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ABSTRACT The ability to measure the engagement level of humans interacting with robots paves the
way towards intuitive and safe human-robot interaction. Recent approaches achieve reasonable progress
in predicting human engagement in physically situated environments. However, engagement estimation is
still a challenging problem especially in an open-world environment due to the difficulty of creating and
monitoring a variety of human social cues in real-time. Furthermore, the interactions may involve a group of
subjects interacting simultaneously with the robot, which increases the prediction complexity. In this paper,
we design a real-time engagement estimation system for humans interacting with robots with generalization
capability. We propose to estimate engagement using a three-stage approach based on a combination of
learning-based and rule-based approaches. Firstly, state-of-the-art deep learning methods are used to extract
engagement features from input frames. Then, a simple neural network is used to estimate the focus of
attention score by incorporating gaze and head pose features and assigning this score to all subjects in the
scene using a face recognition algorithm. Finally, a rule-based classification approach is used to predict the
engagement state of the subject to initiate/terminate the interaction with the robot. To effectively evaluate our
system, we access our approach for each phase separately. Additionally, we use an online evaluation study
in which subjects are allowed to interact freely with an industrial robot. Our model achieves an average of
96%, 90%, and 93% precision, recall, and F-score respectively.

INDEX TERMS Human–robot interaction, engagement, disengagement, cobots, rule-based approach, deep
learning, face recognition, gaze estimation, head pose, body pose.

I. INTRODUCTION
Human-Robot Interaction (HRI) [1]–[3] arises to tackle
and enhance the meaningful interaction between humans
and robots while preserving the safety of human inter-
action partners. These interactions include three stages
of collaboration: coexistence, cooperation and responsive
collaboration. Consequently, a new type of industrial robot
called collaborative robot (cobot) is developed with a high
level of safety to join the industry along with humans.

Using cobots aside with Artificial Intelligence opens
the way for the development and creation of natural and
intuitive HRI concepts. In this paper, we develop a concept
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that combines different features including head pose, gaze,
posture, speech, and gesture to allow a multimodal and
restriction-free HRI. The interactions between humans and
robots are divided into four different phases: Firstly, the
robot detects a potentially interested user for engagement;
Secondly, the robot identifies the kind of interaction intention
from the person; thirdly, the robot executes the task or gives
a response to the person; Finally, human disengages from the
robot after receiving the response, or after task execution. The
study of engagement and disengagement phases are crucial
for maintaining sustainable spontaneous interactions between
humans and robots [4].

Engagement is a complex process that can be analyzed
in terms of four discrete stages [5] include the intention
to engage, engagement, disengagement, and re-engagement.
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The re-engagement phase only occurs when the disengage-
ment is not complete which is very difficult to determine with
certainty. The estimation of the engagement state requires
the challenging tracking of a variety of social cues during
interactions. The most common signals used in literature are
gaze [6]–[10], head motion [9]–[11], body posture [12], and
distance [12].

Recently, machine learning-based algorithms have been
greatly used to classify engagement including logistic
regression [11], boosted decision tree [13], maximum entropy
model [14], Support Vector Machine (SVM) [15], and neural
networks [16]. However, they largely depend on annotating
new datasets with engagement states which is difficult,
expensive, and requires trained annotators [11]. On the other
hand, the rule-based approaches had a competitive perfor-
mance compared to machine learning classifiers trained on
a labeled corpus [17].

classify engagement states
In this paper, we develop a new approach that utilizes

simple rule-based policies to predict the human engage-
ment state interacting with a cobot seen in Fig. 1. Our
model depends on data acquired from sensors that are
readily available on different robot systems. Our system
consists of three stages including feature extraction, feature
processing, and engagement classification stages. Firstly,
features were extracted using state-of-the-art deep learning
techniques including gaze, head pose, body posture, and face
identification (ID). Secondly, we use a feedforward neural
network to estimate the focus of attention score of all subjects
in the scene using head pose and gaze. Further, we adopt
a face recognition algorithm for person identification to
temporallymonitor subjects in amulti-user interaction.When
a potential user is identified, the corresponding face ID
is matched with the closest detected body using a rule-
based policy. Finally, a simple rule-based classification
approach is used to predict engagement and disengagement
to initiate/terminate the interaction of the subject with the
robot. This way, we introduce a contactless human-machine
interaction approach by enabling the interaction only when
intended, leading to a safer HRI.

Our contributions can be summarized as follows:
• We design a novel model to predict human engage-
ment state during interaction with robots. Further, our
model has a generalization capability that can work
with different robot systems because it depends on
simple rule-based policies which do not require costly
annotations.

• We introduce a person identification method using
a face recognition algorithm to keep track of the
person’s identity during the whole interaction to classify
disengagement and re-engagement classes.

• We evaluate our model using an online user study
with subjects interacting freely with a cobot. Further,
we provide the benchmarks for the methods adopted in
each stage of our model separately as well as a subject
assessment questionnaire.

FIGURE 1. Cobot: UR5e industrial robot and cubes used in the
experiments.

II. RELATED WORK
In this section, we will outline the related work regarding
industrial human-robot interaction, engagement, and disen-
gagement techniques in HRI.

A. INDUSTRIAL HUMAN-ROBOT INTERACTION
The number of industrial robots joining the industry is
increasing rapidly in the last decades. They are used in various
applications include welding, disassembly [18], pick and
place for printed circuit boards, and transportation [19]. As a
special type of industrial robot, cobots are lightweight robots
equipped with different safety features and designed for
direct physical interactionwith humans [20]. Ensuring human
safety is one of the most crucial aspects while interacting
with robots. Physical safety is one of the most important
ways of human safety in HRI [1]. It targets to maintain no
unwanted or unintentional direct physical contact between
humans and robots. Recently, researchers developed a lot
of methods and techniques to ensure human safety while
interacting with robots [21]. Human engagement estimation
is one of the methods that help ensure safety in HRI by
enabling interaction only when intended. Sidner et al. [22]
define engagement as ’’the process by which individuals
in an interaction start, maintain and end their perceived
connection to one another’’. A lot of methods and techniques
are developed to predict the engagement state of humans
interacting with robots.

B. ENGAGEMENT TECHNIQUES IN HRI
Engagement occurs when humans and robots start and main-
tain their perceived interaction. In general, the engagement
starts based on detecting an intention from a human to engage
with the robot [23]. In [15] and [17], the authors studied
human engagement by focusing on the angle of the user
engagement state prediction. Castellano et al. [15] showed
that the integration of game and social features can lead to
improved prediction performance. Foster et al. [17] estimate
the engagement state of customers for a robot bartender
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using visual and audio data. They proposed two different
methods for predicting engagement, including a rule-based
method and trained classifiers. Further, they evaluated their
methods using an online evaluation scenario with real
subjects along with the offline evaluation. They concluded
that the simple, rule-based classifier achieves competitive
performance compared with multiple trained classifiers in
all the experiments. Vaufreydaz et al. [12] demonstrated that
multimodal sensor data (including 32 features from multiple
sensors) provides better performance than using only spatial
features. Furthermore, they illustrated that seven selected
features only are adequate to provide good performance for
engagement detection. Li et al. [24] developed an active
method where the robot interacts naturally with multiple
persons. They reported that their method is capable of
selecting a person as an addressee based on the percep-
tion of human visual cues. In [14], the authors created
models for automatically identifying human intentions
with low false-positive rates and before the engagement
(3-4 seconds earlier). They used audiovisual modalities
to calculate human intentions for initiating the interaction
with a robot. Schuller et al. [25] offered an audiovisual
approach for the identification of spontaneous engagement
in human conversations. They demonstrated that balancing
the training sets leads to significantly better results and
also found that the combination of the audio and visual
modality is better than using the single modalities, and is
still real-time capable. Richter et al. [26] studied the impact
of addressee identification on the robot’s performance to
classify utterances directed to it from an interaction between
humans. They evaluated methods to addressee identification
by utilizing different types of visual cues. Reference [14]
presented a computational model for managing engagement
with a situated agent in multiparty, open-world settings.

C. DISENGAGEMENT TECHNIQUES IN HRI
Engagement breakdown occurs when humans are about
to terminate their interactions with the robot. Predicting
disengagement in open-world settings is a challenging
problem as it involves the processing of multiple signals,
including head pose, eye gaze, posture, and gestures. Ref-
erence [13] proposed a self-supervised approach to forecast
disengagement. They construct forecasting models that do
not require manual annotations by deploying the robot NAO
with a baseline forecasting model in an open space for
five days. Furthermore, they trained logistic regression and
boosted decision tree models using the data collected from
158 users interacting with the robot and compared it with the
forecasting model. They conclude that the forecasting model
can predict disengagement while maintaining a low false-
positive rate.

Leite et al. [9] proposed three different SVM-based mod-
els for predicting disengagement of humans when interacting
with social robots: a model trained with a dataset containing
one subject engaging with the robot, a model trained with a
dataset containing a group of three subjects engaging with the

FIGURE 2. Previous Wizard-of-Oz study [27]. A video summary can be
found here: https://youtu.be/JL409R7YQa0.

robot, a model trained with combined instances from the two
datasets. The authors conclude that the model trained only
with data from one engagement user might not be appropriate
for group engagements. However, a model trained only with
group data performs well when tested with a single user.
Furthermore, they showed that the mixed model performed
better than the two models [9].

Finally, Ben et al. [11], [16], [28] presented a new dataset
called UE-HRI for spontaneous interactions between humans
and a Pepper robot. In [16], deep learning techniques are
utilized (deep and recurrent neural networks) to predict dis-
engagement in real-time, achieving a reasonable prediction
accuracy of 78%. In addition, they further investigate the
prediction of disengagement in [11] by investigating the
time interval over which a user’s disengagement can be
detected using supervised classifiers. They concluded that
the used models were generally successful in predicting the
disengagement up to 10 seconds before the user leaves the
interaction.

III. COBOT SYSTEM
In our earlier Wizard-of-Oz (WoZ) study [27], we designed
a mockup of a Robot System Assistant and carried out a
study with 36 subjects. The subjects were permitted to use
different features like gestures, speech, mimics, and gaze
without any limitations to communicate with a cobot and
execute different tasks like cube stacking. The subjects think
that they are interacting with an artificial system, while in
reality, we were controlling the cobot from a hidden room,
based on the subject’s instructions. Figure 2 shows a few
interactions between subjects and the cobot from our WoZ
study.

In this paper, we conduct an online user study in the same
way as in the WoZ study in order to evaluate our engagement
and disengagement model in an open-world environment.

A. EXPERIMENTAL SETUP
Fig. 4 shows the general hardware resources used in
the experimental design of the interaction. The hardware
resources include two different workstations WS1 (cobot)
and WS2 each of them having a different design and
purpose.
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FIGURE 3. Typical human-robot interactions scenario with three phases including registration, interaction, and questionnaires.

FIGURE 4. A schematic overview of the workstations (WS1 and WS2).

1) WS1
is responsible for the main interaction between the user and
the cobot. It consists of an UR5e industrial robot with a RG6
gripper placed on a metal table in front of a TV screen.
A time-of-flight (ToF) Kinect V2 camera is placed above the

screen so that the user is seen fully in front of the table. On the
table, there are black and white letter cubes, which can be
picked up by the robot.

2) WS2
is mainly responsible for registering the subject’s facial
features in the system which is crucial for the engagement
estimation. Further, It is used for the questionnaires at the end
of the experiments. It consists of a touch-capable smart screen
with built-in speakers and another Kinect camera equipped
with a microphone.

B. SCENARIO
The scenario of the experiments is divided into 3 phases as
shown in Fig. 3 including registration, interaction, and the
questionnaires.

1) REGISTRATION
The subject uses WS2 for registration as shown in Fig. 3(a).
WS2 has an interface based on the ROS-QT visualization
environment. The subject uses this interface to register his
name, preferred hand, and face features to the system. In order
to store all facial features, we ask the subject to look to the
front and then once to the right and once to the left through

VOLUME 10, 2022 61983



A. A. Abdelrahman et al.: Multimodal Engagement Prediction in Multiperson Human–Robot Interaction

FIGURE 5. Overall architecture of our multi-modal engagement prediction model including feature extraction, feature processing, and engagement
classification phases.

the interface. Based on the stored face features, we assign
a face ID to the subject that will be used during the whole
experiment.

2) INTERACTION
The subject switches to WS1 to start doing three different
collaborative tasks with the cobot including:

1) Have Cobot give you a block as in Fig. 3(c).
2) Spell a specific word with the alternating color of

blocks as in Fig. 3(e).
3) Build a 3-2-1-Pyramid with black-white-black layers

as in Fig. 3(g).
We add onemore step to this phase that the subject switches to
WS2 to read the instruction for the next task and then returns
toWS1 to execute the task. This stepwill addmore challenges
and complexity to the deployed engagement model.

3) QUESTIONNAIRES
Finally, the subject switches toWS2 to answer questionnaires
as in Fig. 3(h). Additionally, a module-specific questionnaire
was taken to allow the subjects to evaluate each module
separately after finishing the experiment.

IV. APPROACH
We propose a new model that utilizes simple rule-based
policies to predict the human engagement state of humans

interacting with a cobot. Our model is easy to use approach
as it employs visual data that is available on various robot
platforms. It can track the engagement state of humans
starting from willing to engage until disengaging. Further,
our model can predict the re-engagement state based on the
subject identity features obtained from a face recognition
algorithm. Our model consists of three stages include feature
extraction, feature processing, and engagement classification:

1) Stage 1: we extract crucial features for classifying
engagement including human head pose, gaze, and face
ID using state-of-the-art convolution neural networks.
Further, we use Kinect v2 to extract the body pose
feature.

2) Stage 2: we output the most important signals for the
engagement including the focus of attention and fused
body signals using a feed-forward neural network.

3) Stage 3: we classify the engagement state of subjects
using a simple rule-based policy based on the output of
stage number two.

Fig. 5 shows the overall architecture of our multi-
modal three-stage engagement and disengagement prediction
model.

A. FEATURE EXTRACTION
Various cues could represent the subject’s engagement
intentions, which could be used to model engagement and
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TABLE 1. Extracted feature streams.

disengagement. Using more features to estimate engagement
may increase the prediction accuracy. However, it will
increase the computational cost, which will harm the overall
model performance. Consequently, we extract the most
crucial features to characterize engagement as mentioned in
most of the literature including gaze, head pose, body posture,
and face ID as shown in Table 1. To extract robust features,
we apply state-of-the-art deep learning methods to the raw
signals obtained from the resources.

1) GAZE
Gaze is the most crucial cue used in predicting engagement
and disengagement, as it defines the person’s current
visual focus of attention. The direction of gaze defines
the initial intention of humans to engage with the robot.
We propose to use a robust gaze estimation method designed
by Petr et al. [29] which they extract gaze using a convolution
neural network (CNN). As seen in the Table 1, we estimate 3D
gaze direction as spherical coordinates (pitch, yaw) relative to
the camera view.

2) HEAD POSE
Head pose is a good approximation of the person’s focus of
attention, especially when the gaze is missed or inaccurate.
The direction of the head pose combined with the gaze
can deduce the interaction willingness of the person to
start/terminate the interactionwith the robot. A lot of methods
and techniques were proposed to estimate 3D face poses from
images. We propose to use a robust method developed by
albiero et al. [30] which is a real-time, six degree of freedom
(6DoF) head pose estimation. Then, we convert the 6DoF
estimated by the model to the head pose Euler angles (pitch,
roll, yaw) as seen in Tab. 1.

3) FACE ID
Person identification is crucial, especially when dealing
with multi-subject HRI. We adopt a face recognition
framework based on three stages including face detection,
face alignment, and face identification. Firstly, we utilize
RetinaFace [31] to detect and localize the faces in the input
frames, which is one of the most accurate face detection
methods. Furthermore, we use MobileNet-0.25 [32] as a
backbone to achieve real-time HRI. Secondly, the bounding
boxes with high confidence are aligned by a practical facial
landmark detector [33]. The aligned faces are cropped to

FIGURE 6. Crucial features extracted during the experiments used to
model engagement including gaze, head pose, body posture, and face ID.

a size of 112 × 112 to be more consistence with the
next stage. Finally, the face features are extracted from
the cropped faces by means of the ArcFace model [34]
and outputs the corresponding feature embedding vector of
512 features. We compare the embedding vector against the
gallery embedding to predict the face ID as shown in Tab. 1.

To the best of our knowledge, all related works that
estimated engagement and disengagement do not consider the
face identification feature in their techniques.

4) BODY POSTURE
The body posture provides a good indication of the person’s
engagement degree, especially when the face is missed. Body
posture is estimated with the Kinect v2 using the native
Kinect for Windows SDK. The resulting skeleton contains
25 points mapped in the 3D coordinate system relative to
Kinect. Each joint can have a tracking state: ‘‘tracked’’,
‘‘inferred’’ or ‘‘not tracked’’, thus determining the overall
quality of the tracked skeleton.

Fig. 6 presents the four features extracted from streams in
order to predict engagement and disengagement.

B. FEATURE PROCESSING
Using the extracted features, we generate two important
binary signals to characterize engagement. These signals
include the focus of attention (FA) and fused body face (BF),
which are crucial for engagement estimation. Our model
uses these signals aside with rule-based policy to make
engagement decisions.

1) FOCUS OF ATTENTION SIGNAL
In every frame, a simple model is used to deduce whether the
attention of each subject in the scene is pointed to the (WS)
robot or not. This inference is currently based on a simple
neural network model trained using a manually labeled
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Algorithm 1 Skeleton S and Face F{x, y, ID} Fusion
1: Faces←All detected Faces
2: Bodies←All tracked Kinect Skeletons
3: for all S in Bodies do
4: xS , yS ←Transform2D(S.Head {x, y, z})
5: d ←∞
6: for all F in Faces do
7: δF ←

√
(xs − F .x)2 + (ys − F .y)2

8: if δF < d and δF < 30 pixels then
9: d ← δF

10: S.ID← F .ID
11: end if
12: end for
13: if S.ID 6= null then
14: remove F(S.ID) from Faces
15: Users.add(S)
16: end if
17: end for

dataset. We concatenate the extracted 3D gaze direction and
3D head pose angles to form a 5-dimensional feature vector.
We build a simple classification neural network containing
6 fully connected layers followed by a ReLU activation layer.
The network takes the gaze and head pose vector as an input
and outputs a binary attention signal. We create an attention
score counter for each subject based on the face ID feature.
At every frame, the attention score counter is incremented if
the face of the subject is frontal and the gaze is directed to
the robot and decremented vice-verse. If the attention score
reached a specific threshold we publish the subject ID as
a ROS message ‘‘FA’’ reporting that a specific subject is
focusing its attention on the robot.

2) FUSED BODY SIGNAL
To prevent an accidental mix-up of the detected skeletons and
to prohibit (accidental/mischievous) input from a skeleton,
not engaged with the system, we only consider users who
have a valid skeleton and a valid registered face ID. We refer
to the combination of the two as ‘‘fused body’’. Consequently,
face ID to skeleton matching plays a crucial role in user
management, safety and is necessary in order to maintain
an efficient interaction between one operator and the system.
It also plays an important role in multi-user scenarios where
each input must be matched to a corresponding user.

The algorithm 1 takes a valid and tracked skeleton and
transforms its head coordinates into 2D camera space. For
the corresponding head coordinates, the closest face is found
and checked for deviation (<30 pixels). The face ID is then
matched to the body and the face is then removed from the
face array to prevent double IDs. Only a body with an ID,
referred as fused body, is further considered for interaction
and are considered for input. For each Frame, the fused
body is checked for integrity. If the matched face or the
skeleton is missing for more than 3 frames, the fused body is
removed from the user array. Since the face ID is the primal

Algorithm 2 Engagement
1: Users← All fused bodies
2: A← Focus of Attention
3: for allWorkstationsW do
4: if W .current_user 6= null then continue
5: end if
6: for all Fused Bodies B in Users do
7: if B.ID == A.ID then
8: if is_registered(B) then
9: W .current_user ← B

10: welcome(B)
11: else
12: send_to_registration(B)
13: end if
14: end if
15: end for
16: end for

identification feature and is by definition constant, it is only
necessary to track this ID for any interaction.

C. ENGAGEMENT CLASSIFICATION
We model the problem of engagement and disengagement
as a binary classification. Using the focus of attention and
fused body signals, we create a rule-based approach to predict
engagement in each workstation. Each workstation monitors
its current active engaged subject and the corresponding
ID. The system is designed according to two constraints
including:
• The system must be free, i.e., no one is already engaged
with it.

• The user must be registered and, if necessary, have an
appropriate clearance for the workstation.

1) ENGAGEMENT
The engagement process, as explained in algorithm 2 happens
automatically when a subject starts interacting with the
system and thus accumulates a focus of attention and fused
body. If multiple subjects are engaging at the same time,
the one with the highest focus of attention score gets
chosen. The system reacts to the engagement process by
turning on the monitor, turning the robot towards the subject,
and greets the subject with the name, chosen during the
registration process. If the person engaging with the system is
unknown, the system guides him to WS2 for the registration
process.

2) DISENGAGEMENT
The examination for disengagement, the process explained
in algorithm 3, starts after a subject engages with a system
and is repeated every frame. For the interaction to take
place, a valid fused body and positive focus of attention
scores are necessary. If either of them is missing, a reminder
timer gets started. If either of the features returns, then the
timer is stopped and the subject notices no difference in
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Algorithm 3 Disengagement
1: Users← All fused bodies
2: A← Focus of Attention
3: for allWorkstationsW do
4: B←W.current_user
5: if B == null then continue
6: end if
7: if A = nullorB /∈ Users then
8: start disengagement timer
9: display message: ‘‘Are you still there?’’

10: end if
11: if disengagement timer timeout then
12: W .current_user ← null
13: end if
14: if B.ID == A.ID then
15: stop disengagement timer
16: end if
17: end for

interaction. In the case of a timeout, a message ‘‘Are you
still there?’’ is displayed, asking the subject to return to
the scene or to become attentive again. During the message
display, a logout timer is started, after which the subject
ID is removed as active from the corresponding workstation
if the focus of attention or the fused body-face are still
missing.

After the disengagement, the robot and the monitors go
to an idle state or the next attentive subject fulfilling the
prerequisites becomes engaged with the system.

V. RESULTS
Our engagement prediction model is a three-stage approach
including feature extraction, feature processing, and engage-
ment classification. To effectively assess our model,
we access our approach for each phase separately focusing
on the methods and techniques used during this stage.

A. FEATURE EXTRACTION
We present the evaluation to the CNNs used to extract four
engagement features used in our model.

1) GAZE
We use a CNN that consists of a ResNet-18 as a backbone
followed by two fully connected layers for outputting gaze
direction. We utilize pinball loss as a network loss function
that estimates the gaze direction and error bounds together,
which improves the gaze performance. Further, we train our
model using the gaze360 dataset which is collected under
unconstrained settings, to improve our model generalization
capabilities. We follow the same evaluation criteria as in [29]
by dividing the dataset into train-val-test sets. We train the
network for 100 epochs with a batch size of 80 and a constant
learning rate of 0.0001. Our gaze estimation model achieves
a performance of 15.3 ◦ mean angular error on the gaze360
dataset.

2) HEAD POSE
We utilize a CNN that consists of a ResNet-18 as a backbone
and exploit a stochastic gradient descent with a mini-batch of
two images. Further, we train our model using the WIDER
FACE dataset [35], which contains image samples with high
diversity in scale, pose, and occlusion. We train the model for
35 epochs with a batch size of 512 and a variable learning
rate starts from 0.001 and decreased by a factor of 10 if
the performance does not increase over 3 epochs. Our head
pose estimation model achieves a performance of 3.913 mean
absolute error on the AFLW2000-3D dataset which is a
challenging dataset with a diversity of illumination, head
pose, and facial expression.

3) FACE ID
We use a deep CNN for recognition feature extraction.
To achieve real-time inferring, we utilizeMobileFaceNet [36]
as a backbone learned by ArcFace [34] loss function.
MobileFaceNet can infer face feature embedding within
2.4ms with a model size of 112MB. Further, we train our
model using the MS-Celeb-1M dataset [37] which contains
about 100k identities with 10 million images. The model was
trained for 30 epochs with a batch size of 512 and a variable
learning rate starting from 0.001 and decreased by a factor of
10 at 100K, and 160K iterations. Our face recognition model
achieves a performance of 95.45% and 92.07% on CPLFW
and CALFW datasets respectively. CPLFW and CALFW
datasets show higher pose and age variations with the same
identities as the LFW dataset.

4) BODY POSTURE
We use the native Kinect2 for Windows SDK to estimate
the 25 points for body posture. Further, we removed any
skeletons containing more than eight inferred points for a
short period of time to deal with the problem of Kinect
falsely detecting skeletons in inanimate objects. This is due
to the fact that the false detections, while having a stable
torso, usually do not have a stable limb detection. These
false limbs are then estimated as vigorously shaking around,
while having the ‘‘inferred’’ status. To further reduce a
possible false-positive body detection, a rage for expected
body position values, or basically an ‘‘interaction zone’’
of 2m × 2m × 2m was set up. No chairs or doors or
other inanimate objects were considered as bodies after this
implementation, while the real person detection rate was not
reduced.

B. FOCUS OF ATTENTION
Furthermore, we evaluate the focus of attention neural
network as It is an important stage in our model. We use
binary labels for modeling the FA which includes two
classes: looking toward the robot and looking somewhere
else. To train and evaluate our network, we used two
public datasets with gaze and head pose annotations:
Gaze360 [29] and BIWI [38]. Based on the range of head
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FIGURE 7. Example of multimodal features recorded using robot
time-stamps. Pink color presents the end of the interaction
(engagement).

pose angles and gaze direction, we manually annotated the
FA for 50400 images in two classes: looking towards the
robot (35367 images) and looking somewhere else (15033
images). The annotated dataset distribution is unbalanced
and biased toward the first class. To avoid this problem,
we apply oversampling technique by increasing the number
of instances of the second class. We split the annotated data
into 2 parts: 80% for training and 20% for testing.We train the
network using the Adam optimizer for 25 epochs with a batch
size of 128 and a learning rate of 0.00001. To evaluate the FA
network, we calculated the FA prediction accuracy as well as
the F-score. Our FA network achieves an average accuracy of
91%, and an F-score of 0.89.

C. ENGAGEMENT CLASSIFICATION
To evaluate this stage, an online study was set up in the
lab space of the Neuro-Information Technology research
group, Otto-von-Guericke University, Magdeburg, Germany.
We have conducted on-site experiments with 11 subjects
(2 | 9 ) aged between 20 and 34 years following the scenario
mentioned in Sec. III. Data has been recorded during the
experiments using dedicated ROS message data structures
and saved in bags, the primary mechanism in ROS for data
logging. Since eachmessage comeswith a specific timestamp
of its generation, all streams can be easily synchronized.
An example of the recorded multimodal features is shown in
Fig. 7.When the subject’s focus of attention deviates from the
robot for a while, the model predicts a subject disengagement
which is highlighted in the figure by the pink color.

It is hard to annotate a person’s engagement with the
robot as it is subjective and requires trained annotators.
We introduce a benchmark to evaluate our model based
on certain engagement and disengagement events that can
be easily annotated. During the experiments, the subject
was expected to engage with WS2 five times during the
whole experiment: one time for registration, three times for

FIGURE 8. Subject-wise and average precision values using our model.

FIGURE 9. Subject-wise and average recall values using our model.

FIGURE 10. Subject-wise and average F-score values using our model.

interaction, and one time to answer The questionnaires. Also,
the subject was expected to engage with WS1 four times for
the task execution. Consequently, the subject will have nine
engagement and disengagement events.

In addition, we design a way to track the engagement
and disengagement actions during the study. If the robot,
infers that the user wants to engage, it turns toward the user;
otherwise, it does not turn. To assess the performance of our
model, data is extracted from the bags and classified into
True Positives (TP), False Positives (FP), False Negatives
(FN), and True Negatives (TN). Based on the classification
results, we calculate the model precision, recall, and F-score
for each subject separately. Fig. 8, 9, 10 shows the precision,
recall, and F-score for each subject separately and the average
of all subjects. As can be seen, our model achieves an
average of 96%, 90%, and 93% precision, recall, and F-score
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FIGURE 11. Subject rating of individual modules.

respectively. These metrics are calculated as follows:

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F = 2 ∗
precision ∗ recall
precision+ recall

(3)

D. SUBJECT EVALUATION
We use a module-specific questionnaire at the end of the
experiments to increase the robustness of the evaluation.
Subjects were asked to rate all the modules implemented
in the study including the engagement process according to
their personal satisfaction on a scale of one, very dissatisfied,
to seven, very satisfied. The answer of the subjects can give
us a better intuition about the performance of the engagement
process with the cobot. Fig. 11 shows the average rating of all
modules based on the subject’s answers. From the figure, the
subjects rate the engagement process with the highest value
of 5.65 which means that they were more satisfied with the
engagement process compared with other modules.

E. PERFORMANCE EVALUATION
The critical factors for the performance evaluation of the
overall system are the delays and system response times.
Real-time capability is hereby essential. We define real-time
as a system responding within a time frame defined by
used hardware restrictions, as it is not possible to surpass
them. If the system does not add additional delays due to its
calculations and algorithms, then it is performing well.

In order to get accurate performance evaluation for our
model, we run the experiments again on the recorded videos
from the online study and calculate the average execution
time of our model and the delay. The Kinect V2 defines
the bottleneck for the response times, So it is deployed
on a separate PC (Specs: Intel Core i7-8700 @ 3.2GHz,
NVIDIA 1080 TI, 32Gb RAM, SSD) in which the video and
skeleton feeds are capped at 30 fps with average 33.(̄3) ms.

The other three models are deployed on another PC (Specs:
Intel Core i7-9800X @ 3.8GHz, NVIDIA RTX 3080, 32Gb
RAM, SSD) in which the output features are capped at

TABLE 2. Average execution time of individual methods used in the first
stage of our model.

47 fps with an average of 21.2 ms. Table 2 shows the
average execution time of individual methods used in the
first stage of our model. To summarize, the average execution
time for the first stage is equal to 33.3 ms as we execute
models simultaneously. The other stages are not consuming
more than 1 ms as it contains simple rule-based policies.
Consequently, the total processing time of a frame in our
three-stage model is approximately 40 ms including 7 ms
delays.

VI. DISCUSSION AND FUTURE WORK
The study conducted has a complex scenario and hardware
setup which include a human interacting with two work
stations synchronized together using the ROS operating
system. It includes a total of 18 engagement events for each
subject in an ideal scenario. In addition, extracting features
during the experiments is a challenging task due to the
lighting conditions, extreme deviation in head pose and gaze
angles, and occlusion. However, the performance assessment
mentioned above has illustrated the effectiveness of the
proposed model in inferring the subject’s engagement and
disengagement in amulti-person environment. Ourmodel can
predict engagement and disengagement in real-time.

Some engagement decisions caused a long delay during
the experiments due to the model computational cost and the
network overhead. Although two of the subjects werewearing
face masks for the whole experiment, our model succeeded to
characterize their engagement with reasonable accuracy.

The advantage of our model is that it depends on simple
rule-based policies which do not require manual and costly
annotations. Furthermore, subjects were more satisfied with
the engagement process based on the subject assessment
questionnaire.

Due to the limited number of subjects in this study, future
work would contain a new study with a large number of
subjects to effectively assess the performance of the model.
Also, the future study could contain different human-robot
interaction scenarios to test the generalization capabilities of
the proposed model. Finally, future work should assess the
performance of our model in comparison to learning models
obtained from the labeled ground truth.

VII. CONCLUSION
In this paper, we present a robust three-stage model for
predicting engagement and disengagement in an open-world
environment. Our model consists of a combination of deep
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learning and rule-based approaches. Firstly, state-of-the-
art deep learning models are utilized to extract robust
engagement features including gaze, head pose, body posture,
and face ID. Secondly, a feedforward neural network is used
to estimate the subject’s focus of attention using visual data
including head pose and gaze direction. In order to handle
engagement in a multi-subject interaction, we use the face
recognition technique for person identification to track all
the subjects in the scene. Further, a rule-based policy is used
to match face ID with the body to maintain an efficient
interaction between one subject and the cobot. Finally, a rule-
based algorithm is adopted in order to make engagement
and disengagement decisions (i.e. when and whom to engage
with).

To show the robustness of our model, we validate the
methods used in each stage of our model. Regarding the
final stage, we conduct an online study with subjects doing
collaborative tasks with a cobot. Our model achieves an
average of 96%, 90%, and 93% precision, recall, and F-score
respectively. The experimental results have shown that our
model is able to predict real-time engagement state effectively
in a multi-subject environment.
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