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ABSTRACT The ongoing Industry 4.0 is characterized by the connectivity between components in the
manufacturing system. For modern machines, the Internet of Things is a built-in function. In contrast,
there are legacy machines in deployment functioning without digital communication. The need to connect
them became popular to improve overall production efficiency. As building a new smart factory as a
greenfield investment is a capital-intensive choice, retrofitting the existing infrastructure with IoT capability
is more reasonable than replacing them. However, this so-called brownfield development, or retrofitting,
requires specific prerequisites, e.g., digitization status assessment, technical and connectivity development,
management requirement, and operational need, representing a significant disadvantage: lack of scalability.
In the meantime, Industry 5.0 is under human-centric priority, which poses new challenges to the retrofitted
system. Aware of the challenge, this paper provides a systematic overview of brownfield development
regarding technical difficulties, supporting technologies, and possible applications for the legacy system. The
research scope focuses on available Industry 4.0 advancements but considers preparing for the forthcoming
Industry 5.0. The proposed retrofitting project approach can be a guideline for manufacturers to transform
their factories into intelligent spaces with minimal cost and effort but still gain the most applicable solution
for management needs. The future direction for other research in brownfield development for Industry 5.0 is
also discussed.

INDEX TERMS Brownfield development, legacy system, Industry 4.0, Industry 5.0, retrofitting, automation.

I. INTRODUCTION
In the context of Industry 4.0 (I4.0), the connectivity of
equipment, machines, and various supporting devices to the
Industrial Internet of Things (IIoT) within a manufacturing
facility is a critical function [1]. Thanks to this comprehensive
integration that enables the communication between humans
and machines, insight and data-driven solutions for compli-
cated operation problems are available [2]. As a result, the
so-called intelligent manufacturing system can be monitored
in such an efficient way [3], with optimized resources regard-
ing human labor [4], production time [5], energy [6], and
operational cost [7]. With these useful applications, modern
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machines nowadays come with various ways of transmitting
data and communicating with each other as well as to the
system [8], creating a connected Cyber-Physical Production
System (CPPS) [9]. That is the fundamental concept of data-
driven smart and digital manufacturing [10], which is a foun-
dation for every management principle that can be applied
automatically upon [11].

Nevertheless, not all companies invest in newly released
and modern machinery. Much older generation devices lack
connectivity but still perform good operations on duty, even
though the operational collaboration, power consumption,
and carbon emission are not as good as the new ones. Without
high investment in new equipment and technologies, com-
panies can retrofit these existing equipment to adopt the
I4.0 [12]. Equipping them with the Internet of Things (IoT)
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capability is the first step towards any more intelligent system
with higher process quality and power consumption effi-
ciency, which has considered the environmental effect [13].
The integration of new devices and technology into the tra-
ditional processes in the digitization journey can offer great
opportunities for companies to re-design business and expand
service activities, which facilitate data-driven business strat-
egy making [14]. The need for retrofitting solutions emerges
in Small and Medium-sized Enterprises (SMEs) [15], which
is the most vulnerable object of being left behind in the
I4.0 development [16]. The IoT upgrade for better utilization
of existing infrastructure with legacy equipment and legacy
software is named brownfield development [17], also known
as retrofitting [18]. According to some resources, these two
definitions can be used interchangeably.

In a simple explanation, retrofitting means equipping the
legacy systems with IoT connectivity, helping them get
started with IoT technologies, and can be labeled ‘‘IoTiza-
tion’’ [19]. The objects in retrofitting include the hardware
of machinery and the production method, operator, and man-
agement as stated in Ref. [20]. The most challenging obstacle
of a retrofitting project is that in a legacy system, there
are machine tools from different manufactured times, thus
having different communication protocols [21]. Due to the
lack of sensors and actuators, process control needs to be
conducted manually by observing, sensing, estimating, and
adjusting the machine parameters [22]. Together they formed
a system with minimal connectivity that is not suitable for
IoT and data-driven management approaches, which need
data collection and analysis as prerequisites [23]. On the
other hand, other complex considerations need to be taken
before starting a retrofitting project with a specific system.
Some of them are the digital maturity of the current system,
machinery condition, the operational need that determines the
connectivity type, intended management purposes, and the
financial decision on investment.

In the advent of Industry 5.0 (I5.0) as a sustainable,
a human-centric, and resilient initiative proposed by the
European Union (EU) [24], manufacturers should take into
consideration enhancing workforce empowerment as a way
to support their workers during production tasks [25]. This
integration of human employees should be built upon the
achievement of I4.0 technology-driven orientation as a way
toward a digitized production of the future [26]. It means
retrofitting approach should take a step toward the involved
human by adopting concepts such as Operator 4.0 [27]–[30],
Operator 5.0 [31]. Consequently, the retrofitted system with
the data analyzing and monitoring capability can gradually
benefit its operator. Besides, continuous improvement in pro-
cess monitoring, quality management, and energy utilization
are criteria that need to be considered sustainable metrics.

There are lessons from the previous implementation of
I4.0 that the fragmented approach of single technical devel-
opment in a specific domain can lead to more challenges
from the management perspective [32]. Consequently, man-
agement roles such as decision-makers and executives can

face difficulties in comprehending the overall picture before
the decision to implement I4.0 concepts in their facilities [33].
Several studies in the I4.0 maturity models aim to assist
comprehensive guidance over this problem. However, most
of them show a gap for a holistic, structured, organizational
alignment approach [34]. Due to this reason, organizational
aspects have been included in the maturity model proposed
in Ref. [35], which assesses the I4.0 readiness of the firm
by measurable items that are suitable for the production
environment. However, I5.0 brings its relevant concerns. In its
threshold, the ambiguity of digital transforming legacy man-
ufacturing systems remains untouched, with a lack of updated
guidance that fulfills the previous gap of I4.0.

Understood this conundrum of industrial manufacturing
managers, we want to take a step ahead in helping them with
a more updated, comprehensive, systematic, organizational-
aligned approach to adapting their facilities to keep up with
the subsequent development. According to this aim, the main
contributions of this work are as follows:

• After conducting a systematic overview of the existing
I4.0 solutions to upgrade the old-fashioned system into
a connected one, we followed the IoT reference models
to categorize them into targeted layers for digitization.

• Advanced management philosophies are discussed,
with validated evidence of advantages from retrofitting
projects. Then a project approach is proposed, based on
a well-known and adopted maturity model and kept in
mind the sustainability goals of I5.0, with specific steps
and respective consideration criteria, deliverables. The
proposed guideline can provide managers and decision-
makers with a holistic picture of how to conduct their
brownfield development, organize their development
activities, permeate the digitization spirit into their team,
and prepare for the possible obstacles.

We hope this research encourages managers to invest effort
in retrofitting projects, strengthening their advantages in the
next industrial revolution. In the following sections, section II
provides the key research questions and the search strategy
that have been used for skimming the databases for related
materials. Section III is devoted to describing the enabling
I4.0 technologies that have been deployed for the retrofitting
purpose of brownfield development. Its subsections described
the layers in which the works have been done and specific
manufacturing operation management applications on the
table. Section IV revealed several developments which pre-
pared for the I5.0 application. In Section V we recommend a
possible framework for a retrofitting project from a manage-
ment aspect. Then comes the recommendation in Section VI
for future researchers and entrepreneurs in the fields. The
conclusion is drawn in Section VII.

II. RESEARCH METHOD
In this section, the motivation of this research is discussed,
and the research objectives are mentioned. Based on that, cor-
responding keywords and search terms are developed, with a
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search strategy deployed for the database search. A search
flowchart diagram illustrating the research process is given,
indicating sources of materials for further synthesis.

A. BACKGROUND AND OBJECTIVES
Several literature review papers about retrofitting in specific
domains, such as smart cities or buildings and construction
sites, but only a few mentioned retrofitting in manufacturing.
A systematic literature review about smart retrofitting of
legacy manufacturing systems is done in Ref. [36], providing
a comprehensive conceptualization of smart retrofitting defi-
nition and drivers, challengers. Brownfield development with
retrofitting approach sometimes is arguably debated over
greenfield investment, as they go through a similar framework
in carbon area as a means for productivity improvement in
the aluminum industry [37]. However, there is a lack of
technical concerns due to the non-scalability of solutions
between different manufacturing systems. Besides, previous
retrofitting research does not discuss the system management
possibilities or the aimed goals in detail. Thus a bigger pic-
ture is needed for further support and encouragement of the
assessment and consideration upon investment in brownfield
development. For that purpose, this paper addressed the fol-
lowing objectives:

• Objective 1: Identify and describe the case studies of
retrofitting the existing machinery with IoT capabilities
in the manufacturing industries.

• Objective 2: Figure out the technical enablers for these
kinds of retrofitting and what management purposes can
be deployed upon them.

• Objective 3: Sketch the framework for the forthcoming
I5.0 retrofitting solution.

B. SEARCH STRATEGY AND PROCESS
In this literature research, we followed the preferred
Reported Item for Systematic review and Meta-Analysis
(PRISMA) [38]. Scopus, Web of Science (WoS), and Google
Scholar are the main databases used. The relevant keywords
are defined within the desired scope as ‘‘retrofit*’’, ‘‘brown-
field’’, ‘‘legacy’’, ‘‘Industry 4.0’’, ‘‘Industry 5.0’’, ‘‘matu-
rity’’, ‘‘strateg*’’, ‘‘implement*’’. The asterisk signs are
deployed to capture all forms of interesting words. By search-
ing for title, abstract, and keywords sections with the search
terms elaborated from predefined keywords, the search is
limited to press and articles in scientific journals or confer-
ence proceedings. Thus, we believe that all successful case
studies in brownfield development are comprehended. Report
and conference abstracts were excluded. Table 1 detailed the
search terms being used and the corresponding number of
search results.We separated the keywords ‘‘Industry 4.0’’ and
‘‘Industry 5.0’’ to see how the current awareness of academic
society on Industry 5.0 is. The search was done by the authors
independently.

Scopus database provided a result of primarily high rel-
evant papers. At the same time, Google Scholar shows a

TABLE 1. Search terms and results.

FIGURE 1. Keywords network visualization.

wide range of hits, in which there are only a few papers
related to the interest questions. The network visualization in
Figure 1 depicts the relevance of the keywords that the authors
suggest. It can be seen that the emergence of retrofitting
solutions and the concern for legacy systems are still being
loosely connected and less emphasized in the search-resulted
papers. The most prominent keyword mentioned is Industry
4.0, while Industry 5.0 is not shown in the network as there
are too few documents that mention this concept.

The following steps of the search process are described
in Figure 2. After removing the duplicates on Mendeley
reference management software [39], there are 2245 papers
left. Then each paper has been under two general screening
steps: firstly with its title, and secondly with its abstract,
to define the relevant research outcomes. The number of
relevant papers after two screening steps is 91. These papers
are classified by level of relevance by the authors indepen-
dently. If there is ambiguity for a specific paper during the
classification, at least two authors may discuss and assign the
class. If their discussion cannot resolve the ambiguity, another
author may decide on the discrepancy. The levels of relevance
are:

• No relevance: The research approach is not related
to retrofitting activities or brownfield development in
industrial manufacturing.

• Low relevance: The research approach is loosely related
or does not consider the I4.0 connectivity. However,
it is associated with an important aspect of a retrofitted
system.
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FIGURE 2. The PRISMA-based flowchart diagram of the selection process
of the reviewed papers.

• Medium relevance: The research result is partly
aligned with the retrofitting or brownfield development
approach for I4.0, but the scale of the case study is not
the full scope of a project, and the goal of brownfield
development is not stated explicitly.

• High relevance: The approach is fully aligned to the
retrofitting practice and explicitly states the brownfield
development goal. The case study is described in detail,
and the suggestion is helpful in shaping the future
research direction.

Then the papers with high relevance are scanned further for
their reference list to seek the related stemmed references.
By adding 26 stemmed reference papers, the aggregated
number of papers eligible for full-text review is 117. Some
research is defined as ‘‘out of scope’’ and thus not included
in the synthesis. The following criterion distinguishes such
items:
• Did not describe the use case and deployed technologies
explicitly [40], [41]

• Conduct the retrofitting work without I4.0 orienta-
tion [42]

• Performed the validation in a fragmented way, not
related to any industrial machinery [43]–[45]. Only for
the cyber-security aspect, we accept research papers in
this section that have the experiments conducted with-
out specific machinery but simulation scenarios, con-
sidering the special characteristics of this aspect and its
scarcity of research work.

• Review the industrial application without any specific
proposal in the field [46]–[49].

Since these papers are excluded, thus the total number of
papers collected for the synthesis is 98. For these remaining
papers, there are research questions to be addressed as the
guiding light for data collecting:
• What type of industrial context has the improvement
been done?

• What are IoT-based technologies that have been used?
And what are the layers in which the technologies were
deployed?

• What manufacturing operation improvement can be
applied given that the I4.0 technologies are ready?

• What are the recommendations and future trends of
brownfield development that should be concerned?

Only some of the four questions mentioned above apply
to papers with low and medium relevance. These papers
were resolved in the same way as the relevance classification
step. The authors collected the data and noted its use cases
for citing in the suitable section accordingly. The following
section will be the synthesis of enabling technologies that
have been used for retrofitting projects from the collected
papers.

III. ENABLING TECHNOLOGIES - EXISTING SOLUTIONS
FOR RETROFITTING
This section categorized the enabling technologies deployed
in previous retrofitting projects, considering that the cur-
rent I4.0 is on the market. Based on the reference model
for IoT with seven layers [50], the approach of retrofitting
projects is modified accordingly based on the layer that is
re-configured. Several authors suggested different retrofitting
models, but somehow they share the typical scope in several
aspects. Lins et al. in Ref. [18] defined the technologies
for I4.0 retrofitting as four levels of IoT sensors, Software-
Defined-Network (SDN) architecture, Open Platform Com-
munications (OPC) communication, and cloud computing.
In Ref. [36], the author mentioned that a common retrofitting
approach might conduct their work on three levels: sensor,
connectivity, and data. In Ref. [51], another classification
is adopted with three levels: hardware, communication, and
cloud. A similar three-level classification with devices, con-
nectivity, and infrastructure levels is proposed in Ref. [15],
while [52] categorized them into physical resources, network,
and data application layers. This paper reviews enabling tech-
nologies and solutions for retrofitting projects in four groups
of activities: sensor and actuator deployment, connectivity
enhancement, data management, and operational application.
The relative connection of the activities performed over the
IoT level in the reference model is depicted in Table 2. For
each layer, the technologies are considered due to their scope
accordingly.

The first step in brownfield development is enhancing
the data acquisition from dated equipment that often has
varying degrees of instrumentation and automation and can
be categorized by deploying the additional sensors in the
first level of the IoT reference model. Legacy machines lack
ways tomonitor their processing parameters [22]; fortunately,
sensor technologies nowadays are well-advanced for that
purpose [53]. In many cases, additional actuators are added
to enhance the automation at the field level and replace the
human manipulation [54]. A network with sensors and actu-
ators can contribute significantly to the migration of legacy
manufacturing systems towards the I4.0 [55].
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TABLE 2. Retrofitting activities upon levels of IoT reference model.

Then the next step covers the subsequent two IoT lay-
ers, providing the connectivity that mediates the data flow.
With a different level of connectivity in a dated manufactur-
ing system, it is problematic to connect the machines, and
the legacy system is usually controlled locally through its
Human-Machine Interface (HMI) [19]. Machine-to-machine
communication is established as the data from additional sen-
sors, existing Programmable Logic Controller (PLC), or add-
in micro-controllers of the machine can be integrated [56].
Integrating the data of existing legacy PLCs into a connected
system is a special interest in retrofitting projects [57]. The
system can be coherent if the old machines are linked with
the new ones [58].

The fourth and fifth layers in the IoT model are covered
by the use of a data storage and management system [59].
An integrated Information Technology (IT) infrastructure is
required to cast the administration upon the system [60].
This foundation is the prerequisite condition for enterprises to
foresee their business at the strategic level: Business planning
and logistics, defined by the fourth retrofitting layer [61].
Retrofitting focuses not only on the physical asset but also on
the broader picture of the business operation itself. In the sixth
and seventh IoT levels, data-driven management decisions
can be taken within the frame of Manufacturing Execution
System (MES), Enterprise Resources Planning (ERP), and
other software tools [62]. There are possible applications for
managers, as well as management philosophies, that can be
deployed with the aid of available data [63].

The ultimate goal of a retrofitting project is the compre-
hensive digital transformation of legacy systems [14]. This
successful transformation requires the development of cost-
effective and reliable measurement, along with data collec-
tion and manipulation solutions that can ensure condition
monitoring [64]. The establishment of vertical and horizontal
integration of the entire production is needed [65], to allow
the autonomous operation of the equipment without signif-
icant modification [66]. This goal should be achieved by
a long-term strategy as the company moves forward in its
digitization journey [16]. The following subsection explored

the brownfield development across industries, with the tech-
nologies utilized in the activities mentioned above.

A. SENSORS AND ACTUATORS DEPLOYMENT
Several retrofitting projects perform the sensors and actuators
deployment at the initial phase of the implementation as the
first step to integrating the physical and virtual world [12].
Sensors and actuators usually go in pair with an interested
process parameter [67], thus their simultaneous consideration
and selection ensure that a functional Digital Twin can be
developed from low-level [68]. In this layer, sensors and actu-
ators play a vital role in process automation in general and the
IoT approach in particular. This section is devoted to synthe-
sizing the most frequent sensors and actuators deployed in
retrofitting.

1) SENSORS DEPLOYMENT
Existing legacy equipment lacks sensors to indicate their
operating status [69], thus additional sensors should be inte-
grated. Several researchers stated the difference between
a general-purpose sensor and an IoT-specific purpose sen-
sor [70]. Though there is a significant difference between on-
and off-the-shelf sensors in the market, in this review paper,
we took an overview of which were deployed in previous
successful retrofitting projects without digging into that dif-
ference. The types of deployed sensors can be categorized as
listed in Table 3.

The sensors can be divided into measuring the parameters
of the production environment (e.g., temperature and humid-
ity) or measuring the machine parameters (e.g., vibration,
energy consumption, tension) [15]. The use of sensor types
is closely related to the process parameters and quality, men-
tioned later at the end of this section. Energy retrofitting is
still an underdeveloped concept [83]; thus, the use of energy
sensors in past projects is scarce. A system of high-frequency
sensors is deployed in Ref. [95] to track the energy utiliza-
tion of various equipment in the food processing system to
enhance energy efficiency. Meanwhile, accelerometers and
temperature sensors are among the most frequently used, and
on-the-shelf products are preferred in many studies.

Along with the usage of the commercial sensor, there are
types of sensors that are especially suitable for retrofitting
purposes, such as the ultra-thin silicon chips proposed in
retrofitting project in Ref. [96]. There is an evaluation of
alternative manufacturingmethods for 3DMechatronics Inte-
grated Devices (MID) sensors for retrofitting purposes men-
tioned in Ref. [53]. With this ongoing interest, retrofitting-
purpose sensors will be available on the shelf in the close
future.

It can be seen that the type of chosen sensors is different
from industries such as textile [97], food processing [51], and
car assembly [75]. On the other hand, within the same indus-
try, different sensors are chosen due to the different machine
status and various operational needs of the managers, such as
in the case of metal cutting [53], [72], [83], [87], [92]. This
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TABLE 3. Most frequent used sensors to retrofit legacy system.

fact reflected the realistic heterogeneity of the legacy system
and the un-scalability of the retrofitting solution.

TABLE 4. Most frequent used actuators to retrofit legacy system.

2) ACTUATORS DEPLOYMENT
Legacy systems usually require human manipulation with
adjusting and controlling tasks. For brownfield development,
these manual tasks can be performed by actuators to ease the
attentive presence of human workers. On the one hand, the
existing legacy actuators can be incorporatedwith automation
capability to facilitate themanufacturing process control [98].
On the other hand, an additional actuator or end-effector can
be deployed to extend the system capability for performing
the related process [80], [99]. An IT-based integration of addi-
tional sensors and actuators with the existing legacy system
can be established with a self-built invasive unit [100], thus
providing a digital retrofit solution for operational purposes
such as process automation, production control, or quality
assurance. An industrial wireless sensor and actuator network
can perform distributed sensing, data fusion, and collabora-
tively decision-making with human workers [101]. In this
section, several actuators and their usage in retrofitting devel-
opment are mentioned in Table 4, to sketch an overview of
how they can be deployed in a certain condition and working
environment.

In most retrofitting scenarios, the existing legacy actuators
can be integrated into the system control, thanks to the newly
established system connectivity [58]. The application of inte-
grated control, control algorithm, and process simulation
help to manipulate the actuators effectively, with predefined
control sequences [98]. Process and quality control functions
can be incorporated into the local automation, in pair with
respective sensors [77].
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In other cases, retrofitting effort is done with new sen-
sors and actuators deployed [100]. Additional actuators can
perform controlling on process variables automatically in
a real-time manner [64], with the signal being monitored
by respective sensor readings, or governed by an embedded
board that can receive user command, or automated by a
retrofitting platform [18]. The search for the suitable sensor
and matching actuator can adopt the static or dynamic model
creation in [67]. Noticeably, besides existing variables, the
retrofitting attempt may introduce new variables which share
an impact on the process [54]. In addition, new actuator
deployment can extend the capability of the existing hard-
ware, thus incorporating new aspects into the system [80],
such as safety [21], [64].

The actuator types can be self-built or commercial, depend-
ing on the specific need of the retrofitting purpose. Self-built
actuators opened a wider range of applications as they can
adapt to the design of existing mechanism and structure [82]
or provide a unique function [106]. The safety aspect can be
integrated into the intrinsic design of the actuator [82].

B. CONNECTIVITY ENHANCEMENT
The weak point of a legacy system is that there are homo-
geneous IT systems and machines with different interfaces
and protocols [67]. This connectivity enhancement came
into the retrofitting projects after the sensors were deployed,
as communication is a crucial characteristic of I4.0 [18]. Once
the connectivity is established, new options for operation
monitoring, forecasting, and controlling can be available on
the shop floor [80]. PLCs already have taken place in legacy
systems. They will continue to exist for a long life-cycle
time, thus urges a reasonable need to integrate them into IIoT
infrastructure [107]. The first subsection of this section is
devoted to the development of retrofitting the manufacturing
systems with PLCs. In the second subsection, the IoT compo-
nents deployed to retrofit the connectivity of legacy systems
are described.

1) I4.0 PLCs RETROFITTING
Many retrofitting projects involved the use of a PLC. This
subsection is mainly devoted to describing the retrofitting
works done upon the legacy plants with existing or new PLCs,
considering the different approaches and integration methods
that aim to develop an I4.0 connected manufacturing system.

In legacy manufacturing systems, PLCs are still in charge
of controlling the production processes with relatively long
life cycles, with their natural characteristics of hardware-
based and mission-critical. However, due to their limited
processing and communication capabilities, plant monitoring
and data analysis cannot be incorporated into I4.0 architec-
ture [57]. In this scenario, I4.0 retrofitting attempts were
made to access these data of PLCs and forward them into new
interconnected environments. In other cases, the deployment
of new PLCs is also considered a way to automate processes
and enhance field-level control of the legacy manufacturing
system. The type of existing PLCs and their new role in a

TABLE 5. Most frequent improvement on PLCs to retrofit legacy system.

connected system, as well as new deployed PLCs with their
retrofitting roles, are described in Table 5. Noticeably, there
are cases in which the reliability concerns, vendor restric-
tions, and outdated programming environments make the
PLC irreplaceable, obstructing the retrofitting attempts [57].

With existing PLCs in a legacy system, retrofitting activi-
ties aim at broadening their capability or accessing and inte-
grating their data [58]. Several retrofitting concepts for inter-
facing legacy PLCs in I4.0 scenarios are proposed in [57],
which consider the case of factories containing PLCs from
different manufacturers. The LoRaWAN connectivity is inte-
grated into a PLC in [111], which enhances the field device
connection. To retrofit an old system, new PLCs can be
deployed to perform logic control on system modules such
as conveyors [110]. Generally speaking, to integrate legacy
PLCs with limited connectivity into an IoT system, several
components such as communication protocols, programming
language, and execution environment should be taken. Amid-
dle layer can be formed based on the features of the existing
PLCs to enhance the connectivity that makes the system fully
I4.0-compliant [55]. This connectivity enhancement will be
discussed in the following subsection.

2) I4.0 CONNECTIVITY RETROFITTING
Regarding establishing the shared communication and con-
nectivity between devices and networks, hardware such as
micro-controllers, micro-computers and gateways are added,
protocols such as communication, messaging, and platforms
should be defined [72]. These connectivity-related technolo-
gies are categorized in the Table 6.

Embedded controllers and micro-controllers
(e.g., NodeMCU and Arduino) can be implemented for
embedded control, and process automation, especially with
continuous production type [90], [91]. Micro-computers such
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TABLE 6. Most frequent used technology to retrofit connectivity of legacy
system.

as Raspberry Pi are considered promising low-cost and effec-
tive candidates to integrate into the existing machine and
enhance data acquisition, and simultaneous processing [120].
Raspberry Pi is the dominant candidate for its reasonable
price, simple configuration, and ease of operation with an

open-source ecosystem. The connectivity of legacy systems
can be enhanced by utilizing on-the-shelf gateways, and
industrial providers such as Laird, SECO, and Siemens are
trustable partners for the choice. Lucke et al. in Ref. [67]
reported the application of self-developed kits as SmartBoxes
in the retrofitting of the industrial loom and metal forming
jigs and fixtures. Meanwhile, traditional field-bus such as
PROFINET has been under development to enable the use
of legacy devices. As in Ref. [108], a virtual PROFINET
architecture is proposed and validated through experiment as
a promising low-cost and reduced-resources solution.

For the wireless communication technology, enhancement
adoption based on LoraWAN technology is proposed as a
gateway toward legacy networks in Ref. [116], which shows
the flexibility and scalability of the application. Another
similar approach based on this technology is also used in
Ref. [57], [111], which emphasizes the usage for IoT devel-
opment in brownfields.

There are many promising candidates for the retrofitting
work, such as Profibus, CANOpen, and DeviceNet, which are
proposed as the core communication protocol in Reference
Architecture Model Industry 4.0 (RAMI 4.0) [121]. OPC UA
seems to be the appropriate option for the migration towards
I4.0 [12], with simple data acquisition, monitoring, control,
and analysis. In Ref. [122], a case study is conducted to inte-
grate OPCUAwith legacy deviceswith proprietary protocols.
However, in some cases, alternatives such as OPC DA and
AMQP are in place, dependent on the specific case of legacy
system [73]. Deployed protocols must be complied with the
recent industrial standard, as legacy machines are usually
accompanied by old communication protocols [59]. An inte-
grated solution such as Modbus-OPC UA wrapper is pro-
posed in Ref. [102] to adapt to a large part of legacy machines
in the industry. Noticeably, the variants of Modbus, such as
Modbus RTU and Modbus TCP, can also be coupled with
protocol converters, consequently enhancing the retrofitting
possibilities. Programming platform such as Node-RED is
mentioned as a low-cost execution environment, and favor-
able for retrofitting with legacy PLCs [57], [111].

In general, the connectivity enhancement for a legacy sys-
tem is implemented according to an architecture that the
authors usually suggested in their projects [16], [57], [112],
[115], [123]. These architectures are the prerequisite output
that needs to be designed in the very beginning stage of
the retrofitting project. This aspect will be described in the
section V.

C. DATA MANAGEMENT
The data treatment characterizes this level. Up to this level,
the process data are available and need to be connected to
integrated storage for further processing [39]. With the data
shortage in quantity and quality as the nature of the legacy
system, smart data modeling, simulation, and visualization is
a promising approach to full automation ideas [124]. Due to
that, data storage, visualization, and analysis are emphasized
in this stage, as listed in Table 7.
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TABLE 7. Advancement in the data layer.

Separate soft-wares are mentioned for different purposes.
Industrial big data management tools are used for compre-
hensive platforms due to their abundant add-on packages,
such as Apache Kafka [59]. Free service such as Blynk [104]
is also an option for a low-cost solution. Commercial cloud
platforms are deployed from Microsoft, Amazon, Siemens,
Google, and SAP. Real-time processing capability is the
desired requirement in choosing the product [63], [97]. On the
availability of data, machine learning techniques can be
applied for further optimization [75]. By integrating legacy
devices to the cloud-based IoT platform, even the geograph-
ically dispersed manufacturing system can be monitored
remotely [56]. In general, the availability of data is the foun-
dation for the higher application toward smart manufactur-
ing [74], which is discussed in the next section separately. It is
worth mentioning that once the legacy system is retrofitted
with the data visualization [126] and equipped with web
service [18], or mobile HMI [64], [104]. The operators will
be the ones who benefit the most in their work. This aspect is
the main focus of the next industrial revolution, thus reflected
in the concept of Operator 4.0 discussed in the following.

D. OPERATIONAL APPLICATION
After the aforementioned retrofitting work is done, the
automation and connectivity level of the factory is enhanced.

TABLE 8. Process management on retrofitted system.

Therefore, monitoring and management activity [115] sup-
ported with data is available in hand. This application level
is on the top of the IoT level, which deals with manage-
ment philosophies and techniques. In this part, some of the
prevailing ones will be discussed based on the evidence and
suggestion from relevant work.

1) PROCESS MANAGEMENT
With the retrofitted system, there are process management
philosophies can be applied. In Table 8 we summarized the
favorable management advantage of the digitization that the
brownfield development could offer.

A legacy systemwithout any advanced PLC or Supervisory
Control and Data Acquisition (SCADA) system infrastruc-
ture usually faces unexpected downtime, which undermines
the business [95]. Noticeably, the most prevailing advantage
that comes from retrofitting is the process parameters track-
ing ability of the system [102]. Taking into consideration
that process critical parameters consideration is one of the
beginning steps in the conducted projects [76], [100], this
advantage is the inherent characteristic. This advantage is
preferred in processing industries with continuous manufac-
turing systems such as oil extraction, food processing, water
processing, mining [51], [54], [58], [81], [112]. It can lead to
process automation which cuts down the manual work [18].
With the process automation, the loss of raw materials can
be decreased by the automatic activation of valves, switches,
and actuators [58].

Equipment conditions can also be kept a close eye on in
the same way [114], based on the acquired data. Machinery
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TABLE 9. Quality management on retrofitted system.

parameters, which are vital for production, usually being
under the monitoring [20], [84], [90]. Tool condition mon-
itoring is applicable for machine tools that have machining
tools that need to be replaced for quality and safety purposes,
such as CNC machining [92].

Thanks to the data-drivenmanagement for each elementary
process, an IoT-based manufacturing monitoring system can
be constructed as the guiding rule for future ways of improv-
ing overall performance and management [74]. Based on the
elementary processes in the system, the material flow in the
work-cell in particular [87], or in the facility in general [105],
can be monitored. Scheduling tasks will be more manageable
and can be conducted automatically [103]. This advantage
can link to the concept of just-in-time production discussed
in the later subsection. The process optimization can be taken
further based on the available data, and process-oriented
knowledge [39] regarding the produced quality, machine con-
dition, or material flow. The highest application in this aspect
is production monitoring, in which the production KPIs or
objectives can be adjusted and manipulated remotely [58].

2) QUALITY MANAGEMENT
Quality management is essential in every manufacturing
plant. For the legacy system, the lack of connection between
machines makes it more challenging to discover the source
of quality defect and variation, as well as track the pas-
sage of the defect order [124]. However, along with the
retrofitting process, there are philosophies of quality manage-
ment that are ready to be deployed. By applying along with
the fused technologies, the operator decision factor can be
eliminated [63], human inconsistency can be reduced, thus
reducing the quality variation and defect products as well as
scrap materials [103]. In Table 9, the related concepts are
categorized from previous retrofitting projects.

The detection of a defective product can be recognized
directly by product specification-related sensors such as ten-
sion with fabric product [78], or indirectly with other deriva-
tive parameters such as noise with gears [63]. In the next
step, when the process parameters that affect product quality
are defined and kept track of, and quality data is collected
throughout the production phase, the variation that causes the

TABLE 10. Ways of DT elaboration.

quality problem can be tracked easily [103]. Thus, it leads
to a higher level in quality management: defect prevention,
in which the possible defect can be prevented proactively,
regardless of the human decision on which product is good or
bad [63]. At the organization level, the historical data can be
used for further improvement on quality aspect [39], includ-
ing the parameters self-adjustment of the machine [78], or the
group work of operators in diagnosing the manufacturing
processes [63].

3) DIGITAL TWIN
Digital twin (DT) is one of the critical players in I4.0 devel-
opment in terms of plant-wide optimization [128]. The devel-
opment of DT is desired in many retrofitting projects, as the
goal of full-scope digitization is to be the foundation for other
managerial activities, and resource planning [110]. DT can
be used as the tracking simulator and integrated with the
existing legacy control system of brownfield manufacturing
facilities [129]. There are different ways to elaborate the
DT from a retrofitted manufacturing system, as depicted in
Table 10.

The generation of DT is a significant step toward complete
digitization. The most frequently used method of DT elabora-
tion is sensors-based, with the use of the sensors mentioned in
the previous section. In Ref. [93], the authors stated that the
operational status of the machine is not enough; thus addi-
tional sensor must be installed for DT elaboration. A vision
system is a convenient tool to gather data from the physi-
cal world, for instance, a camera system [110], or LiDAR
scanning [129]. Other commercial tools also proved their
applicability in the industrial context, such as Microsoft
HoloLens [130] and Smart Glasses [106].

In some retrofitting projects, the authors were unable to
elaborate the DT of the whole system; thus, a critical part
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TABLE 11. Security threats on retrofitted system and possible solution.

of the system is chosen to build the DT upon [54]. Another
way to develop the DT is with the aid of simulation software.
Siemens Tecnomatix Process Simulate is the most preferred
tool due to the capability of obtaining soft real-time data
directly from the OPC UA server [77]. In this way, a large-
scale DT can be developed, with the whole facility restored
in the digital world [110].

4) SECURITY
Data security initiatives that protect the system from inten-
tional and accidental destruction are one of themain obstacles
in SMEs [131]. As brownfield development is about modify-
ing and fusing new technologies into the existing factories,
where most of their dated machines only have been through
a few security updates, the risk aroused [132]. This aspect
of the old system is a raging problem, as they have been
designed with little sense of security in mind, thus making
them vulnerable to many types of attack [133]. Taken into
consideration that legacy machines only have limited built-
in IT security function (i.e., default password, no access
control, undocumented back-doors) [134], and their security
perimeter mechanism is opposed to the desired zero-trust
network [132], a retrofitted system can be more vulnerable
for cyber-attacks. Table 11 below depicts the posed threats
and the remedy suggestion for them.

The use of sensors in the retrofitted system can create
multiple attack surfaces, such as data proofing and sensor
data transmission breach, as mentioned in Ref. [133]. How-
ever, the author has not given any countermeasure for this
threat. In Ref. [17], the author discovered that the deployed
retrofitting solution with Raspberry gateway is cheap, thus
posing a threat to security problems. Noticeably this solution
has been applied widely in many previous projects. The
authors also suggested that another industrial-grade hardware
platform be taken instead of this low-cost option.

Several solutions are given to secure the weakness in
legacy machine connections. In Ref. [133], the authors sug-
gested that legacy machines should be integrated into a
blockchain framework to prevent cyber-attack on weak con-
nections between them. Adding an industrial gateway is
another answer [135].

In the context of a textile retrofitting project [22], the
authors could not utilize the cloud solution in the concern of
data security but a centralized server instead. This problem
raises the fact that a full-scope IoT architecture may not
apply to every legacy system without considering its intrinsic
characteristics. This problem can be handled by providing
appropriate data access with General Data Protection Reg-
ulation (GDPR) consideration, as suggested in Ref. [81].

An intriguing statement fromRef. [134] said that attempt to
retrofit security functions for legacy systems could introduce
new bugs and vulnerabilities, and it is also hard to ensure that
new systems are thoroughly tested. New technologies such
as Secure Multi-Party Computation and Distributed Ledger
Technology should be deployed as mentioned in Ref. [137],
which followed comprehensive design principles to bring the
retrofitted system an immutable and transparent registry.

Due to the few retrofitting studies that mentioned the secu-
rity aspect, it can be seen that this problem is underrated
compared to the newly developed system. However, it may
become more severe soon [132], as the use of retrofitted
machinery may continue to be in place for a long time from
now.When retrofitting a legacy system, special care should be
taken before bringing dated machines into a connected world.

IV. RETROFITTING DEVELOPMENTS AS STEPPING
STONES FOR INDUSTRY 5.0
From the previous section, it can be seen that the technologies
now are abundant and very well-suited for brownfield devel-
opment. However, while retrofitting works are implemented
in the I4.0 context, the next I5.0 is introduced. This new
industrial revolution is the extension of I4.0 with a sustainable
mindset and focuses on the human workers. Preparing for this
strategic transformation, in this section, we described several
important I4.0 retrofitting specific developments considered
the supporting foundations for I5.0. Based on the Energy
4.0 in energy management, the new possibilities of Lean 4.0,
the concept of Operator 4.0, and newmethods ofMaintenance
4.0, these developments to I5.0 focus are established, pro-
viding guidance for managers to consider the corresponding
targets.

A. INDUSTRY 5.0
I5.0 is still a new innovative concept but has shown some of
its future aspects from early research, such as the future of
work between human-robot [138], a symbiotic factory where
human-machine can contribute their value [139]. The EU
stated that the I4.0 had positively impacted digitization and
Artificial Intelligence (AI) -driven technologies to increase
production efficiency. Now is a proper time to move on
to I5.0, where societal and environmental problems should
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be emphasized [24], with a focus on human-centricity, sus-
tainability, and resilience. With this sustainability in mind,
human workers will be accepted as an irreplaceable fac-
tor of any manufacturing system, thus requiring a human-
centric approach from both economic and productivity points
of view [140]. Sustainability is also strongly emphasized,
as different opportunities for sustainable manufacturing in
I4.0 are discussed in Ref. [87]. Retrofitting is an enabler for
the existing manufacturing equipment approaching economic
and environmental dimensions of sustainability. It can also be
considered as machine preparation to enable smart communi-
cation and capabilities for technological aspects and business
requirements as well [141].

Taking into consideration the different emphasis between
I4.0 and I5.0 [142], novel innovation trends for I5.0 are
enabled by several technological aspects [143]. Several pri-
mary pillars can be listed as individualized human-machine
interaction technologies, DT, and simulation for human-
machine systems modeling, data transmission and storage,
analysis technologies, technologies for energy efficiency,
renewable, storage, and autonomy [144]. As proved in
Ref. [130], a retrofitting project can bring benefits to its
operators in learning, manipulating, and performing their
production tasks. Along with a detailed understanding of the
process, and favorable conditions for quality management,
retrofitting can be considered as a way to aim at a sustainable
business model [100].

This promising result urges a comprehensive approach
for retrofitting to improve energy management and reliabil-
ity, sustainability aspects of a manufacturing system, and
enhance the working efficiency of its human operator in
the forthcoming I5.0. The following parts are the specific
developments considered stepping stones for I5.0.

B. ENERGY 4.0
Energy efficiency is an emerging research topic in themodern
smart manufacturing system, with the term Energy 4.0 indi-
cating the digital transformation of the energy sector as a
sustainable goal in I4.0 context [145]. The energy utiliza-
tion can be an objective to retrofit the legacy system [83].
However, the energy footprint is unconnected and hidden
from the database with a legacy system, making it hard to
apply any optimization. Due to that importance, Table 12
will be dedicated to describing the expect-able result from
a successful retrofitting project.

At first, the energy footprint can be tracked with the
deployment of the energy mentioned above sensors [95],
[146]. An IoT-based architecture for energy efficiency track-
ing is proposed in Ref. [147]. Then, based on the trained data
from the normal state of energy consumption, the abnormal
ones such as high consumption and unbalanced energy load
can be pointed out, with corresponding notification and alert
for the operator or manager [95].

Energy improvement is one key sustainability focus in
I5.0 regarding energy as a resource. After retrofitting, the
enhanced energy utilization is mentioned as one of the most

TABLE 12. Energy usage of retrofitted legacy system.

TABLE 13. The possible advantages of Lean 4.0 in retrofitted system.

promising results [83], making it closer to the scope of I5.0.
A recommendation can be given, aiming at a higher efficient
operating condition [18]. In ideal cases, the improvement in
the energy aspect can be performed through actuators and
switches based on predefined energy indicators [19], [82].
This step reflects the self-optimization ability of the system.

C. LEAN 4.0
The well-known traditional Lean Manufacturing (LM)
philosophies mentioned in Ref. [148] have evolved along
with the industrial development in the ever-changing context
of I4.0 as described in Ref. [149]. The implementation of
I4.0 technologies creates a unique effect for LM deployment
in the operational strategy of the company [150]. This fruitful
involvement is mentioned as Lean 4.0 [151], and some IoT
technologies that enable LM are studied in Ref. [152]–[154].
LM philosophies share the same continuous improvement
approachwith the technical improvement of I4.0, thus consid-
ered as assistance for smart retrofitting [106]. As an aftermath
of retrofitting projects, legacy manufacturing systems can
adapt themselves to bring advantages under the proposed
Lean 4.0, as listed in Table 13.

A critical aspect of LM is work standardization, estab-
lishing the standard for movement and task time for oper-
ators. The recorded data from the retrofitted system are
suitable for this purpose, as demonstrated in Ref. [58].
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The Just-In-Time (JIT) production can be facilitated to cre-
ate a smoother production material flow and avoid exces-
sive stock [87]. The more balanced, stable material flow
can be supported by removing the production bottleneck
as well, which is easier to be discovered by the retrofitted
system [37], [63].

The flexibility and agility of the manufacturing equipment
can be enhanced due to the Quick Change-Over (QCO) that
is supported by the re-configurable system [105]. Other LM
concepts, such as reducing the waiting time of machines and
equipment, are validated by the case studies mentioned in
Ref. [76], [78], especially useful in industries well-known for
long change over time (i.e., steel mill and mining) [20], [58].

Continuous improvement is an essential factor in LM in
general and in maintaining the effective usage of the system
in the organization [99]. The core of this concept is the kaizen
activity, which is done by a group of people to solve an organi-
zational problem [155]. For the retrofitted system, this kind of
activity is highly supported due to the availability of data, the
visualization of the critical parameters, and the human-centric
approach when designing the retrofitting solution [69].

D. OPERATOR 4.0
The concept of Operator 4.0 is mentioned as the future of the
human workers in the industry, where the I4.0 technologies
assist the work of human labor [27], [28]. Enabling technolo-
gies of Operator 4.0 concept are summarized in Ref. [156].
At the first stage of I4.0 brownfield development, employees
should be involved and motivated to support the change,
as one of the three main elements in the smart retrofitting con-
cept suggested in [106]. There are benefits for the operators
that can be expected in a modern factory. With the elaborated
DT, cognitive Operator 4.0 can enable a smarter decision-
making environment [157]. In Table 14, the ideal advantages
for Operator 4.0 after retrofitting are discussed with their
benefits as demonstrated in industries.

Along with these benefits, an enterprise can overcome
the lack of educated operators to increase its competitive-
ness [78]. By providing the person in charge of each process
with its relevant parameters, it can be considered as analytical
support for his task [67]. This aspect fosters the decentralized
decision-making capability of workers, allowing them to take
part in more knowledge tasks in sustainable manufacturing
from human factor [87]. In some particular conditions, the
human worker is the primary motivation to retrofit the legacy
system [158] so that its workers can feel more comfortable
with their work [109]. With the machine failures detected by
the system, special tuition and knowledge are not required
from the operator, thus leaving him a more relaxed work
environment [114].

Operator 4.0 and even I4.0-related managers are the crucial
roles in the manufacturing processes; thus, their convenience
must be of higher priority when retrofitting a system [20].
With the assistance of the developed system, human inter-
vention can be decreased, and the operators can have more
time to concentrate more on the process optimization [103].

TABLE 14. Operator 4.0 benefits on retrofitted system.

In the meantime, by isolating the error of operators, conse-
quently reducing the number of non-conformance products,
the operation efficiency can be improved [58].

A critical aspect of sustainable manufacturing is the devel-
opment of human resources [24]. For this purpose, two
retrofitting advantages that need to be considered are job
training and learning effectiveness and the prevention of acci-
dents in the workplace. With the advance in technology, data
visualization augmented reality can aid the job instruction
for workers, helping them to learn the tasks quickly with
actual situation example [78], [130]. On the other hand, the
system has more built-in safety functions that can halt or stop
the production once a hazard is detected to prevent a further
accident or danger that can happen on the shop floor [74],
[76]. It can be observed that, by applying new technologies
in a human-centric approach in a retrofitting project, not only
the managers, but the operators will be the ones who get the
crucial benefit during their daily performance [109].

As workforce resilience is severely tested during the
Covid-19 pandemic, its importance is realized, along with
other possible adverse realities such as resource scarcity,
climate change, and skill gaps that can be added into the
manufacturing context. The concept of Operator 5.0 is built
upon the vision and paradigm of Operator 4.0 to guarantee
manufacturing operations continuity, especially in difficult
and unexpected conditions [28].

E. MAINTENANCE 4.0
A legacy system puts a heavy burden on maintenance activ-
ities, as outdated machinery lacks technical documents [68],
[98], and historical degradation record [93]. The retrofitting
approach can provide old machines with predictive main-
tenance and does not require cost-intensive re-engineering
activities [88]. The availability of process monitoring sensors
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TABLE 15. Maintenance 4.0 of retrofitted system.

in the I4.0 framework offers a favorable condition for predic-
tive maintenance [113], [159], [160], which is a core concept
of smart maintenance and Maintenance 4.0 [161]. Besides,
there are more advantages of the system that can be expected,
as described in the Table 15 below. They can be defined
as enabling factors for Maintenance 4.0, with their benefits
demonstrated in several industries.

The first significant advantage of retrofitting the legacy
system is the operating time recognition of machinery, which
the operators usually need to perform by hand [71]. After
this step, the maintenance-related parameters such as Overall
Equipment Efficiency (OEE), Mean Time Between Failures
(MTBF), and Mean Time To Repair (MTTR) can be calcu-
lated for further production efficiency assessment [52]. Then
with the use of machine learning, the failure state of the
machinery can be recognized by learning from the normal-
state data [127]. When the system runs into a problem, then
the machine part and the mechanism in which the situation
happened can be pointed out, making it easier to locate and
replace the broken part [85].

For higher application, predictive maintenance initiative
is supported, as the maintenance task can be suggested and
planned based on the historical data [95]. The specialized
maintenance DT elaborated in Ref. [93] can offer sugges-
tions when condition-based or corrective maintenance activ-
ity needs to be taken. Instead of the traditional maintenance
approach of time-based replacement, the retrofitted system
can save unnecessary maintenance work and spare parts due
to the integrated condition monitoring capability [67]. These
advancements enhance the maintenance efficiency, while the
maintenance cost can be cut down.

These aforementioned I4.0 developments can be con-
sidered stepping stones for the I5.0 initiative. As their

FIGURE 3. The retrofitting developments as stepping stones for
Industry 5.0.

characteristics indicated, the gained benefits bring manu-
facturer advantages and readiness for further development.
Figure 3 represents the connection between these I4.0 devel-
opments and the focus of I5.0. At first, in terms of Sustainabil-
ity, the efficient usage of energy andmanufacturing resources,
from the concepts of Energy 4.0 and Lean 4.0, respectively.
These concepts support a strong foundation for a sustainable
operation of the firm at the micro-level and the whole value
chain of the economy at the macro level. Lean-digitized
manufacturing not only offers companies survivability in the
I4.0 context but also a prior sustained competitiveness [162].
Energy utilization is an essential factor that may create an
immediate impact on sustainability [145].

The operator 4.0 concept focuses on the human-centricity
aspect, as workers and operators benefit from technology
and digital transformation, which helps them fulfill their job
requirements with less effort and higher value-added contri-
bution [27]. Then the self-resilience of Operator 5.0 concept
is forming in Ref. [31], aims toward a system effect from
both human-machine system resilience and human opera-
tor resilience. Meanwhile, the advantages of Maintenance
4.0 enhance the Resilience of the system, as its readiness and
reliability are strengthened and can provide input for a learn-
ing Human-Machine system for resilience prediction and
control [163]. Due to the reported advantages, these devel-
opments are recommended as targets for every retrofitting
project.

V. INDUSTRY 4.0 MATURITY MODEL AND BROWNFIELD
DEVELOPMENT FRAMEWORK TOWARD INDUSTRY 5.0
With many studies related to ‘‘retrofitting’’ and ‘‘brownfield
development’’ concepts, it can be seen that updating the
legacy manufacturing facilities with I4.0 connectivity is the
current trend. However, without comprehensive development
guidance and goals, industrial managers may face difficulties
deciding on different technical options and equipment regard-
ing their pros and cons and respective priority for each imple-
mentation phase. On the other hand, as mentioned above
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from previous retrofitting projects, it can be seen that most
brownfield developments are mainly focused on exploring
the potential of I4.0, lacking a comprehensive organizational
alignment. The advantageous effect on the human factor and
energy utilization are byproducts that are underdeveloped and
thus do not fit a sustainability perspective.

In the previous sections, we have collected the deployed
technical equipment from retrofitting projects to provide
trustable technical guidance for a similar project in the
future. These categorizations can serve as a good back-
ground for decision-makers before any technology choices.
In this section, organizational aspects of retrofitting are men-
tioned, which adds a coherent connection to technical aspects.
At first, a simple three-step strategic planning model is sug-
gested for manufacturing firms to sketch their retrofitting
goal with a long-term vision. Then, a project-based approach
is proposed to implement retrofitting activities and discuss
the development goal with a long-term perspective on the
threshold of the I5.0. In this approach, sustainable factors and
other new concepts are regarded at the beginning of the I5.0 to
provide facility managers and decision-makers with helpful
information on their digitization transformation.

At first, a manufacturing firm may want to discuss brown-
field development at a strategic level to decide the corporate
motivation for the change. For legacy systems, the corpo-
rate understanding should get accustomed to the concept of
I4.0 and I5.0 before getting into further action. A three-step
strategic planning model is proposed as in Figure 4, taking
into consideration the compatibility of the three-step model
suggested by TUVSUD for I4.0 transformation [164]. A sim-
ilar approach can be observed from the three steps to cus-
tomizing a digital transformation road map from the Ingenics
consulting, which discusses a tactical process of developing a
strategy baseline, creating envisioned goals before coming to
a transformation road map [165]. In the beginning, a strategic
baseline should be established, in which the status quo of
a large-scale business area should be identified, along with
the corporate potential of retrofitting. For the firm to realize
the business potential, the vision of I4.0 and I5.0 should be
discussed thoroughly and can be based on the official guid-
ance from EU [24], [142]. Then the strategic vision and goals
should be set, influencing the objectives of retrofitting trans-
formation later. The last step of strategic planning is to sketch
a brownfield development or transformation framework. The
framework can be elaborated based on the references from
the literature, as an ideal one is suggested in the following
section. In a compatible study in [166], the authors suggested
the common understanding of I4.0 should be done at the first
step of strategic planning, and a proposal for a project can be
elaborated at the final step.

Based on the decision to pursue the brownfield develop-
ment conducted by the top-level managers after the strate-
gic planning, the retrofitting project framework should be
elaborated, along with the key milestones and resources
(e.g., financial and human resources, time, etc.). Once the
project team is formed with key personnel, the action phase

FIGURE 4. Three-step strategic planning for brownfield development.

should be progressed. A novel project approach for brown-
field development toward the I5.0 solution is proposed,
as illustrated in Fig. 6.We aim to develop a strategic transition
project framework used as a guide for retrofitting projects,
bearing the sustainable goals of I5.0 in mind.

At the beginning, a maturity model is needed, which may
serve as a backbone for the organizational deployment of the
project. A brownfield development framework should be built
upon a maturity model to ensure that every dimension of a
digital business operation is enhanced in the later implemen-
tation phase. Companies should scrutinize every aspect of
their current status to comprehend a thorough understand-
ing of their current status before aiming at a future state,
as the development implementation will change most of their
organizational strategy [167]. An unbalanced development
can cause a more severe knowledge gap for utilizing the
retrofitted system later.

There are I4.0 maturity models that can be taken
into consideration, such as Smart Manufacturing Maturity
Model (SMSRL) and Manufacturing Operations Manage-
ment (MOM). Their objectives, dimension, and purposes are
diagnosed in comparison with Digital Readiness Assessment
Maturity Model (DREAMY) in the ref [168]. DREAMY is
deployed in Ref. [169] as an assessment tool to evaluate
the digital readiness of main aspects of a firm, such as pro-
cesses, monitoring, and control, technologies, organization.
A digitization roadmap can be defined for implementation
purpose [170]. Based on the proposed techniques, a manufac-
turing firm can identify and prioritize their relevant emergent
need for brownfield development, as adopted in a similar
project described in Ref. [62]. A detailed model of 62 items
and an exemplary questionnaire can be found in [35], which
emphasizes the organizational aspects. This research adopts
a practical maturity model from the IMPULS Foundation in
Ref. [171] as the structure for the comprehensive brownfield
development. The main six aspects of the model are illus-
trated in Figure 5, with their required features respectively.
These aspects can guide strategic planning and provide a
balanced improvement in corresponding fields: strategy and
organization, smart factory, smart operations, smart products,
data-driven services, and employees.

In the Strategy and Organization dimension, the corporate
culture should be favorable for the I4.0 adoption, with a clear
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FIGURE 5. Digital maturity model for assessment of brownfield
development.

strategy and proper time, capital, and resources investment.
The patents and innovation should be kept on in centralized
and integrated management. The manufacturing processes
should be automated with automated equipment capable
of digital data acquisition in the Smart factory dimension.
Machine-To-Machine (M2M) communication should be inte-
grated. An IT system is deployed to provide digital modeling
in all areas and activities, thus facilitating data usage in every
aspect of manufacturing.

The smart operation dimension is built upon that founda-
tion as the smart factory is ready. Information is shared by
deploying cloud-based software, data storage, and analytic
platforms. With cloud computing capability, self-reacting
processes are enabled in every aspect of the business opera-
tion, such as production, finance, sales, IT, R&D, and Logis-
tics. The smart product is another dimension that measures
the comprehensive use of product-related data for the devel-
opment process and integrates customers with other data-
driven services.

The Employees is the last dimension, which measures the
readiness of the employee of the firm for I4.0. With automa-
tion being highly developed, employees are expected to have
higher skills and are encouraged to involve in a knowledge
transfer system with a Life-Long-Learning attitude. A com-
prehensive brownfield development strategy should cover all
of these dimensions, as the immaturity in one dimension can
cause weakness for the digital operation of the business in
the later phase. On the other hand, the firm must pay equal
attention to every dimension, and a balanced development at
the same level should be realized.

Once the maturity model is chosen, the development can
now be sketched. Through the literature, a transition model
is usually deployed as a guiding direction for an overall
picture. Even in Germany, the place where the concept of
I4.0 stemmed from, lacking structured strategies to imple-
ment the I4.0 solution can also be a barrier [33]. Con-
sider the investigation; many previous studies have already
proposed a model or framework for a retrofitting project.
A transition solution for retrofitting machinery from Industry
3.0 to I4.0 is mentioned in Ref. [64], in which technical as
well as sustainable objectives are considered. A migration

procedure for SMEs to retrofit their manufacturing equip-
ment to accomplish the I4.0 requirement is also suggested
in Ref. [12]. Different approaches of traditional retrofitting
and smart retrofitting are compared in Ref. [130], as the
conventional approach aims at the optimization of existing
old machines and smart retrofitting aims at a further way of
fitting them into the I4.0 context. A seven-stage for system-
atic brownfield development is suggested in [99], which aims
at developing a platform for reconfigurable and changeable
manufacturing based on an existing system. However, due to
the abundance of newmanagement aspects and concepts from
the I5.0 context, the previous approaches are insufficient to
integrate relevant criteria systematically.

This framework guides researchers or managers who want
to start a retrofitting project in their manufacturing plants.
Its core knowledge is the six-step digitization transformation
roadmap proposed by Capgemini Consulting Ltd. [172]. Due
to the technical concerns throughout the retrofitting project,
smaller steps are broken down and identified for further
clarification and explanation. The evaluation criterion is col-
lected and organized systematically from their usage in the
referred literature. Additional descriptions of step purpose,
related consideration criterion, and deliverables are given.
The details will be mentioned in the following paragraphs.

A. FIRST PHASE: DIGITAL MATURITY ASSESSMENT
This phase is the first stage in the framework, covering the
first two steps in the projects: the digital maturity assessment
and the beginning of the definition of the system design
objectives.
Step 1. Digital maturity assessment
The need for digitization starts with the digital maturity

assessment, in which the company should be well aware
of its digital capability. Initiatives from previous successful
projects are categorized according to different aspects of the
maturity model mentioned above: Strategy and Organization,
Smart factory, Smart operation, Smart products, Data-driven
services, and Employees.

For the Strategy and Organization criteria, Strengths,
Weaknesses, Opportunities, and Threats (SWOT) analysis
can be deployed in this stage to define the change in business
competitiveness and the whole value chain, as proposed in
Ref. [61], thus clarifying the desired impact of the project.
A model of micro and macro perspectives for sustainable
manufacturing is mentioned in Ref. [87], in which the sus-
tainability of the business itself in the more extensive value
creation network is an urge for manufacturers to transform
themselves. On the micro-scale, the authors mentioned that
sustainability also needs to be incorporated into every fac-
tory aspect, namely equipment, human, process, and product.
With many positive impacts on the business considered [14],
digital transformation should be a strategic investment in
business processes, products, and services.

For the Smart factory criteria, the transformation starts
with every single process [76], [100], put the questions on
how they are controlled and monitored now, and how they
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FIGURE 6. Propose framework for I5.0 solution retrofitting project.

should be [20], [109], from the viewpoint of the direct oper-
ator of that process. During a retrofitting project, the system
hardware and software assessment is conducted, thus speci-
fying the components that should be focused on as described
in Ref. [130]. Technical specifications of the retrofitting con-
sidered machines need to be examined to clarify the possible
intervention and modification that can be applied [76]. The
author also stated that different component family types and
installed technology must be classified from the most critical
equipment. The difficulty of lacking technical documentation
is a significant obstacle and can be coped with the optical
recognition and semantic analysis proposed in Ref. [98],
or the reverse engineering activities during the construction
of DT [68]. Based on the elementary smart operation of pro-
cesses and monitoring and controlling automation, the smart
operation concept can be achieved, which aligns with the
strategic goals and brings the desired operational efficiency
over the legacy system [58]. Data-driven services is another
domain in the maturity model, as the utilization of customer
data foster the digitization of sale/services [35]. However,
none of the retrofitting studies mentioned this aspect; thus,
we conceived it as an opportunity for the application to gain
more attention.

As suggested in Ref. [52], the product should become a par-
ticipant in the process of data collection, make its data-driven
optimization possible, and becomes a factor for knowledge-
driven manufacturing. The correlation between smart prod-
ucts and smart production can be referred to from Ref. [173].
The re-use and re-manufacturing of products with a closed-
loop life cycle is emphasized in Ref. [87] as an essential
player. The use of data in product generation and retrofitting
the old product family is suggested in Ref. [174] as a way to
contribute more customer value with the aid of digitization.

Employee readiness is the last but not least factor that
should be considered in this step. As human resources play
a vital role in implementing digital transformation [175],
managers must encourage employee innovation to transform
their business, not only the technical system radically. Prepar-
ing for the brownfield development not only means applying
the technological advancement but also equipping its human
workforce with the necessary skill set, which may help them
adapt to their new system [13]. Before going into the digiti-
zation journey, the company should assess whether its human
resources are ready for the upcoming changes or not. Then,
it should define clearly whether the retrofitting project is
carried out with their team or they need to seek for external
partner [14].

Based on the suggestedmaturitymodel, managers can have
an organizational overview of their business before identi-
fying the retrofitting objectives in the next step. One hint
for the development can be the unbalance of the considered
aspects, leading to a knowledge gap that obstructs further
development. After this step, the firm should be well aware
of its digitization maturity, its corresponding strengths, and
weaknesses in the era of I4.0 and the threshold of I5.0. This
result may come with the realization of opportunities and
threats at bothmicro andmacro level [87]. This aspect laps the
beginning of the second phase of the project, as the activities
may happen simultaneously.

B. SECOND PHASE: IDENTIFY OPPORTUNITIES AND
THREATS. DEFINE VISION AND AGENDA
The beginning part of this phase is already finished by defin-
ing business opportunities and threats in the previous step.
The digitization vision and agenda should be made at the end
of this phase through the second step described below.
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Step 2. System objectives definition
This step covers the end of the first phase, with the system

automation being assessed more carefully, and the second
phase, as the digitization vision and main agenda should
be sketched. It also defined the transformation domain of
the system as the third phase suggested. In this step, the
objectives of the retrofitted system should be defined clearly,
along with several important concepts.

Many considerations lead a company to decide to replace
or retrofit a machine, which should be listed in this step. This
step will define clearly the limits of the expected budget for
the project instead of buying a new system. The first criteria
are the machinery life cycle and the equipment operational
cost. The industrial equipment replacement cycle is longer in
the industrial market than in the consumer one, mentioned
in Ref. [20], especially in industries with heavy hardware in
which the machines may have years or decades of upgrade
period. There are several approaches to define the retrofitting
objectives to cope with that consideration, from an economic
aspect, such as the life cycle cost (LCC) [176], or withmainte-
nance and operational cost [177], [178], or life cycle assess-
ment (LCA) in combination with the sustainable efficiency
of a product process [146]. A variety of technical indicators,
LCA, LCC, and the thermo-economic analysis, are studied
in [179], to address the different effects of technologies that
will be fused into the legacy system during the retrofitting
work.

Other objectives for retrofitting purposes can come from
the need to increase the overall competitiveness, includ-
ing improving predictive maintenance [75], optimizing the
energy consumption [83], enhancing the information flow
within fragmented process chain [78]. These competitiveness
aspects are indispensable in the I4.0 context, especially for
SMEs [16]. In some cases, they can be as simple as increas-
ing the system connectivity [72] to have a more transparent
operation or transforming the existing infrastructure into a
CPPS [180]. An analysis workshop using LM philosophies
is proposed in Ref. [63], with the LM tools used in the
evaluation process, which follows the main objectives such
as improving quality, reducing costs, and lead time.

Smart working space is another objective of inter-
est. An exemplary brownfield approach is mentioned in
Ref. [105], as the work of extending the current legacy system
into I4.0, which is followed by a proposed architecture and
component for the factory operating system. In this smart
and connectedworld, self-optimizing and self-learning can be
desired targets [78]. The flexibility and agility of the system
are mentioned in the projects in Ref. [19], [105]. In this
phase, desired additional functionality or automation can
be considered, taking into consideration the current legacy
functionality during the gap identification step as utilized in
Ref. [19]. This step may benefit the technological solution
development in the next step.

Other sustainable objectives of the forthcoming I5.0 are
safety, human centricity, and energy utilization. Some
researchers have already integrated these aspects into their

objectives, as in Ref. [64], the authors define system per-
formance in metrics such as safety, energy consumption,
emission, and Industry 4.0 capability. The indispensable exis-
tence of human workers in manufacturing systems is another
motivation for retrofitting work [109], [158], making the
shop floor a good working environment for them. Energy
utilization might be matured in the near future, as the pioneer
researchers have already taken their first step toward the
energy retrofit initiative [58], [82], [83].

By the end of this step, the firm should have their digiti-
zation vision well-elaborated with their corresponding trans-
formation domains by comparing the assessment result from
the previous step with the desired criterion for the retrofitted
system [19]. The transformation agenda is a good compass for
the development later. Noticeably, these results are not indi-
vidual work. A brownfield development cannot be digitized
within a few days but through ongoing and adjusting phases.
Consequently, it should be a teamwork effort with encour-
agement from the managers [175]. A good agenda with the
concurrent-engineering approach allow the retrofitting team
to understand the digital transformation, clearly define their
system to support their tasks, and build up solution [58]. Dis-
cussions within the team are vital for the retrofitting project
in particular, but also for a successful digitization process in
general [22]. Other requirements can be gathered by inter-
view or questionnaire as proposed in Ref. [66], or workshop
with involved personnel in the manufacturing process [61].
By doing this step, the team can define the transformation
priority order and starting point of the project steps.

C. THIRD PHASE: PRIORITIZE TRANSFORMATION
DOMAIN. SEEK FOR SOLUTION
This phase overlaps from the second step, with sketched the
transformation domains. In this third step, the team generates
ideas on the needed solutions. It will continue until the fourth
step, as in reality, options should be considered with their
cost-benefit evaluation before any make-or-buy decision is
made.
Step 3. Alternative options generation
In this step, different options should be brainstormed. This

step can be done by a multi-disciplinary team from key
disciplines within the company, as a cost-saving initiative
from the beginning [81]. The team can utilize design thinking,
a human-centered approach inwhich theworkers are involved
to sketch their ideal working condition [20], [109]. Conse-
quently, a comprehensive overview of the ideal system can
be formed.

A process approach will be deployed in this consider-
ation. At first, the process-relevant parameters should be
determined along with their limits as a starting point for
optimization later [100]. As stated in Ref. [76], vital process
parameters affecting product quality should be considered
first. In the textile industry, parameters such as yarn ten-
sion, surface quality, temperature, humidity need to be mea-
sured [15], [22]. For food industries, the precise temperature
is a special requirement for various chemical reactions; thus,
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temperature sensors should be deployed [73]. However, these
parameters are dependent on the specific type of industry,
without a universal parameter as baseline [22]. Besides, over-
all performance metrics such as energy consumption, line
productivity, machine downtime need to be defined for man-
agement purposes later.

Based on those predefined parameters, the chosen sensors
are defined by the selected monitoring strategy, monitoring
position and orientation of sensors, execution of measure-
ment [87]. Some requirements when choosing retrofit sen-
sors are mentioned in Ref. [53], such as temperature range,
weight, size, shape, energy supply, power consumption, data
transmission type, sampling rate, frequency band, communi-
cation type, environment requirement: temperature, dust, liq-
uids, chemicals. Besides, there are criteria for the economic
aspects such as production time, small quantity, and a quick
change in product design. In Ref. [73], the authors mentioned
the requirements for the sensor node hardware system in the
retrofitting architecture to achieve Plug & Play functionality.
When the sensor node is established, different sensors can be
attached, detected, and automatically configured [82], [181].
There are commercial sensor platforms, and sensor kits with
embedded sensors are deployed as in Ref. [75], [88], [89].
The use of commercial instruments usually offers high quality
and standards. On the other hand, some projects utilized the
self-elaborated retrofitting kits [69], [181]–[183], which were
open-source and easy to integrate new sensors and applica-
tions as modules.

Actuators can be considered based on the interested pro-
cess parameters [77], or in pair with process-related sen-
sors [67]. The close loop signal between sensor and actuator
can enhance the process control efficiency by supporting the
local automation with switches, valves, and controllers [98],
[102]. The existing legacy actuators can be utilized to enhance
the field automation, which eases the presence of human
workers for simple tasks or manipulation [68]. Additional
actuators can be employed in case the system lacks an actu-
ator [64], or to broaden the capability of the existing hard-
ware [82]. A self-built mechanism can be considered when
the machine structure does not allow the use of commercial
goods [80], or when introduced a new function into the
retrofitted system [21]. This approach enables the I4.0 inte-
gration with possible extension and customization.

After considering the sensors and actuators, the connec-
tivity should be in place, as designing system architecture is
mentioned in Ref. [16], which lays the foundation for the later
proposed IT platform. Legacy PLCs can be incorporated into
the system by industrial communication protocols [57], with
data exchange capability with other IoT components [107].
New PLCs can be added with the pre-built connectivity,
to enhance the level of field automation [110]. Several IoT
architectures for retrofitting are suggested in Ref. [112],
[123], which shows the interactive sub-systems and layers,
with their respective connectivity types and protocols. A com-
putational systemmust be installed for the IT hardware, and a
communication protocol must be chosen, as a digital retrofit

methodology is mentioned in Ref. [16]. The same step will be
applied for the data storage and cloud platform generation,
which takes into consideration the natural characteristics of
legacy system [22], [63], [97], which are available from the
previous maturity assessment. Free platforms are available
and can be an option for this domain [104].

Market analysis is an appropriate initiative in this step,
as by identifying and analyzing similar functioning products
available on the market, the technical characteristics, price,
maintenance cost can be taken as benchmarks for further con-
sideration when choosing alternative retrofitting options [64].

While designing the desired system, scalability is one cru-
cial factor that needs consideration. Taking into consideration
that the plant may be extended in the future, then the solution
needs to be scalable [105]. Several suggested architectures
deal with this problem by using the nodes system [18], [73],
[82], as more sensors can be installed as nodes. In a more
general way, the options should take into consideration fur-
ther updates and re-configuration in the future [19], [104];
otherwise, the system might be obsolete soon after the new
development wave [20]. On the other hand, security aspect
should be considered from this step, as it may influence the
choice for hardware and protocols will be added in the sys-
tem [135], [136], or need to be kept in mind while connecting
the system elements later [134], [137].

By the end of this step, a list of different options in the
sensor and actuator, connectivity, and data layers should be
ready, including technical specification, the reason to choose,
the related cost. As the team is prepared to enter the cost-
benefit evaluation step, this list can still be discussed and
modified as the third phase continues. In the meantime, the
consented development can be put into the implementation
roadmap as elaborated in this step.

D. FOURTH PHASE: DERIVE IMPLEMENTATION ROADMAP
This phase is nested in this step, as the implementation
roadmap for brownfield development should be made and
agreed upon by the team effort. The deliverables in this step
are the project charter of the future changes and milestones to
implement them, as discussed in the subsequent implementa-
tion phase.
Step 4. Cost benefit evaluation
In this step, based on the available options generated from

the previous step, a decision should be made on whether
commercial gadgets should be chosen or self-elaborated
kits should be used. There are several ways to conduct a
cost-benefit analysis. Qualitative methods such as Analytic
Hierarchy Process (AHP) are adopted in Ref. [64] to exam-
ine ten criteria of five alternative options. A structuring
model of an economic evaluation can be recommended from
Ref. [184], which considered the unique characteristics of
digitization. In this research, data acquisition for investment
in a retrofitting case is conducted in a workshop, which is an
excellent method to ensure every related person in the project
team comprehends the condition and assumptions. A com-
prehensive multi-criteria analysis takes into consideration
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different priorities from the technical domain (i.e., saving
Not Good (NG) product, increasing overall efficiency), envi-
ronmental domain (i.e., reducing CO2 and NOx emission),
economic domain (i.e., reducing operating and maintenance
cost) is studied in Ref. [179]. The AHP method is applied
to consider different retrofitting solutions for an aluminum
furnace. In Ref. [61], the authors suggested using the Total
Cost of Ownership (TCO) for cost evaluation, then use other
economics indexes such as Net Present Value, Profitability
Index, Internal Rate of Return, Discounted Payback Period
to compare different solutions, as well as to measure the level
of achieved success.

Cost and benefit elements should be defined to build a
cost model. The cost from different sub-systems such as the
legacy system, cloud, service company, and end-user devices
are considered in Ref. [136], and project managers can refer
to the suggested rule to predict the required budget. The
cost for hardware gateway or extensive setup is a concern
in Ref. [72]. Besides, due to the loss of productivity during
the implementation period, production interruption can be
considered as a cost [86]. Some legacy PLCs are irreplaceable
due to the risk of production downtime, thus can obstruct the
retrofitting effort [57]. Rapid technology development can
also make the system quickly become obsolete [20], which
accounts for the opportunity cost of investment. The com-
promise between the cost for cloud service and computation
time is also mentioned in Ref. [90]. Ref. [64] mentions the
cost of design, acquisition, installation, operation, mainte-
nance, and disposal. Notice that retrofitting projects usually
utilize open hardware and software; thus, the development
and implementation cost will be much lower than certified
commercial solutions, as mentioned in Ref. [12]. However,
the security problem should be kept in mind that a low-
cost retrofitting solution may not be appropriate for safety-
relevant applications [17].

Several benefits are mentioned in Ref. [15], e.g., reduction
of the machine downtime, time to repair, reduction of manual
work for data collection, and the enhancement in data-driven
root cause problem-solving activities. The benefit from qual-
ity improvement [39], as well as maintenance saving, can
be taken into account [67]. The save from energy loss can
also be taken as a benefit of retrofitted equipment [58],
[82]. A significant cost saving is recorded after a retrofitting
project in the mining industry in Ref. [58] for the loss of
production material, in which production cost reduction and
energy consumption reduction are also expectable outcomes.
Safety also should not be neglected as an essential gain from
retrofitting project [54]. However, in the context of I5.0,
another operator-centric dimension should be added. Given
the machine operator as the center of the system, we proposed
that other aspects such as the availability of real-time data
analytic, augmented reality, easy integration wearable for
the healthy operator should be taken into the model. A few
criteria are mentioned in the conceptualization of Operator
4.0 in Ref. [27].

The implementation roadmap and the list of preferred solu-
tions should be determined by the end of this step. An exem-
plary I4.0 roadmap can be adopted from the suggestion
in Ref. [166]. From the next phase, the implementation is
emphasized.

E. FIFTH PHASE: IMPLEMENT AND SUSTAIN THE CHANGE
In this phase, implementation and sustaining the change
is mentioned in the original model of digital transforma-
tion [172]. However, as we focus more on the human aspect
in sustaining the change, smaller steps are broken down for
exploration.
Step 5. Development implementation
This step initiated the insertion of new technology into the

legacy system. The brownfield development can be divided
into different phases, such as in short-, mid-, and long-term
for the full-scope solution [20]. This approachmay enable the
company with a flexible time frame for the project. A starting
point, the chosen technology can be applied on one specific
machine or a group of equipment as in Ref. [90], or on a
laboratory environment [76] before being implemented into
the production line, to avoid any interruption it may cause.
The approach of implementing smaller projects after training
in a learning factory is endorsed in Ref. [15] to ensure the
field team has efficient support from experts and build their
expertise, memorable understanding of retrofitting solution.
The linking between equipment of new and old machines
is mentioned in Ref. [58]. The implementation ended with
the assessment or any needed adjustment for the deployed
modules.
Step 6. System integration
After the development in the previous step, the established

automation can be further integrated into the system, as we
considered this step the system integration. At this time,
the system connectivity is fully established, with the data is
available in the storage and platform. The further elaboration
of DT based on these data can act upon the legacy system as a
tracking simulator [129]. At the end of this step, the retrofitted
system is ready to be documented. Taking into consideration
that there might be a lack of technical documents in the legacy
system [98], the new system documentation should not be
overlooked as it is a crucial stage in the development and a
requirement for the utilization in the next step [99].
Step 7. Utilization and Improvement
After the full integration of the retrofitted system, manage-

rial purposes can be applied to it as the last step in the project.
To facilitate the successful utilization of the retrofitted sys-
tem, the existence, modification as well as the goal of using it
need to be communicated throughout the whole facility [99].
This action ensures all stakeholders understand their benefits
and responsibilities in their work.

The first purpose is enhancing the utilization of the
retrofitted system: making data-driven decisions based on
the existing data. There are several operational KPIs such as
improving productivity and safety [20], or improving safety
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and maintenance performance [54], dependent on the type
of industry. Process variation can be controlled with early
warning [58], to avoid the further negative outcome of break-
downs. With the help of the DT, a strategic set of KPIs
can help the firm self-optimization along with its operation,
as demonstrated in the Ref. [154].

The second purpose is deploying continuous improvement
- kaizen activities - based on the historical data. These activi-
ties are human-centered, with the life-long-learning attitude,
now it is easier with the available data and visualization.
By working in the connected retrofitted system, the operators
can be well aware of the system, the process, product quality,
and the influence of human workers on the system. This
human-centric approach is a core principle in the I5.0 ini-
tiatives [24]. It can be expected that the way businesses and
people interact will be changed radically, as the possibilities
of exploiting data-driven decision-making for system and
processes optimization are available. The deeper digitization
can bring even more benefits later [14]. This last step of the
project can be considered the transition into daily operational
activities. The technology and knowledge are fully fused into
the system and its human workforce.

However, the skills gap of the workforce is one of the
main barriers for enterprises to maintain and benefit from the
developed brownfield [13]. The human factor required more
attention to prepare for the next I5.0, as engineering educa-
tion should be shifted toward more sustainable aspects such
as Life-Long-Learning, human-centric design, and human-
machine interaction experience [185]. This initiative should
prepare the future workforce before the manufacturing facil-
ity entrance.

VI. RECOMMENDATIONS
At the core of the synthesis is the trend of brownfield develop-
ment for I4.0 application, and now turning into the I5.0. In this
research, extensive systematic searches are performed to get
the overall impression from previous retrofitting projects of
what they have done, their achievements, obstacles, and how
they have been resolved. Our research questions have been
answered detailed:

• What type of industrial context in which the improvement
have been done?
Many industries adopt the retrofitting approach [36],
and each of them faces different problems integrating
legacy equipment into the I4.0 environment. However,
we believe that there are enormous options that are
available, take into consideration that the managers,
operators, and IT department should work together to
exchange their knowledge [20], then the solution can be
shaped.

• What are IoT-based technologies have been used?
What are the IoT layers in that the technologies were
deployed?
It can be seen that the I4.0 technology nowadays is
available for every on- and off-the-shelf option. The

retrofitting work can be done in every IoT layer,
with the sensors and actuators deployment, connectivity
enhancement, data management. Our synthesis can refer
to someone seeking a solution in a similar industrial
context to their own.

• What are manufacturing operation management
improvements can be applied given the fact that the
I4.0 technologies are ready?
Eventually, operation efficiency is an essential aspect
after retrofitting a legacy system. We have summarized
several management philosophies that can be applied,
aiming at sustainable aspects of I5.0. Managers can
comprehend what is offered once their digitization is
finished.

• What are the recommendation and future trends of
brownfield development that should be concerned?
The ultimate goal of brownfield development is the
readiness of KPIs, which give insight into the system
operation in real-time [97]. We mentioned it in the last
step of the proposed framework, which is a transition
toward daily operation. Additionally, the emphasis on
the human worker is still under the development of
the Operator 4.0 concept. In the beginning phase of
I5.0, it may require more attention. The future human
workforce may have an early experience in terms of
engineering education [185]. To prepare for the I5.0,
we connected the retrofitted developments that can be
stepping stones for further achievement.

According to the synthesis, some recommendations can be
drawn based on the literature. The following paragraphs sug-
gest a practical application of retrofitting-based development
of the brownfield I4.0 and I5.0 solutions.

Firstly, retrofitting-based development should follow a
comprehensive, organizational approach that covers every
operational dimension to ensure a fully digital transformation
of the business. These dimensions can be realized by adopting
a maturity model and the strategy planning mindset in the
initial assessment phase. It is crucial to have balanced devel-
opment in every dimension, as any under-developed fieldmay
cause difficulties for further business digital operation and
innovation.

Secondly, managerial purposes can only be deployed with
a balanced and integrated technical enhancement in every
IoT layer. The process and quality management can only be
achieved by employing an integrated solution with proper
sensors and actuators, effective connection, and additional
tools for analysis, decision support. Thus, the retrofitting
work should be done at every IoT layer, carefully selecting
and target-specific orientation. This recommendation should
be kept in mind while considering the technical development
for cost-benefit evaluation.

Thirdly, to ensure that the developments are radical
and systematic, an organizational comprehensive approach
should be taken. A strategic planning model is considered
to analyze the business situation and potential in the market.
Based on the strategic plan, an overall framework should be
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sketched to ensure that the project activities are aligned with
the long-term vision of the manufacturing firm. By following
these guidance, the related personnel for the project can be
involved early to elaborate their mindset, and the resources
can be allocated efficiently. The suggested framework with
the transition phase to daily operation at the end can prepare
for a smooth utilization of the system.

Fourthly, the I5.0 focus will be built upon the stepping
stones from the existing I4.0 development. Adopting these
developments can benefit the next industrial revolution and
vice versa; the under-developed operation can hinder further
improvement.
VII. CONCLUSION
Brownfield development is fundamental with the existing
manufacturing plant in terms of the continuous development
of I4.0 and I5.0. This paper presented an extensive systematic
review of the significant achievements throughout the pre-
vious brownfield development by retrofitting projects. The
retrofitting approach can be a reasonable initiative for man-
ufacturing plants with legacy machinery. This option does
not require intensive capital investment, and any significant
annual maintenance fee for the old machines becomes auto-
mated. On the one hand, several operational purposes such
as increasing machine performance, minimizing production
downtime, saving product-related cost, energy consumption
can be achieved. On the second hand, the new connected IoT-
enabled system can be easier to control, prone to human error,
provide safety for its workers, be ready to optimize, and result
in sustainable production and a short payback period. Thus
the investment is fruitful economically.

This paper discusses the technical aspects of a retrofitting
project, from the sensors and actuators applied to the connec-
tivity techniques and possible data handling platforms. Based
on that, the managerial concepts and purposes that become
realistic are mentioned, proving the promising application in
the production operation decision-making process. Several
essential aspects of the retrofitted system are summarized,
along with the existing problems and suggested solutions.
Industrial managers can use this categorization as a reference
to make the relevant decision on technical choices retrofitting
their legacy system. To guarantee a comprehensive organi-
zational scheme is developed, a strategic planning model is
proposed to help the managers be aware of their potential
with retrofitting for I5.0, which utilizes the same approach
to I4.0 transformation but takes into consideration the forth-
coming I5.0 vision and objectives. Once the managers decide
to pursue the development, they can develop their imple-
mentation framework based on similar retrofitting projects
collected from the literature. Consequently, a benchmark
framework is given to guide the interested decision-makers in
transforming their legacymanufacturing systems step by step.

The main suggestion of this research is the use of the
I4.0 maturity model for the operational assessment of the firm
before the development project. The measure of every dimen-
sion is critical for the development and strategy planning.
The balanced improvement in these fields is an essential

factor for sustainable growth for the firm. It can be seen from
the retrofitting projects that smart products and data-driven
services did not gain much attention as they should. This
problem should be dealt with in future research, as the digiti-
zation of a given firm can only be successful and sustainable
once the data is permeated throughout its value chain [186].

Considering that the next I5.0 revolution is human-centric,
the emphasis on brownfield development for a more worker-
friendly and stress-free work environment is still in its
infancy. Noticeably, this aspect is one of the fundamental con-
cepts for the current Operator 4.0 initiative. By the synthesis
in this paper, we hope to encourage more facility managers
and decision-makers to take the first step on their digitization
journey so that their legacy system and workforce are ready
for further industrial development and innovation.
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