
Received 29 March 2022, accepted 23 May 2022, date of publication 13 June 2022, date of current version 28 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182495

GreenMicro: Identifying Microservices From Use
Cases in Greenfield Development
DEEPALI BAJAJ 1, ANITA GOEL2, AND S. C. GUPTA3
1Department of Computer Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi 110096, India
2Department of Computer Science, Dyal Singh College, University of Delhi, New Delhi 110003, India
3Department of Computer Science, Indian Institute of Technology Delhi, New Delhi 110016, India

Corresponding author: Deepali Bajaj (deepali.bajaj@rajguru.du.ac.in)

ABSTRACT Microservices architecture is a new paradigm for developing a software system as a collection
of independent services that communicate via lightweight protocols. In greenfield development, identifying
the microservices is not a trivial task, as there is no legacy code lying around and no old development
to start with. Thus, identification of microservices from requirements becomes an important decision
during the analysis and design phase. Use cases play a vital role in the requirements analysis modeling
phases in a model-driven software engineering process. Use cases capture the high-level user functions
and the scope of system. In this paper, we propose GreenMicro, an automatic microservice identification
technique that utilizes the use cases model and the database entities. Both features are the artifacts of
analysis and design phase that depict complete functionality of an overall system. In essence, a collection
of related use cases indicates a bounded context of the system that can be grouped in a suitable way as
microservices. Therefore, our approach GreenMicro clusters close-knit use cases to recover meaningful
microservices. We investigate and validate our approach on an in-house proprietary web application and
three sample benchmark applications. We have mapped our approach to the state-of-the-art software quality
assessment attributes and have presented the results. Preliminary results are motivating and the proposed
methodology works as anticipated in identifying functionally cohesive and loosely coupled microservice
candidate recommendations. Our approach enables the system architects to identify microservice candidates
at an early analysis and design phase of development.

INDEX TERMS Automatic decomposition, architectural restructuring, greenfield development, microser-
vices, migration, use cases.

I. INTRODUCTION
Monolithic architecture is one of the most extensively
used architectures for web application. It bundles the
user interface, business logic, and the data store into a
single executable file that is eventually deployed as a
single package. The web server accepts incoming HTTP
requests, executes the request and produces a response. But,
as the monolithic applications get bigger in size, codebase
becomes more complex. Eventually, maintainability and
scalability of monolithic application becomes tough and
expensive. A small change in the application necessitates
testing and redeployment of the entire application. Fur-
thermore, regarding scaling of the monolithic application,
an increased traffic involves deploying the entire codebase

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

even though barely a small subset of its component is
overloaded.

Recently, Microservice Architecture (MSA) style is grow-
ing expeditiously, and many Internet-based organizations
like Netflix, Amazon, Google, Twitter, eBay, and Uber
are exploiting the digital transformation to restructure their
legacy codebase [1]. In MSA, applications are developed
as a set of tiny, distinct, highly cohesive, loosely coupled,
autonomously scalable, independently deployable, and dis-
tributed services [2].

In microservices, the key idea is that each microservice
owns its domain representation i.e. data, logic, and behavior.
Related functionalities or requirements of the monolithic
application are combined into a single business capability
called microservice. This decomposition is based on the
Single Responsibility Principle (SRP) that suggests ‘‘Gather
together those functionalities that change for the same reason,

67008 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0667-364X
https://orcid.org/0000-0002-7194-3159


D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

and separate those that change for different reasons’’ [3]. This
way MSA helps to handle complexities of bulky applications
by breaking them into tiny services, where each service
satisfies its own bounded-context. Another important aspect
of MSA is traceability between the functional requirements
and microservice system structure. Therefore, only one
service has to be scaled, updated and redeployed in case
of a change in domain. This initiative enables faster time-
to-market and reduces turnaround time for each release for
microservice-based architecture. However, the advantages
come at the price of complex deployments of individual
services, management overhead, and monitoring challenges.

Microservice application development can be categorized
as Greenfield or Brownfield [4]. Greenfield development
approach refers to the development plan starting from a clean
slate i.e. no legacy code around. Brownfield development
means development of a new software system from an exist-
ing application. Here, we focus on greenfield development.
It means development for a new environment from scratch
with no restrictions or dependencies. System analysis and
design artifacts of SDLC (Software Development Life Cycle)
are available for decomposition in such scenarios. Major
SDLC artifacts that can be used are use cases, functional
requirements, non-functional requirements, DFD, BPMN,
API specifications, class diagrams, UML diagrams, Domain
Driven Design and application and data design. As there is no
clear direction about microservices development, the degree
of risk is comparatively higher for greenfield approaches
which makes these developments more challenging.

A use case is a methodology used in system analysis to
identify, elucidate, and organize system requirements. Use
cases are usually written by software analysts and can be
used extensively during different stages of SDLC. Use case
diagrams abstract high-level view of business functionality.
Use case modeling is accepted and widely used in industry.
A use case model includes use cases, actors and relationships
between use cases [5]. Use cases may be related to other
use cases by the relationships: Generalization, Include, and
Extend [6], as shown in Figure 1.
Generalization is an inheritance relationship between two

use cases such that one use case inherits all the properties
and relationships of another use case.Generalization between
use cases is represented as a solid directed line with a large
arrowhead toward the parent use case. In Generalization,
a parent use case may be a specialized use case with one
or more child use cases that indicate more specific forms of
the parent. In such scenarios, the child inherits all structure,
behavior, and relationships of the parent. Children of the same
parent are all specializations of the parent.
Include relationship denotes the inclusion of a use case

as a sub-process of another base use case. Here, the base
use case is dependent on the included use case and without
them the base use case is incomplete as the included use case
represents a sub-sequence of interactions that may always
happen. In other words, if a certain use case must function
at the end of another use case then there will be an Include

FIGURE 1. Modeling options in use case relationships.

relationship between the two use cases. Base use cases require
the completion of included use cases in order to be completed.
Dotted Arrow is directed from base use case to included use
case.

The Extend use case is dependent on the base use case.
It exactly extends the behavior described by the base use case.
Base use case should be a fully-functional use case in its own
way. Arrow is directed from the extended use case towards the
base use case. These three relationships can be used to group
use cases and to discover appropriate partitions of the system.
Typically, microservices are designed intuitively, utilizing
the expertise of the software architects and designers.
However, developing wrong service boundaries can prove
to be very expensive [7]. It will lead to a higher inter-
service communication, and highly coupled components,
and consequently it might be worse than just having a
single monolithic system.1 Unfortunately, in this scenario,
a microservice application will work like a distributed
monolith i.e., an application deployed like a microservice but
built like a monolith.

Since a microservice is fine-grained, its functionality
characteristically comprises several related use cases. As an
example, Flight Booking service has a functionality that can
encompass multiple use cases such as Book Flight, View
Booking, and Cancel Booking. Theoretically, these use cases
should be bundled together in amicroservice. Often, grouping
of the use cases exceeds the functionality provided by a single
class.

1 https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/

VOLUME 10, 2022 67009



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

We have devised a five-step approach namely GreenMicro
to identify microservices for greenfield developments based
on clustering of the use cases. GreenMicro uses various
criteria involving functional requirement specifications- i)
use cases, ii) dependency relationships among use cases, and
iii) database entities. A similarity matrix is computed using
these criteria and a clustering algorithm is applied to find
candidate microservices. We have evaluated our approach
on an in-house proprietary application and three sample
benchmark applications.

In a microservice-based application, multiple services
communicate with one another. Representational State Trans-
fer (REST) is an established way of designing, architecting,
and developing modern APIs. For our work, we also make
use of RESTful API design which is stateless in nature. Thus
proposed approach identifies stateless microservices.

At a high level, several services in the application
need to work with each other in order to perform certain
business task. There are two approaches for integration of
microservices – orchestration (centralized) and choreography
(reactive). The adoption of any one of them depends upon
user’s business needs and goals. In our work, we make
use of API Gateway that act as the orchestration module.
Thus we have considered orchestration for integration of
microservices.

Key contributions of this paper are as follows:
C1: A five-step microservice extraction approach Green-

Micro based on grouping of use cases that are highly cohesive
and loosely coupled at the same time.

C2: Applying the proposed approach on ‘Teachers Feed-
backWeb Application (TFWA)’ as a Proof of Concept (PoC).

C3: Applying our approach on three benchmark applica-
tions - i) JPetStore, ii) AcmeAir, and iii) Cargo Tracking
System.

C4: Validating our results quantitatively.
We have identified microservices using GreenMicro for

some of the projects. Their code is available on Github
(JPetStore,2 TFWA3).
The remainder of the paper is organized as follows:

Section 2 presents the related work going in the Green-
field decomposition domain. Section 3 describes the pro-
posed methodological plan for microservice identification.
Section 4 walks through an in-house Java application
taken as an example project to describe our approach and
illustrate the implementation on three sample benchmark
web applications. Section 5 shows quantitative analysis of
our methodology along with the results. Section 6 states the
conclusion.

II. RELATED WORK
There exist several techniques for identifying microservices
in greenfield development. The techniques use the require-
ment documents, requirement models or design documents

2 https://github.com/anitagoel/JPetStore.git
3 https://github.com/anitagoel/TFWA.git

to achieve candidate services. Here, we discuss the existing
approaches.

Both [8], [9] use dataflow-driven decomposition tech-
niques for identifying microservices from the given detailed
software requirements. In [8] a top-down decomposition
approach is used where authors have converted traditional
dataflow diagram (DFD) to get purified DFD. A two-phase
automation algorithm for decomposition is proposed: (1)
generating a decomposable DFD from purified DFD; (2)
identifying candidate microservice from decomposable DFD.
Li et al. [9] suggested a semi-automatic dataflow-driven
microservice decomposition approach to generate a process-
data store version of DFD (DFDPS). DFDPS shows the
relation between processes and related data stores. Next, a
condensed DFD called decomposable DFD is taken out from
DFDPS by extracting the sentence sets in which a process
reads or writes data to a data store. Last step of their proposed
approach is to group modules of fine-grained processes and
the related data stores to identify microservices.

Amiri et al. [10] presents a microservice identification
method based on a set of business processes. Authors iden-
tified fine-grained services from business processes. They
used the notions of structural and object dependency between
business activities represented as business process model
notation (BPMN). Ahmadvand [11] proposes a methodology
that reconciles security and scalability requirements to
be included in the requirements engineering phase. Their
approach maps functional and non-functional requirements
to identify more optimal system decomposition.

Baresi et al. [12] propose semantic similarity of available
functionality evaluated through OpenAPI specifications.
Their approach identifies potential candidate microservices
by matching the key terms in the specifications against a
reference vocabulary and suggests possible decompositions.
The success of their approach is dependent on well-defined
Application Programming Interfaces that give meaningful
names.

Another service identification technique [13] exist which is
based on functional decomposition of use case requirement.
They first create a model of the system that contains a finite
set of system operations and of the system’s state space. Later,
authors created an operational/ relational dependency graph
using some automated tools to derive possible decomposition.

Fan et al. [14] analyze the system architecture using
Domain-Driven Design (DDD) and extract the candidate
microservices. Later, they analyze the database schema to
verify if it is consistent with the candidate microservices.
Finally they filter out inappropriate service candidates.
In [15], an automatic identification approach has been
proposed from a set of business processes. Their multi-model
approach combines different independent models that repre-
sent a business process like control, data, and semantic depen-
dencies [16]. Rivera et al. [17] propose another intelligent
and optimal method that works on user stories to decompose
the functionalities or requirements of the application into
microservices. Most of these existing approaches have

67010 VOLUME 10, 2022



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

two important disadvantages: 1) Lack of validation of the
results, and 2) Over dependency of their approach on expert
opinion.

Until now, we see that researchers have used vari-
ous techniques in greenfield developments. We build our
approach on use cases as use cases are the most common
and straightforward way to model the business functional
requirements of a system that are defined during the early
phase of software development. Use cases delineate a high-
level view of the system without delving into the system
intricacies. A complete set of use cases indicates all the
functionality and behavior of the system. Thus, in our work,
we harness the ability of use cases model, and finally
group these business use cases into a set of candidate
microservices. To achieve this, we describe a systematic
approach GreenMicro to identify microservices in the early
analysis and design phase, based on the system’s functional
requirements illustrated as use cases.

III. METHODOLOGY
Use case modeling is extensively used in contemporary
software development engineering as an approach for
requirements elicitation [43]. Further, relationships between
use cases illustrates the dependency and connection between
individual use cases elements of the system. These relation-
ships add semantics to use case model by defining structure
and behavior between the model elements. Also, use cases
accessing the same data are more related than other use
cases. Therefore, we present a systematic methodology to
find similarity of use cases by making use of use case
relationships and database entities which lead to finding
candidate microservices.

A. BASIC DEFINITION
In this section, we will mathematically represent the
problem of determining a set of microservices using use
cases.

Consider a set of use cases as UCA such that UCA =
{UC1,UC2,. . . ,UCk} where UC1represents an individual
use case. Using this, we define a set of microservices
as µA

= {µ1, µ2,. . . , µn} defined on UCA such that
•

⋃n
i=1 µ

=
i UCA. It means all use cases are designated to

some microservice.
• µi 6= Ø,∀i = 1, . . . , n. It means there is no empty
microservice.

• µi ∩ µj = Ø,∀i, j = 1, . . . , n. It means each
microservice is unique.

Themain idea for our approach is to identifymicroservices by
assessing the functional dependencies/ relationship between
use cases. This can be implemented by clustering closely
associated use cases into a service. Due to the informal
nature of functional description of use cases, the degree of
dependency between them may not be calculated directly.
Therefore, we propose the approach GreenMicro to effec-
tively determine the functional dependency between two use
cases, UCi and UCj.

B. PROPOSED APPROACH
Use cases are most popular means of capturing business
functional requirements. Use cases describe the high-level
functions and scope of a system. So, our proposed approach
is making use of business functionalities captured via use
cases. GreenMicro is a systematic approach for microservice
identification comprising of a sequence of steps that are
logical and easy to apply in practice. The proposed approach
consists of five steps as shown in Figure 2.We assume that use
case models are fundamental artifacts of any object-oriented
system and are readily available to system designers. Use case
set, UCA, can be gathered manually from the requirement
documents or can be automated by parsing the given software
requirements using NLP based languagemodels, as discussed
in [44].

An input dataset is a < component – attribute > data
matrix. Components are the entities (use cases) that we want
to combine on the basis on their similarities. Attributes are
the properties of the components. Two datasets utilized in our
work for identifying microservices are as - i) Use Case-Use
Case RelationshipMatrix, and ii) Use Case-Database Entities
Relationship Matrix. These two datasets are the artifacts
of requirements analysis and design phase in application
development. Both these relationship matrices are aggregated
to get a combined similarity matrix. In subsequent steps of the
approach, clustering is performed on the combined similarity
matrix to get the desired results. Below are steps we utilize
for microservice candidate identification:

1) Use Case-Database Entities Relationship Matrix (UC-
D) - Use cases accessing the same data are more
related than other use cases. In other words, use
cases manipulating the same database entities have
some degree of relationship. Thus, by examining the
functionality of use cases, one can determine the
database entities manipulated by each use case. So,
database entities are regarded as features and CRUD
operations applicable on them by specific use cases are
recorded in Use Case-Database Entities Relationship
Matrix (also known as CRUD matrix). This matrix
indicates use cases UCA as rows, database entities as
columns, and semantic relationship tags as Create - C,
Read - R, Update - U and Delete - D as cells of the
matrix [18].
• ‘‘C’’ means use case CREATE database entity.
• ‘‘R’’ means use case READ database entity.
• ‘‘U’’ means use case UPDATE database entity.
• ‘‘D’’ means use case DELETE database entity.

Now, this tag-based matrix is transformed into numeric
values. Therefore, each tag is replacedwith the corresponding
value (weight) in the matrix according to the priority as C >
U> D> R. In our work, to simplify computations, we adopt
these substitutions as: C:=1, U:= 0.75, D:= 0.5, R:= 0.25,
as suggested in [18].

1) Use Case-Use Case Relationship Matrix (UC-UC) -
This matrix represents the degree of interdependence
among all the use cases. Three types of relationships

VOLUME 10, 2022 67011



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

FIGURE 2. Complete outline of the GreenMicro approach.

between use cases exist - Include, Extend and Gen-
eralization as discussed in the Introduction section.
Here, use cases, UCA,are represented in both rows and
columns and their relationships are marked as cells of
the matrix. In this paper, we adopt substitutions as:
Generalization: = 1, Include: = 0.66, Extend: = 0.33,
as suggested in [19].

2) Constructing a Resemblance Matrix for UC-D - Here,
we find the resemblance coefficient between each
use case entry in UC-D Matrix. Each row of the
UC-D matrix can be seen as a vector whose similarity
needs to be evaluated. To find degree of similarity
or dissimilarity between these two use cases, we use
the Cosine Similarity between pair wise component
vectors to represent the weight of the relationship
between use cases. Cosine similarity is a measurement
that quantifies similarity between two or more vectors.
Cosine similarity is a common approach and has been
used in many other related studies for microservice
identification [20], [21]. This score indicates howmuch
two use cases are related in terms of accessing the
database entities. The higher the value, the stronger the
relationship between use cases.

cos(x, y) = x.y/||X||∗||Y ||

where, x. y= dot product of the vectors ‘x’ and ‘y’ and ||x||∗
||y|| = cross product of the two vectors ‘x’ and ‘y’.

1) Generate Combined Similarity Matrix - In this step,
we create a Combined Similarity Matrix of use cases
which is a N×N symmetric matrix. Here (i, j)-th

element represents the similarity measure for the UCi

and UCj where i, j = 1,. . . ,N. For this, Resemblance
Matrices for UC-D andUC-UC are aggregated together
to generate a Combined Similarity Matrix.

2) Clustering of use cases - The Combined Similarity
Matrix generated in the previous step is the input for
clustering technique. We perform clustering to obtain
a cohesive set of use cases that may be bundled
together as microservices. Given a set of use cases,
UCA, it involves organizing each use case into a
specific group called cluster. In our work, we consider
each use case UCi as a distinct object. Use cases of
the same cluster are likely to be as homogeneous as
possible tomake sure the cohesion property of a cluster.
In contrast, use cases belonging to different groups are
likely to be as distinct as possible tomake sure the loose
coupling among clusters.

For our work, we have applied classical Hierarchical
Agglomerative Clustering (HAC) [22] for two reasons.
Firstly, it has been utilized in numerous earlier works on
software re-modularization [23] and microservice candidate
identification [24], [25], [20]. Secondly, it has less time
complexity in comparison to the hill-climbing technique
[26] and genetic algorithms [27], [10]. Despite the fact that
hierarchical clustering provides a graphical representation of
a fully connected hierarchical tree as dendrograms, we can
find the optimal number of clusters to be extracted. For this,
we executed the Silhouette method that suggested the optimal
number of clusters. Each group of use cases can be considered
a potential microservice candidate. By the end of this step,

67012 VOLUME 10, 2022



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

TABLE 1. Subject applications used in evaluation.

we find possible microservices µA from the given set of use
cases UCA.

IV. EMPIRICAL EVALUATIONS
In this section, we present subject applications on which
empirical evaluations are being performed. We also describe
baseline techniques with which results of GreenMicro are
compared. We also elaborate quality assessment metrics that
are utilized in this evaluation work.

A. SUBJECT APPLICATIONS
We use four Java Enterprise Edition (J2EE) applications for
the evaluation - three open-source benchmark applications
namely JPetStore, AcmeAir, and Cargo Tracking System,
and one in-house application namely Teachers Feedback
Web Application (TFWA). The three open-source benchmark
applications have been chosen as they have been used most
predominantly in previous evaluations in academic research
related to microservice identification. Table 1 presents the
basic information about the four applications, like, number
of use cases and number of database tables.

TFWA: Teachers Feedback Web Application (TFWA)
automates the process of the feedback system for teachers.
Students use TFWA to submit their feedback for all subjects
and the respective teachers. Students can give their feedback
online. Visually impaired student is a specialized actor that
can give feedback through a voice-bot. Teacher In-Charge
(TIC) of every department and Principal can check the status
of the feedback procedure and can view and analyze the feed-
back data from different analytics perspectives (department-
wise, teacher-wise, class-wise and subject-wise). All use
cases are depicted in Figure 3. There are mainly four actors
that interact with the system - Student, TIC, Principal, and
Admin.

We extracted twenty two use cases and seven database
tables for TFWA. Thus the dimension of the UC-D matrix
is 22 × 7. UC-UC matrix is a 22 × 22 matrix depicting
relationships between use cases. Combined Similarity Matrix
is also a 22 × 22 matrix on which finally the clustering
algorithm is applied. Figure 4, Figure 5 and Figure 6 show the
excerpts of Use Case-Database Entities Relationship Matrix
(UC-D), Use Case-Use Case Relationship Matrix (UC-UC)
and Combined Similarity Matrix respectively for TFWA.

Brief description of the sample benchmark applications is
as follows:

FIGURE 3. Use case diagram for TFWA.

FIGURE 4. Excerpts of UC-D matrix for TFWA.

FIGURE 5. Excerpts of UC-UC matrix for TFWA.

JPetStore4: An e-commerce application for pet shopping
that allows users to browse catalog, products and items, add

4https://github.com/mybatis/jpetstore-6

VOLUME 10, 2022 67013



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

FIGURE 6. Excerpts of combined similarity matrix for TFWA.

items to cart, remove items from cart, update cart items and
purchase items within several categories of pets.

AcmeAir5: A fictitious airline system that handles booking
flights, cancel flights, search flights, customer account
information, authentication, and baggage services.

Cargo Tracking System6: The focus of the application is
to track the movement of a Cargo (which is uniquely identi-
fied by a TrackingId) between two Locations listed through
a RouteSpecification. Once a Cargo is booked, it is linked
with one of the Itineraries (record of CarrierMovements) as
selected from existing Voyages. HandlingEvents tracks the
movement of the Cargo on the Itinerary. When the cargo is
handled, its delivery status changes. The life cycle of a cargo
ends when the cargo is claimed by the customer.

B. RELATED TECHNIQUES FOR QUANTITATIVE
EVALUATION
The objective of our evaluation is to assess whether
GreenMicro can identify effective microservice candidates.
For JPetStore, and AcmeAir application, we compare our
approach with four well-known baselines for microservice
identification that have presented their results for selected
applications: FoSCI [27], CoGCN [36], Mono2Micro [28]
and MEM [2].

FoSCI7 collects and processes the execution traces of
the monolithic application, and identifies services candidates
using a search-based functional atom grouping algorithm
using a hierarchical clustering approach. Later FoSCI assigns
these functional atoms tomicroservice candidates bymerging
them using a genetic algorithm.

CoGCN proposes a multi-objective Graph Convolution
Network approach to partition monolith applications using
graph based clustering. The technique minimizes the effect
of structural and attribute outlier classes that could be in the
embeddings of other classes.

5https://github.com/acmeair/acmeair
6 https://github.com/citerus/dddsample-core
7https://github.com/wj86/FoSCI/releases

Mono2Micro8 employs a spatial-temporal decomposition
technique that leverages running of selected business use
cases of the monolithic application and dynamically collects
runtime call traces to find functionally cohesive clusters of
application classes. Business use cases comprise the space
dimension and control flow of the dynamic runtime traces
convey the time dimension.

MEM9 makes use of Kruskal’s algorithm to findminimum
spanning tree (MST) for the monolithic application. This
technique has two transformation stages. In the construction
step, the monolith is transformed into the graph represen-
tation using three coupling criteria – logical, contributor
and semantic coupling. In the clustering step, graph repre-
sentation is decomposed to generate partitions behaving as
microservice candidates.

The above listed baseline approaches do not perform
their analysis on the Cargo Tracking System. So, for this
application, we compare our approach with other four
well-known baselines formicroservice identification: Service
Cutter [39], API Interface Analysis [12], DFD Analysis [9]
and Business Processes Analysis [16].

Service Cutter10 is a state-of-the-art approach for
microservice identification. The inputs to the tool are a set
of requirement artifacts, and weighted coupling criteria. Tool
outputs a graph where nodes indicate candidate services, and
weight along the arcs represents how cohesive/ coupled two
candidate services are. Lastly, a clustering algorithm suggests
the most appropriate microservice cuts.

API Interface Analysis11 involves semantic similarity of
available functionality evaluated through OpenAPI specifica-
tions. This approach identifies potential candidate microser-
vices bymatching the key terms in the specifications against a
reference vocabulary and suggests possible decompositions.

DFD Analysis suggests a semi-automatic dataflow-driven
microservice decomposition approach to generate a process-
data store version of DFD (DFDPS). DFDPS shows the
relation between processes and related data-stores. This
DFDPSis condensed to get a decomposable DFD, in which
the sentences between processes and data-stores are joined.

Business Processes Analysis utilizes a multi-model
approach that combines different independent models that
represent business process activities like control, data,
and semantic dependencies. A clustering algorithm further
applied to combine all extracted dependencies for identifying
microservices.

C. METRICS UTILIZED
For the selected benchmark applications, we could not find
quality assessment metrics that are common for all three
applications. Researchers have validated their work on varied
sets of quality attributes. Therefore, we test these benchmark

8https://github.com/kaliaanup/Mono2Micro-FSE-2021
9 https://github.com/gmazlami/microserviceExtraction-backend
10 https://github.com/ServiceCutter/ServiceCutter
11 https://github.com/mgarriga/decomposer

67014 VOLUME 10, 2022



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

applications for those quality assessment metrics that are
used in other baseline studies. This eventually gives us an
opportunity to assess and validate our approach on a diverse
spectrum of quality attributes.

We apply the following mentioned five quality metrics for
JPetStore and AcmeAir applications namely i) SM, ii) ICP,
iii) BCP, iv) IFN, and v) NED to measure the effectiveness of
partitions recommended using GreenMicro.

Structural Modularity (SM), as defined in [28], [36],
[27], measures modular quality of a microservice from
a structural view. Higher the SM, better modularized the
microservice is.

SM =
1
N

N∑
i=1

scohi −
1

N (N−1)
2

N∑
i 6=j

scopi,j

where scohi =
ui

Ni ∗ Ni
and scopi,j =

σi,j

2(NiXNj)

scohi measures the structural cohesiveness of a microservice
(intra-connectivity) and scopi,jmeasures coupling between
microservices (inter-connectivity). N refers to the number of
services. ui refers to the number of edges inside a service i. σi,j
refers to the number of edges between microservice i and j.Ni
orNj means the number of entities (both classes andmethods)
in microservice i or j. The larger scoh, and the lesser scop, the
better SM.

Inter-Partition Call percentage (ICP) [28], [35] amounts
to the percentage of calls between two microservices i and j.

ICPi,j =
Ci,j∑N

i=1,j=1,i 6=j Ci,j

where Ci,j measures the number of call between microser-
vices i and j. The lesser the value of ICP, the better is the
microservice identification.

Business Context Purity (BCP) [28], [41] indicates
the mean entropy of business use cases per partition.
A microservice is considered functionally cohesive if it
implements a lesser number of use cases. Mathematically,

BCP =
1
N

N∑
i=1

BC i∑
j
BCj

log2 (
BC i∑
j
BCj

)

where N is the number of services and BCi indicates the
number of business use cases in microservice i. Since BCP
is primarily based on entropy, lesser values are better.

Interface Number (IFN) [27], [28], [36] indicates the
average number of published interfaces exposed by a
microservice to other services. Smaller the value of IFN, the
better it is as the service follows the Single Responsibility
Principle. A service publishing a large number of interfaces
may provide numerous functionalities, thus violating SRP.
Mathematically, it can be represented as

IFN =
1
N

N∑
j=1

ifnj

Non-Extreme Distribution (NED) [28], [36] measures how
evenly distributed the sizes of the recommendedmicroservice
is. In general, it is preferred not to have a microservice that
has too many or too few classes.

NED = 1−

∑N
i=1,i not extreme ni
|V |

where ni is the number of classes in service i and V is the
set of classes. i is not extreme if its size is within bounds of
{5:20}. The Less the value of NED, the better it is.

For quantitative evaluation of the Cargo Tracking System,
we couldn’t find any research paper where above listed
metrics are utilized. So, we make use of another four
object-oriented design metrics namely i) Number of Incom-
ing Dependencies, ii) Number of Outgoing Dependencies,
iii) Instability, and iv) Relational Cohesion12 as used in
other baseline techniques [9], [12], [16], [39]. In general, all
the metrics are based on coupling, cohesion and number of
interactions between microservices. A concise description of
these metrics is given below:

Number of Incoming Dependencies - Measures the
number of classes outside this microservice that depend upon
classes within this microservice. It is also called afferent
coupling (Ca).

Number of Outgoing Dependencies - Measures the
number of classes inside this microservice that depend on
classes outside this microservice. It is also called efferent
coupling (Ce).

Instability Index (I) - Indicates service’s resilience to
change. It has a range from 0 to 1(both inclusive). I =
0 (maximally stable service), means no method in this
service has a dependency to any other method or class in
another service. If there are no outgoing dependencies, then
Instability will be 0 and themeasured service is stable. If there
are no incoming dependencies, then Instability will be 1 and
the measured element is unstable. Stable means that the
element is not so easy to change. It can be calculated as the
ratio Ce / (Ca + Ce).
Relation Cohesion (RC) - It is a measure of the number

of internal relations that represent class inheritance, method
invocations, access to class attributes etc. Higher values of
relational cohesion suggest more cohesion.

V. RESULTS
We evaluated the performance of GreenMicro for the three
benchmark applications and one in-house application. For
each application, we applied our approach and grouped a set
of cohesive use cases to obtain microservices. We compared
the Cargo Tracking System against four baselines on four
evaluation metrics. Further, we compared AcmeAir and
JPetStore against anther four baselines on five evaluation
metrics.

Table 2, 3, 4 and 5 present the comparison of our results
for all four applications across two sets of metrics. For all the

12http://eclipse.hello2morrow.com/doc/standalone/content/java_metrics.html

VOLUME 10, 2022 67015



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

TABLE 2. Comparison of metrics for acmeair.

TABLE 3. Comparison of metrics for jpetstore.

TABLE 4. Comparison of metrics for cargo tracking system.

metrics, we have assigned two labels as ‘‘(-)’’ or ‘‘(+)’’. Label
‘‘(-)’’ indicates lower values are better, and a label ‘‘(+)’’
indicates higher values are better.

For the AcmeAir application, GreenMicro performed
better than other approaches for SM, ICP, BCP and IFN
as shown in Table 2. GreenMicro’s better results for BCP
highlight that use case based partitions are more functionally
consistent. For NED, our values are slightly higher than the
values presented by CoGCN.

For JPetStore, GreenMicro yields better results for ICP,
BCP, IFN and NED. Lower ICP indicates lesser call
percentage between services. Winning in terms of NED
indicates that the majority of the services contain 5 to
20 classes as shown in Table 3. It may be noted that the value
of SM metric is slightly lower than MEM (highest).

For the Cargo Tracking System, metrics are evaluated
using SonarGraph Architect (12.0.4.713 version) [42].
SonarGraph can measure and monitor the technical quality
assessment metrics. From a comparative perspective, our
results reveal better performance in terms of Number of
Incoming Dependencies and Relational Cohesion strength.
It signifies more reusable, maintainable, and robust microser-
vices. Number of Outgoing Dependencies and Instability
metrics yields marginally higher value in comparison to other
related studies, as shown in Table 4.

TABLE 5. Metrics for TFWA.

TABLE 6. Comparison of metrics for TFWA.

For TFWA, we achieve three microservices namely
Authentication, Feedback, and Analytics. Table 5(a) and (b)
represents quality assessment metrics for both sets of metrics
discussed above. GreenMicro improves the long-term health,
quality, maintainability of the application and yields better
software restructuring.

For TFWA, we also compare and present the results of
legacy monolithic application and microservices application,
developed according to GreenMicro. Table 6 aggregates
the quality assessment parameters provided by SonarGraph
Architect as described below:
• System Maintainability Level - Evaluates main-
tainability (in %) by assessing dependency structure

67016 VOLUME 10, 2022



D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

between components in source files. Cyclic dependen-
cies and incoming dependencies negatively influence the
metric.

• Cyclic Java Packages - Number of Java packages
involved in a cycle.

• Component Dependencies to Remove - Number of
component dependencies to remove to break up all Java
package cycle groups.

• Structural Debt Index - An estimation of the work
needed to clean a software project from structural
drift and erosion which happened due to unwanted
dependencies that violates architectural rules and cyclic
dependencies between packages.

• Physical Cohesion - Number of dependencies ’to’ and
’from’ other components in the same module.

• Physical Coupling - Number of dependencies ’to’ and
’from’ other components in other modules.

Our results show that microservice application yields
reduced cyclic package dependencies, structural erosion,
structural debt index and improved system maintainability
level. It will consequently improve long-term health, quality,
andmaintainability of the application. To conclude, microser-
vice identification performed by our approach has greater
cohesion, smaller coupling, lesser number of operations
offered by a microservice and lesser average calls from
one microservice to another. Thus, these results display
satisfactory PoC.

VI. CONCLUSION
Microservices are one of the most popular concepts in
web application development. A microservice is a small,
independent, loosely coupled and high cohesive service that
is based on bounded-context. This new paradigm brings
a lightweight, independent, reuse-oriented, and fast service
deployment approach that minimizes infrastructural risks.
However, microservices identification remains an important
hurdle for system architects and designers. This task becomes
even more challenging in greenfield deployments. Finding
microservices before the code exists, as done in our approach,
enables system architects to design software that is of higher
design quality. We propose a microservice identification
approach, GreenMicro that makes use of business use cases,
their inter-dependence and associated data dependencies
as the primary sources of input. We applied a clustering
algorithm on the combined similarity matrix to identify
microservices.

We understand that orchestration and choreography is an
implementation choice consideration which is an excellent
area to explore in future work. For evaluation, GreenMicro
is applied to four enterprise Java applications to recommend
candidate microservices. The initial results are promising
demonstrating better structural modularity, higher cohesion
and lower inter-service calling. In our future work, we will
perform further evaluations of GreenMicro on real-world
big scale enterprise applications. We also understand that
orchestration and choreography is an implementation time

consideration which is an excellent area to explore in future
work.

REFERENCES
[1] I. K. Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan, ‘‘Systematic

approach for generation of feasible deployment alternatives for microser-
vices,’’ IEEE Access, vol. 9, pp. 29505–29529, 2021.

[2] G. Mazlami, J. Cito, and P. Leitner, ‘‘Extraction of microservices from
monolithic software architectures,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 524–531, doi: 10.1109/ICWS.2017.61.

[3] H. Vural and M. Koyuncu, ‘‘Does domain-driven design lead to finding
the optimal modularity of a microservice?’’ IEEE Access, vol. 9,
pp. 32721–32733, 2021, doi: 10.1109/ACCESS.2021.3060895.

[4] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, ‘‘A prescriptive model for
migration to microservices based on SDLC artifacts,’’ J. Web Eng., vol. 20,
no. 3, pp. 817–852, Jun. 2021, doi: 10.13052/jwe1540-9589.20312.

[5] G. R. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad, ‘‘Identifica-
tion of system software components using clustering approach,’’ J. Object
Technol., vol. 9, no. 6, pp. 77–98, 2010, doi: 10.5381/jot.2010.9.6.a4.

[6] T. von der Maßen and H. Lichter, ‘‘Modeling variability by UML use case
diagrams,’’ in Proc. Int. Workshop Requirements Eng. Product Lines, 2002,
pp. 19–25.

[7] M. Kalske, ‘‘Transforming monolithic architecture towards microservice
architecture,’’ M.S. thesis, Dept. Comput. Sci., Univ. Helsinki, Helsinki,
Finland, 2017, p. 72.

[8] R. Chen, S. Li, and Z. Li, ‘‘From monolith to microservices: A dataflow-
driven approach,’’ in Proc. 24th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2017, pp. 466–475, doi: 10.1109/APSEC.2017.53.

[9] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan,
‘‘A dataflow-driven approach to identifyingmicroservices frommonolithic
applications,’’ J. Syst. Softw., vol. 157, Nov. 2019, Art. no. 110380, doi:
10.1016/j.jss.2019.07.008.

[10] M. J. Amiri, ‘‘Object-aware identification ofmicroservices,’’ inProc. IEEE
Int. Conf. Services Comput. (SCC), IEEEWorld Congr. Services, Jul. 2018,
pp. 253–256, doi: 10.1109/SCC.2018.00042.

[11] M. Ahmadvand and A. Ibrahim, ‘‘Requirements reconciliation for scalable
and secure microservice (De)composition,’’ in Proc. IEEE 24th Int.
Requirements Eng. Conf. Workshops (REW), Sep. 2016, pp. 68–73, doi:
10.1109/REW.2016.026.

[12] L. Baresi, M. Garriga, and A. De Renzis, ‘‘Microservices identification
through interface analysis,’’ in Proc. Eur. Conf. Service-Oriented Cloud
Comput., in Lecture Notes in Computer Science: Including Subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics,
vol. 10465, Nov. 2017, pp. 19–33, doi: 10.1007/978-3-319-67262-5_2.

[13] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, ‘‘Identifying microser-
vices using functional decomposition,’’ in Proc. Int. Symp. Dependable
Softw. Eng., Theories, Tools, Appl., in Lecture Notes in Computer Science:
Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics, vol. 10998, 2018, pp. 50–65, doi: 10.1007/978-
3-319-99933-3_4.

[14] C.-Y. Fan and S.-P. Ma, ‘‘Migrating monolithic mobile application
to microservice architecture: An experiment report,’’ in Proc. IEEE
Int. Conf. AI Mobile Services (AIMS), Jun. 2017, pp. 109–112, doi:
10.1109/AIMS.2017.23.

[15] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and
A. El Fazziki, ‘‘Towards an automatic identification of microservices from
business processes,’’ in Proc. IEEE 29th Int. Conf. Enabling Technol.,
Infrastruct. Collaborative Enterprises (WETICE), Sep. 2020, pp. 42–47,
doi: 10.1109/WETICE49692.2020.00017.

[16] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar,
and A. El Fazziki, ‘‘A multi-model based microservices identification
approach,’’ J. Syst. Archit., vol. 118, Sep. 2021, Art. no. 102200, doi:
10.1016/j.sysarc.2021.102200.

[17] F. H. Vera-Rivera, E. G. Puerto-Cuadros, H. Astudillo, and
C. M. Gaona-Cuevas, ‘‘Microservices backlog—A model of granularity
specification and microservice identification,’’ in Proc. Int. Conf.
Services Comput., in Lecture Notes in Computer Science: Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, vol. 12409, Sep. 2020, pp. 85–102, doi: 10.1007/978-3-
030-59592-0_6.

[18] M. Marbout and F. Shams, ‘‘An automated service realization method,’’
Int. J. Comput. Sci. Issues, vol. 9, no. 4, pp. 188–195, 2012.

VOLUME 10, 2022 67017

http://dx.doi.org/10.1109/ICWS.2017.61
http://dx.doi.org/10.1109/ACCESS.2021.3060895
http://dx.doi.org/10.13052/jwe1540-9589.20312
http://dx.doi.org/10.5381/jot.2010.9.6.a4
http://dx.doi.org/10.1109/APSEC.2017.53
http://dx.doi.org/10.1016/j.jss.2019.07.008
http://dx.doi.org/10.1109/SCC.2018.00042
http://dx.doi.org/10.1109/REW.2016.026
http://dx.doi.org/10.1007/978-3-319-67262-5_2
http://dx.doi.org/10.1007/978-3-319-99933-3_4
http://dx.doi.org/10.1007/978-3-319-99933-3_4
http://dx.doi.org/10.1109/AIMS.2017.23
http://dx.doi.org/10.1109/WETICE49692.2020.00017
http://dx.doi.org/10.1016/j.sysarc.2021.102200
http://dx.doi.org/10.1007/978-3-030-59592-0_6
http://dx.doi.org/10.1007/978-3-030-59592-0_6


D. Bajaj et al.: GreenMicro: Identifying Microservices From Use Cases in Greenfield Development

[19] D. Kang, B. Xu, J. Lu, andW. C. Chu, ‘‘A complexity measure for ontology
based on UML,’’ in Proc. 10th IEEE Int. Workshop Future Trends Distrib.
Comput. Syst. (FTDCS), May 2004, pp. 222–228.

[20] L. J. Kirby, E. Boerstra, Z. J. C. Anderson, and J. Rubin, ‘‘Weighing
the evidence: On relationship types in microservice extraction,’’ in Proc.
IEEE/ACM 29th Int. Conf. Program Comprehension (ICPC), May 2021,
pp. 358–368, doi: 10.1109/ICPC52881.2021.00041.

[21] M. Brito, J. Cunha, and J. Saraiva, ‘‘Identification of microservices
from monolithic applications through topic modelling,’’ in Proc. 36th
Annu. ACM Symp. Appl. Comput., Mar. 2021, pp. 1409–1418, doi:
10.1145/3412841.3442016.

[22] W.H. E. Day andH. Edelsbrunner, ‘‘Efficient algorithms for agglomerative
hierarchical clustering methods,’’ J. Classification, vol. 1, no. 1, pp. 7–24,
1984.

[23] C. Patel, A. Hamou-Lhadj, and J. Rilling, ‘‘Software clustering using
dynamic analysis and static dependencies,’’ in Proc. 13th Eur. Conf. Softw.
Maintenance Reeng., 2009, pp. 27–36.

[24] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O. Mahamane,
‘‘Re-architecting OO software into microservices,’’ in Proc. Eur. Conf.
Service Cloud Comput., 2018, pp. 65–73, doi: 10.1007/978-3-319-99819-
0_5.

[25] S. Eski and F. Buzluca, ‘‘An automatic extraction approach—
Transition to microservices architecture from monolithic application,’’
in Proc. ACM Int. Conf. Agile Softw. Develop., 2018, pp. 1–6, doi:
10.1145/3234152.3234195.

[26] K. Mahdavi, M. Harman, and R. M. Hierons, ‘‘A multiple Hill climbing
approach to software module clustering,’’ in Proc. Int. Conf. Softw.
Maintenance (ICSM), 2003, pp. 315–324.

[27] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, ‘‘Service
candidate identification from monolithic systems based on execution
traces,’’ IEEE Trans. Softw. Eng., vol. 47, no. 5, pp. 987–1007, May 2021,
doi: 10.1109/TSE.2019.2910531.

[28] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
‘‘Mono2Micro: A practical and effective tool for decomposing monolithic
Java applications to microservices,’’ in Proc. 29th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), Aug. 2021,
pp. 1214–1224, doi: 10.1145/3468264.3473915.

[29] M. Architecture, ‘‘Refactoring monolithic object-oriented source code
to materialize motivating example?: Information,’’ in Proc. ICSOFT,
vol. 117, 2021, p. 126.

[30] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, ‘‘Functionality-oriented
microservice extraction based on execution trace clustering,’’ in Proc.
IEEE Int. Conf. Web Services (ICWS), Jul. 2018, pp. 211–218.

[31] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, ‘‘Towards automated
microservices extraction using muti-objective evolutionary search,’’ in
Proc. Int. Conf. Service-Oriented Comput., in Lecture Notes in Computer
Science: Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics, vol. 11895, Oct. 2019, pp. 58–63, doi:
10.1007/978-3-030-33702-5_5.

[32] O. Al-Debagy and P. Martinek, ‘‘A microservice decomposition method
through using distributed representation of source code,’’ Scalable
Comput., vol. 22, no. 1, pp. 39–52, 2021, doi: 10.12694:/scpe.v22i1.1836.

[33] R. Yedida, R. Krishna, A. Kalia, T. Menzies, J. Xiao, and M. Vukovic,
‘‘Lessons learned from hyper-parameter tuning for microservice candidate
identification,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2021, pp. 1141–1145, doi: 10.1109/ase51524.2021.9678704.

[34] M. Abdullah, W. Iqbal, and A. Erradi, ‘‘Unsupervised learning approach
for web application auto-decomposition into microservices,’’ J. Syst.
Softw., vol. 151, pp. 243–257, May 2019, doi: 10.1016/j.jss.2019.02.031.

[35] R. Yedida, R. Krishna, A. Kalia, T. Menzies, J. Xiao, and M. Vukovic,
Partitioning cloud-based microservices (via deep learning), vol. 1, no. 1,
2021, arXiv:2109.14569.

[36] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, ‘‘Graph neural network
to dilute outliers for refactoring monolith application,’’ in Proc. 35th AAAI
Conf. Artif. Intell., 2021, vol. 35, no. 1, pp. 72–80.

[37] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii, ‘‘Visualization tool
for designing microservices with the monolith-first approach,’’ in Proc.
IEEE Work. Conf. Softw. Vis. (VISSOFT), Sep. 2018, pp. 32–42, doi:
10.1109/VISSOFT.2018.00012.

[38] O. Al-Debagy and P. Martinek, ‘‘Dependencies-based microservices
decomposition method,’’ Int. J. Comput. Appl., pp. 1–8, Apr. 2021, doi:
10.1080/1206212X.2021.1915444.

[39] M. Gysel, L. Kölbener,W. Giersche, and O. Zimmermann, ‘‘Service cutter:
A systematic approach to service decomposition,’’ in Proc. Eur. Conf.
Service-Oriented Cloud Comput., in Lecture Notes in Computer Science:
Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9846, 2016, pp. 185–200, doi: 10.1007/978-
3-319-44482-6_12.

[40] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, ‘‘Partial migration for
re-architecting a cloud native monolithic application into microservices
and FaaS,’’ in Proc. Int. Conf. Inf., Commun. Comput. Technol., 2020,
pp. 111–124, doi: 10.1007/978-981-15-9671-1_9.

[41] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic, and
D. Banerjee, ‘‘Mono2Micro: An AI-based toolchain for evolving mono-
lithic enterprise applications to a microservice architecture,’’ in Proc. 28th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/FSE), Nov. 2020, pp. 1606–1610, doi: 10.1145/3368089.3417933.

[42] A. von Zitzewitz, ‘‘Mitigating technical and architectural debt with
sonargraph,’’ in Proc. IEEE/ACM Int. Conf. Tech. Debt (TechDebt),
May 2019, pp. 66–67.

[43] H. Gomaa and E. Olimpiew, ‘‘The role of use cases in requirements and
analysis modeling,’’ in Proc. Workshop Use Cases Model-Driven Softw.
Eng., Montego Bay, Jamaica, 2005, pp. 1–15.

[44] D. Bajaj, A. Goel, S. C. Gupta, and H. Batra, ‘‘MUCE: A multilingual
use case model extractor using GPT-3,’’ Int. J. Inf. Technol., vol. 14, no. 3,
pp. 1543–1554, May 2022, doi: 10.1007/s41870-022-00884-2.

DEEPALI BAJAJ is currently pursuing the Ph.D.
degree in the area of cloud and distributed
computing. She is also an Associate Profes-
sor with the Department of Computer Science,
Shaheed Rajguru College of Applied Sciences
for Women (University of Delhi). She has over
15 years of teaching experience at university
level. She has authored several national and
international research publications. Her research
interests include microservices and function-as-a-

service (FaaS) and serverless technology.

ANITA GOEL is currently a Professor with the
Department of Computer Science, Dyal Singh
College, University of Delhi, India. She has a work
experience of more than 30 years. She is also a
visiting faculty to several universities in India. She
has been a fellow of Computer Science with the
Institute of Life Long Learning (ILLL), University
of Delhi. She has guided several students for their
doctoral studies and has travelled internationally
to present research papers. She is a serving

member of program committee of several international conferences. She
has authored books in computer science. She has several national and
international research publications. Her research interests include cloud
computing, microservices, serverless computing, software engineering, and
technology-enhanced education (MOOC).

S. C. GUPTA is currently pursuing the B.Tech.
degree in EE with IIT Delhi. He has worked
with the Computer Group, Tata Institute of Fun-
damental Research and NCSDCT (now C-DAC
Mumbai), until recently, he worked as the Deputy
Director General of Scientist-G, and the Head of
Training with the National Informatics Centre,
New Delhi. He was responsible for keeping its
3000 scientists/engineers up to date in various
technologies. He has extensive experience in

design and development of large complex software systems. He is currently a
Visiting Faculty with the Department of Computer Science and Engineering,
IIT Delhi, where he has been teaching cloud computing, which includes
emerging disruptive technologies like SDN and SDS. He has guided many
M.Tech., and Ph.D. research students in these technologies. He has many
publications in software engineering and cloud technology in national
and international conferences and journals. His research interests include
software engineering, data bases, and cloud computing.

67018 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICPC52881.2021.00041
http://dx.doi.org/10.1145/3412841.3442016
http://dx.doi.org/10.1007/978-3-319-99819-0_5
http://dx.doi.org/10.1007/978-3-319-99819-0_5
http://dx.doi.org/10.1145/3234152.3234195
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1145/3468264.3473915
http://dx.doi.org/10.1007/978-3-030-33702-5_5
http://dx.doi.org/10.12694:/scpe.v22i1.1836
http://dx.doi.org/10.1109/ase51524.2021.9678704
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.1109/VISSOFT.2018.00012
http://dx.doi.org/10.1080/1206212X.2021.1915444
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-981-15-9671-1_9
http://dx.doi.org/10.1145/3368089.3417933
http://dx.doi.org/10.1007/s41870-022-00884-2

