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ABSTRACT The segmentation of sequential data can be formulated as a clustering problem, where the
data samples are grouped into non-overlapping clusters with the constraint that all members of each cluster
are in a successive order. A popular algorithm for optimally solving this problem is dynamic programming
(DP), which has quadratic computation and memory requirements. Given that sequences in practice are too
long, this algorithm is not a practical approach. Although many heuristic algorithms have been proposed
to approximate the optimal segmentation, they have no guarantee on the quality of their solutions. In this
paper, we take a differentiable approach to alleviate the aforementioned issues. First, we introduce a novel
sigmoid-based regularization to smoothly approximate the constraints. Combining it with objective of the
balanced kernel clustering, we formulate a differentiable model termedKernel clustering with sigmoid-based
regularization (KCSR), where the gradient-based algorithm can be exploited to obtain the optimal segmen-
tation. Second, we develop a stochastic variant of the proposed model. By using the stochastic gradient
descent algorithm, which has much lower time and space complexities, for optimization, the second model
can perform segmentation on overlong data sequences. Finally, for simultaneously segmenting multiple data
sequences, we slightly modify the sigmoid-based regularization to further introduce an extended variant of
the proposed model. Through extensive experiments on various types of data sequences performances of our
models are evaluated and compared with those of the existing methods. The experimental results validate
advantages of the proposed models. Our Matlab source code is available on github.

INDEX TERMS Sequence segmentation, sequential data, differentiable approximation, stochastic optimiza-
tion, change point detection, temporal clustering.

I. INTRODUCTION
Recently, there has been an increasing interest in developing
machine learning and data mining methods for sequential
data. This is due to the exponential growing in number of
collected data sequences from applications in wide range of
fields, including computer vision [1]–[3], speech process-
ing [4]–[6], finance [7]–[9], bio-informatics [10], [11], clima-
tology [12]–[15] and traffic monitoring [16]–[18]. The main
problem associated with analysis of these sequences is that
they consists of a huge number of data samples. Therefore,
it is desirable to summarize the whole sequences by a much
smaller number of the data representatives, alleviating burden
for the subsequent tasks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

Such compressed and concise summarization can be
obtained via sequence segmentation. More specifically, this
aims at partitioning the data sequences into several non-
overlapping and homogeneous segments of variable dura-
tions, in which some characteristics remain approximately
constant. It is widely recognized in the literature that the
segmentation of sequential data can be considered as a clus-
tering problem. The difference is that all data samples of each
cluster, which represents a segment, are constrained to be in a
successive order. Thus, in this paper, we focus on clustering-
based methods for segmentation of data sequences.

In practice, sequential data are often composed of nonlin-
ear and complex segments. Therefore, kernel methods are
often applied to map data samples into a new feature space
before segmenting. Due to the constraint imposed on the data
samples in each cluster, traditional algorithms for clustering
are inapplicable to the segmentation problem. [19] proposed
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an optimal algorithm based on dynamic programming (DP)
for segmenting data sequence in the features space, which is
associated with a pre-specified kernel andmapping functions.
In general, DP has quadratic time and memory complexi-
ties. It even induces running time of order O(n4),1 where
n is the length of the sequence, in practice. Therefore, it is
intractable to perform segmentation on long data sequence
using DP-based algorithms. To alleviate this issue, many
attempts have beenmade to create approximations to the opti-
mal algorithm. Although a considerable amount of the com-
putational costs are reduced, there are still critical drawbacks
remained in the approximation algorithms. Taking pruned
DP [20] and greedy algorithm [21] as representatives. These
methods sequentially partition the data sequence, returning
one segment boundary (a.k.a, change point) at each iteration.
This strategy offers a reduction in the computational time.
However, its expense is that errors might occur at the earlier
steps and they would influence on the subsequent iterations,
inducing a huge bias in the final results. Massive memory
complexity is also a vital drawback of almost kernel-based
methods. They need store the kernel matrix, which requires
order ofO(n2) space. Therefore, they are prohibited by them-
selves from handling extensively long data sequences.

In this paper, we take a different approach to alleviate
the aforementioned issues. More precisely, we introduce a
novel sigmoid-based regularization, which smoothly approx-
imates the constraints of the segmentation problem. It is
then integrated with balanced kernel clustering to perform
segmentation on sequential data. Our method owns several
preferable characteristics. First, because objective of the pro-
posed model is differentiable w.r.t unconstrained and con-
tinuous variables we can easily optimize it using gradient
descent GD algorithm. Different from the existing methods,
which are just heuristic approximations of the optimal seg-
mentation algorithm, our model has a guarantee on quality
of the solutions as convergence of the GD algorithm was
theoretically proved [22]. Second, the proposed model offers
the applicability of a more efficient optimization algorithm
based on stochastic gradient – the gradient that is estimated
from a subsequence (mini-batch), which is randomly sampled
from the original data sequence at each iteration. Therefore,
the stochastic variant of our model has much lower time and
space complexities, making segmentation of extensively long
data sequences possible. Finally, the proposed model is flexi-
ble.We can easily modify the sigmoid-based regularization to
further form a new extended variant that can simultaneously
segment multiple data sequences. Through extensive exper-
iments on various types of sequential data, our models are
evaluated and compared with baseline methods. The results
validate advantages of the proposed models. In summary,
contributions of this paper are as follows
• Introduction of sigmoid-based regularization that
enables kernel clustering to partition sequential data.
Objective of the proposed method called Kernel

1including time for computing the cost matrix in the feature space [20]

clustering with sigmoid regularization (KCSR) is
smooth and can be effectively solved using gradient-
based algorithm.

• Development of a stochastic variant of KCSR to reduce
the memory complexity, which is prominent in almost
kernel-based methods that prohibits them from handling
large-scale datasets.

• Extension of KCSR for simultaneously segmentation of
multiple data sequences.

• Extensively empirical evaluation of the proposed meth-
ods on widely public datasets shows theirs superiorities
over the existing methods.

The rest of this paper is organized as follows: In Section II,
we review related works that perform segmentation based
on clustering methods. Next, we briefly presents some back-
ground for our proposed models in Section III. Section IV
introduces the proposed model KCSR and its stochastic ver-
sion. This section also describes how to modify the sigmoid-
based regularization to form an extension of KCSR that
can simultaneously segment multiple data sequences. After
illustrating and discussing experimental results in Section V,
we conclude the paper in Section VI.

II. RELATED WORKS
In this paper, we focus on clustering-based methods for
nonlinear segmentation of sequential data. Thus, we will
review related works in the literature of kernel segmentation,
which sometime is referred to as offline kernel change point
detection (CPD) [23]. Here, the change points indicate the
boundaries between the segments. In addition, we also review
temporal clustering methods. They have recently gained
more and more popularity in the computer vision field, where
clustering-based algorithms are employed to segment videos
of human motions.
Offline Kernel Change Point Detection:According to [23],

almost all offline kernel CPDmethods attempt to optimize the
objective function as defined in (2). This is also the objective
of the kernel k-means clustering. Based on the search scheme
for the segment boundaries, existing methods can be divided
into local group, which uses slidingwindow and global group,
which bases on dynamic programming.

The local methods [4], [24]–[27] slide a window with a
large enough width over the data sequence. They then detect,
in the window, a single change point, at which the difference
between the preceding and succeeding samples is maximal.
Although having low computational cost, these methods is
sub-optimal as the whole sequence is not considered when
detecting the changes. Our approach is more similar to the
global methods, which take all data samples into account
for change detection. [19], [28] employed dynamic program-
ming (DP) algorithm to optimally obtain the segment bound-
aries. However, because DP have time complexity of order
O(n4) (including computational time of the cost matrix [20]
in the feature space), it is impractical for handling long data
sequences. To reduce the time complexity, [21] proposed
a greedy algorithm that sequentially detects change points
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one at an iteration. [20] further reduce the space require-
ment by introducing pruned DP, which combines low-rank
approximation of the kernel matrix and binary segmentation
algorithm. Our approach is different from these two methods
as it searches for all the segment boundaries simultaneously.
In addition, quality of its solutions is guaranteed as conver-
gence to optimumof the gradient descent algorithm employed
in our model is theoretically proved [22]. Both pruned DP
and the greedy algorithm are heuristic approximations of the
original DP. Since sequentially detect the changes, errors at
the early iterations are propagated and can not be corrected at
the subsequent iterations.

Temporal clustering refers to the factorization of data
sequences into a set of non-overlapping segments, each
of which belongs to one of k clusters. Maximum margin
temporal clustering (MMTC) [29] and Aligned clustering
analysis (ACA) [30] divide data sequences into a set of non-
overlapping short segments. These subsequences are then
partitioned into k classes using unsupervised support vector
machine [29] or kernel k-means clustering [30]. Recently,
a branch of methods based on subspace clustering has been
proposed. These methods often include two steps. First, given
a data sequences X = [x1, . . . , xn], they learn a new rep-
resentation (coding matrix) Z = [z1, . . . , zn] that charac-
terizes the underlying subspaces structures and sequential
(a.k.a. temporal) information of the original data. Second,
the normalized cut algorithm (Ncut) [31] is then utilized for
segmentation of Z.

To preserve the sequential information in the new repre-
sentation, [32], [33] proposed a linear regularization of the
form ||ZR||1,2, where R ∈ Rn×(n−1) is a lower triangular
matrix with−1 on the diagonal and 1 on the second diagonal.
By minimizing this regularization jointly with the subspace
learning objective, the new representation zj and zj+1 of
the two consecutive samples xj and xj+1, respectively, are
forced to be similar. [1] further integrated a weight matrix
into the linear regularization to avoid equally constraining
on every pair of consecutive samples. Nevertheless, since the
regularization is linear, it is ineffective for handling complex
data structure. To leverage this issue, [34], [35] proposed
manifold-based regularization that preserves the sequential
information for the local neighborhood data samples. This
type of regularization is more preferable [2] as it often out-
performs the linear one in most tests [36]. Our approach also
employs regularization to model sequential characteristics of
the data. However, the sequential information is both globally
and locally preserved in the proposed methods, thanks to
the smoothness of the sigmoid functions. In addition, since
the temporal regularization makes representation of consec-
utive samples become similar, boundaries of the segments
become difficult to be identified. Our methods, in contrast,
approximate the boundaries by midpoints in the summation
of sigmoid functions with high steepness. Therefore, our
models are expected to obtain better segmentation accuracy.

Both temporal clustering and offline kernel CPD
approaches have to store an affinity graph matrix and/or

FIGURE 1. An example of sequence segmentation: (top) an example
sequence of length 23 and (bottom) the corresponding indicator matrix
with number of segments k = 7.

a kernel matrix, which require memory of orderO(n2). This is
also a vital reason that inhibits them from handling long data
sequence. Stochastic variant of our method has significantly
lower space requirement. At each iteration, it approximates
the gradient based on a partial kernel matrix, which corre-
sponds to data samples in the current minibatch. Therefore,
memory complexity of Stochastic KCSR is onlyO(b2), where
b � n is the minibatch size. Among the existing methods,
only pruned DP in [20] is capable of handling large-scale
data because it employs low-rank approximation of the kernel
matrix, which only requires space of order O(r2), where
r � n is the rank of the approximation. Comparison between
performances of Stochastic KCSR and this algorithm on large
datasets will be given in Section V.

III. NOTATIONS AND BACKGROUND
A. NOTATIONS
Throughout this paper, we denote vectors and matrices by
bold lower-case and bold uppercase letters, respectively. For
a particular matrix A, its ith column is denoted as ai and
its element at position (j, i) is expressed by aj,i or Aj,i. The
transposematrix ofA is denoted byA>. IfA is a squarematrix
of size n then its trace is expressed as Tr(A) =

∑n
i=1 Ai,i.

If A ∈ {0, 1}k×n then for any given element Aj,i we have
Aj,i = 0 orAj,i = 1 (A is a binarymatrix). By a� b, wemean
that a is very small in comparison with b.

B. KERNEL SEGMENTATION
The goal of the segmentation task is to partition a data
sequence into several non-overlapping and homogeneous
segments of variable durations. LetX = [x1, . . . , xn] ∈ Rd×n

denotes the given sequence of length n and dimension d . For
the number of segments k that is specified in advance, a valid
solution of the k−segmentation problem can be represented
by an sample-to-segment indicator matrix G ∈ {0, 1}k×n,
whose each element is as follows

Gi,j =

{
1 xj ∈ segment i,
0 otherwise.

(1)

G must satisfy two constraints, including i) Boundary:
G1,1 = 1 and Gk,n = 1 and ii) Monotonicity: for any given
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Gi,j = 1 then for the next columnGi,j+1 = 1 orGi+1,j+1 = 1.
An example of the indicator matrix is given in Figure 1.
To discover segments with complex and nonlinear struc-

tures, kernelization is often applied. More specifically, the
data sequenceX is mapped onto some high dimensional space
(a.k.a. feature space) associated with a pre-specified kernel
function κ(·, ·) : Rd

× Rd
→ R. The mapping function

φ(·) is implicitly defined by φ(xi) = κ(xi, ·), resulting the
inner-product φ(xi)φ(xj) = κ(xi, xj). A common objective
for segmentation is to minimize the total summation of the
intra-segment variances [23]. Thus, the optimization problem
is often formulated as follows

argmin
G∈G

k∑
j=1

n∑
i=1

Gj,i ||φ(xi)− µj||
2
2, (2)

where G is the set of all valid sample-to-segment indicator
matrices and µj is the mean of the jth segment in the feature
space. We can observe that the objective of this problem
is similar to that of the kernel k−means and it is difficult
to be minimized because G is the discrete variables with
combinatorial constraints.

C. BALANCED KERNEL k−MEANS
As mentioned above, kernel segmentation is closely related
to kernel k−means due to the similarity between their objec-
tives. In fact, this objective can be rewritten in matrix form.
More specifically, we can compute the corresponding kernel
matrix K ∈ Rn×n, where each element Ki,j = φ(xi)φ(xj) =
κ(xi, xj) represents how likely the two samples are assigned
to the same class. Let G ∈ {0, 1}k×n denotes the associ-
ated (unknown) sample-to-class indicator matrix of X , where
Gi,j = 1 if xj is assigned to the ith class and zero otherwise.
Here, different from the segmentation task, there is no con-
straint on the indicator matrix G. Then the objective function
of kernel k−means [37]–[39] can be expressed as follows:

JKKM (G) = Tr (LK), (3)

where L = In − G>
(
GG>

)−1
G.

Kernel k-means is a strong approach for identifying clus-
ters that are non-linearly separable in the original space.
However, similar to its linear counterpart, kernel k-means is
sensitive to outliers. More specifically, it often outputs unbal-
anced results that consists of too big and/or too small clusters
under presents of anomaly data samples [40]. To alleviate this
issue, recently [41] has proposed a simple regularization on
the indicator matrix of the form Tr(G11>G>), where 1 is a
vector, whose all elements equal to one. By minimizing this
regularization jointly with the clustering objective, we can
prevent a too small or too great number of data samples from
being partitioned into a cluster. We now can combine (3) and
the regularization to form a new objective of balanced kernel
k-means

JBKKM (G) = Tr (LK)+ λTr(G11>G>), (4)

where λ is a positive parameter that controls the balanced
regularization.

FIGURE 2. Toy examples of (a) Clustering task and (b) Segmentation task,
where the given data and the corresponding indicator matrix are
depicted. Data samples from the same cluster or segment have identical
symbol and color. Segmentation is different from clustering in that data
samples of the same segment must be in a successive order.

IV. THE PROPOSED METHOD
A. KERNEL CLUSTERING WITH SIGMOID-BASED
REGULARIZATION (KCSR)
Our intuitive idea is to reuse the robust objective of bal-
anced kernel k−means (4) for segmentation of data sequence
X = [x1, . . . , xn] ∈ Rd×n. However, the challenge is
that the sample-to-segment indicator matrix must satisfy two
constraints, including boundary and monotonicity, while the
indicator matrix for clustering does not. This difference is
illustrated Figure 2. To close this gap and enable the cluster-
ing approach to segment data sequences, we introduce a novel
regularization that smoothly approximates the two above con-
straints. The new regularization changes the variables from a
discrete to continuous domains. Therefore, our problem can
be solved using gradient descent (GD) algorithm. Since, the
convergence of GD was already proved [22], quality of the
proposed models’ solutions is guaranteed.

The proposed regularization is based on the sigmoid func-
tion. A basic sigmoid function is defined as

fsigmoid(x) =
1

1+ e−α(x−β)
, (5)

where β specifies the midpoint and α controls the steepness
of the function curve at the midpoint. Figure 3 depicts a
sigmoid function, where the midpoint β is fixed at 11.5 and
the parameter α varies from 0.1 to 10.
We can observer that the higher α is the steeper function

curve at the midpoint becomes. In addition, the sigmoid func-
tion is monotonic and almost piecewise constant. Therefore,
it allows us to roughly partition a sequence into two segments,
where the parameter β approximates the segment boundary.
If we denote τj ∈ [1, 2] (continuously valued) as segment
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FIGURE 3. Sigmoid function with different values of the parameter α.

label of sample xj, then

τj ≈ 1+ fsigmoid(j, α, β). (6)

For instance, if α = 10 and β = 11.5, then τj ≈ 1 for
j < 11.5 and 2 otherwise. To generalize for cases, where the
number of segments k > 2, we propose to use a summation
of k − 1 sigmoid functions with different parameters βi for
1 ≤ i ≤ k − 1.

τj ≈ 1+
k−1∑
i=1

fsigmoid(j, α, βi). (7)

Figure 4 illustrates an example of a summation of sigmoid
functions defined in (7). Here, the steepness parameter α is
shared among the sigmoid functions within the summation.
k − 1 midpoint parameters β = [β1, . . . , βk−1] approximate
the segment boundaries between the k segments. Note that
the midpoints must satisfy 1 ≤ β1 < . . . < βk−1 ≤ n to
guarantee the summation of sigmoid functions monotonically
increasing. Thus, we regularize the β by further introducing
k parameters γ1, . . . , γk such that

βi =

(
1−

∑i
i′=1 e

γi′∑k
i′=1 e

γi′

)
+ n×

∑i
i′=1 e

γi′∑k
i′=1 e

γi′
. (8)

In equation (8), the ratio
∑i

i′=1 e
γi′∑k

i′=1 e
γi′

is in the range [0, 1].

Therefore, βi always satisfies 1 ≤ βi ≤ n. In addition,
the ratio becomes larger as i increases. This guarantees that
βi′ < βi for 1 ≤ i′ < i ≤ k − 1.
It is notable that the summation of sigmoid functions in

Figure 4 smoothly approximates the indicator matrix G of
segmentation example in Figure 2(b). To make the observa-
tion more clear, we introduce the following approximation to
each element of G

Gi,j ≈ max
(
0, 1− |τj−i|

)
. (9)

This equation map the segment label τj from the range [1, k]
to the range [0, 1] for approximating the sample-to-segment
indicator matrix.

We now can formulate an optimization problem
that combines objective of the balanced kernel cluster-
ing with sigmoid-based regularization for segmentation.

FIGURE 4. An example of the summation of sigmoid functions with a
shared parameter α = 10 and k − 1 different midpoint parameters
β1, . . . , βk−1, where k = 7.

Algorithm 1 Gradient Descent Algorithm for KCSR
Require: Kernel matrix K , number of segments k , steepness

parameter α, tolerance ε.
Ensure: Optimal parameters γ ∗ = [γ ∗1 , . . . , γ

∗
k ]
>.

1: repeat
2: compute gradient ∇γ = ∂J

∂γ
;

3: compute stepsize η using Armijo-Goldstein line
search [22], [42];

4: update γ (t+1) = γ (t) − η∇γ (t);
5: until |J (γ (t+1))− J (γ (t))| ≤ ε

Let K ∈ Rn×n be the kernel matrix of the data sequence X
then our kernel-based segmentation optimization problem is

argmin
γ1,...,γk

Tr (LK)+ λTr(G11>G>)

s.t. L = In − G>
(
GG>

)−1
G,

Gi,j = max
(
0, 1− |τj−i|

)
∀i, j,

τj = 1+
k−1∑
i=1

fsigmoid(j, α, βi) ∀j,

βi =

(
1−

∑i
i′=1 e

γi′∑k
i′=1 e

γi′

)
+ n×

∑i
i′=1 e

γi′∑k
i′=1 e

γi′
∀i. (10)

Since γ = [γ1, . . . , γk ] are unconstrained and continuous
parameters, we can optimize objective function in (10) using
the gradient descent algorithm. Let J (γ ) denotes the objective
function in (10), then the gradient w.r.t parameters γ can be
computed using chain rule.

∇γ =
∂J (γ )
∂γ

=
∂J (γ )
∂G
×
∂G
∂τ
×
∂τ

∂β
×
∂β

∂γ
, (11)

where τ = [τ1, . . . , τn]. More details on derivation of the
gradient w.r.t γ is given in Appendix. We call the proposed
model Kernel clustering with sigmoid regularization (KCSR)
and its optimization algorithm is given in Algorithm 1.

B. STOCHASTIC KCSR
Kernel segmentation allow us to capture nonlinear structure
in the data. However, this advantage is achieved at the expense
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TABLE 1. Time and space complexities of different segmentation methods. Here, n denotes length of the data sequence and k is the number of segments.
nmax denotes the maximum length of divided subsequences in ACA, d is dimension of the new representation Z in OSC and TSC. t denotes number of
total iterations. The rank of the approximation of the kernel matrix in AKS is denoted by r and b is the mini-batch size in SKCSR. Note that b� n.

of much higher complexities in both terms of computational
time and storage requirement. More specifically, given a
sequence of n data samples, existing kernel-based methods
compute the kernel matrix K , whose both time and memory
complexities are of order O(n2). Note that this is also true
for temporal clustering methods, where the affinity graph
matrix of sizeO(n2) is computed and stored while performing
Ncut algorithm. When n is large, these methods become
computationally difficult. For example, average length of the
acceleration data for activity recognition in the experimental
section is about 125K . The corresponding kernel matrix K
requires up to approximately 116.4 GB for storage, which is
definitely out of memory for a regular computer.

Our method is also based on the kernel matrix. Especially,
at each iteration, our method computes the gradient using the
kernel matrix, which makes it very slow and even impossible
due to the large memory requirement for handling long data
sequences. Fortunately, since objective function of KCSR is
differentiable, we can reduce the complexities by using the
stochastic gradient descent (SGD) [43]–[45]. SGD estimates
the gradient from a randomly sampled subsequence2 (a mini-
batch), which consists of a much smaller number of samples,
from the original sequence. Let b � n denotes length of the
randomly sampled subsequence X (t), where t expresses the
iteration index. Then, the stochastic gradient is estimated as
follows

∇γ =
∂J (γ )
∂G(t)

×
∂G(t)

∂τ
×
∂τ

∂β
×
∂β

∂γ
. (12)

In equation (12), ∂J (γ )
∂G(t)

is only associated with a partial kernel

matrixK (t) ∈ Rb×b, which corresponds to the samples inX (t).
Therefore, it is much more efficient in terms of both running
time and memory consumption than computing the full-batch
gradient as in equation (11). Details of the algorithm is given
in Algorithm 2 and complexity comparison between the pro-
posed methods and several baselines are given in Table 1.
We note that convergences of both gradient with step size
found byArmijo-Goldstein line search [22], [42] and stochas-
tic gradient descent algorithms with vanishing step size are
theoretically proven. In fact, it is well-known [46], [47] that
gradient descent (GD) after T iterations can find a solution
with error O(T−1) and stochastic gradient descent (SGD)
after T iterations can find a solution with error O(T−0.5).
Thus, both KCSR and SKCSR can obtain good solutions for
problem defined in (10) with enough loops.

2By sub-sequence, we mean that order and indexes of samples in the
original sequence are preserved in the randomly sampled mini-batch.

Algorithm 2 Stochastic Gradient Descent Algorithm for
KCSR
Require: Data sequenceX , number of segments k , steepness

parameter α, number of iterations T , minibatch size b,
initial learning rate η0, momentum µ ∈ [0, 1), weight
decay ρ ∈ (0, 1].

Ensure: Optimal parameters γ ∗ = [γ ∗1 , . . . , γ
∗
k ]
>.

1: for t = 1, . . . ,T do
2: η = η0 × ρ

t ;
3: randomly sample a sub-sequence X (t) of length b;
4: compute the partial kernel matrix K (t);
5: compute the stochastic gradient ∇γ = ∂J

∂γ
based on

K (t) and original indexes of samples in X (t);
6: 1γ(t) = η∇γ − µ1γ(t−1);
7: γ (t) = γ (t−1) +1γ(t);
8: end for

C. MULTIPLE KCSR
In practice, at some particular circumstances, we need to
perform segmentation on multiple data sequences. If these
sequences are not in relation, the problem is effortless since
segmentation algorithms can be applied on each sequence
independently. However, when the sequences are related to
each other, performing multiple segmentation without con-
sidering relation among the sequences would induces inferior
results.We take sequential segmentation andmatching (SSM)
problem as a study case. Given m ≥ 2 data sequences, SSM
aims at partitioning each sequence into several homogeneous
segments and then establishing the correspondences between
these segments from different sequences. A popular appli-
cation of SSM is human action analysis. Specifically, the
human action videos are segmented into primitive actions
and the resulted sequences of the action segments are then
aligned [48]–[50].

To solve the SSM problem, in this work, we introduce an
extension of the proposed model termedMultiple kernel clus-
tering with sigmoid-based regularization (MKSSR).MKSSR
jointly partitions each data sequences into k segments such
that the cth segments of all them sequences are matched.3 Let
Xp ∈ Rd×np for 1 ≤ p ≤ m denotes the pth data sequence and
Gp ∈ Rk×np be its corresponding sample-to-segment indi-
cator matrix. MKSSR firstly concatenates all the sequences
to form a single long sequence X = [x1, . . . , xm] ∈ Rd×n,
where n =

∑m
i=1 np. Then G = [G1, . . . ,Gm] ∈ Rk×n is the

3Data samples of the cth segments from different sequences belong to the
cth class for 1 ≤ c ≤ k .
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FIGURE 5. Illustration of the cut-off summation of sigmoid functions. (a) A toy example of a concatenation of two sequences (m = 2,n1 = 23,n2 = 30)
and its corresponding indicator matrix (k = 7). (b) The cut-off summation of sigmoid functions, whose two components are depicts in the two first
subfigures, can smoothly approximate the indicator matrix in the toy example.

corresponding indicator matrix of X . Similar to the original
KCSR, each element of G is defined as in (9). However,
in MKCSR, the segment label τj is computed as following

τj = 1+
m(k−1)∑
i=1

fsigmoid(j, α, βi)

+ (1− k)
m−1∑
p=1

fsigmoid(j, α,
p∑

q=1

nq + 0.5). (13)

The function (13), which we call as cut-off summation of sig-
moid functions, consists of two components. The first compo-
nent is the summation of sigmoid functions. It plays a similar
role as (7) in KCSR. The second component presents the cut-
off points (a.k.a junction points), at which two among the
m original data sequences are connected. It will reset the
segment label from k to 1 after passing the final sample of one
sequence and reaching a new sample from the next sequence.

The cut-off summation of sigmoid functions and its compo-
nents are illustrated in Figure 5.
The formulation (13) has m(k − 1) midpoint parameters,

in which β(p−1)(k−1)+1, . . . , βp(k−1) approximate the segment
boundaries within the range [1+

∑p−1
q=1 nq,

∑p
q=1 nq] for 1 ≤

p ≤ m. Therefore, we introduce mk parameters γ1, . . . , γmk
such that for (p− 1)(k − 1)+ 1 ≤ j ≤ p(k − 1)

βi =

1+
p−1∑
q=1

nq

1−

∑i
i′=(p−1)k+1 e

γi′∑pk
i′=(p−1)k+1 e

γi′


+

p∑
q=1

nq

∑i
i′=(p−1)k+1 e

γi′∑pk
i′=(p−1)k+1 e

γi′
. (14)

By replacing the last two constraints in (10) with (13)
and (14) we can obtain the optimization problem of MKCSR.
The objective function is then minimized w.r.t mk param-
eters γ1, . . . , γmk using the stochastic gradient descent
algorithm.
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V. EXPERIMENTS
A. BASELINES
We compare KCSR and its stochastic variant SKCSR with
the following baselines

• Aligned clustering analysis (ACA) [30] – a tempo-
ral clustering method that combines k−means with
Dynamic time alignment kernel [51].

• Sequential subspace clustering (SSC) [1] – a tempo-
ral clustering method that combines subspace cluster-
ing with linearly temporal regularization weighted by
`1−norm sequential graph.

• Temporal subspace clustering (TSC) [2] – a temporal
clustering method that combines subspace clustering
with manifold-based temporal regularization and low-
rank constraint.

• Approximate kernel segmentation (AKS) [20] –
a heuristic approximation of the optimal kernel seg-
mentation, where the solution is obtained by pruned DP
algorithm that combines a low-rank approximation of
the kernel matrix and the binary segmentation algorithm.

• Greedy kernel segmentation (GKS) [21] – another
heuristic approximation of the optimal kernel segmen-
tation that detects the segment boundaries sequentially
using greedy algorithm.

B. DATASETS
To evaluate performances of the abovemethods, we use a syn-
thetic dataset and five real-world and widely public datasets.

1) SYNTHETIC DATA
We first generate 2D data samples that form four circles of
different diameters. They are illustrated in Figure 8(a). The
number of data samples of each circle is randomly selected
in range [500, 1500] and also constrained to be different. For
instance, in our case, the numbers of data samples of the cir-
cles from low to high diameters are 832, 1018, 1174 and 843,
respectively. We then rearrange the generated data samples in
contiguous order, i.e. data samples of one circle do not mix to
the other circles. By doing so, each circle in the original 2D
space corresponds to a segment in the new sequential data.
See Figure 8(b) for illustration.

2) WEIZMANN DATA
TheWeizmann dataset [52] consists of 90 videos of nine sub-
jects, each performing ten actions: bend, run, jump-in-place
(pjump), walk, jack, wave-one-hand (wave1), side, jump-
forward (jump), wave-two-hand (wave2), and skip. Similar
to [53], videos of the same subjects are concatenated into
a long video sequence following the presented order of the
actions. We then subtract background from each frame of
these video sequences and rescale them to the size 70 × 35.
For each 70−by−35 rescaled frame, we compute the binary
feature as shown in Figure 6(a). To reduce the dimensions of
the feature space (2450), the top 123 principal components
that preserve 99% of the total energy are kept for experiments.

FIGURE 6. (a) Concatenated action videos of subject 1 in Weizmann
dataset and (b) the rearranged digit images sequence in MNIST dataset.
Each data sequence consists of 10 non-overlapping segments and only
one representative frame of each segment is depicted.

3) MMI FACIAL ACTION UNITS
We exploit the MMI Facial Expression dataset [54], which
contains more than 2900 videos of 75 different subjects, each
performing a particular combination of Action Unit (AU).
In this paper, we focus on videos of AU12, which corresponds
to a smile. Although, these videos consist of different num-
ber of frames, they are composed of exactly five segments
with the following order: neutral, onset, apex, offset, neutral,
where neutral is when facial muscle is inactive, apex is
when facial muscle intensity is strongest, and onset is when
facial muscle starts to activate or offset is when facial muscle
begins to relax. Following the same pre-processing proce-
dure as in [55], we cropped and aligned the face using dlib-
ml [56]. The results are depicted in Figure 7. We then convert
them to grayscale and reduce their dimension to 400 using
whitening PCA. We finally selected videos of five subjects
2, 3, 6, 14 and 17 for experiments. Their ground-truth frames-
to-segment lables are already given in the original dataset.

4) GOOGLE SPOKEN DIGITS
Google’s Speech Commands (GSC) [57], [58] is a large audio
dataset that consists of more than 30 categories of spoken
terms. For each category that relates to digits from ‘‘one’’ to
‘‘nine’’, we randomly select a clean recording. These record-
ings are then concatenated, forming a long audio sequence
with 19 segments (9 segments of active voice and 10 silent
segments) (see Fig. 10). We further add white noise, which is
also provided in the GSC dataset, to make the segmentation
problem more challenging. Finally, a sequence of acoustic
features, which are 13-dimensional mel–frequency cepstral
coefficients (MFCCs) [59] for every 10ms of a 25ms window,
is computed from the noisy audio sequence. The annotation
is manually obtained based on the log filter-bank energies of
the clean audio.

5) ORDERED MNIST DATA
the MNIST dataset [60] consists of 28 × 28 grayscale digit
[0, 9] images divided into 60K/10K for training/testing.
Since all the compared methods are unsupervised and require
no training phase, we use all 70K images to perform seg-
mentation. Note that the original data is not exact suited to
the sequential assumption. Following the same setting of [2],
we rearrange order of the images such that those of the
same digit form a contiguous segment and the ten segments
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FIGURE 7. Videos of five subjects (S002, S003, S006, S014 and S017) performing an action unit 12 that corresponds to smile
taken from MMI Facial action units dataset. The representative facial images of the segments are depicted. The bottom of
each video shows duration of the corresponding ground truth frame-to-segment labels along with the total number of
frames.

are concatenated into a very long images sequence (see
Figure 6(b)). Different from [2], where only 2K images were
selected for experiment, our ordered MNIST data consists
of the whole 70K images. To handle this large-scale data,
temporal clustering and kernel CPD methods requires up to
36.5 GB to store the kernel and/or affinity graph matrices,
which is impractical for implementation on a single personal
PC. Among the compared methods, only SKCSR and AKS
with low memory complexities can perform segmentation on
this dataset.

6) ACCELERATION DATA4

The acceleration data [61] are acquired from a triaxial
accelerometer mounted on the chests of 15 subjects, each per-
forming a sequence of activities such as working at computer,

4The acceleration dataset is available in UCI repositories and can
be retrieved from https://archive.ics.uci.edu/ml/machine-learning-databases/
00287/.

standing, walking, going updown stairs and talking. The aims
of our experiments is to partition the data sequences into
segments that correspond to the activities. Thus, we firstly
pre-process the data. For each subject, we add squares of
signals from the three axles. An example is depicted in
Figure 11. We then transform the obtained summation signal
using wavelet transform with scale factor 64 and the Morlet
wavelet as the mother wavelet function. The resulting 2D
wavelet coefficient matrix C is of the size 64-by-nacc, where
nacc is the length of the original acceleration signal. Note that
the wavelet coefficients C are complex numbers. Thus we
take its modulus as input for the methods in our experiments.
Similar to the Ordered MNIST data, this dataset consist
of long acceleration sequences. The average nacc is 125K .
Therefore, the methods with memory complexities of order
O(n2) will require up to approximately 116.4 GB, which is
unaffordable in our case, for storage. In our experiments, only
SKCSR and AKS can handle this dataset.
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FIGURE 8. Synthetic experiment: (a) data generated in 2D space, (b) the data after contiguously rearranging and visualization of segmentation
results returned by all the compared methods. Different colors represent different clusters.

C. EVALUATION MEASURES
Given a specific value k , while KCSR, SKCSR, AKS and
GKS return exactly k non-overlapping segments, tempo-
ral clustering-based methods partition samples of the data
sequence into k clusters that maybe dispersed in discon-
tiguous segments. Since, all the compared methods base on
clustering scheme, we use accuracy and normalized mutual
information [62] as evaluation metrics to assess the segmen-
tation results.

Let L̂ = [l̂1, . . . , l̂n] and L = [l1, . . . , ln] be the obtained
labels and ground-truth labels of a given data sequence X =
[x1, . . . , xn]. l̂j = i (similar for lj) for 1 ≤ i ≤ k indicates
that xj belongs to cluster (segment) ĉi. The accuracy (ACC)
is defined as follows:

ACC =

∑n
j=1 δ(lj,map(l̂j))

n
, (15)

where δ(a, b) is the delta function that equals one if a = b
and zero otherwise and map(l̂j) is the permutation mapping

function that maps label l̂j to the equivalent ground truth label.
In this work, we use Kuhn-Munkres algorithm [63] to find the
mapping.

Let Ĉ = [ĉ1, . . . , ĉk ] and C = [c1, . . . , ck ] be the obtained
clusters and the ground-truth clusters. Their mutual informa-
tion (MI) is

MI (C, Ĉ) =
∑

ci∈C,ĉi′∈Ĉ

p(ci, ĉi′ ) log2
p(ci, ĉi′ )
p(ci)p(ĉi′ )

, (16)

where p(ci) and p(ĉi′ ) are the probabilities that a data sample
arbitrarily selected from the sequence belongs to the clusters
ci and ĉi′ , respectively, and p(ci, ĉi′ ) is the joint probability
that the selected data sample belongs to both ci and ĉi′ . This
metric is normalized to the range [0, 1] as follows:

NMI (C, Ĉ) =
MI (C, Ĉ)

max(H (C),H (Ĉ))
, (17)

where H (C) and H (Ĉ) are the entropies of C and Ĉ,
respectively.
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TABLE 2. Segmentation results on six datasets, including synthetic data, Weizmann action sequences, MMI Facial smiling video, noisy Google spoken
digits, ordered MNIST data and Acceleration sequences, returned by different methods. The mean score of each methods over five random runs along
with its variance are reported. The symbol ‘‘–’’ means that there is no result due to the shortage of memory resources.

D. PARAMETER SETTINGS
We select the optimal parameters for each method to achieve
the best performance. The number of clusters k of all the
compared methods is set to the number of segments avail-
able in the datasets. For ACA, its parameters nMa and nMi
that specify the maximum and minimum lengths of each
divided subsequence, respectively, are data-dependent. Let
n be the sequence length, we select nMa from a rounded
set {0.01n, 0.02n, 0.04n, 0.06n, 0.08n, 0.1n} and set nMi =
nMa
2 . For temporal subspace clustering methods, including

SSC and TSC, the most important parameter is that controls
the sequential regularization for the new representation Z.
We select this parameter from the set {1, 5, 10, 15, 20, 25}
and the other parameters are set according to the original
papers. For the proposed methods, we fix the parameter that
controls the steepness of the summation of sigmoid functions
at the midpoints α = 10. The tolerance ε for convergence ver-
ification in KCSR is fixed at 10−6. For all the datasets, we use
the Radial Basis Function (RBF) Kernel5 with proper width σ
for AKS, GKS and the proposed methods. The minibatch size
b of SKCSR and the rank r of the approximation of the kernel
matrix in AKS are kept equal. Their values are selected from
a set {64, 128, 256, 512, 1024, 2048}. Note that, SKCSR ter-
minates after processing T minibatches. We set T such that
T × b ≥ 50n (passing through the data sequence at least
50 times).

E. RESULTS DISCUSSION
1) EVALUATION OF KCSR AND SKCSR
Figure 8 visualizes the segmentation results on synthetic data
and the evaluation scores are given in the first rows of Table 2.
We can observe that each segment of the generated data
sequence has a circular structure. Therefore, the nonlinear
regularization in sequential representation learning of SSC
is ineffective on the synthetic data. TSC performed signifi-
cantly better. The manifold-based regularization allows it to
be able to capture the nonlinear structure in the data. Our
methods also perform segmentation based on regularization.

5RBF kernel: κ(xi, xj) = e
−
||xi−xj||

2
2

2σ2 .

FIGURE 9. Visualization of segmentation results returned by the
proposed methods and baselines on Weizmann dataset. Different colors
represent different clusters.

However, different from SSC and TSC, where the regular-
ization is just local,6 the summation of sigmoid functions
of KCSR and SKCSR globally regularizes the whole data
sequences and the locality is ensured by its smooth nature.
Therefore, the proposed methods obtained the best perfor-
mance on the synthetic dataset.

On the real-world data, includingWeizmann action videos,
MMI Facial smiling videos and Google spoken digits audio,
the proposed models also outperformed the baselines. Eval-
uation scores of the corresponding segmentation results are
shown in the second, third and fourth rows of Table 2. We can
observe that ACA also had good performances on these
datasets. Although ACA also performs segmentation based
on clustering as our methods do, it cannot guarantee to find
exact k non-overlapping segments. Therefore, its evaluation
scores are slightly lower than those of the proposed models.
In comparison with heuristic approximations AKS and GKS,
our models also had better performances. Similar to AKS and
GKS, our models also search for segment boundaries. They
approximate the boundaries bymidpoints β of the summation
of sigmoid functions. However, different from these heuris-
tic approximations that search for the segment boundaries
sequentially, the proposed models simultaneously obtain all
the β via gradient-based algorithm. As convergence of this
optimization algorithm is theoretically proved, optimality
of the solutions is guaranteed. To qualitatively assess the

6The regularization only preserves the local relationship on representation
of consecutive samples.
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FIGURE 10. From the top to the bottom: clean audio of spoken digits
[1,9], the audio contaminated by white noise, log filter-bank energies of
the clean audio used for manual annotation (blue lines depict ground
truth segment boundaries) and Mel-frequency cepstrum of the noisy
audio (vertical lines show the midpoints β of the summation of sigmoid
functions returned by SKCSR).

performances of the compared methods, we also visualized
the segmentation results on Weizmann video and Google
audio datasets in Figure 9 and Figure 10, respectively. These
visualization further validate the superior performances of
our methods over those of the baselines.

On these datasets, we also observe that evaluation scores
of SKCSR are greater than those of KCSR. Thus, we further
investigate convergence curves of these models. Figure 13
depicts those of SKCSR and KCSR on Weizmann action
videos and Google spoken digits audios, respectively. It is
clear that superior performances of SKCSR arise from the
exploitation of stochastic gradient descent (SGD) algorithm.
SGD allows SKCSR to update its parameter γ more fre-
quently due to fast estimation of the stochastic gradient.
In addition, SGD takes randomness of the data into account
and enjoys theoretical guarantee on convergence in an expec-
tation sense [44]. Therefore, SKCSR is more robust to noise
in the data and able to achieve better solution than KCSR.

SKCSR also showed its superior efficiency over the orig-
inal KCSR and most the other baselines on the ordered
MNIST and Acceleration data. Recall that the ordered
MNIST data consists of 70K samples. Acceleration data
contains even much more longer data sequences, where
the average length is 125K . This makes implementation of
the memory-demanding methods impossible on regular per-
sonal PCs. Among the baselines, only AKS with memory

FIGURE 11. From the top to the bottom: Acceleration signal of the first
subject, the corresponding ground-truth segment labels and the
segmentation results returned by AKS and SKCSR, respectively, on the
Acceleration dataset.

complexity of orderO(r2), where r � n is the rank of approx-
imation of the kernel matrix, can handle the ordered MNIST
and Acceleration data. However, since AKS employs binary
segmentation to sequentially detect the segment boundaries,
its solutions are not optimally guaranteed. Visualization of
the segmentation results on the Acceleration data in Fig. 11
and the evaluation scores in the fifth and sixth rows of Table 2
validate the advantages of SKCSR.

2) EVALUATION OF MKCSR
We next evaluate performance of MKCSR – an extension
of KCSR for handling multiple data sequences. We utilize
concatenated Weizmann action videos and MMI Facial AU
videos in this experiment. For the Weizmann data, the first,
second and third subjects are selected and their correspond-
ing action videos are concatenated to form a long sequence
that consists of 30 segments, each of which belong to one
of the ten action categories. For the MMI Facial AU data,
videos of all the subjects are concatenated. The new video
sequences consists of 491 frames and 15 segments. We com-
pare MKCSR with temporal clustering methods, including
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FIGURE 12. Visualization of segmentation results of SSC, TSC, ACA and MKCSR on three concatenated action video sequences from Weizmann dataset.

FIGURE 13. Convergence curves of SKCSR (with stochastic gradients
estimated from mini-batches b = 256) and KCSR (with gradients
estimated from full batch (the whole data sequence)) on (a) Weizmann
and (b) Google spoken digits datasets.

TABLE 3. Segmentation results on concatenated video sequences from
Weizmann and MMI Facial AU datasets returned by different methods.
The mean score of each methods over five random runs along with its
variance are reported.

SSC, TSC and ACA. For all the compared methods, we set
the number of clusters k = 10 and k = 15 for the Weiz-
mann and MMI Facial AU data, respectively, and select the
other parameters following the same scheme as mentioned in
subsection V-D.

Fig. 12 visualizes the segmentation results on multiple
video sequences from Weizmann data and Table 3 shows
the evaluation scores on both Weizmann and MMI Facial

AU datasets. Simultaneous segmentation of multiple data
sequences is a challenging task. As we can observe that,
in comparison with segmentation results of a single sequence
(the second and third rows of Table 2), evaluation scores
of SSC, TSC and ACA on the multiple data sequences are
significantly reduced. MKCSR, however, compared to its
original method KCSR, could preserve a great amount seg-
mentation accuracy. As we can see that MKCSR obtained up
to 0.8509 of ACC and 0.8732 of NMI on Weizmann data.
For MMI Facial AU data, MKCSR also achieved 0.9351 of
ACC and 0.9221 of NMI. These results validate that MKCSR
can inherit advanced properties from SKCSR to perform
efficiently and effectively on multiple data sequences.

VI. CONCLUSION
Approximation of segmentation for fast computational time
and low memory requirement is very important as nowadays
more and more large sequential datasets are available.
Previous works for approximating optimal segmentation
algorithm are either ineffective or inefficient because they
still involve in optimization over discrete variables. In this
paper, we proposed KCSR to alleviate the aforementioned
issue. Our model combines a novel regularization based on
sigmoid function with objective of balanced kernel k−means
to approximate sequence segmentation. Its objective is dif-
ferentiable almost every where. Therefore, we can use
gradient-based algorithm to achieve the optimal segmen-
tation. Note that, our model update all the parameters of
interest in an unified manner. This is in contrast to existing
approximation methods that sequentially update the segment
boundaries, which has no guarantee on quality of the solu-
tions. To further reduce the time and memory complexi-
ties, we introduce SKCSR – a stochastic variant of KCSR.
SKCSR employs stochastic gradient descent, where the gra-
dient is estimated from a randomly sampled subsequence,
for updating parameters of the model. Thus, it can avoid
storing large affinity and/or kernel matrix, which is a crit-
ical issue that inhibits existing methods from segmenting
long data sequence. Finally, we modify the sigmoid-based
regularization to develop MKCSR – an extended variant
of KCSR for simultaneous segmentation of multiple data
sequences. Through extensive experiments on various types
of sequential data, performances of all the proposed models
are evaluated and compared with those of existing methods.
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The experimental results validates the claimed advantages of
the proposed models.

APPENDIX
DERIVATION OF THE GRADIENT
In this section, we provide derivation of the gradient w.r.t γ .
Recall that our objective function is

J (γ ) = Tr
((

In − G>
(
GG>

)−1
G
)
K
)

+ λTr(G11>G>). (18)

The gradient ∇γ = ∂J
∂γ

can be computed using chain rule.
We first compute the gradient of J w.r.t G as follows:

∂J
∂G
= 2

(
GG>

)−1
GKG>

(
GG>

)−1
G

− 2
(
GG>

)−1
GK + λG11>. (19)

Since each entry in the jth column of G is a function of
continuously segment label τj we need to compute

∂Gi,j
∂τj
=
∂max

(
0, 1− |τj−i|

)
∂τj

=


−1 if i ≤ τj ≤ i+ 1
1 if i− 1 ≤ τj < i
0 otherwise.

(20)

Then the the gradient of J w.r.t τ = [τ1, . . . , τn]> is

∂J
∂τj
=

k∑
i=1

∂J
∂Gi,j

∂Gi,j
∂τj

. (21)

The segment label τj is again computed via a mixture of
k−1 sigmoid functions, each of whose parameter is βi. Thus,
we need to compute

∂τj

∂βi
=

∂
(
1+

∑k−1
i′=1

(
1+ e−α(j−βi′ )

)−1)
∂βi

= −α
(
1+ e−α(j−βi)

)−1 [
1−

(
1+ e−α(j−βi)

)−1]
.

(22)

Then the gradient of J w.r.t β = [β1, . . . , βk−1]> can be
derived as follows

∂J
∂βi
=

n∑
j=1

∂J
∂τj

∂τj

∂βi
. (23)

Finally, we arrive at the gradient of J w.r.t γ = [γ1, . . . , γk ]>

∂J
∂γc
=

k−1∑
i=1

∂J
∂βi

∂βi

∂γc
, (24)

where

∂βi

∂γc
=


(n− 1)eγc∑k

i′=1 e
γi′

(
1−

∑i
i′=1 e

γi′∑k
i′=1 e

γi′

)
if c ≤ i,

−
(n− 1)eγc

∑i
i′=1 e

γi′(∑k
i′=1 e

γi′
)2 if c > i.

(25)

REFERENCES
[1] W. Hu, S. Li, W. Zheng, Y. Lu, and G. Yu, ‘‘Robust sequential sub-

space clustering via `1-norm temporal graph,’’ Neurocomputing, vol. 383,
pp. 380–395, Mar. 2020.

[2] J. Zheng, P. Yang, G. Shen, S. Chen, and W. Zhang, ‘‘Enhanced low-rank
constraint for temporal subspace clustering and its acceleration scheme,’’
Pattern Recognit., vol. 111, Mar. 2021, Art. no. 107678.

[3] T. Zhou, H. Fu, C. Gong, L. Shao, F. Porikli, H. Ling, and J. Shen,
‘‘Consistency and diversity induced human motion segmentation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., early access, Feb. 1, 2022, doi:
10.1109/TPAMI.2022.3147841.

[4] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappe, ‘‘A reg-
ularized kernel-based approach to unsupervised audio segmentation,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2009,
pp. 1665–1668.

[5] N. Seichepine, S. Essid, C. Fevotte, and O. Cappe, ‘‘Piecewise constant
nonnegativematrix factorization,’’ inProc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2014, pp. 6721–6725.

[6] A. E. Sakran, S. M. Abdou, S. E. Hamid, and M. Rashwan, ‘‘A review:
Automatic speech segmentation,’’ Int. J. Comput. Sci. Mobile Comput.,
vol. 6, no. 4, pp. 308–315, 2017.

[7] M. Lavielle and G. Teyssiere, ‘‘Adaptive detection of multiple change-
points in asset price volatility,’’ in Long Memory in Economics. Berlin,
Germany: Springer, 2007, pp. 129–156.

[8] Y.-W. Si and J. Yin, ‘‘OBST-based segmentation approach to financial time
series,’’ Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2581–2596, Nov. 2013.

[9] D. Hallac, P. Nystrup, and S. Boyd, ‘‘Greedy Gaussian segmentation of
multivariate time series,’’ Adv. Data Anal. Classification, vol. 13, no. 3,
pp. 727–751, Sep. 2019.

[10] J. P. Vert and K. Bleakley, ‘‘Fast detection of multiple change-points shared
by many signals using group LARS,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 23, 2010, pp. 2343–2351.

[11] R. Maidstone, T. Hocking, G. Rigaill, and P. Fearnhead, ‘‘On optimal
multiple changepoint algorithms for large data,’’ Statist. Comput., vol. 27,
no. 2, pp. 519–533, Mar. 2017.

[12] J. Reeves, J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, ‘‘A review and
comparison of changepoint detection techniques for climate data,’’ J. Appl.
Meteorol. Climatol., vol. 46, no. 6, pp. 900–915, Jun. 2007.

[13] J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, ‘‘Detecting
trend and seasonal changes in satellite image time series,’’ Remote Sens.
Environ., vol. 114, no. 1, pp. 106–115, Jan. 2010.

[14] S. Jamali, P. Jönsson, L. Eklundh, J. Ardö, and J. Seaquist, ‘‘Detecting
changes in vegetation trends using time series segmentation,’’Remote Sens.
Environ., vol. 156, pp. 182–195, Jan. 2015.

[15] T. Heo and L. Manuel, ‘‘Greedy copula segmentation of multivariate non-
stationary time series for climate change adaptation,’’ Prog. Disaster Sci.,
vol. 14, Apr. 2022, Art. no. 100221.

[16] C. Lévy-Leduc and F. Roueff, ‘‘Detection and localization of change-points
in high-dimensional network traffic data,’’ Ann. Appl. Statist., vol. 3, no. 2,
pp. 637–662, Jun. 2009.

[17] A. Lung-Yut-Fong, C. Lévy-Leduc, and O. Cappé, ‘‘Distributed detec-
tion/localization of change-points in high-dimensional network traffic
data,’’ Statist. Comput., vol. 22, no. 2, pp. 485–496, Mar. 2012.

[18] Y. Song, P. Wu, D. Gilmore, and Q. Li, ‘‘A spatial heterogeneity-based
segmentationmodel for analyzing road deterioration network data inmulti-
scale infrastructure systems,’’ IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 11, pp. 7073–7083, Nov. 2021.

[19] Z. Harchaoui and O. Cappe, ‘‘Retrospective mutiple change-point estima-
tion with kernels,’’ in Proc. IEEE/SP 14th Workshop Stat. Signal Process.,
Aug. 2007, pp. 768–772.

[20] A. Celisse, G. Marot, M. Pierre-Jean, and G. J. Rigaill, ‘‘New efficient
algorithms for multiple change-point detection with reproducing kernels,’’
Comput. Statist. Data Anal., vol. 128, pp. 200–220, Dec. 2018.

[21] C. Truong, L. Oudre, and N. Vayatis, ‘‘Greedy kernel change-point detec-
tion,’’ IEEE Trans. Signal Process., vol. 67, no. 24, pp. 6204–6214,
Dec. 2019.

[22] S. Wright and J. Nocedal, Numerical Optimization. New York, NY, USA:
Springer, 2006.

[23] C. Truong, L. Oudre, and N. Vayatis, ‘‘Selective review of offline
change point detection methods,’’ Signal Process., vol. 167, Feb. 2020,
Art. no. 107299.

[24] Z. Harchaoui, E. Moulines, and F. Bach, ‘‘Kernel change-point analysis,’’
in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 609–616.

VOLUME 10, 2022 62861

http://dx.doi.org/10.1109/TPAMI.2022.3147841


T. Doan, A. Takasu: Kernel Clustering With Sigmoid Regularization

[25] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
‘‘A kernel two-sample test,’’ J. Mach. Learn. Res., vol. 13, no. 1,
pp. 723–773, 2012.

[26] S. Li, Y. Xie, H. Dai, and L. Song, ‘‘M-statistic for Kernel change-point
detection,’’ in Proc. Adv. Neural Inf. Process. Syst., Montréal, QC, Canada,
2015, pp. 3366–3374.

[27] S. Li, Y. Xie, H. Dai, and L. Song, ‘‘Scan B-statistic for kernel change-point
detection,’’ Sequential Anal., vol. 38, no. 4, pp. 503–544, Oct. 2019.

[28] S. Arlot, A. Celisse, and Z. Harchaoui, ‘‘A kernel multiple change-point
algorithm via model selection,’’ J. Mach. Learn. Res., vol. 20, no. 162,
pp. 1–56, 2019.

[29] M. Hoai and F. De la Torre, ‘‘Maximum margin temporal clustering,’’ in
Artificial Intelligence and Statistics. PMLR, 2012, pp. 520–528.

[30] F. Zhou, F. De la Torre, and J. K. Hodgins, ‘‘Hierarchical aligned cluster
analysis for temporal clustering of human motion,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 3, pp. 582–596, Mar. 2013.

[31] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[32] S. Tierney, J. Gao, and Y. Guo, ‘‘Subspace clustering for sequential
data,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1019–1026.

[33] F. Wu, Y. Hu, J. Gao, Y. Sun, and B. Yin, ‘‘Ordered subspace cluster-
ing with block-diagonal priors,’’ IEEE Trans. Cybern., vol. 46, no. 12,
pp. 3209–3219, Dec. 2016.

[34] S. Li, K. Li, and Y. Fu, ‘‘Temporal subspace clustering for human motion
segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 4453–4461.

[35] H. Liu, J. Cheng, and F. Wang, ‘‘Sequential subspace clustering via tem-
poral smoothness for sequential data segmentation,’’ IEEE Trans. Image
Process., vol. 27, no. 2, pp. 866–878, Feb. 2018.

[36] L. Clopton, E. Mavroudi, M. Tsakiris, H. Ali, and R. Vidal, ‘‘Temporal
subspace clustering for unsupervised action segmentation,’’ CSMR REU,
2017, pp. 1–7.

[37] I. S. Dhillon, Y. Guan, and B. Kulis, ‘‘Kernel K-means: Spectral clustering
and normalized cuts,’’ in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), 2004, pp. 551–556.

[38] F. De la Torre, ‘‘A least-squares framework for component analysis,’’ IEEE
Trans. Pattern Anal.Mach. Intell., vol. 34, no. 6, pp. 1041–1055, Jun. 2012.

[39] R Zass and A Shashua, ‘‘A unifying approach to hard and probabilistic
clustering,’’ in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV), vol. 1,
Oct. 2005, pp. 294–301.

[40] S. Zhong and J. Ghosh, ‘‘Model-based clustering with soft balancing,’’ in
Proc. 3rd IEEE Int. Conf. Data Mining, Nov. 2003, p. 459.

[41] H. Liu, J. Han, F. Nie, and X. Li, ‘‘Balanced clustering with least square
regression,’’ in Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, 2017, pp. 1–7.

[42] L. Armijo, ‘‘Minimization of functions having Lipschitz continuous first
partial derivatives,’’ Pacific J. Math., vol. 16, no. 1, pp. 1–3, Jan. 1966.

[43] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’ Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[44] L. Bottou, ‘‘Online learning and stochastic approximations,’’ On-Line
Learn. neural Netw., vol. 17, no. 9, p. 142, 1998.

[45] J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. vol. 65. Hoboken, NJ, USA: Wiley, 2005.

[46] Z. Allen-Zhu, ‘‘Katyusha: The first direct acceleration of stochastic gradi-
ent methods,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 8194–8244, 2017.

[47] M. Schmidt, N. L. Roux, and F. Bach, ‘‘Minimizing finite sums with
the stochastic average gradient,’’ Math. Program., vol. 162, nos. 1–2,
pp. 83–112, Mar. 2017.

[48] J. Qiu, X. Wang, P. Fua, and D. Tao, ‘‘Matching seqlets: An unsupervised
approach for locality preserving sequence matching,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 2, pp. 745–752, Feb. 2019.

[49] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles, ‘‘D3TW:
Discriminative differentiable dynamic time warping for weakly supervised
action alignment and segmentation,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3546–3555.

[50] J. Li and S. Todorovic, ‘‘Set-constrained Viterbi for set-supervised action
segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10820–10829.

[51] H. Shimodaira, K. Noma, M. Nakai, and S. Sagayama, ‘‘Dynamic time-
alignment kernel in support vector machine,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 14, 2001, pp. 921–928.

[52] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, ‘‘Actions
as space-time shapes,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
no. 12, pp. 2247–2253, Dec. 2007.

[53] M. Hoai and F. De la Torre, ‘‘Max-margin early event detectors,’’ Int.
J. Comput. Vis., vol. 107, no. 2, pp. 191–202, Apr. 2014.

[54] M. Pantic, M. Valstar, R. Rademaker, and L. Maat, ‘‘Web-based database
for facial expression analysis,’’ in Proc. IEEE Int. Conf. Multimedia Expo,
Jul. 2005, p. 5.

[55] D. P. Tung and A. Takasu, ‘‘Deep multiview learning from sequentially
unaligned data,’’ IEEE Access, vol. 8, pp. 217928–217946, 2020.

[56] D. E. King, ‘‘Dlib-ml: A machine learning toolkit,’’ J. Mach. Learn. Res.,
vol. 10, pp. 1755–1758, Dec. 2009.

[57] P. Warden, ‘‘Speech commands: A dataset for limited-vocabulary speech
recognition,’’ 2018, arXiv:1804.03209.

[58] B. McMahan and D. Rao, ‘‘Listening to the world improves speech com-
mand recognition,’’ in Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1, 2018,
pp. 1–8.

[59] S. Davis and P. Mermelstein, ‘‘Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,’’
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 4,
pp. 357–366, Aug. 1980.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 11, no. 86,
pp. 2278–2324, Nov. 1998.

[61] P. Casale, O. Pujol, and P. Radeva, ‘‘Personalization and user verification
in wearable systems using biometric walking patterns,’’ Pers. Ubiquitous
Comput., vol. 16, no. 5, pp. 563–580, Jun. 2012.

[62] D. Cai, X. He, and J. Han, ‘‘Document clustering using locality preserving
indexing,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 12, pp. 1624–1637,
Dec. 2005.

[63] L. Lovasz and M. Plummer, Matching Theory. North Holland, Budapest:
Akademiai Kiado, 1986.

TUNG DOAN received the B.S. degree in com-
puter engineering from the Hanoi University of
Science and Technology, in 2014, and the Ph.D.
degree from the National Institute of Informatics,
Japan, in 2021. He is currently a Staff Lecturer at
the Department of Computer Engineering, School
of Information and Communication Technology,
Hanoi University of Science and Technology.
His current research interests include deep learn-
ing, multiview learning, generative model, and
sequential data.

ATSUHIRO TAKASU (Member, IEEE) received
the B.E., M.E., and Dr.Eng. degrees from The
University of Tokyo, Japan, in 1984, 1986, and
1989, respectively. He is currently a Professor at
the National Institute of Informatics, Japan. His
research interests include data engineering and
data mining. He is a member of the ACM, IEICE,
IPSJ, and JSAI.

62862 VOLUME 10, 2022


