected to each other via links
to form the NoC, where every router can be heterogeneous

with different communication capacities, including varying
bandwidth links and buffer counts.

Different tasks of an application can have different com-
putation and communication demands, for example, one
task can be computation-intensive where another task can
be communication-intensive. Furthermore, multiple appli-
cations with different demands can run simultaneously on
a multi/many-core chip. Multi/many-core systems can con-
tain heterogeneous computing nodes, for example, GPUs,
accelerators, and CPUs. NoC can be designed with hetero-
geneous capacities in different parts of NoC. For example,
routers with more buffers and links with higher bandwidth
can be designed to support computing nodes with higher
communication requirements. Because of the diverse traffic
patterns of application(s), different routers and links in NoC
can carry different amounts of data by merging traffic flows
from various tasks of the application(s). To cope with the
heterogeneity of traffic workloads and heterogeneity of com-
puting resources, NoC can be configured heterogeneously
for energy efficiency and high performance. Heterogeneous
NoC configurations include V/F-scaling of routers and links.
Prior research has shown that dynamic voltage and frequency
scaling (DVFS) can reduce dynamic energy consumption of
NoC routers and/or links at run-time [33], [35]. Many works
have effectively applied voltage/frequency (V/F) scaling on
on-chip systems and networks for energy reduction [4], [11],
[22], [51], [53]. With DVFS, supply voltage is increased dur-
ing high NoC traffic to meet the NoC performance require-
ments while supply voltage needs to be decreased during low
traffic for energy savings. Because of the large and complex
NoC design space (V/F-levels, heterogeneity of cores and
routers, multicores, topology, task-core mapping, etc.), reac-
tive solutions using heuristics or linear optimization solvers
are not effective at run-time systems due to the high time
complexity for exploring many designs and configuration
parameters for optimal/near-optimal solutions. Large prob-
lem instances cannot be computed using linear programming
optimizers (e.g., integer linear programming solver) for opti-
mal solutions since they fail to compute results in time for
run-time configuration decisions. Heuristics may not cover
all possible cases under heterogeneous tasks (and traffic)
and heterogeneous resources. Therefore, reactive or ad-hoc
resource configuration may not be an effective technique
in preventing problems, such as creating thermal hotspots
and exceeding chip power budget, from happening in adap-
tive systems. For example, reactive/slow solutions may not
increase or decrease V/F-levels properly to meet the demands
of the applications while providing both high-performance
and energy-efficient solution. Machine learning (ML) can
help by predicting NoC resource requirements (before it
requires at that instant) for different applications in advance
and configure the NoC accordingly to minimize power and
thermal variations while avoiding any loss in performance.

In this paper, we propose the use of deep reinforcement
learning (deep RL) to dynamically configure NoC resources
based on precise system utilization and application demands.

65340 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

RL agent is used to monitor the states (in terms of features)
and state transitions and to take actions and evaluate the
rewards of the NoC configuration actions. RL agent rein-
forces the positive or negative reward of the taken decision,
which helps the system to learn, take proper actions and
achieve the optimization objectives of energy efficiency and
high performance. We take advantage of neural networks
(NNs) to learn the patterns in application demands and to
approximate NoC configuration decision accordingly. The
major contributions of this work are outlined below:
• Self-configurable NoC using Reinforcement Learning:
RL agents are trained to automatically configure the
NoC resources (routers and links) to maximize NoC per-
formance while ensuring energy efficiency. V/F-levels
of the NoC routers and links are dynamically config-
ured at run-time based on the application demand using
RL while global energy budget constraint is used to
limit energy consumption of NoC resources. RL agents
select exploration (random-action) or exploitation (best-
action) policywith randomprobability ε to get the global
optimal solution.

• Distributed Reinforcement Learning Agents and Neural
Network Approximators: Distributed RL techniques for
NoC configurations are proposed and implemented to
make the proposed ML-enabled technique feasible for
large-scale NoC-based systems with reasonable hard-
ware overhead (for ML). NNs are used to approximate
the actions for RL agents based on the learning of the
state (features), where traditional table-based learning
approach is not feasible because of the need for large
state-action mapping tables and high convergence time
for learning.

• Evaluation on Real and Synthetic Benchmarks: The
proposed approach is evaluated using both large-scale
(64-core and 256-core) and small-scale (16-core) NoC
architectures on a real system simulator. Both real
benchmarks (with large and small applications) and
synthetic traffic are used for evaluating the proposed
approach compared to existing non-machine-learning
(non-ML) based solution. Simulation results under real
(COSMIC and E3S) and synthetic benchmarks show
that the proposed approach, on average, improves
latency by 25% and improves energy and throughput
by 6% (improves EDP by 30-40%) compared to a non-
ML based solution [40] and improves EDP by 8% com-
pared to an RL-based solution [38].

The paper is organized as follows. We discuss the related
work on NoC configuration in Section II. Self-configurable
NoC configuration strategy using RL and NN approximator
is presented in Section III. Simulation results are presented
in Section IV.

II. RELATED WORK
ML techniques, such as RL, regressions, and NNs, have been
proposed for design and optimization challenges, includ-
ing energy and performance, of multi/many-core systems

and on-chip networks. Reference [31] proposes an auoto-
mated data-driven framework to quickly configure and design
manycore systems for a wide-range of application and oper-
ating scenarios. The authors proposed to use ML for both
design-time and run-time decisions to create fully-adaptive
systems.

A few existing works using RL for NoC optimization
and configuration are discussed here. Reference [49] used
distributed RL for simultaneously optimizing performance,
energy efficiency and reliability of NoC in manycore sys-
tems, where each router independently takes the decisions.
Reference [38] proposed RL to configure NoC link-
bandwidths dynamically by scaling V/F-levels for energy
savings. Multiple wires on a link (between routers) are acti-
vated or deactivated to configure the required link-width
based on the dynamic communication requirements between
the tasks of an application. Reference [52] presented a deep
RL approach for efficient NoC arbitration. The proposed
self-learning decision making mechanism reduces packet
latency, which results in improved NoC throughput. In [25],
the authors proposed cooperative multi-agent RL-based co-
optimization techniques to jointly perform different perfor-
mance and power optimization involving cache partitioning
and DVFS of NoC, core and cache.

In addition to RL, other ML techniques (e.g., decision
tree) have also been proposed for NoC optimization and
configuration. Reference [30] proposed an imitation learn-
ing (IL) based methodology for dynamic V/F-island (cluster
of nodes/links) control in manycore systems. [19] lever-
aged decision trees to predict and mitigate errors before
the fault affects NoC based systems. The proposed deci-
sion tree model achieves reduction in packet re-transmission
and energy savings. Reference [27] presented an NN-based
intelligent hotspot prediction mechanism that was used with
a congestion-control mechanism to handle hotspot forma-
tions efficiently. Reference [39] proposed run-time predic-
tive configuration of node voltage-levels and link widths of
NoC using NNs for energy-savings while addressing both
power and temperature constraints of manycore NoC. Ref-
erence [32] proposed NN based predictive routing algorithm
for NoCwhich uses network state and congestion information
to estimate routing costs and perform low-latency routing of
traffic. Reference [13] proposed ML-enabled energy-aware
dynamic V/F scaling for NoC architectures. The proposed
work relies on an offline trained regression model and pro-
vides a wide variety of V/F pairs. Reference [20] extended
this work by adopting RL for selecting DVFS mode directly,
which removes the need for labelling in linear regression.
Some works focus only on core resources of the multi/many-
core systems instead of uncore (including NoC) resources.
Reference [46] proposed RL-enabled online power manage-
ment technique that learns the best power management policy
that gives the minimum power consumption for a given per-
formance constraint without any prior information of work-
load. Reference [21] proposed an RL based I/O management
for energy-efficient communication between manycore

VOLUME 10, 2022 65341



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

processor and memory, instead of transmitting data under
a fixed large voltage-swing. Reference [12] presented
an on-line distributed RL based DVFS control algorithm
for manycore system under power constraints. Per-core
RL method is used to learn the optimal control policy of
the V/F-levels in the system. At the coarser grain, an effi-
cient global power budget reallocation algorithm is used
to maximize the overall performance. In [25], the authors
proposed cooperative multi-agent RL-based co-optimization
techniques to jointly perform different performance and
power optimization involving cache partitioning andDVFS of
core and uncore. Reference [15] proposedML to intelligently
explore the design space of 3D NoC to optimize the place-
ment of both planar and vertical communication links for
energy efficiency. Reference [26] developed a learning-based
framework using lasso regression to enable fast and accurate
transient thermal prediction in chip multiprocessor.

However, unlike previous works that focus mostly on
small-scale NoCs, this work (which is the extended version
of [37]) focuses to provide solutions for both small-scale and
large-scale NoCs using deep RL techniques. Furthermore,
this work focuses to improve both energy and performance
using online RL technique for predicting V/F-levels of the
NoC routers and links depending on the computation and
communication requirements of various applications running
in multi/many-core systems. Besides performance improve-
ment and energy efficiency, the main advantage of RL is
its self-adaptive nature to configure NoC at an instant to
meet the real time requirements of application(s), where
supervised ML technique need complete retraining to adapt
to changes in systems/applications and traditional non-ML
based algorithms and optimization solvers fail to provide
solutions within a reasonable time (because of high time
complexity).

III. DYNAMIC NoC CONFIGURATION USING DEEP
REINFORCEMENT LEARNING
In this work, model-free RL, namely Q-learning, is adapted.
Q-learning directly estimates the optimal Q-values of each
action in each state, from which a policy is derived (instead
of learning a model of the environment). When applica-
tions are running in the NoC-based multi/many-core systems,
RL is used to configure the NoC V/F-levels dynamically
based on the communication demands of the tasks to
improve NoC performance. We have selected four differ-
ent voltage-levels for NoC configurations: 0.8V, 0.9V, 1.0V,
and 1.1V. We limited our voltage-levels as too many levels
will have high overhead for voltage regulator(s). However,
we chose voltage-levels that meet the energy (power) budget
constraint. With each voltage (V) level, a frequency (F) is
also selected to form a V/F pair. The following V/F pairs are
used in this work: 0.8 V/1 GHz, 0.9 V/1.5 GHz, 1.0 V/2 GHz,
and 1.1V/2.5 GHz. RL agents are trained to maximize perfor-
mance while global energy budget constraint is used to limit
the V/F-levels of NoC resources.

A. REINFORCEMENT LEARNING AND Q-LEARNING
In RL, training data is given as a feedback to the program’s
actions in a dynamic environment. Feedback is given in forms
of rewards and punishments to reinforce the actions, such
as scaling V/F-levels and link bandwidth in NoC. RL is
very much suitable for intelligent decisions in autonomic
and dynamic systems because of the following reasons [45]:
firstly, an autonomic system learns (using RL) what actions
to take to maximize the long-term rewards from a specific
state. Secondly, RL properly treats the dynamic phenomena
as it can take into account delayed consequences (decision
and states) for current action in the environment. Because
of the autonomic property of RL, RL is very effective to
handle run-time changes (link/router fault, change in appli-
cation demands, etc.) by interacting with the system and
observing the costs and then optimize the system. Another
advantage of RL is that it does not need the labelling of the
training data (output label), which is required in supervised
learning (e.g., NNs, regressions). Therefore, RL is adapted
in this work to dynamically configure V/F-levels depending
on the application demands to maximize the performance
and energy efficiency of NoC. Our proposed approach apply
online learning because it allows the algorithm to learn as
data becomes available instead of learning from a static data
set. Performance and utilization data are collected in each
interval after taking action, and that data is used for training
RL agent.

Q-learning is used as an RL technique for finding optimal
policy for selecting NoCV/F-level configuration actions. The
core of the Q-learning is a simple value iteration update,
using an iterative algorithm, and Q-value in the learning
algorithm is calculated by using the weighted average of
the old value and the new information. The Q-value of tak-
ing action a in state s at current time step t is denoted
Q(st , at ). Q-learning does not require building explicit rep-
resentations of the state transitions and the expected reward
to estimate Q-value. This helps the system as initially the
system is not aware of the probability of state transitions and
the reward. Q-learning applies incremental updates with the
current state, the next state, the action, and the immediate
reward to approximate new Q-value. That’s why Q-learning
is an efficient algorithm for any environment especially large-
scale environment. Based on the NoC state st (utilization of
NoC resources) at current time step t , there may be several
possible V/F actions to take. An RL agent chooses the action
a that has the highest (currently estimated) Q-value among all
possible actions (or chooses a random action with some prob-
ability). After taking the action, the agent transitions to a new
state st+1 (new utilization values of NoC resources) while
in the meantime the NoC environment provides a reward rt
(to maximize NoC performance and energy efficiency).
Q-learning algorithm tries to maximize the expected cumula-
tive reward achievable from a given state-action pair (st , at ),
and it can approximate the optimal solution from Bellman
Equation using the following iterative update for Q-value

65342 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

Q(st , at ) in equation 1:

Q(st , at ) = (1− α) · Q(st , at )+ α

· (rt + γ ·max
a
Q(st+1, a)) (1)

where, rt is the reward observed for the current state st ,
α is the learning rate (0 ≤ α ≤ 1) and maxQ(st+1, a) is
the maximum Q value over all possible actions a in next
state st+1. The learning rate α determines the importance
of new experience compared to past experience. A factor
of 0 makes the agent learn nothing from new experience,
while a factor of 1 makes the agent consider only the most
recent information. Higher learning rate learns more from
new experience and gives less priority to old information,
where a learning rate of 1 makes the agent consider only
the most recent information. The discount factor γ deter-
mines the importance of future rewards. Lower discount rate
gives more importance to current rewards, where a factor
of 0 only considers current rewards. A factor of 0 will
make the agent considers only current rewards, while a fac-
tor approaching 1 will make it strive for a long-term high
reward.

B. DEEP REINFORCEMENT LEARNING
Themajor disadvantage of RL is that the agent needs to main-
tain a mapping table for states, actions, and rewards, and this
table grows exponentially with the increase in problem size in
multi/many-core systems. Traditional Q-learning uses a table,
namely Q-table, to store the Q-value Q(s, a) for each state-
action pair, as shown in Figure 2. As NoC features have con-
tinuous values, state-action space and corresponding Q-table
can be large. For large-scale NoC with many resources
(cores/routers/links), the system needs large number of agents
and Q tables and therefore, the overall size and cost of
Q tables will be extremely large. This state-action mapping
table challenge of RL can be addressed by an approximate
function of state, action, and reward. In this work, NN is
used to approximate Q-function Q(s, a) that estimates the
future returns taking action a from state s. NN’s function
approximation removes the need for large state-action map-
ping table, whichmakes the proposed work scalable for large-
scale systems. Given a state s, an NN can output a vector
of approximated Q-values for each possible action a. Then,
the action with the highest Q-value is chosen or a random
action chosen with a small probability. This technique of
combining RL and NN is called deep RL. Deep RL solutions
have made many breakthrough to create something and/or
to solve problems like to achieve human-level performance
in AlphaGo [43] and Atari [36] games. The significance of
deep RL contributions motivated us to apply deep RL to solve
NoC optimization and configuration issues in multi/many-
core systems.

NNs are used to approximate the state-action mapping
table in an RL agent, as NNs have shown significant
advantages in many domains such as image processing,
speech recognition, and machine translation. NNs are used to

FIGURE 2. Q-Table: State (s), Action (a), and Q-value (Q(s,a)).

FIGURE 3. NoC configuration framework using deep RL.

discover the patterns in the NoC statistics (collected dur-
ing current and past experiences) and predict the NoC V/F
configuration actions with corresponding values (Q-values)
for the next period. With NNs, we can easily extend the
number of V/F-levels by just adding an additional output
neuron in the output layer of NNs. An RL agent takes the
V/F configuration decision with the maximum Q-value that
minimize the latency and energy consumption of NoC. With
a small probability, an RL agent also chooses random action
(instead of best action) to avoid the local optimal solution (to
achieve global optimal solution).

The overall framework for dynamic NoC configuration
using deep RL is shown in Figure 3. In the NoC configura-
tion framework, an RL agent is integrated with each router
for V/F-level configuration decision. Distributed RL agents
collect NoC statistics in a fixed interval and configure the
routers and links (connected to the router). Though RL agents
take the local decisions, their target is to improve the global
NoC performance by interacting with the NoC environment,
as an RL agent checks the impact of its actions by evaluating
NoC latency and power consumption. RL agents learn the
best actions with time as it trains the NNs. The backpropa-
gation algorithm [41] is used to train the NNs to learn the
parameters of the NNs. Gradient descent approach is used to
(back)propagate the prediction errors to learn the parameters
of NNs for improving Q-value prediction decision. Upon
receiving a decision from the RL agent, the DVFS controller
with the help of voltage regulator selects the appropriate

VOLUME 10, 2022 65343



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 4. Deep RL model components and flow for self-
configurable NoC.

V/F-level. A synchronization is needed between two routers
as V/F-levels may be different for routers.

C. COMPONENTS OF THE DEEP RL MODEL FOR NoC
CONFIGURATION
An RLmodel contains state, action, environment, and reward
components. The deep RL model further contains NN com-
ponent. The components of the proposed deep RL model
for self-configurable NoC are shown in Figure 4 and are
described below.

1) ENVIRONMENT (ARCHITECTURE)
The environment of the NoC configuration framework con-
sists of routers, links, and processing cores. The environment
generates the reward in terms of NoC latency and power con-
sumption for the taken NoC V/F-level configuration decision
by an RL agent (at a router) depending on the current state
(which is discussed in the next section) of the router and
associated links.

2) STATE (AGENT’s VIEW OF THE ARCHITECTURE)
A vector of features is defined as a system state. Feature
selection is very important for an RLmodel. If the features do
not correlate to the action (NoC configuration decision), then
an RL algorithm chosen to create the model will not be able
to predict the outcome. Therefore, a great deal of thought are
placed in the features selected for the RLmodel. The selected
features are the utilization and capacity of the NoC resources:
router and link. Flit count in the buffer of the router and link
is used to calculate router and link utilization. Three features
are used in a state vector, as follows: flit count, % of buffer
utilization, and % of link utilization. V/F-level configuration
decision is taken based on the utilization and capacity of the
link and router resources. The number of features are kept to
a minimum in order to decrease the amount of time needed
to calculate the predicted Q-values at run-time. Also the
features are selected by using the information already present
at each router. We collect performance data to evaluate the
performance of the model and collect energy consumption

data to evaluate whether the decision from the RL model
meets the global energy budget constraint.

3) ACTION (RESOURCE CONFIGURATION)
The agent takes online decision to configure V/F-levels set-
ting for NoC routers and links based on the utilization of NoC
resources. Asmentioned before, the followingV/F-level pairs
are used in this RL model: 0.8 V/1 GHz, 0.9 V/1.5 GHz,
1.0 V/1.8 GHz, and 1.1 V/2 GHz. However, the V/F-level
pairs are configurable based on the availability of V/F-levels.
The agent generates vector of Q-values for each V/F-level
configuration action. Figure 5 shows the Q-values for four
different V/F configurations based on the router and link
features at a router port. NN approximates the Q-values for
different V/F configurations, and RL agent generally selects
the V/F configuration with the maximum Q-value, which
is the best action to maximize NoC performance. However,
in this work, an RL agent selects exploration or exploitation
policy with random probability ε to avoid the local optimal
solution. ε parameter controls the amount of exploration vs.
exploitation. In the exploitation phase, with probability 1−ε,
an RL agent selects V/F-level configuration action with the
maximum Q-value from the trained NNs. In the exploration
phase, with probability ε, an RL agent takes random decision
(instead of best action from trained NNs) to reduce the proba-
bility of local optimal solution. for example, for ε value of 0.1,
an RL agent takes random decision with 10% probability or
takes best Q-value actions with 90% probability. The value
of ε can be tuned based on the performance of the agent
and the demands of the application(s). ε value should be set
to higher value (e.g., 0.5 or 50%) initially as an RL agent
needs to explore more to learn the impact of its actions as the
knowledge of the RL agent may not be complete. ε values can
be reduced with time as an RL agent becomes more skilled
over time in taking correct decisions by learning actions
and corresponding energy and performance impact on the
NoC environment. Because of the exploration capability, the
proposed RL agent selects optimal action almost all the time
after a certain number of training steps. In this work, we stop
the training of an agent after the convergence is achieved as
the agent can correctly predicts the correct actions.

4) REWARD FUNCTION
An RL agent gets feedback for its action from the NoC envi-
ronment in terms of positive or negative reward. Depending
on the V/F-level configuration action in the current state, the
environment generates a reward, based on the optimization
target, and sends it to the agent. The reward determines how
good the taken action is, andQ-learning algorithm is designed
to maximize the long-term reward. In this run-time configu-
ration context, a reward function is used to maximize NoC
performance and energy efficiency. The product of latency
and power is used in the reward function to minimize both
latency and power consumption of NoC, as shown in equa-
tion 2. The negative reward is used to reduce latency and
power consumption. Lower negative values of latency and

65344 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 5. NoC features and actions for voltage-level configuration using
a neural network.

power consumption means higher performance and energy
efficient, respectively, NoC. Higher value of latency and/or
power make the reward value more negative, and an RL agent
tries to achieve lower negative value of reward.

reward = −latency ∗ power (2)

where, the unit of reward is joules, where the units of power
and latency are watt and (nano) seconds, respectively.

5) NEURAL NETWORK FOR FUNCTION APPROXIMATION
Since state attributes (e.g., buffer and link utilization) are
continuous numbers, number of states can be infinite that
leads to large state-action mapping tables and high conver-
gence time for Q-learning. NNs are used for action-function
approximation in RL agents to solve the the problems (large
state-action mapping tables and high convergence time) asso-
ciated with traditional Q-learning solution. An NN provides a
mechanism for generalizing training experience across states.
Therefore, it is no longer necessary to keep the state-action
mapping table for RL agent’s decisions. An NN approxi-
mates the vector of Q-value scores for possible V/F-level
configuration actions, and the RL agent selects the action
with the maximum score (or random action sometimes) for
maximizing the NoC performance and energy efficiency.
The proposed deep RL approach uses fully connected NNs
with three layers: input layer with three neurons (for three
features), hidden layer with 8 neurons and an output layer
with 4 neurons. Three layers for an NN and 8 neurons per
hidden layer are chosen empirically as it provides sufficient
accuracy with lower hardware overhead. Sigmoid function is
used at the neurons of the hidden layers, where the activation
value ranges from 0 to 1. ReLU activation function is used at
the output layer neurons as Q-values can be greater than 1
(for the corresponding V/F-levels). The layers of the NNs
are computed in sequential order, for example, first layer

must gather features and compute its values before the next
layer can be computed. In NNs, it is possible to parallelize
all units and operations within each layer. Because of the
parallel nature of operations, the computation time reduces
significantly in NNs and increases the speed of prediction.

NNs are trained to approximate the Q-values for actions
(of RL agents) based on the current state (features), past
learning experience, and target optimization objective (as
reflected in reward function) for NoC configuration. θ param-
eters (weights) decides a prediction of an NN using the input
parameters from NoC statistics. An NN is trained with input
state (old state) and target Q-value data collected through
experience to learn θ parameters. The backpropagation algo-
rithm [41] using gradient descent method is used to learn
the θ parameters. The target Q-values are calculated using
Q-learning equation (as shown in equation 1). The backprop-
agation algorithm works by computing the gradient of the
loss function, as shown in equation 3. The loss function is
the squared error difference between predicted Q-valueQ and
target Q-value Q′.

lossQ = (r + γ ·max
at+1

Q′(st+1, at+1)− Q(st , at ))2 (3)

In each training step, the backpropagation algorithm com-
putes the gradient with respect to θ parameters of the pre-
diction network. The backpropagation algorithm computes
gradient one layer at a time and iterates backward from the
last layer (based on the feedback from target Q-value) to
update and to learn θ parameters of NNs. The goal of learning
θ parameters is to correctly approximate Q-value. The use
of NNs (instead of state-action mapping table) makes the
RL agents robust to different demands of the applications
because of the generalization property of NNs.

D. STABILITY OF REINFORCEMENT LEARNING AGENT
RL suffers instability when the Q-value function is approx-
imated with a non-linear supervised learning, like logistic
regressions and NNs [36]. The following techniques are
adapted to improve the stability (reduce the fluctuation) of
predictions from deep RL.

1) EXPERIENCE REPLAY FOR DEEP RL STABILITY
Similarity of subsequent training samples can lead an NN
generalization into local minima because of the correlation
between the current approximate action-value and the target
action value. Experience replay breaks up the correlation in
data to stabilize deep RL technique [34]. Instead of training
RL agent on state-action pairs as they occur during simulation
or actual experience, the system stores the data discovered
(state, action, reward, next state) during state transitions, in a
table with limited entries (to reduce hardware overhead). The
system then randomly selects the experience data from the
table to provide decorrelated data to train the NNs. Expe-
rience replay also allows the model to learn past experi-
ence multiple times, as it can randomly select same data.
This learning strategy leads to faster convergence. In the

VOLUME 10, 2022 65345



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

experience replay table, the oldest data is overwritten by a
new data (as the size of the table is kept limited to reduce
hardware overhead).

2) SEPARATE TARGET NETWORK FOR DEEP RL STABILITY
The second modification to online deep RL learning is to
use a separate NN for generating the target Q-values in the
Q-learning update. This modification makes the algorithm
more stable compared to standard online Q-learning, where
an update that increases current state Q-value also increases
the target Q-value, possibly leading to oscillations of the
policy. Target and predictor NNs are trained at different
intervals. The predictor network parameters are updated in
each training step, while the target network parameters are
updated periodically. For example, we set the training inter-
vals for predictor and target NNs to 50 cycles and 100 cycles
(in simulation), respectively. This policy adds a delay
between target and predictor network parameters updates,
and this delay helps to reduce the impact of predictor network
on target network parameters, which results in the reduction
of divergence in approximation (using NNs). Generating the
targets using an older set of parameters adds a delay between
the time an update to predict Q-value is made (each train-
ing step) and the time the update affects the target Q-value
(periodically), making divergence or oscillations much more
unlikely.

E. DEEP RL MODEL TRAINING AND LEARNING
ALGORITHM FOR NoC CONFIGURATION
The simplified pseudocode of the deep RL algorithm for NoC
configuration is shown in Algorithm 1. Firstly, the algorithm
initializes both NN predictor and target NN using random
weights so that predictor can take action in its initial periods.
Based on the current state of a router (from the router statis-
tics), RL agent takes V/F-level configuration decision for the
router and associated links for the next period. RL agent uses
exploration or exploitation phase to take the decision depend-
ing on the random probability, ε. In the exploration phase,
RL agent takes random decision to reduce the probability
of local optimal solution (to get global optimal solution).
In the exploitation phase, RL agent uses the trained NNs to
select the V/F-level configuration action with the maximum
Q-value. RL agent considers router and all the associated
links of a router at a time for V/F-level configurations.

Because of the cost of training in terms of computation and
time, we train the predictor NN and target NN in fixed inter-
vals instead of per cycle training. As mentioned before, train-
ing intervals are different for predictor and target networks to
improve the deep RL stability.We set the training intervals for
predictor and target NNs to 50 cycles and 100 cycles, respec-
tively. Q-values for current state, Qcurrent_predictors, are pre-
dicted by the predictor NN. Q-values targets, ycurrent_targets,
are set by using the predicted Q-values from target Q-network
and the reward from the environment. Then training for pre-
dictor network to update connection weights is done by using
the square loss of the calculated Q-values from predictor

Algorithm 1:DeepRLAlgorithm for NoCConfiguration
input : NoC Features: Flit count, Buffer Utilization,

Link Utilization
output: NoC V/F-Levels Configuration
Initialize NN predictor and target NN using random
weights;
Initialize Experience Replay memory buffer;
while simulation cycle_count ≤ maximum number of
cycles or packet_count ≤ maximum number of packets
per node threshold do

Step 1: Monitor the traffic in router and links of
NoC (as state);
Step 2: With probability ε, select a random action
configuration or with probability 1− ε predict the
best action configuration for current NoC state using
NNs;
Step 3: Configure V/F-levels of NoC router and
links using action in previous step;
Step 4:
Observe reward (-latency*power) of current action
and find next state (NoC utilization);
Store experience (state, action, reward, next state)
into the Experience Replay buffer;
Sample the random records from the replay memory
to form mini-batches;
Step 5:
Calculate the predicted Q-values using predictor
Q-network for different V/F actions in the current
state, Qcurrent_predictors;
Calculate the target Q-values using target Q-network
for different V/F actions (a′) in the next state,
Qnext_state;
Set Q-values targets as
ycurrent_targets = reward + γmaxa′Qnext_state;
Train and update the connection weights of the
predictor Q-network using the square loss of
calculated predicted Q-values (from predictor
Q-network) and target Q-values (from target
Q-network) using sample data from replay
memory, (ycurrent_targets − Qcurrent_predictors)2;
Step 6:
if cycle_count == target_interval then

Update the NN connection weights of the target
Q-network as same weights as the predictor
Q-network for the next period;

end
cycle_count = cycle_count + predictor_interval;

end

and target Q-networks, (ycurrent_targets − Qcurrent_predictors)2.
For training, we sample random records from the experi-
ence replay table to form mini-batches and then use gradient
descent approach to back propagate this error to the hidden
layer to tune their weights. The mini-batch size is set to 50 in

65346 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 6. Distributed RL agents based optimization in a 4 × 4 CMesh
NoC based 64-Core system.

this work. θ parameters (connection weights of NNs) of the
target Q-network are set to the same values as θ parameters
of the predictor Q-network after a fixed interval (set as target
Q-network training interval). The algorithm runs until the
maximum number of simulation cycles reached or packet
count per node exceeds the maximum number of packets per
node threshold.

F. DISTRIBUTED REINFORCEMENT LEARNING FOR
LARGE-SCALE NoC
In a NoC based manycore archiecture, it is not feasible to
implement centralized RL (or other ML) agent monitoring
and decision framework for all the NoC resources due to
exponential increase in communication delay with the dis-
tance of the nodes from the centralized controller. Decision
(dynamic configuration) delay increases as every node has to
communicate with the centralized RL agent for local NoC
router and links configuration decisions. As configuration
decision delay increases, that decision could be too late for its
effective application in real-time systems, which could results
in opportunity loss to reduce energy consumption and/or to
improve performance of NoC. Furthermore, centralized deci-
sion maker can become a communication bottleneck in the
manycore NoC as many communications are going through
that one controller node. Hotspot can form in the centralized
controller and packets passing through the hotspot area will
be delayed as the NoC resources (e.g., buffers and links) are
already occupied by the packets in the hotspot region. This
contention/delay problem in the centralized controller region
can propagate throughout the NoC. Distributed RL technique
is needed in manycore NoC to reduce the above mentioned
problems (high communication delay and hotspots) in cen-
tralized RL technique. A distributed per-router RL agent
based framework in a 4 × 4 CMesh NoC is presented in
Figure 6. In the CMesh NoC architecture, a router is con-
nected with four cores, which results in total 64 cores as
shown in Figure 6. At a router, an RL agent can control the
configuration decisions of the router itself and associated all
the NoC outgoing links to meet the communication demands
through that node. RL agent computes the best voltage-level

configuration decisions based on experience from previous
historical data. Initially, RL agents could provide local opti-
mal solution. With more training, RL agents have better
understanding of the impact of their actions in overall NoC,
as reward value is changed based on latency and energy
consumption of the whole NoC. Because all features are
local to the router, even if more routers/cores were added to
the network, the proposed deep RL-enabled model could be
easily scaled to the new architecture with no change in the
algorithm.

G. HARDWARE OVERHEAD FOR DEEP REINFORCEMENT
LEARNING
Each new feature for deep RL increases the arithmetic over-
head. That’s why the number of features for deep RL is kept
to a small value to reduce hardware overhead. The proposed
deep RL uses fully connected NNs with three layers. As the
proposed approach uses three features for configuration deci-
sions, it needs three (3) neurons in the input layer. Similarly,
it needs four (4) output neurons in the output layer as the
proposed approach uses 4 V/F-levels as Q-values. We have
empirically selected eight (8) hidden neurons as 8-neuron
provides good performance. For input layer to hidden layer
connections, NNs have a total of 24 multiplies, 16 additions,
and 8 comparisons. For hidden layer to output layer, NNs
have a total of 32multiplies, 28 additions, and 4 comparisons.
This equates to a total of 56 multiplies, 44 additions, and
12 comparisons to gather the features, compute state-action
values, and to select the voltage-level with the largest action
value. In 45nm, the energy cost of a single 16-bit floating
point add is estimated to be 0.4 pJ and the area cost is
1360 um2 [23]. The energy cost of a multiply is estimated
to be 1.1 pJ and the area cost is 1640 um2 in 45nm [23].
Therefore, for a single RL agent, the total energy overhead is
75.6 pJ and the total area overhead is 0.168 mm2. As we are
using separate target network for deep RL stability, overall
overhead is multiplied by two. So the total energy overhead
is 151.2 pJ and the total area overhead is 0.3366 mm2. Addi-
tionally, an RL agent needs a buffer to hold the historical
data for experience replay. Because of the limited entries
(e.g., 200 entries) in the buffer, the overhead of the buffer
is not significant enough. In the proposed distributed RL
algorithm, per router RL agent decides the V/F action values
based on the feature values (state) of the associated router
and links of NoC. Though the energy and area cost of an
RL agent is not significant enough, for a large scale NoC,
such as 25 × 25 NoC, the overhead of many RL agents can
be high. To address that, we propose CMesh NoC, where a
single RL agent at a router supports multiple cores in the
NoC. The number of concentrated cores per router can be
configured based on NoC size, performance, and allowed
hardware overhead. In this work, four cores are connected
to a router for large-scale NoCs (64-core and 256-core). This
CMesh NoC approach makes the overhead (both energy and
area) of distributed RL implementation feasible for large-
scale computing systems.

VOLUME 10, 2022 65347



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

IV. SIMULATION AND RESULTS
Real system experiments are carried out using gem5 [7] and
Garnet [3] platforms to evaluate the NoC performance and
energy efficiency. The following four different V/F-levels are
used for NoC configurations: 0.8 V/1 GHz, 0.9 V/1.5 GHz,
1.0 V/2 GHz, 1.1 V/2.5 GHz. The DSENT [44] tool is inte-
grated with gem5 to evaluate the energy/power consump-
tion. The gem5 and DSENT configurations are shown in
Tables. 1 and 2, respectively. The proposed deep RL algo-
rithm is implemented and integrated in Garnet for dynamic
configuration of NoC. An RL agent module is added with
each router in the Garnet. The NN function approximator
implementation consists of one input layer, one hidden layer,
and one output layer. Sigmoid and ReLU activation functions
are used for hidden and output layers, respectively. We use
three features at the router for V/F-level configuration pre-
diction: flit count, % of buffer utilization, and % of link
utilization. The buffer utilization is calculated as the number
of active buffers in the previous interval divided by the total
number of buffers at a router. Similarly, the link utilization
is calculated as the number of active links in the previous
interval divided by the total number of NoC links. A reward
function as the negative product of latency and power is used
to evaluate the V/F-level configuration actions to maximize
performance and energy efficiency of NoC. ε value is set
to 0.1, which means an RL agent takes a random action
instead of the best action in 10% cases. ε value is not changed
in this work as it (change in ε) did not significantly impact our
results as the proposed RL agent selects optimal action almost
all the time after a certain number of training steps for ε value
of 0.1. Learning rate α is set to 0.5.

TABLE 1. gem5 configurations for 256-core CMesh NoC.

We evaluate the proposed deep RL based NoC con-
figuration model using communication-observant schedula-
ble memory-inclusive computation (COSMIC) benchmark
suite [50] and embedded system synthesis benchmarks suite
(E3S) [18]. For large-scale problems, we have simulated
256-core connected through 8 × 8 CMesh architecture,
where a router is connected to four computing nodes (cores),
and simulated large applications in the COSMIC bench-
mark suite. The COSMIC benchmark suite is used for

TABLE 2. DSENT configurations for 256-core CMesh NoC.

large-scale problem simulation because it (COSMIC) is
based on real applications with a large number of tasks
per application. The following five applications from the
COSMIC benchmark suite are mapped in our simulations:
face recognition, cifar, ultrasound imaging, reed-solomon
code decoder (RS-Decoder), and reed-solomon code encoder
(RS-Encoder). The face recognition (face), cifar (cfr), ultra-
sound (ultra), RS-Decoder (RSD), and RS-Encoder (RSE)
application have 33,33, 526, 527, and 141 tasks, respectively.
For small-scale problems, we have simulated 16-core con-
nected through 4 × 4 2D-Mesh NoC, and simulated appli-
cations in the E3S benchmark suite. The E3S benchmark
suite comprises applications in consumer (C), autoindus-
try (A), networking (N), telecom (T) and office-automation
(O). E3S applications also have several sub-applications
within themselves, for example, telecom application has
8 sub-applications. In overall, C, A, N, T, and O applica-
tions have 12, 24, 13, 28, and 5 tasks, respectively. We
also simulate complex multi-application domain systems
by mixing multiple applications in the COSMIC and E3S
benchmarks, e.g., FaceCfr for face recognition and cifar
applications and CN for consumer and networking applica-
tions. Furthermore, we evaluate the proposed deep RL based
NoC configuration model using the following eight synthetic
traffic patterns: (i) Uniform Random (UniR): destinations
are randomly selected with a uniform distribution; (ii) Bit-
complement (BitC): each node sends messages only to the
node corresponding to the 1’s complement of its own address;
(iii) Tornado: every node i sends a packet to node (i+3)mod8;
(iv) Bit Rotation (BitRt): destination is found by circular
shifting of the bits of the source; (v) Neighbor (NBor): node
sends messages to only its neighbors; (vi) Shuffle (Shuf):
destination is calculated by using source address and number
of destinations; (vii) Bit Reverse (BitRv): destination is found
by reversing the bits of the source; (viii) Transpose (Trans):
node (x,y) sends messages only to (y,x).

We compared our solution with a non-ML based NoC
configuration solution in [40]. In this work [40], the system
managers using heuristic (non-ML) increase or decrease the

65348 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 7. Energy comparison under COSMIC benchmarks in
256-core NoC.

FIGURE 8. Latency comparison under COSMIC benchmarks in
256-core NoC.

V/F-levels of the NoC resources depending on the change in
application traffic. We have evaluated our NoC configuration
framework using latency, throughput, and energymetrics. For
the COSMIC and E3S benchmarks, applications are initially
mapped to NoC based system using the (same) load-balanced
mapping solution in [40] for both ML and non-ML solutions
for fair comparisons. The total (global) energy budget con-
straint is configured depending on the demands of the appli-
cations in a benchmark. The global energy budget constraint
is set to 1.5 joule (J) for COSMIC benchmarks, and it (global
energy budget constraint) is set to 50 mJ (milliJoule) for
both E3S benchmarks and synthetic traffic patterns. Higher
energy budget constraint is used for COSMIC benchmarks
(compared to other benchmarks) because of the larger number
of tasks and demands of the applications.

A. PERFORMANCE UNDER LARGE-SCALE NoC AND
APPLICATION SETTINGS
Figure 7 shows the energy consumption for various
applications in COSMIC benchmarks for all techniques.

FIGURE 9. Throughput comparison under COSMIC benchmarks in
256-core NoC.

Simulation results for applications in COSMIC benchmarks
suggest that latency improvement is significant (throughput
also improves) in the proposed self-configurable NoC solu-
tion, while minimizing the energy consumption in the system.
The proposed approach improves (reduces) energy consump-
tion by up to 9% (by 6% on average) compared to the non-ML
based configuration solution. Energy consumption decreases
due to lower energy consumption in the NoC because of
the proactive V/F-levels configuration using RL to maxi-
mize reward, where reward is configured to minimize energy
(and latency). RL assigns the required V/F-levels by learning
from the historical data. As RL agents learn the policy to
maximize the reward (product of latency and power), com-
munication latency in NoC improves significantly because
of the lower queuing latency at NoC routers. The proposed
approach improves latency by up to 70% (by 25% on aver-
age) compared to the non-ML based configuration solu-
tion, as shown in Figure 8. Because of the reduction of
latency, throughput in the proposed solution improves by 10%
(on average) compared to the non-ML solution, as shown
in Figure 9. Furthermore, we observe that the proposed
approach also improves energy, latency, and throughput more
for all the multiple application mixes running in the sys-
tem. This further indicates the effectiveness of the proposed
approach for running multiple applications in manycore
architectures.

B. PERFORMANCE UNDER SMALL-SCALE NoC AND
APPLICATION SETTINGS
E3S applications are simulated under 16-core architecture
connected through 2D-Mesh NoC. Like the COSMIC bench-
marks results, simulation results for the E3S benchmark sug-
gest that latency improvement is significant (throughput also
improves) in the proposed self-configurable NoC solution,
while minimizing the energy consumption in the system.
As shown in Figure 10, the proposed configurable solution
improves energy consumption by up to 14% (by 5% on aver-
age) compared to the non-ML solution. Energy improvement

VOLUME 10, 2022 65349



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 10. Energy comparison under E3S benchmarks in 16-core NoC.

is higher because of the dynamic heterogeneous assignment
of required V/F-levels to NoC routers and links using online
RL solution (instead of assigning homogeneous maximum
voltages). As RL agents learn the policy to minimize latency,
the proposed approach improves latency by up to 120%
(by 34% on average) compared to the non-ML based con-
figuration solution, as shown in Figure 11. Because of the
reduction in flit transmission delay, throughput in the pro-
posed solution improves by 7% on average compared to the
non-ML solution, as shown in Figure 12.

Furthermore, the proposed RL-enabled approach performs
better for mixture of applications in the E3S benchmark suite
for all the metrics (energy, latency, and throughput). For
example, the proposed approach improves latency by 120%
for combined autoindustry (A) and telecom (T) applications,
while the improvement is 30%, on average, for individual
applications running separately. This indicates the feasibility
of the proposed approach for manycore systems running mul-
tiple applications. For two single applications, networking
(N) and office-automation (O), the proposed approach did not
significantly improve (degrades in one case) energy, latency,
and throughput mainly due to the presence of lower number
of tasks and communication traffic (and so less opportunity
of improvement) in those applications.

C. PERFORMANCE UNDER SYNTHETIC TRAFFIC
For synthetic traffic patterns, we compare the proposed deep
RL based run-time heterogeneous NoC configuration with
static homogeneous NoC configuration solution in 16-core
architecture. We analyze whether RL can improve the energy,
latency, and throughput even in regular NoC (without the
help of mapping). As shown in Figure 13, the proposed
configurable NoC solution improves energy by up to 17%
(by 8% on average) compared to the homogeneous static
NoC solution. Energy consumption decreases because of the
proactive resource configuration of the routers and links using
RL based on the past historical traffic requirements and sys-
tem utilization (e.g., link and buffer utilization). As RL agents

FIGURE 11. Latency comparison under E3S benchmarks in 16-core NoC.

FIGURE 12. Throughput comparison under E3S benchmarks in
16-core NoC.

FIGURE 13. Energy comparison under synthetic traffic in 16-core NoC.

learn the policy to maximize the reward under constrained
energy consumption, the proposed approach, on average,
improves latency by 25% compared to the non-ML based

65350 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 14. Latency comparison under synthetic traffic in 16-core NoC.

configuration solution, as shown in Figure 14. Throughput
remains almost same or slightly improved (by 2%) in the
configurable deep RL solution, as shown in Figure 15.

D. HOTSPOT REDUCTION
This proposed work uses a load-balanced mapping solution,
which was adopted from [40], to evenly distribute com-
putation and communication demands of the tasks among
nodes (cores/routers) in NoC to prevent hotspots. Hotspots
increase the probability of several problems, including
electromigration, burning chip, and fault. This work only
focuses only on communication energy hotspots in NoC.
The energy consumption at a router is calculated by sum-
ming up the energy consumption on the router and on
the associated communication links (to adjacent routers).
Figure 16 shows router-wise energy distribution in 16-core
NoC for a mixture of applications (consumer (C), net-
working(N), and auto-industry(A)) under E3S benchmarks.
Router-wise energy distribution results show that energy
is almost uniformly distributed among the routers and the
links except the edge/corner routers/links in 2D-Mesh NoC,
for example, routers 0, 4, and 12 in Figure 16. The bal-
anced energy distribution reduces the possibility of hotspots
in NoC.

E. SCALABILITY
Latency and throughput results are calculated for E3S bench-
marks with the number of cores ranging from 16 to 256
(16, 64, and 256) to test the scalability of the proposed
approach. Figure 17 shows that latency decreases with the
increase in NoC resources as packets face less contention
(and congestion) in NoC links and routers. Because of lower
congestion, NoC throughput increases with the addition of
more NoC resources, as shown in Figure 18. The latency and
throughput performance results demonstrated that the pro-
posed deep RL-enabled self-configurable NoC approach is
scalable.

FIGURE 15. Throughput comparison under synthetic traffic in
16-core NoC.

FIGURE 16. Router-wise energy distribution in 16-core NoC for CNA
applications under E3S benchmarks.

F. REWARDS
The reward for an RL agent is calculated by considering
both latency (delay) and energy consumption to maximize
both performance and energy-efficiency. The proposed deep
RL framework has distributed RL agents, and the Figure 19
shows the reward values with time (cycles) for a sample
distributed RL agent. The reward value increases with time,
as shown in Figure 19, which means that the RL agent
is learning and becoming skillful in time. After around
500 cycles, the reward value saturates and it (reward) does
not change, which means that the RL agent becomes expert
in making decisions. Similar patterns of change in reward
values with time have been observed in the other distributed
RL agents.

G. COMPARISON WITH AN RL WORK
The proposed work has been compared with another ML
work that configures the link bandwidths dynamically using
RL for energy savings [38]. [38] changes the link width by

VOLUME 10, 2022 65351



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

FIGURE 17. Latency for different NoC sizes under E3S benchmarks.

FIGURE 18. Throughput for different NoC sizes under E3S benchmarks.

activating or deactivating wires on links using distributed
RL agents, where an agent stores Q-values for state-action
mapping in a table, namely Q-table. [38] is selected for
comparison as the goal of [38] is to achieve energy-efficient
NoC like this proposed work (proposed work also targets
to achieve high performance). We found that the proposed
neural networks-enabled deep RL approach performs better
than the RL approach in [38] for NoC configuration in terms
of both energy-efficiency and latency (delay). As shown in
Figure 20, EDP in this proposed work is 8% (up to 17%)
lower compared to that of [38]. And the proposed work
performs better than [38] for all the applications under E3S
benchmarks. The major reason for better EDP in this work
is that the proposed solution focuses to address both perfor-
mance (latency) and energy efficiency, where [38] focused
mainly on energy-efficiency.

H. NoC AREA OVERHEAD
The area overhead of NoC is calculated using DSENT tool.
In the concentrated mesh implementation with 4-cores per
router, a router has 4 local ports. For connection with adjacent

FIGURE 19. Rewards for a distributed RL agent.

FIGURE 20. EDP comparison with an RL approach [38].

routers, a router has additional 2 ports (corner nodes) or
3 ports (edge nodes) or 4 ports based on the position of the
router in the mesh architecture. The NoC area overhead is
calculated using the number of buffers and ports at routers,
the number of routers, and the bandwidths of the links. The
hardware overhead for an RL agent is calculated in Sec. III-G.
The NoC area overheads (excluding RL agents) for 16-core,
64-core, and 256-core NoCs are 4.51 mm2, 18.02 mm2,
and 72.08 mm2. The hardware overheads for RL agents for
16-core, 64-core, and 256-core NoCs are 1.34 mm2,
5.38 mm2, and 21.50 mm2. So, the total NoC area overheads
(including RL agents) for 16-core, 64-core, and 256-core
NoCs are 5.85 mm2, 23.40 mm2, and 93.59 mm2. Therefore,
the hardware overhead for RL agents is 23% of the total NoC
area overhead.

I. RESULTS SUMMARY
The uniqueness of the proposed self-configurable NoC solu-
tion is that the solution maximizes both performance and
energy efficiency while it configures the NoC instantly

65352 VOLUME 10, 2022



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

with the help of RL-based distributed intelligent agents.
The proposed solution addresses the challenges of reactive
and slow solutions from heuristics (as in [40]) and opti-
mization solvers (e.g., IBM CPLEX [2]). Because of the
reactive/slow solutions, non-ML based approach [40] can-
not increase or decrease V/F-levels efficiently to provide
both high-performance and energy-efficient solution. Fur-
thermore, as shown in the simulation results, the proposed
solution does not try to maximize the NoC performance
by assigning maximum V/F-levels as high power consump-
tion and corresponding high temperature, even in only one
region of NoC, can create problems, including failure of
electrical components [42], in systems. The proposed solu-
tion is scalable, as demonstrated for NoC with cores ranging
from 16 to 256, and reduces energy hotspots in NoC. The
proposed solution improves EDP by 27%, by 40%, and by
35% for COSMIC, E3S, and synthetic traffic benchmarks,
respectively, compared to corresponding non-ML based solu-
tion [40] and improves EDP by 8% for E3S benchmarks
compared to an RL-based solution [38]. Therefore, the pro-
posed self-configurable NoC solution maximizes perfor-
mance with limited power consumption to quickly provide
energy-efficient and high-performance solution.

V. CONCLUSION
We have proposed dynamic configuration of on-chip
networks on multi/many-core computing systems using
machine learning techniques for energy-efficient and high-
performance NoC. NoC is configured proactively based
on the historical data using deep reinforcement learn-
ing, where distributed reinforcement learning agents take
the voltage/frequency-level configuration actions for NoC
routers and links using neural networks function approxima-
tors. The use of neural network in a reinforcement learn-
ing agent and distributed per-router reinforcement learning
agents in NoC make the proposed approach feasible for
large-scale systems. Simulation results under real and
synthetic traffic demonstrate that the proposed machine
learning-enabled self-configurable NoC solution improves
NoC performance significantly while maximizing energy
efficiency. The scalability and area overhead of the proposed
approach have been demonstrated with 16-core, 64-core, and
256-core NoC architectures. The proposed solution incurs
low hardware overhead for machine learning while providing
self-configurable NoC to meet the real-time requirements of
multiple applications.

REFERENCES
[1] Cerebras Wafer Scale Engine. Accessed: Jun. 16, 2022. [Online]. Avail-

able: https://www.cerebras.net/product/
[2] IBM CPLEX Optimization Studio. Accessed: Jun. 16, 2022. [Online].

Available: https://www.ibm.com/products/ilog-cplex-optimization-
studio?mhsrc=ibmsearch_a&mhq=CPLEX

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, ‘‘GARNET: A detailed
on-chip network model inside a full-system simulator,’’ in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2009, pp. 33–42.

[4] Y. Bai, V. W. Lee, and E. Ipek, ‘‘Voltage regulator efficiency aware power
management,’’ in Proc. 22nd Int. Conf. Architectural Support Program.
Lang. Operating Syst., Apr. 2017, pp. 825–838.

[5] L. Benini and G. De Micheli, ‘‘Networks on chip: A new paradigm for
systems on chip design,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Nov. 2002, pp. 418–419.

[6] K. Bergman et al., ‘‘Exascale computing study: Technology challenges in
achieving exascale systems,’’ Tech. Rep. TR-2008-13, 2008.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
and J. Hestness, ‘‘The gem5 simulator,’’ ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[8] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu,
A. T. Tran, E. Adeagbo, and B. M. Baas, ‘‘KiloCore: A 32-nm 1000-
processor computational array,’’ IEEE J. Solid-State Circuits, vol. 52, no. 4,
pp. 891–902, Apr. 2017.

[9] S. Borkar, ‘‘Exascale computing—A fact or a fiction?’’ in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process. (IPDPS), May 2013, pp. 1–3.

[10] Y. Cai, C. Yang, W. Ma, and Y. Ao, ‘‘Extreme-scale realistic stencil
computations on Sunway TaihuLight with ten million cores,’’ in Proc. 18th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018,
pp. 566–571.

[11] X. Chen, Z. Xu, H. Kim, P. V. Gratz, J. Hu, M. Kishinevsky, U. Ogras, and
R. Ayoub, ‘‘Dynamic voltage and frequency scaling for shared resources
in multicore processor designs,’’ in Proc. 50th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), May/Jun. 2013, pp. 1–7.

[12] Z. Chen andD.Marculescu, ‘‘Distributed reinforcement learning for power
limited many-core system performance optimization,’’ inProc. IEEE/ACM
Design, Autom., Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 1521–1526.

[13] M. Clark, R. Bunescu, A. Kodi, and A. Louri, ‘‘LEAD: Learning-enabled
energy-aware dynamic voltage/frequency scaling in NoCs,’’ in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[14] W. J. Dally and B. Towles, ‘‘Route packets, not wires: On-chip inter-
connection networks,’’ in Proc. 38th Design Autom. Conf., Jun. 2001,
pp. 684–689.

[15] S. Das, J. R. Doppa, D. H. Kim, P. P. Pande, and K. Chakrabarty, ‘‘Optimiz-
ing 3D NoC design for energy efficiency: A machine learning approach,’’
inProc. IEEE/ACM Int. Conf. Comput.-AidedDesign (ICCAD), Nov. 2015,
pp. 705–712.

[16] G. D. Micheli, C. Seiculescu, S. Murali, L. Benini, F. Angiolini, and
A. Pullini, ‘‘Networks on chips: From research to products,’’ in Proc.
ACM/IEEE DAC Design Autom. Conf., Jun. 2010, pp. 300–305.

[17] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very small
physical dimensions,’’ IEEE J. Solid-State Circuits, vol. JSSC-9, no. 5,
pp. 256–268, Oct. 1974.

[18] R. Dick. Embedded System Synthesis Benchmarks Suites (E3S). [Online].
Available: http://robertdick.org/tools.html

[19] D. DiTomaso, T. Boraten, A. Kodi, and A. Louri, ‘‘Dynamic error mitiga-
tion in NoCs using intelligent prediction techniques,’’ in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1–12.

[20] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, ‘‘Dynamic
voltage and frequency scaling in NoCs with supervised and reinforcement
learning techniques,’’ IEEE Trans. Comput., vol. 68, no. 3, pp. 375–389,
Mar. 2019.

[21] H. Hantao, P. D. S. Manoj, D. Xu, H. Yu, and Z. Hao, ‘‘Reinforce-
ment learning based self-adaptive voltage-swing adjustment of 2.5 DI/Os
for many-core microprocessor and memory communication,’’ in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2014,
pp. 224–229.

[22] S. Herbert and D. Marculescu, ‘‘Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,’’ in Proc. ACM/IEEE Int. Symp. Low
Power Electron. Design (ISLPED), Aug. 2007, pp. 38–43.

[23] M. Horowitz, ‘‘Computing’s energy problem (and what we can do about
it),’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2014, pp. 10–14.

[24] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, ‘‘A 5-GHz
mesh interconnect for a teraflops processor,’’ IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep. 2007.

[25] R. Jain, P. R. Panda, and S. Subramoney, ‘‘Machine learned machines:
Adaptive co-optimization of caches, cores, and on-chip network,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016, pp. 253–256.

[26] D.-C. Juan, H. Zhou, D. Marculescu, and X. Li, ‘‘A learning-based autore-
gressivemodel for fast transient thermal analysis of chip-multiprocessors,’’
in Proc. 17th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2012, pp. 597–602.

VOLUME 10, 2022 65353



M. F. Reza: Deep RL Enabled Self-Configurable NoC for High-Performance and Energy-Efficient Computing Systems

[27] E. Kakoulli, V. Soteriou, and T. Theocharides, ‘‘Intelligent hotspot predic-
tion for network-on-chip-basedmulticore systems,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 31, no. 3, pp. 418–431, Mar. 2012.

[28] M. Kas, ‘‘Toward on-chip datacenters: A perspective on general trends
and on-chip particulars,’’ J. Supercomput., vol. 62, no. 1, pp. 214–226,
Oct. 2012.

[29] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, ‘‘Quantifying the
energy cost of data movement in scientific applications,’’ in Proc. IEEE
Int. Symp. Workload Characterization (IISWC), Sep. 2013, pp. 56–65.

[30] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu, and
R. Marculescu, ‘‘Imitation learning for dynamic VFI control in large-scale
manycore systems,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 9, pp. 2458–2471, Sep. 2017.

[31] R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu, and R. Marculescu,
‘‘Machine learning and manycore systems design: A serendipitous sym-
biosis,’’ Computer, vol. 51, no. 7, pp. 66–77, Jul. 2018.

[32] M. A. Kinsy, S. Khadka, and M. Isakov, ‘‘PreNoc: Neural network based
predictive routing for network-on-chip architectures,’’ inProc. Great Lakes
Symp. VLSI (GLSVLSI), May 2017, pp. 65–70.

[33] L. Shang, L. Peh, and N. K. Jha, ‘‘Power-efficient interconnection net-
works: Dynamic voltage scaling with links,’’ IEEE Comput. Archit. Lett.,
vol. 1, no. 1, pp. 1–6, Jan. 2002.

[34] L.-J. Lin, ‘‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,’’ Mach. Learn., vol. 8, nos. 3–4, pp. 293–321,
May 1992.

[35] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and
C. R. Das, ‘‘A case for dynamic frequency tuning in on-chip networks,’’
in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2009, pp. 292–303.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, and A. Graves, ‘‘Human-level control through deep
reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[37] M. F. Reza, ‘‘Deep reinforcement learning for self-configurable NoC,’’ in
Proc. IEEE 33rd Int. Syst.-Chip Conf. (SOCC), Sep. 2020, pp. 185–190.

[38] M. F. Reza, ‘‘Reinforcement learning based dynamic link configuration for
energy-efficient NoC,’’ in Proc. IEEE 63rd Int. Midwest Symp. Circuits
Syst. (MWSCAS), Aug. 2020, pp. 468–473.

[39] M. F. Reza, T. T. Le, B. De, M. Bayoumi, and D. Zhao, ‘‘Neuro-NoC:
Energy optimization in heterogeneous many-core NoC using neural net-
works in dark silicon era,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–5.

[40] M. F. Reza, D. Zhao, and M. Bayoumi, ‘‘Power-thermal aware balanced
task-resource co-allocation in heterogeneous many CPU-GPU cores NoC
in dark silicon era,’’ in Proc. 31st IEEE Int. Syst.-Chip Conf. (SOCC),
Sep. 2018, pp. 260–265.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning represen-
tations by back-propagating errors,’’ in Neurocomputing: Foundations of
Research. Cambridge, MA, USA: MIT Press, 1988, pp. 696–699.

[42] L. Shang and R. P. Dick, ‘‘Thermal crisis: Challenges and potential solu-
tions,’’ IEEE Potentials, vol. 25, no. 5, pp. 31–35, Sep. 2006.

[43] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of Go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[44] C. Sun, C.-H.-O. Chen, G. Kurian, L.Wei, J. Miller, A. Agarwal, L.-S. Peh,
and V. Stojanovic, ‘‘DSENT—A tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling,’’ in Proc.
IEEE/ACM 6th Int. Symp. Netw.-Chip (NOCS), May 2012, pp. 201–210.

[45] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

[46] Y. Tan, W. Liu, and Q. Qiu, ‘‘Adaptive power management using rein-
forcement learning,’’ in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
New York, NY, USA, 2009, pp. 461–467.

[47] M. B. Taylor, ‘‘A landscape of the new dark silicon design regime,’’ IEEE
Micro, vol. 33, no. 5, pp. 8–19, Sep. 2013.

[48] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
‘‘The Raw microprocessor: A computational fabric for software circuits
and general-purpose programs,’’ IEEE Micro, vol. 22, no. 2, pp. 25–35,
Mar. 2002.

[49] K. Wang, A. Louri, A. Karanth, and R. Bunescu, ‘‘IntelliNoC: A holistic
design framework for energy-efficient and reliable on-chip communica-
tion for manycores,’’ in Proc. 46th Int. Symp. Comput. Archit. (ISCA),
Jun. 2019, pp. 589–600.

[50] Z. Wang, W. Liu, J. Xu, B. Li, R. Iyer, R. Illikkal, X. Wu, W. H. Mow, and
W. Ye, ‘‘A case study on the communication and computation behaviors
of real applications in NoC-based MPSoCs,’’ in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, Jul. 2014, pp. 480–485.

[51] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, ‘‘System level analysis
of fast, per-core DVFS using on-chip switching regulators,’’ in Proc. IEEE
14th Int. Symp. High Perform. Comput. Archit., Feb. 2008, pp. 123–134.

[52] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. H. Loh, ‘‘Toward more efficient
NoC arbitration: A deep reinforcement learning approach,’’ inProc. 1st Int.
Workshop AI-Assist. Design Archit. (AIDArc), Jun. 2018, pp. 1–18.

[53] Y. Zhang, X. Hu, and D. Z. Chen, ‘‘Task scheduling and voltage selection
for energy minimization,’’ in Proc. Design Autom. Conf. (DAC), Jun. 2002,
pp. 183–188.

MD FARHADUR REZA (Member, IEEE) rec-
eived the B.Sc. degree in computer science and
engineering from the Bangladesh University of
Engineering and Technology, in 2005, the M.B.A.
degree from the Institute of Business Administra-
tion (IBA), University of Dhaka, in 2011, and the
M.Sc. and Ph.D. degrees in computer science from
the University of Louisiana, Lafayette, in 2014 and
2017, respectively. He was an Assistant Professor
of computer science at the University of Central

Missouri. He was a Postdoctoral Researcher at Virginia Tech and at George
Washington University, in 2019 and 2018, respectively. He has seven years
of working experience in telecom and software industries. He is an Assis-
tant Professor with the Department of Mathematics and Computer Science,
Eastern Illinois University (EIU). He published papers in peer-reviewed jour-
nals and conferences, including ACM/IEEE The International Symposium
onNetworks-on-Chip (NOCS), ACMGLSVLSI, and ElsevierMICPRO. His
research interests include resource management, networks-on-chip, multi-
core architectures, and machine learning/artificial intelligence. He is an
ACM member. He received A. Richard Newton Young Fellow Award from
ACM/IEEE Design Automation Conference (DAC), in 2014. He has been
serving as a Publication Co-Chair for IEEE International System-on-Chip
Conference (SOCC), since 2020. He is a Publicity Co-Chair for IEEE
International Conference on Omni Layer Intelligent Systems (COINS) 2022.
He is with the Technical Program Committee of several conferences, includ-
ing IEEE International System-on-Chip Conference (SOCC) 2020-2022,
IEEE International Conference on Omni Layer Intelligent Systems (COINS)
2020-2022, and IEEE/ACM International Workshop on Network on Chip
Architectures (NoCArc) 2021. He organized a special session in IEEE
International Conference on Artificial Intelligence Circuits and Systems
(AICAS) 2022. He is serving as a Track Chair for the Internet of Things (IoT)
Track in IEEE International Conference on Omni Layer Intelligent Systems
(COINS). He served as a Session Chair for IEEE International System-on-
Chip Conference (SOCC) and IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS) conferences. He serves in the Review
Committeemembers for IEEE International Symposium onCircuits and Sys-
tems (ISCAS) and IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS) conferences.

65354 VOLUME 10, 2022


