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ABSTRACT Millimeter-wave near-field imaging provides a promising solution for potential sensing
applications. Although in many cases only the shape of the object is required, the conventional method
often carries out a full image reconstruction of the target, thus suffers from slow imaging speed and high
computational complexity. Moreover, conventional imaging results exhibit severe artifacts when facing
complex concave targets due to high-order scattering. Both problems pose a significant obstacle for
achieving sufficient accuracy in target recognition. To address these issues, this paper proposes a new shape
reconstruction technique for millimeter-wave imaging of complex concave objects based on a high-order
boundary scattering transform (HBST). Target contours are directly obtained by establishing a transform
formula between the received wavefront under multiple reflections and the target boundaries. Multiple
reflections propagation omitted in conventional imaging are fully included in the derivation of the HBST.
Numerical simulations and experimental results are presented to verify the applicability and effectiveness of
the proposed technique for dihedral-like structures.

INDEX TERMS Concave structure, boundary scattering transform, higher-order artifacts, multiple
reflections, shape reconstruction.

I. INTRODUCTION
Millimeter waves have longer wavelength compared to light
waves and can easily penetrate many optically opaque
objects, such as ordinary clothingmaterials, dense vegetation,
smoke, fog, walls, etc. Therefore, millimeter waves are
commonly used in through walls imaging, security screening,
ground-penetrating radar, etc.

High quality image reconstruction algorithms are required
in order to obtain an accurate image of the target. A series
of millimeter-wave active imaging algorithms have been
proposed for target detection and identification. The back-
projection (BP) [1]–[3], a classical time-domain algorithm,
is one of the most commonly used technique, but suffers from
intensive computation and low efficiency. Some algorithms
based on the field of synthetic aperture imaging (SAR)
have also been presented. The wave-number domain (ω-
k) algorithm [4], [5] requires Stolt interpolation in the
two-dimensional frequency domain, which could affects the
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image quality. Range-Doppler (RD) algorithm [6], [7] also
requires interpolation to eliminate longitudinal and lateral
inter-coupling caused by range migration. Chirp scaling (CS)
algorithm [8], [9] avoids interpolation operation, but the
range spectrum of echo signal will shift in this algorithm.
Based on those traditional imaging algorithms, some human
imaging applications such as SafeView and QPS [10]–[12]
have also achieved promising results in detecting concealed
contraband in the human body. However, they usually
encounter problems such as large arrays, high computational
effort and slow imaging speed. Meanwhile, the ultimate goal
of contraband detection is not to image the target, but to
detect, extract contours and eventually identify the hidden
contraband.

It is possible to recover the contour of the target directly
from the received wavefront without a full image recon-
struction process by directly establishing the relationship
between the received wavefront and the target shape with a
boundary scattering transform (BST) [13]. The high-speed
3-D imaging algorithm, a shape estimation algorithm based
on BST and extraction of directly scattered waves (SEABED)
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[14]–[16], can achieve real-time 3-D imaging based on
BST and inverse BST (IBST). However, SEABED is quite
sensitive to small range errors and the image obtained by
SEABED deteriorates in noisy environments since it utilizes
derivatives of the received wavefront and cannot completely
remove the instability. Envelope [17], [18] uses the envelope
of circles to establish the correspondence. This method does
not utilize derivatives of received wavefront and can realize
robust imaging for arbitrary shape targets. By calculating
circles with corresponding time delays for each position
of the antenna and using the principle that these circles
circumscribe or inscribe the target boundary, it is shown that
the target shape is expressed as a boundary of a union and
an intersection set of the circles. Although Envelope can
recover simple-shaped targets, it requires precise connections
for observed ranges to maintain the imaging quality. For
complex-shaped targets or multiple targets, such connections
become difficult because each antenna receives multiple
echoes from multiple scattering points on the target surface,
and for a complex surface, such connections are often difficult
because each antenna observes multiple echoes and there are
too many candidate connections. The RPM algorithm [19]
uses the signal amplitude to provide an accurate estimate
of the direction of arrival (DOA), which achieves a direct
mapping from the observation range to the target points,
eliminates the distance connection process and remarkably
enhances accuracy even in complex boundary extraction.
However, it still suffers from image distortion caused by
multiple interfering signals with different waveforms in cases
where the variation scale is smaller than a pulse-width
when more complex shapes with many concave and convex
structures exist.

Traditional shape reconstruction algorithms based on BST
tend to treat all reflections as single reflection, while for
complex targets, especially concave targets, there are often
multiple reflections within them, and some parts of the
target are only visible by multiple reflection echoes rather
than single reflection, which will lead to the partial absence
of the reconstructed target shape. Multiple reflections from
complex targets have been studied in the fields of RCS
measurements, SAR imaging, and electromagnetic (EM)
inverse scattering [20]–[22], but in general there is a
lack of research on the mechanism of the effect of
multiple reflections on shape reconstruction. [23] exploits
two reflections for target reconstruction, which extends the
visible range of the target, but still fails to provide a
complete reconstruction of the concave target because it does
not utilize all the high-order reflection information. [24]
chooses a typical near-field monostatic cylindrical imaging
scenario with dihedral structures for discussion, investigates
the mechanism of multiple reflections and the causes
of artifacts in traditional methods, establishes a forward
model containing multiple reflections using the shooting and
bouncing rays (SBRs) method [25]–[28], and proposes a new
image reconstruction algorithm. The algorithm has also been
effectively extended to the multi-station cases [29], [30].

The algorithm can effectively eliminate the artifacts in
traditional imaging algorithms and enables accurate imag-
ing of complex targets. However, similar to traditional
image reconstruction algorithms, these algorithms also suf-
fer from low computational efficiency and slow imaging
speed.

In this paper, we propose a shape reconstruction algorithm
based on high-order boundary scattering transform (HBST).
Unlike the monostatic linear scanning geometry adapted in
the conventional BST algorithm, we choose a near-field
monostatic cylindrical scanning scenario with dihedral struc-
tures for discussion. Furthermore, we analyze the causes of
artifacts and propose a forward model between the dihedral
target’s shape and the time-domain wavefront by analyzing
the path propagation mechanism of electromagnetic waves
within the concave structure with the SBR method. Then
the shape reconstruction algorithm which processes each
reflection signal separately is derived. The algorithm effec-
tively eliminates artifacts appearing in the conventional BST
algorithm and improves the reconstruction accuracy. Both
simulation and experimental results prove the effectiveness
of the algorithm for dihedral-like structures.

The rest of the paper is organized as follows. Section II
analyzes the causes of artifacts in dihedral structures using
the ray-tracing method. In Section III, we derive the forward
model based on the research of propagation path of odd
reflections and put forward a novel shape reconstruction
algorithm which connects the received time-domain wave-
front with the target shape and eliminates target artifacts
effectively. Numerical simulations and experimental results
are presented in Section IV. Section V summarizes the results
and is the conclusion of this paper.

II. ARTIFACT ANALYSIS
Multiple reflections within concave structures are always
treated as single reflection based on the Born approximation
[31] in conventional imaging algorithms, and artifacts often
appear in such cases. To investigate the relationship between
multiple reflections and imaging artifacts, we choose dihedral
within which multiple reflections generally exist as typical
concave structure for analysis, as shown in Figure 1(a).
Here we adapt a monostatic cylindrical scanning scenario
and represent the target dihedral’s position (r, θ) in polar
coordinates. We define the opening angle as 2ϕ (from the
left edge θ = +ϕ to the right edge θ = −ϕ), the angle
in which the angle bisector of the dihedral locates as 0◦,
and the vertex of the dihedral locates at the scanning center
(0, 0). Note that when the vertex of the target dihedral is
not at the scanning center (0, 0), we can still transform
it to be equivalent to the case where the vertex is at the
center by a coordinate transformation operation, which will
be mentioned later. In our simulation, the target dihedral
with a 40◦ opening angle (ϕ = 20◦) has edge length
L of 0.3 m, scanning angle θsca of the multi-monostatic
transceiver varing from −60◦ to 60◦ with 0.5◦ interval, and
the scanning radius R is 0.7 m. The SBRs method is utilized
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FIGURE 1. Schematic of monostatic cylindrical scanning geometry and reconstruction results of 40◦ dihedral structure using BP
algorithm and conventional BST algorithm. (a) Cylindrical scanning geometry. (b) Reconstruction from BP algorithm.
(c) Reconstruction from conventional BST algorithm.

FIGURE 2. Illustration of the equivalent reflection point in the case of
(a) without and (b) with multiple reflections, and the mirror reflection
method is used to analyze the cause of artifacts by determining the
location of the equivalent reflection point. (a) Single reflection scene
(reconstruction results in no artifacts). (b) Three reflections scene
(reconstruction results in artifacts).

to analyze the cause of artifacts and the received echoes
are simulated in EM high-frequency approximation SBR+
algorithm from 2 to 40 GHz in electromagnetic simulation
software Ansys HFSS. Since it has been shown in [24]
that even reflections cannot reconstruct the target edge’s
length correctly, in this paper we use circularly polarized
transceivers to filter out even reflections [32] and only use
odd reflections for target reconstruction.

We process the received echoes from the target dihedral
using the BP imaging algorithm and conventional BST
algorithm respectively, and the imaging results are shown
in Figure 1(b)-(c). It is obvious that both algorithms can
only recover the outer edges of the dihedral while they do
not effectively reconstruct the inner edges. In addition, the
imaging results show the presence of artifacts corresponding
to wrong dihedral shape with larger angles. In the following
discussion, we use the abbreviation RT to denote the number
of reflection times, for example, mRT represents the m
reflection signal.

We assume that the metallic dihedral structure is electri-
cally large target and satisfies the high-frequency approx-
imation condition, then the electromagnetic wave can be
regarded as ray satisfying the mirror reflection principle,

which simplifies the analysis of the propagation path by
determining consecutive mirror points of dihedral edges.
Since both algorithms treat all reflected signals as 1RT signal,
we can analyze the causes of artifacts by determining the
position of the equivalent reflection points of different RTs.
If all RTs within the dihedral are considered as 1RT, the
position of the equivalent reflection points of each RT is
where the reconstructed target locates. For 1RT, as shown
in Figure 2(a), the equivalent reflection point locates on the
edge of the dihedral, so the outer edge of the dihedral can
be recovered correctly according to the 1RT echo. However,
for multiple reflection echoes, such as 3RT in Figure 2(b),
the equivalent reflection point locates outside of the dihedral,
and if multiple reflection echoes are processed as 1RT,
the dihedral artifact will appear. According to the mirror
reflection principle, it can be proved that in this case the
opening angle of the artifact is 3 times as large as the real
angle, i.e., 3 · 2ϕ. Similarly, for any high-order odd reflection
signal (mRT, m = odd, m >1), if it is treated as 1RT,
artifact with an opening angle of m · 2ϕ will appear. There
are 1,3,5RT signals within the 40◦ dihedral, since they are
all treated as 1RT in both algorithms, artifacts with opening
angle of 120◦ and 200◦ appear, as shown in Figure 1(b)-(c).

III. HIGH-ORDER BOUNDRARY SCATTERING
TRANSFORM (HBST)
Treating high-order reflections as single one can cause imag-
ing artifacts, so in the following discussion we will analyze
the propagation law of each reflection and process them
separately. Meanwhile, by establishing the correspondence
between the received wavefront and the target shape, we can
reconstruct the shape of the dihedral structure with the
wavefront directly, which significantly reduces calculation
and saves processing time.We firstly analyze the propagation
path of odd reflections and build a forward model from the
dihedral shape to the time-domain wavefront, and summarize
the distribution of each reflection in the wavefront. Then,
we derive a high-order reconstruction algorithm considering
multiple reflections for recovering the shape of the target
from the received wavefront.
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TABLE 1. Common opening angles and corresponding maximum number
of reflection times (MRT).

A. HIGH-ORDER FORWARD MODEL
The number of reflection times of the echoes within the
concave structure is related to its opening angle. From [24],
we can conclude that the relationship between the maximum
number of reflection times (MRT) and the opening angle 2ϕ
of the dihedral in the cylindrical scanning is

MRT = ceil
(
180◦/2ϕ

)
(1)

where ceil indicates upward rounding. Table 1 shows the
relationship between common opening angles and MRT,
where the bolded contents correspond to the critical angles
which indicate the upcoming appearance of new higher
reflections when the opening angle continues decreasing. It is
obvious that theMRT in the concave structure increases as the
opening angle becomes small.

In the monostatic cylindrical scanning, the echo signal
cannot be received at all scanning angles θsca, and the
propagation distance of echoes received at different angles
is not the same. The relationship between the observation
angle θobs of odd reflection signals and their corresponding
propagation distance RAB is given in [24]

RAB = 2Rsin
(∣∣∣(−1)inc (2n− 1) ϕ − θobs

∣∣∣) ,
n = 1, . . . , nmax (2)

where inc = 0 or 1 when the rays firstly incident to the right
or left side of the dihedral, respectively. R is the scanning
radius, θobs is the observation angle where echoes can be
received within the scanning angle θsca, 2n − 1 correspond
to the number of odd reflections, and the maximum number
of odd reflections is 2nmax − 1. nmax can be obtained from

nmax = ceil (MRT/2) (3)

To deduce the range of the observation angle θobs for each
reflection signal, we should firstly analyze the propagation
path of each reflection signal. Based on the SBRs method,
we have proven that there is only one case of the propagation

path within the dihedral for odd RTs, i.e., the ray is eventually
incident perpendicular to the edges of the dihedral and returns
along the original incidence path. Figure 2(a), 18 and 19(a)
show the propagation paths of the 1RT, 3RT and 5RT echoes
within the dihedral, respectively. Meanwhile, it can be proved
that the propagation path of even RTs does not follow the
mirror reflection principle in the SBRs method, and it may
be caused by the multiple coupling effect. The derivation
process is described in detail in Appendix A. According to
the propagation law of odd RTs within the dihedral, we can
derive the range of the observation angle θobs, as shown
in (4)-(6), as shown at the bottom of the page, where θ1
and θ2 are the boundary values of the observation angle
range. Details are described in Appendix B. For any (2n− 1)
RT signal, the observation angle ranges in the two cases,
firstly incident to the right and left side of the dihedral, are
symmetric about 0◦, as shown in (4).
According to RAB in (2) and the range of the observation

angle θobs in (4), we can obtain the forward model describing
the relationship between target shape and time-domain
wavefront. Figure 3 shows the received time-domain signal
from the dihedral structures with edge length of 0.3 m,
scanning radius of 0.7 m, opening angles of 180◦, 150◦,
90◦, 70◦, 60◦, 55◦, 45◦ and 40◦ respectively. The time-
domain signal P(RAB, θobs) is obtained by performing an
IFFT in the frequency direction on the two-dimensional
signal power P(f,θobs) received at different frequencies
and angles, and it indicates the propagation distance of
strong echoes at corresponding observation angles, and the
propagation distance corresponds to the time delay t with
the relationship of RAB = ct/2 (c is the speed of light).
Stronger received signal power indicates stronger echo at
corresponding observation angle and propagation distance.
In this paper we uniformly use the normalized power.
It should be noted that since we use cross-polarization in
the simulation, only odd reflections are received, and the
even reflections are filtered out. In Figure 3, the black solid
curve which coincides with the wavefront in the time-domain
signal corresponds to RAB determined by (2) and (4), and
it means the derived theoretical value is consistent with the
actual simulation results, thus proving the correctness of the
forward model. The dashed lines are obtained by substituting
θobs = θsca into (2), where the yellow and white dashed lines
correspond to the echo signals first incident to the right and
left sides of the dihedral, respectively.

θobs ∈

{
(θ1, θ2) , right edge firstly irradated

(−θ2,−θ1, ) , left edge firstly irradated
(4)

θ1 ∈

 (2n− 1) ϕ − 90◦ + arcsin
[
L
R
cos (2nϕ)

]
, 2nϕ < 90◦

(2n− 1) ϕ − 90◦, 2nϕ ≥ 90◦
(5)

θ2 = ϕ − arccos

(
Lcos2 [2 (n− 1) ϕ]+ sin [2 (n− 1) ϕ] ·

√
R2 − L2cos2 [2 (n− 1) ϕ]

R

)
(6)
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FIGURE 3. Time-domain signal of dihedrals with different opening angles (180◦, 150◦, 90◦, 70◦, 60◦, 55◦, 45◦ and 40◦). Among
them, the black solid curves correspond to RAB determined by (2) and (4), and the dashed lines correspond to RAB when
θobs = θsca in (2).

FIGURE 4. Schematic diagram of determining the vertical reflection
points within the dihedral. (a) 1RT signal. (b) 3RT signal.

We can summarize the characteristics of the time-domain
wavefront of dihedrals as follows. First of all, the wavefront
of the signal firstly incident to the right and left edges is
symmetric at 0◦ due to the symmetry of the dihedral. For
the right-side incident signal, the slope of the its wavefront
is negative because the corresponding propagation distance
becomes progressively shorter during the counterclockwise
circular scanning. In contrast, the slope for the left-side
incident signal is positive. Second, the lower the number of
reflections, the larger the corresponding observation angle
θobs (the further away from 0◦). As the opening angle
decreases and reaches the critical angle of odd RT (e.g.,
90◦, 45◦), higher odd RT signal appears. The observation
angle θobs of the newly emerged highest odd RT signal first
approaches 0◦ and gradually moves away from 0◦ in the
opposite direction as the opening angle continues decreasing.
In this process the wavefront corresponding to the firstly right
and left incident rays go through a process of intersection and
separation.

B. HIGH-ORDER RECONSTRUCTION ALGORITHM
Since the vertex of our target dihedral is at the cylindrical
scanning center (0, 0), and the propagation path of the
electromagnetic wave within the dihedral is that the wave
returns along the original path after the final vertical

incidence on the edge of the dihedral. Based on this, as long
as we determine the location of the reflection points, the set
of all reflection points constitutes the reconstruction target.
For the 1RT signal, as shown in Figure 4(a), the tangent point
of the thick dashed line across the scanning center (0, 0) on
the circle with the antenna position A(R,θobs) as the center
and the one-way propagation distance RAB/2 as the radius
is the vertical reflection point of the echo on the dihedral
edge, which is also our target reconstruction point. Note
that there are two tangent points Pr and Pr ′ for each case,
but unlike Pr which has the invariant angle θr for different
propagation distances RAB and observation angle θobs, the
angle θr ′ of Pr ′ varies. Since the angle of the dihedral edge
is constant, the tangent point Pr ′ should be discarded. For
the higher reflection signal (here 3RT is used as an example,
as shown in Figure 4(b)), the tangent point we obtain in
the same way mentioned above is the equivalent reflection
point Pe of the real reflection point Pr , as well as the fake
reconstruction point when the high-order signal is processed
as 1RT signal. Since the two points Pe and Pr are mirror
symmetric about the first reflection edge θ = +ϕ, we can
determine the position of Pr from Pe. Therefore, we can
calculate the position of the corresponding reflection point
based on the propagation distance RAB of the echoes received
at different observation angles, and different RTs should be
processed differently. According to this, we can establish a
one-to-one correspondence between (RAB,θobs) and (r t , θt ),
as shown in (7)-(9) (see Appendix C for details).

ψ = arcsin(
RAB/2
R

) (7)

θt = (−1)t+1
θobs + (−1)incψ

2n− 1
(8)

rt =

√
R2 − (RAB/2)2

cos[2(n− t)θt ]
(9)
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TABLE 2. Defined variables and their corresponding meanings.

where (RAB, θobs) is the set of extracted wavefront points
from time-domain signal, and (r t , θt ) is the position of the
tth ∈ [1, n]) reflection point of the 2n− 1(n ∈ [1, nmax])
reflection signal in polar coordinate, which is also the position
of the reconstructed target. We can calculate the angle
θt of corresponding reconstruction point with wavefront
point (RAB, θobs) by (7)-(8), and then calculate the length rt
according to (9). It should be noted that smaller t means
earlier reflection, for example, (r1, θ1) denotes the position
of the reflection point where the 2n− 1 reflection ray firstly
irradiates onto the dihedral. Larger t corresponds to a later
reflection, and the irradiated area on the target is mainly
concentrated on the inner part of the concave. When the
signal firstly irradiates to the right or left edge of the dihedral,
inc = 0 or inc = 1 in (8), respectively. If inc takes the
opposite value, the reconstructed point obtained corresponds
to the wrong tangent point Pr ′. The final reconstructed
target position is determined by the set of all (r t , θt ) which
result from processing every RT signal with corresponding
algorithm in (7)-(9). We list the frequently used variables and
their definitions in Table 2 for a better understanding.

From (7)-(9), it can be seen that in order to perform the
shape reconstruction correctly, it seems to be necessary to
distinguish wavefront points (RAB, θobs) in different RTs and
different incident directions manually. However, assuming
that the m1RT signal within the dihedral is processed by
the m2RT algorithm, if treated with the correct direction of
incidence, then the processed unilateral angle θ ′ is m1/m2 ·θ ,
where θ is the true unilateral angle. When m1 6= m2, θ ′ is
still constant but not equal to θ . However, if the signal firstly
incident to the right or left edge of the dihedral is treated
as firstly incident to the left or right edge, we have angular
deviation

∣∣θ − θ ′∣∣ = 2ψ/(2n− 1). Since ψ is not a constant,
the value of θ ′ is also variable. Based on this, we propose a
method to avoid the manual division of wavefront belonging
to different RTs and incident directions, thus automating the
imaging. For the wavefront with MRT = 2nmax−1 (only odd
reflections are considered), we can process all odd reflections
wavefront by each reflection algorithm (nmax sets in total)
separately without distinguishing the incident direction, and

TABLE 3. Reconstructed opening angle of 60◦ dihedral when processing
the m1RT wavefront with m2RT algorithm in correct incidence direction.

obtain nmax sets of results. Then set a proper angle threshold
and retain the angle range contained in all nmax sets of results
and their corresponding points, discard the other points, and
we can reconstruct the target shape based on the position
(r t ,θt ) of all retained points.

Figure 5 (a) and (b) show the point cloud reconstruction
maps obtained by using the 1RT and 3RT algorithms for
the received wavefront points (RAB, θobs) from 60◦ dihedral,
without distinguishing the incident direction. There are 1RT
and 3RT signals within the 60◦ dihedral, and the constant
reconstruction angles (60◦ and 180◦ in Figure 5(a), 20◦ and
60◦ in Figure 5(b)) appear when processing the wavefront
points with reconstructed algorithm in correct incidence
direction. Table 3 explains the angular correspondence.
Meanwhile, the reconstruction points with other angles are
obtained by processing with the wrong incidence direction
algorithm. We process the extracted wavefront points with
1RT and 3RT algorithms and obtain two sets of results,
respectively. Keep the points in angles that both results
contain (the points covered by the black dashed lines in
Figure 5(a)-(b)) and discard the other points, the we can
obtain the final reconstruction target shape, as shown in
Figure 5(c). Noted that since the BST algorithm is based
on the relationship between points, we usually use point
cloud map to represent the received wavefront and the shape
of the reconstructed target. Unlike in the conventional BST
algorithm where all points are represented in black and
thus the scattering strength cannot be judged, here we use
the different colors to indicate the intensity of power in
corresponding areas.

When the vertex of the dihedral is not at the scanning
center, we can transform it to be equivalent to the case
where the vertex is at the center by coordinate transformation
operation. As shown in Figure 6, the scanning center is the
center point (0, 0) in the polar coordinate, the vertex position
of the dihedral is

(
r′, θ ′

)
and the transceiver is (R,θobs). If we

regard the vertex position as center point (0, 0), the position
of transceiver in the new coordinate is (r, θ) and satisfies [24]:

r =
√
R2 + r ′2 − 2Rr ′ cos (θobs − θ ′) (10)

θ = arctan
(
Rsinθobs − r ′sinθ ′

Rcosθobs − r ′cosθ ′

)
(11)

We can firstly reconstruct the target with the conventional
BST algorithm, and in the reconstruction result, the two
symmetrical edges with the smallest angle are the edges
reconstructed from 1RT signal. Extending the two edges
and the corresponding intersection point is the vertex of
the dihedral structure, then we can determine the vertex
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FIGURE 5. The point cloud reconstruction results obtained by processing extracted wavefront points of 60◦
dihedral with every odd RT algorithm separately, without distinguishing the incident direction.
Reconstruction results of received wavefront points processed with (a) 1RT algorithm and (b) 3RT
algorithm, (c) Final reconstruction result.

FIGURE 6. The geometry of the dihedral when the vertex is not at the
scanning center.

position
(
r′, θ ′

)
. After coordinate transformation, the obser-

vation angles θobs sampled at equal intervals under the
original coordinate are converted into unevenly distributed
observation angles θ under the new coordinate, and the
rotation radius R, which is constant, is converted into variable
r that varies with the observation angle θ . Therefore, when
dealing with dihedral whose vertex are not at the center,
it is firstly necessary to determine the corresponding rotation
radius r and observation angle θ of each extracted wavefront
point under the new coordinate by coordinate transformation
operation, then reconstruct the shape according to (7)-(9).

C. ALGORITHM IMPLEMENTATION
The flowchart of the high-order reconstruction algorithm is
shown in Figure 7, and Figure 8 shows the illustration of our
proposed algorithm.

In our algorithm, the first step is to select a suitable power
threshold and obtain wavefront points information (power
value, observation angle θobs and propagation distance RAB)
of the strongly scattering echoes whose power is large than
the threshold in the time-domain signal. Figure 8(a) shows
the received time-domain signal from 60◦ dihedral with
0.3 m edge length, 0.7 m scanning radius. The wavefront
from larger to smaller observation angles (from ±60◦ to 0◦)
belongs to 1RT and 3RT signals, respectively, and shows
the propagation distance of the strongly scattering echoes at
different observation angles. Figure 8(b) shows the extracted
wavefront points in point cloud map, and the darker the color,
the larger the corresponding power value. Noted that unlike
Figure 8(a) which is an image, Figure 8(b) is a collection of
reconstructed points.

FIGURE 7. Flowchart of the proposed HBST based reconstruction
algorithm.

The second step is to determine the nmax artificially.
We firstly reconstruct the target by the conventional BST
algorithm, and the smallest opening angle in the reconstructed
result is the true angle 2ϕ of the target, then the MRT and
nmax can be determined by (1) and (3) respectively. Then
the wavefront points are processed with every (2n− 1)RT
(n ∈ [1, nmax]) algorithm in (7)-(9) respectively. If the recon-
struction points (r t , θt ) processed by the same RT algorithm
without distinguishing incidence direction are considered as
a set of data, then nmax sets of results are obtained.
There are numerous angles in each set of results. Since

the angles obtained by processing with the correct incidence
direction are constant, the number of points at those angles
are the most. For example, the points with angles of 60◦

and 180◦ in Figure 5(a) and 20◦ and 60◦ in Figure 5(b) are
the most. Noted that there is a certain deviation between the
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FIGURE 8. Illustration of the proposed HBST based reconstruction algorithm. (a) Received time-domain signal. (b) Extracted
wavefront points in point cloud map. (c) Reconstructed target in point cloud map. (d) Reconstructed target in image.

FIGURE 9. Simulation reconstruction results of dihedrals with different opening angles (70◦, 55◦, 45◦ and 36◦) using
(a) BP algorithm, (b) conventional BST algorithm, and (c) proposed HBST based reconstruction algorithm.

actual angle and the theoretical one when processing, so we
need to set angle threshold to restrict angle range (e.g., 1◦).
Besides, in certain set of results, the number of reconstruction
points corresponding to the correct angle is not necessarily
the most, thus we cannot assume that the angle containing the
most points is the target angle, and it could be any one of the
nmax constant angles. So our next step is to find the first nmax
angle ranges with the most points in each set of results. In this
way, we can obtain nmax · nmax angle ranges in the nmax sets
of results. Then calculate the mean value of each angle range
for better comparison.

In the fourth step, based on the obtained nmax ·nmax mean
value of the angles, we can find the target angle that exists
in all nmax sets of results. We can obtain the target shape in
point cloud map by remaining points under the target angle
and discarding the other points, as shown in Figure 8(c).

Finally, based on the information of the selected points,
we can convert the point cloud map into an image by (12)

to calculate the average power value Pij for each pixel in the
image

Pij =

∑n
t=1 Pt
n

(12)

where (i, j) is the position of the pixel in the image, n is the
number of reconstruction points in pixel (i, j), and Pt is the
power of each reconstruction point.

IV. IMAGING RESULTS
A. NUMERICAL SIMULATION RESULTS AND ANALYSES
In the following discussion, we use the same imaging geom-
etry and frequency as in Figure 1, and different algorithms
are implemented to reconstruct the shape of dihedral with
70◦, 55◦, 45◦, and 36◦ opening angles respectively. The
results are shown in Figure 9 (a)-(c) using the BP algorithm,
the conventional BST algorithm, and the HBST based
reconstruction algorithm proposed in this paper, respectively.
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FIGURE 10. Simulation reconstruction results of dihedral with three types
of notches using three different algorithms. (a) Dihedral shapes.
(b) Reconstructions from BP algorithm. (c) Reconstructions from
conventional BST algorithm. (d) Reconstructions from proposed HBST
based reconstruction algorithm.

Since higher-order odd RTs start to appear when the
opening angle is smaller than 90◦, the BP algorithm and
the conventional BST algorithm start to show reconstruction
artifacts, and only the outer edges of the dihedral can be
reconstructed correctly. For the dihedrals with 70◦, 55◦ or
45◦ opening angle, 210◦, 165◦ or 135◦ artifacts appear
respectively because 3RT is treated as 1RT. Similarly, for the
36◦ dihedral, both 3RT and 5RT echoes exist. Therefore, the
reconstruction results of the first two algorithms will have
108◦ and 180◦ artifacts.

It is not difficult to find that for the high-order RT echoes
within the dihedral, the more times the echoes are reflected,
the more regions of the dihedral can be irradiated, and
the highest RT echo can irradiate all areas of the dihedral.
Since the regions that are irradiated can be reconstructed,
theoretically we can recover the complete dihedral only using
the highest odd RT echo. For example, for a dihedral with 36◦

opening angle and without notches, the accurate shape can be
recovered only with 5RT echo, while low-order RT echoes
only can recover the outermost edge of the dihedral.

However, the highest RT signal cannot achieve the
target reconstruction when faced with notched dihedral.
Figure 10 shows the results of reconstructing the notched
36◦ dihedral with different algorithms. The edge length of
the dihedral is 0.3 m, and the cylindrical scanning radius is
0.7 m. Figure 10(a) shows three types of notched dihedral

FIGURE 11. Schematic of the irradiation area of the 5RT signal which is
firstly incident to the right and left edges of the notched dihedral,
respectively. (a) 5RT rays are firstly incident to the right edge. (b) 5RT rays
are firstly incident to the left edge.

shapes with 0.15 m edge missing from both top corners,
the left outer edge, and the left middle edge, respectively.
Since BP algorithm and conventional BST algorithm consider
all reflections as 1RT, thus the 3RT and 5RT echoes
reconstruct artifacts with opening angles of 108◦ and 180◦,
and the inner edges of the dihedral which can be recovered
from higher RT signal cannot be reconstructed accurately
in Figure 10(b)-(c). In contrast, the HBST based algorithm
used in this paper effectively solves the artifact problem and
accurately recovers the target shape, as shown in Figure 10(d).

It should be note that when the dihedral is notched, the
shape cannot be recovered correctly only with the highest
RT signal, and we need to superimpose the target shape
reconstructed by all RTs echoes. The 5RT echo within the
36◦ dihedral lacking the left middle edge is illustrated here
as an example. Figure 11(a) and (b) show the schematic
of the irradiation area at the notched dihedral edge of the
5RT rays which are firstly incident to the right and left
edges of the dihedral, respectively. The thick black line is
the real outline of the dihedral, and the red, blue and green
lines on the dihedral correspond to the areas which can be
irradiated by the 1st, 2nd and 3rd reflections of the 5RT echo,
respectively. The yellow line indicates areas which cannot
be irradiated or the observation angle range where echoes
cannot be received due to the presence of gap on the left edge
of the dihedral, and the purple line shows the range of the
observation angle where the echoes can be received. The thin
black line indicates the critical situation in the propagation
path of the 5RT signal, and the thin gray dashed line is the
propagation path that cannot be achieved within the dihedral.
It is easy to find that some areas that should have been
irradiated cannot be recovered by the highest RT echo due to
the presence of the dihedral gap, while these areas can still be
irradiated by other lower-order odd RTs, so the exact target
shape can be obtained by superimposing the reconstructed
shapes of all odd RTs echoes.

In addition to reconstructing simple structures, the pro-
posed algorithm can handle more complex targets. We per-
formed a 360◦ cylindrical scanning of a complex-shaped
object, and the scanning radius is 0.6 m and the rotation
step is 1◦. The complex-shaped object contains 60◦ and
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FIGURE 12. Simulation reconstruction results of complex-shaped target
using (a) BP algorithm, (b) conventional BST algorithm and (c) proposed
HBST based reconstruction algorithm.

TABLE 4. Comparison of accuracy and computaion time of different
algorithms.

90◦ opening angle structures, including two 90◦ dihedral
structures with edge length of 0.07 m, a 60◦ dihedral
structure with edge length of about 0.09 m, and two parallel
edges with length of 0.15 m. Figure 12(a)-(c) show the
results of reconstructing the target with the BP algorithm,
the conventional BST algorithm, and our HBST based
reconstruction algorithm, respectively. Since the 3RT echo
within 60◦ dihedral is treated as 1RT echo, artifact with
180◦ opening angle appears in the first two methods, while
our proposed algorithm effectively eliminates the artifact.
It should be noted that fully automatic imaging does not work
in this case, and we need to manually divide the wavefront for
each dihedral structure. Meanwhile, since none of the vertex
of the dihedral structures in the complex-shaped object is at
the center of the cylindrical scanning geometry, a coordinate
transformation operation in (10)-(11) is required when using
our proposed algorithm.

In order to compare our algorithm with BP algorithm, BST
algorithm and algorithm in [24] quantitatively, we imaged
45◦ and 70◦ dihedral with different algorithms and calculated
the relative mean error (RME) and computation time of each
imaging result, as shown in Table 4. Noted that the point
cloud map of the BST algorithm is converted to image for
processing.

The RME denotes the relative error of the imaging result
compared to the groundtruth image, which is defined as
follows [24]:

RME =

∑N
j=1

∣∣∣L tgtj − Lgtj ∣∣∣∑N
j=1 L

gt
j

(13)

There are N pixel points in the imaging area, Lgtj and
L tgtj denote the logical value of the jth pixel point in the
groundtruth image and the target image, respectively, and
the value is 1 when the power value of the pixel point is

FIGURE 13. Complete dihedral with 60◦ opening angle and its
experimental setup. (a) Front view of the 60◦ complete dihedral.
(b) imaging scenario of the 60◦ complete dihedral.

FIGURE 14. Experimental reconstruction results of the complete dihedral
with 60◦ opening angle using (a) BP algorithm, (b) conventional BST
algorithm and (c) proposed HBST based reconstruction algorithm.

greater than the threshold, and the opposite value is 0. The
smaller the RME is, the more similar the target image is to
the groundtruth image, i.e. the higher the accuracy of the
corresponding imaging algorithm. All four algorithms are
implemented with MATAB code and run on a computer with
Intel i5-8300H central processing unit (CPU) @ 2.3 GHz
and 24 GB random-access memory (RAM). It can be seen
from Table 4 that [24] and our algorithm have higher imaging
accuracy compared with BP and BST algorithm due to the
consideration of multiple reflections, but [24] takes longer
computation time, and our algorithm is faster due to the
smaller computation based on the extracted wavefront points.

B. MEASURENENT RESULTS
The HBST based reconstruction algorithm proposed in
this paper can be further verified with experimental data.
We perform this near-field cylindrical scanning experiment
in an anechoic chamber with a horn antenna connected to the
port of vector network analyzer as transmitting and receiving
antenna. Besides, a motor is connected to the turntable and
controls the rotation of the mechanical turntable. A low-
reflectivity foam table is placed on the turntable to hold the
target to be measured. Both the motor and the vector network
analyzer are controlled by the computer. In addition, the
experimental frequency range is from 4 to 20 GHz with a
frequency step of 0.02 GHz.

We first performed a 180◦ cylindrical scanning (from
−90◦ to 90◦ with 1◦ angle step) of the 60◦ dihedral
made of aluminum plates. In this case, the length of the
measured dihedral is 0.2 m and the scanning radius is
0.6 m. Figure 13 shows the experimental scenario of the
scanning on the 60◦ dihedral. Different algorithms are used
to reconstruct the target, and the results are shown in
Figure 14. Since there are 1RT and 3RT echoes reflected
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FIGURE 15. The shape of the complex-shaped target and the contour of
its bottom part. (a) Top view of the complex-shaped target. (b) contour of
bottom part of the complex-shaped target.

FIGURE 16. Experimental reconstruction results of the bottom part of the
complex-shaped target using (a) BP algorithm, (b) conventional BST
algorithm and (c) proposed HBST based reconstruction algorithm.

from the 60◦ dihedral, and the first two algorithms both
treat 3RT as 1RT when processing, there exist artifacts with
180◦ opening angle for both. In contrast, the HBST based
reconstruction algorithm used in this paper recovers the target
shapemore accurately. It should be noted that due to the slight
deformation of the metallic plate during the experiment, the
measured target is not a fully symmetrical 60◦ dihedral, so the
shape reconstructed by 1RT signal has some deviation when
processed using the conventional BST algorithm.

In addition, a complex-shaped target consisting of multiple
dihedral structures was also tested, with the shape shown
in Figure 15(a). We performed a 180◦ cylindrical scanning
over the bottom half which is marked with red lines, and the
scanning radius is about 0.7 m. The bottom half contour of
the target is shown in Figure 15(b), the edge length of the
middle 60◦ dihedral is 0.09 m, and the two outer edges are
0.07 m. The target is reconstructed using different algorithms,
and the results are shown in Figure 16. The results show
that for the first two algorithms which treat 3RT as 1RT,
there exist 180◦ artifacts. Meanwhile, the reconstructed result
processed by the BP algorithm has a strong reflection at the
vertices of the target, and the length of the two outer edges
is longer than the actual values. In contrast, the HBST based
algorithm proposed in this paper reconstructs the target shape
accurately.

V. CONCLUSION
In this paper, we have proposed a novel near-field millimeter-
wave shape reconstruction algorithm of concave objects
based on high-order boundary scattering transform. Com-
pared with the conventional boundary scattering transform,
in which all reflections are considered as a single reflection,
the proposed algorithm processes high-order scattering
separately in order to achieve accurate imaging of complex

targets. The causes of high-order artifacts are firstly analyzed
using the SBRs method. Then the forward high-order
boundary scattering transform is formulated which creates
the relation from target shape to time-domain wavefront.
Then, the HBST-based shape reconstruction algorithm which
processes wavefront corresponding to different RTs sepa-
rately and recovers the target shape is further proposed. Only
odd reflections are used for target reconstruction because of
the ambiguity of even reflections for the recovery of target’s
length. Both numerical simulations and experimental results
demonstrate that the proposed algorithm can efficiently
recover boundaries of concave targets while eliminating high-
order artifacts.

APPENDIX A HIGH-ORDER PROPAGATION PATH
To analyze each RT within the concave target, we first need
to know the propagation path of each RT, and based on
the propagation path we can recover the shape of the target
by establishing the relationship between the time-domain
wavefront and the position of the target irradiated by the rays.
Here we utilize the SBRs method for the following analysis.

It is known that the angles of the left and right sides of
the dihedral are θ = −ϕ and θ = +ϕ respectively, thus
the opening angle of the dihedral is 2ϕ. For the propagation
path of 1RT signal, there is only one case, that is, the ray
is eventually incident perpendicular to the dihedral and then
reflectsalong the incidence path, as shown in Figure 2(a).
When the number of reflections is 3, the possible reflection
path of the raywithin the dihedral are two types, return along
the original path and return not along the original path,
as shown in Figure 17(a) and Figure 18, respectively.

For the case of not returning along the original path, the
angle between the reflection direction of each ray within
the dihedral and the incident edge of the dihedral is acute,
if αn(n = 1, 2, 3) denotes the angle between the nth reflection
and correspondin incident edge of the dihedral, there are

¬α1 < 90◦

α2 = α1 + 2ϕ < 90◦ ⇒ α1 < 90◦ − 2ϕ

®α3 = 180◦ − α1 − 4ϕ

¯β = α1 − α3 > 0◦ ⇒ α1 > 90◦ − 2ϕ (a1)

It is obvious that  is contradictory to ¯ in (a1),
therefore, the assumption about the propagation path of 3RT
in Figure 17(a) does not work. Similarly, it can be proved that
when the number of reflections is 5, the propagation path
shown in Figure 17(b) is not possible. This conclusion can
be applied to higher-order odd reflections. We can therefore
conclude that for odd RTs within the dihedral, the only
possible propagation path for rays is eventually incident
vertically to the dihedral and then returns along the original
incidence path, and the propagation paths of 1RT, 3RT and
5RT are shown in Figure 2(a), 18 and 19(a), respectively.

For even RTs, however, the situation is slightly different.
Taking 2RT as an example, the possible reflection path of
the ray within the dihedral is shown in Figure 17(c). Here we
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FIGURE 17. The possible reflection path of (a) 3RT, (b) 5RT and (c) 2RT echoes.

FIGURE 18. The limit case of the propagation path of 3RT signal firstly
incident to the right edge of the dihedral and the areas that can be
irradiated on the dihedral with different opening angles. (a) Dihedral with
small opening angle. (b) Dihedral with large opening angle.

analyze the dihedral with 90◦ opening angle as an instance,
then we have

¬ 2ϕ + α1 + α2 = 180◦

β1 = 90◦−α1
®β2 = 90◦−α2
¯β = 180◦ − 2(β1 + β2) > 0⇒ 2ϕ< 90◦ (a2)

Obviously, ¯ in (a2) contradicts the fact that the opening
angle 2ϕ of the dihedral is 90◦, so Figure 17(c) cannot depict
the propagation path of 2RT. In fact, the propagation path
of 2RT does not follow the mirror reflection law, and nor
do other even RTs. The even RTs are caused by the even
coupling.

APPENDIX B RANGE OF OBSERVATION ANGLE
The reflected echoes are not received at all observation
angles, and the number of reflections of the echoes received
at different angles are different. However, according to
the path propagation law of odd reflections derived in
Appendix A, it is not difficult to analyze the observation
angle range of each reflection in the cylindrical scanning.
Figure 18(a)-(b) show all possible propagation paths of 3RT
echo firstly incident to the right edge (θ = +ϕ) of the dihedral
and the areas that can be irradiated on the dihedral with small

and large opening angles respectively, where the two thin
blue solid lines are the propagation path corresponding to the
critical case, and the thick red and blue line on the dihedral
indicate the areas that are irradiated by the first and second
reflections of 3RT, respectively. Next, we will analyze the
range of the observation angle θobs of the 3RT signal as an
example, and the derivation process is similar for other odd
reflections.

When the opening angle of the dihedral is small, as shown
in Figure 18(a), 3RT ray cannot illuminate the vertex of the
dihedral, at this time there are

α1 = 90◦ − 2ϕ

β2 = α1 − 2ϕ = 90◦ − 4ϕ (b1)

it is not difficult to find that

α2 = 90◦ − 2ϕ − arcsin
[
L
R
sin
(
90◦ − 4ϕ

)]
(b2)

β1 = arccos

(
Lcos2 (2ϕ)+sin (2ϕ) ·

√
R2−L2cos2 (2ϕ)

R

)
(b3)

Then the limits θ1 and θ2 of the observation angle θobs are

θ1= ϕ − α2 = 3ϕ − 90◦

+ arcsin
[
L
R
sin(90◦ − 4ϕ)

]
(b4)

θ2= ϕ − β1

= ϕ−arccos

(
Lcos2 (2ϕ)+sin (2ϕ)·

√
R2−L2cos2 (2ϕ)

R

)
(b5)

Likewise, when the opening angle of the dihedral is large,
as shown in Figure 18(b), 3RT can shine in all regions of the
dihedral, then we have

θ1 = ϕ − α = 3ϕ − 90◦ (b6)

In this case, θ2 is still expressed by (b5), and by combining
(b4) and (b6), it is easy to know that the critical angle of the
dihedral is 2ϕ = 45◦ for 3RT echo. Similarly, the range of
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observation angle for other odd RTs signals can be derived,
but we will not elaborate here. The conclusion is as follows
(b7)–(b9), as shown at the bottom of the page.

APPENDIX C DERIVATION OF HBST BASED SHAPE
RECONSTRUCTION ALGORITHM
Based onAppendix A andB, we can establish the relationship
between the propagation distance RAB and the observation
angle θobs with the edge length rt of the dihedral and the angle
θt where the edges locate. The 5RT signal firstly incident to
the right edge (θ = +ϕ) of the 36◦ dihedral is used here as an
example, and the derivation is similar for other cases.

FIGURE 19. The propagation path of the 5RT signal within the dihedral.
(a) Real propagation path of the 5RT signal. (b) Equivalent propagation
path of the 5RT signal with mirror reflection principle.

Figure 19(a) shows the propagation path of the 5RT signal,
and point Pt (t = 1, 2, 3) is the reflection point on the
dihedral. (r t , θt ) is the corresponding position of the point
Pt in the polar coordinate, and based on the position we can
reconstruct the shape of the dihedral. Figure 19(b) shows the
equivalent propagation path of the 5RT signal according to
the principle ofmirror reflection, whereE1 andE2 correspond
to the 3RT and 1RT equivalent reflection points of point P3,
and the corresponding angles are−3ϕ and+5ϕ, respectively.
Since the angle ψ between the observation angle θ0 and the
angle of 1RT equivalent reflection edge θ = +5ϕ is

ψ = arcsin(
RAB/2
R

) (c1)

Then the angle β between the observation angle
θobs and the right edg’s angle θ = +ϕ of the dihedral

can be obtained as

β = ψ − 4ϕ (c2)

The observation angle θobs therefore is

θobs = ϕ − β (c3)

Then the angle of the right edge of the dihedral is

θ = +ϕ = θobs + β = θobs + ψ − 4ϕ (c4)

The final result by simplification is

θ = +ϕ =
θobs + ψ

5
(c5)

The result in (c5) corresponds to the angle at which the first
and third reflection points locate, while the second reflection
locates at the angle

θ = −ϕ = −
θobs + ψ

5
(c6)

Meanwhile, from Figure 19(b) it is not difficult to derive
the length of the edge

r3 =
√
R2 − (RAB/2)2 (c7)

r2 =

√
R2 − (RAB/2)2

cos(2ϕ)
(c8)

r1 =

√
R2 − (RAB/2)2

cos(4ϕ)
(c9)

Similarly, we can infer the case of firstly incident to
the left edge and extend to higher odd RTs echoes. Then
we can finally summarize the reconstruction algorithm as
follows (t denotes the tth ∈ [1, n]) reflection of the
2n− 1(n ∈ [1, nmax]) reflection signal in polar coordinate
system):

θt = (−1)t+1
θobs + (−1)incψ

2n− 1
(c10)

rt =

√
R2 − (RAB/2)2

cos[2(n− t)θt ]
(c11)

θobs ∈

{
(θ1, θ2) , right edge firstly irradated

(−θ2,−θ1, ) , left edge firstly irradated
(b7)

θ1 ∈

 (2n− 1) ϕ − 90◦ + arcsin
[
L
R
cos (2nϕ)

]
, 2nϕ < 90◦

(2n− 1) ϕ − 90◦, 2nϕ ≥ 90◦
(b8)

θ2 = ϕ − arccos

(
Lcos2 [2 (n− 1) ϕ]+ sin [2 (n− 1) ϕ] ·

√
R2 − L2cos2 [2 (n− 1) ϕ]

R

)
(b9)
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